
IN MEMORIAM
EUGENE L. LAWLER

Eugene L. Lawler died on September 2, 1994, at age 61, after an eight month battle
with cancer. He is survived by his wife Marijke, his son Stephen, and his daughter Susan,
son-in-law Matthew, and granddaughter Janna Rose Surprise. He will be dearly missed by his
students, colleagues, and friends.

Gene obtained an A.M. at Harvard University in 1957 and was a Senior Electrical Engineer
at Sylvania Electric Products in Needham, Massachusetts from 1959 until 1961. He went
back to Harvard to obtain a Ph.D. in 1962. He taught at the University of Michigan in Ann
Arbor from 1962 until 1970 and the University of California at Berkeley from 1971 until
his death. He combined an illustrious career of highly influential research with a history of
dedicated service to both universities. Throughout his career, Gene was an active member of
the theoretical computer science community; he served on the editorial board of SIAM Journal
on Applied Mathematics (1968-1972) as well as SIAM Journal on Computing (1972-1980).

For more than 30 years, Gene Lawler studied algorithmic issues in combinatorial opti-
mization. His contributions were fundamental in giving the discipline the breadth and depth
it has now attained. Of all of his work, his textbook Combinatorial Optimization: Networks
and Matroids (1976) has had the most pronounced impact. It brought together the most im-
portant results in the area and is notable for its lucid writing style. It gave new clarity to
both well-understood and not so well-understood results, brought the reader to the forefront
of the field, and made the challenges of the future both apparent and accessible. It is one of
the classics of the area and is as useful today as the day it was written. Another book, The
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Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization (1985), which
he edited with three younger colleagues, also became a benchmark reference.

It is hard to separate Gene’s contributions as an expositor from those as a researcher. His
great gift in investigating a computational approach to a problem was his ability to extract the
essential difficulty, achieve a deeper insight, and solve a more general problem in a simpler
way. To some extent, his expository talent came from the relative difficulty he had in absorbing
new ideas. In order for him to understand other people’s work, especially when it was written
in a complicated way, he often had to wrestle with it to arrive at a better understanding and a
simplification of the result.

Gene’s papers on branch-and-bound (with D. E. Wood) and dynamic programming (with
J. M. Moore) are classics; the former, in fact, was selected as a citation classic in 1987. Rather
than introducing radically new techniques, both papers brought a new level of usefulness
and understanding to important algorithmic paradigms. Since the mid 1970s, Gene was
particularly interested in sequencing and scheduling. Prior to his work, the area was a rather
unmathematical hodgepodge, with little systematic understanding of the types of methods
and techniques that could be used most effectively. Gene’s work greatly stimulated and
unified the area. His main unfinished project is the completion of a graduate textbook on
scheduling. He made significant contributions to a wide variety of questions in the area
of combinatorial optimization, which were influential in both the operations research and
computer science communities. Most recently, he had turned his attention to combinatorial
problems in computational biology, which is an area of growing importance.

As this summary of Gene’s research contributions might suggest, he was a phenomenal
educator. He could provide the intuition that made difficult results easily accessible. His

appreciation of the difficulties of absorbing ideas to the point that one can go beyond them
in some original way helped to make him a great advisor. He was constantly available for
every new idea and always ready to interest his students in whatever he was currently thinking
about.

Gene had an enormous influence on the atmosphere of the Computer Science Division
at Berkeley. He never lost sight of the mission of a university and never backed away from
difficult tasks. Gene was the social conscience of the Division. He helped the individual
student fight the bureaucracy, reformed what the university taught and to whom it taught it,
and made the university a more humane and more stimulating place to study. Last year he
was awarded the Berkeley Citation, the campus’ highest accolade.

Gene Lawler was a remarkable man who was ready to discuss intelligently almost any
current issue, and who did so in a thought-provoking way. We will all miss him very much.
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MATRIX TRANSFORMATION
IS COMPLETE FOR THE AVERAGE CASE*

ANDREAS BLASS AND YUR] GUREVICH

Abstract. In the theory of worst case complexity, NP completeness is used to establish that, for all practical
purposes, the given NP problem is not decidable in polynomial time. In the theory of average case complexity, average
case completeness is supposed to play the role ofNP completeness. However, the average case reduction theory is still
at an early stage, and only a few average case complete problems are known. The first algebraic problem complete
for the average case under a natural probability distribution is presented. The problem is this: Given a unimodular
matrix X of integers, a set S of linear transformations of such unimodular matrices and a natural number n, decide if
there is a product of < n (not necessarily different) members of S that takes X to the identity matrix.
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1. Introduction. The theory ofNP completeness is very useful. It allows one to establish
that certain NP problems are NP complete and therefore, for all practical purposes, not decid-
able in polynomial time (PTime). One way around the NP completeness phenomenon is to
consider the given NP problem together with an appropriate probability distribution and seek a
decision algorithm that runs quickly on average. This works very well for some problems (see
[GS], for example), but some other randomized decision problems appear too difficult even on
average. It would be very useful to generalize the theory of NP completeness to be able to es-
tablish that certain randomized decision problems are, for all practical purposes, not decidable
quickly on average. This is the motivation for the theory of average case completeness.

Before we plunge into this theory, let us review briefly the NP completeness theory. The
idea is that PTime algorithms are considered easy. In particular, PTime decidable NP problems
are considered easy. One says that an NP problem FI reduces to an NP problem Fie if there
is a PTime algorithm R from instances of Fi1 to instances of Fie that takes positive instances
to positive instances and negative instances to negative instances. Such an R is a many-one
PTime reduction from FI to FI2. A PTime decision algorithm A for FIe gives rise to the PTime
decision algorithm R o A for FI . A decision problem is hard for NP (via many-one PTime
reductions) if every NP problem reduces to it (by means of a many-one PTime reduction).
A decision problem is complete for NP if it belongs to NP and is hard for NP. Most known
natural NP problems are either PTime decidable or NP complete.

The theory of average case completeness was pioneered by Levin in [Le]. Levin replaced
NP with the class RNP ofNP problems with so-called PTime computable probability distribu-
tions [Le], [Gu ]. He generalized PTime computability to computability in time polynomial
on average (APtime computability) and defined many-one PTime reductions of RNP prob-
lems. Then he established that a bounded version of the known tiling problem together with
a natural probability distribution is complete for RNP via many-one PTime reductions. (That
is, the randomized tiling problem belongs to RNP and every problem in RNP reduces to it via
many-one PTime reductions.) Another RNP problem, implicitly present in [Le], is bounded
halting, a bounded version of the standard halting problem together with natural probability
distribution; this problem is explicitly defined and proved complete in [Gul ].

*Received by the editors May 18, 1992; accepted for publication (in revised form) August 31, 1993.
tMathematics Department, University of Michigan, Ann Arbor, Michigan 48109-1003 (ablass@

umich. edu). The work ofthis author was partially supportedby National Science Foundation grants DMR 88-01988
and DMS-9204276.

tElectrical Engineering and Computer Science Department, University of Michigan, Ann Arbor, Michigan
48109-2122 (gurevich@umich. edu). The work of this author was partially supported by National Science
Foundation grants CCR 89-04728 and CCR 92-04742 and Office of Naval Research grant N00014-9l-J-11861.

3



4 ANDREAS BLASS AND YURI GUREVICH

Some progress has been achieved in the meantime. In particular, the restriction to PTime
computable distributions was liberalized [BCGL]; Levin’s complete problems remained com-
plete (we return to the issue of the liberalized RNP later in this introduction). The reduction
theory has been revised [Gu ], [BCGL], [VL], [BG ], [BG2]. In particular, deterministic re-
ductions, shown insufficient in [Gu ], have been replaced in [VL] by randomizing reductions;
in other words, reduction algorithms have been allowed to flip coins. This tuning up of the
reduction theory continues in this paper. In 2-5 of this paper, we describe the current state
of the reduction theory in full detail and in particular define a clean notion of randomized
many-one reductions of randomized decision problems.

A number of additional natural RNP complete problem have been found [Gul ], [VL],
[Gu2], [VR], but that number is still very small. Moreover, none of the known complete
problems, however natural they are, arose in applications. All ofthem were designed especially
for the purpose of finding additional average-case complete problems. Why have not more
problems been found? It is possible that the reduction theory must be tuned up further.
It is certainly true that establishing average-case completeness is much more difficult than
establishing worst-case completeness; the range of an average-case reduction of a problem
Ill to a problem I-I2 cannot comprise only very, very special instances of 1-12. What should
be done? Consider the theory of undecidability or NP completeness. In either case, a rich
collection ofcomplete problems (complete for recursive enumerability via recursive reductions
or NP complete, respectively) has been accumulated that are convenient for reductions to
other problems. We need, it seems, to accumulate a rich collection of various average-case
complete problems with the hope that these problems will be useful for further reductions. In
this connection, Levin challenged Gurevich (who started his career an algebraist) to find an
average-case complete problem of algebraic character. Such a problem was found in [Gu2];
this paper is a full version of the extended abstract [Gu2].

The matrix decomposition problem involves linear transformations of unimodular matri-
ces. The modular group is the multiplicative group SL2 (Z) of two-by-two integer matrices of
determinant (unimodular matrices). The notion of linear transformation of SL2(Z) does not
seem to make sense because SL2(Z) is not closed under addition, but this difficulty is not seri-
ous. Define a linear transformation of SL2 (Z) to be a function T from SL2 (Z) to SL2(Z) such
that T (-’ Xi) T(Xi) whenever all the Xi and X are unimodular matrices. We show
in 9 that a linear transformation T of SL2(Z) uniquely extends to a linear transformation of all
two-by-two integer (or even complex) matrices; this gives rise to the standard representation
of T by a four-by-four integer matrix. Moreover we will describe a simple (certainly PTime)
test to determine when a given four-by-four integer matrix represents a linear transformation
of SL2 (Z). Identify linear transformations with the four-by-four integer matrices representing
them.

Now we are ready to define our randomized decision problem. An instance of Matrix
Transformation comprises three components: a unimodular matrix X, a finite set S of linear
transformation of unimodular matrices, and a natural number n. The corresponding question
is whether there exists a linear transformation T 6 S such that T (X) is the unit (or identity)
matrix. Here Sn comprises products T1 Tm where rn < n and each T/ 6 S.

Define the size of an integer matrix (whether it is two-by-two or four-by-four) to be the
length of the binary representation of the maximal absolute value of the entries. The size of
an instance (X, $, n) is n plus the size of X plus the sum of the sizes of all members of $.

The probability distribution on the instances is rather natural. The three components of a
random instance (X, S, n) are chosen independently. The integer component n is chosen with

respect to the default probability function 1/n (n + 1). (The choice of the default distribution
does not matter much [Gu ].) To choose the unimodular component X, first choose a positive
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integer k with respect to the default distribution and then choose X randomly (with respect to
the uniform probability distribution) among all unimodular matrices of size k. An auxiliary
probability distribution on linear transformations is defined similarly; linear transformations
of the same size have the same probability and the probability to have size k equals the default
probability of k. Finally, the probability ofS is proportional to the product of the probabilities
of the members of S. This completes the definition of Matrix Transformation.

We reduce Bounded Halting to Matrix Transformation and this way prove Matrix Transfor-
mation is complete for RNP via randomized many-one reductions. It remains complete under
various restrictions on the cardinality of $ and/or the number n; see 10 in this connection.

Actually, we prove only that Matrix Transformation is hard for RNP. It is obvious that
(the unrandomized version of) Matrix Transformation is NP. Checking that the probability
distribution is PTime is routine and we ignore it. We have already mentioned that the defi-
nition of RNP has been liberalized in [BCGL] by allowing more general distributions called
samplable. Impagliazzo.and Levin proved that every NP search problem with samplable
distribution reduces via many-one PTime computable reductions to an NP search problem
with PTime computable distribution [IL] (see also [BG2]). In an appropriate sense a search
problem with a PTime computable distribution reduces to a decision problem with PTime
computable distribution [BCGL]. Thus, Matrix Transformation is hard for the class of NP
search problems with samplable distributions. Our reduction of Bounded Halting to Matrix
Transformation can be easily modified to obtain a many-one randomized reduction of the
search version of Bounded Halting to the search version of Matrix Transformation. Thus, the
search version of matrix transformation is complete for the class of NP search problems with
samplable distributions. The question remains whether Matrix Transformation (or Bounded
Halting) is complete for the class of NP decision problems with samplable.distributions. In
the usual NP theory, decision problems are easily reducible to search problems. The situation
is different in the average-case theory. We intend to consider these issues in [BG3].

A simpler version of Matrix Transformation is obtained by making S just a set of uni-
modular matrices and asking whether another unimodular matrix X can be represented as a

product of at most n matrices from S. This bounded version of the classical membership
problem [Mi, p. 511] for SL2(Z) is NP complete; see 11 in this connection. However, we
do not think that the naturally randomized version of the bounded membership ( 11) problem
is complete for the average case. Indeed, there are indications that it is solvable in time poly-
nomial on average. However, Venkatesan and Rajagopalan proved that the same problem for
higher-dimension matrices is complete for the average case [VR].

Since we deal almost exclusively with randomized decision problems, the term "deci-
sion problem" will usually mean "randomized decision problem"; similarly, the term "search
problem" will usually mean "randomized search problem."

2. Domains. As a general framework for the study of average case complexity, we use
domains [Gu2], [BG1], [BG2].

DEFINITION 2.1. A domain X consists of
An underlying set, the universe of X, often called X as well comprising strings in
some alphabet Ex
A sizefunction, assigning to each x X a positive integer Ixl Ixlx called the size

ofx; and
A probability distribution Px on X.

We require elements of the domain to be strings in order to use the usual computation
model based on the Turing machine. In the rest of the paper, an algorithm is a Turing machine.
Traditional concepts of (worst-case) complexity are defined by means of the size function Ix l.
Concepts of average-case complexity are defined by averaging with respect to the probability
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distribution Px. As was pointed out by Levin [Le] and discussed in some detail in [BCGL],
[Gul ], the most obvious definition of the concept "polynomial time on average" has inap-
propriate consequences, and some care is needed to obtain a suitable definition. We use the
following definition due to Levin [Le], as modified in [BG to allow cxz as a value.

DEFINITION 2.2. Let T be a function from a domain X to the interval [0, cx3] of the real
line augmented with cx. T is linear on average if T (x)/lxl hasfinite expectation,

1

x

and T is polynomial on average, abbreviated AP, if it is bounded by a polynomial ofafunction
that is linear on average. In other words, T is AP if for some e > O,

Ex ) )-(-[ Tx E Px (x -(- Tx < cx
x

We use the convention that 0. cx 0; thus, an AP function can take the value cxz but only
at points of probability 0.

LEMMA 2.3 [Gu ].
lfE(IT(x)l Ixl l) is bounded by a polynomial ofl, then T is AP.
On any domain, the collection ofAPfunctions is closed under addition and multipli-
cation.

DEFINITION 2.4. A (deterministic) algorithm, taking elements ofa domain X as inputs, is

polynomial time on average or AP time if its running time on input x is an APfunction ofx.
We consider the running time to be cxz if the algorithm fails to terminate, so an AP time

algorithm must terminate on all inputs of nonzero probability. In general, we take the point
of view that instances of zero probability do not matter. By following that line consistently,
which we try to do, we often have the luxury of throwing elements of zero probability out and
supposing, when convenient, that no element of the domain X in question has zero probability
or throwing elements of zero probability in and supposing, when convenient, that every string
over Ex is an element of X. However, we do not go so far as to identify two domains if one
of them is obtained from the other by eliminating some elements of zero probability.

In the case of domains with finitely many elements, it would be natural to call a domain
uniform if all elements have the same probability. This definition makes no sense in the case
of infinite domains, which is the only case of interest to us. Another natural way to define
uniform domains requires a default probability distribution on positive integers; it is customary
to assign the probability /n (n / 1) to a positive integer n. The choice ofthe default probability
distribution does not matter much; see [Gu 1] in this connection.

DEFINITION 2.5. PI is the domain ofpositive integers such that In n and the probability
ofany n is 1/[n(n + 1)]. The probability ofa number n in PI is called the default probability
ofn.

DEFINITION 2.6. A domain is uniform if it has a finite number of elements ofany given
size, all elements of a given size have the same probability, and P{x Ix n} equals the

default probability ofn.
Here are two examples of uniform domains.
DEFINITION 2.7. BS is the uniform domain of nonempty binary strings where the size

of a string is its length. FRACTION is the uniform domain offractions a/b where a, b are
relatively prime positive integers, a < b and the size ofa/b is the length [log2(b + 1)] of the
(shortest) binary notation for b.
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DEFINITION 2.8. A domain Y with universe V is a subdomain of a domain X if V is a
subset of (the universe of) X and Px(V) > 0 and Ix[v Ix[x, Pr(x) Px(x)/Px(V) for
every x V. Y is also called the restriction X IV ofX to V.

DEFINITION 2.9. The direct product X Y ofdomains X and Y is the domain ofpairs
(x, y), where x X and y Y, such that [(x, Y)I Ixl + lYl and P(x, y) Px(x) P,(y).

The direct product construction allows us to define powers X2, X of a given domain
X. Sometimes it is more natural to deal with subsets rather than sequences of elements of a
given domain.

DEFINITION 2.10. For each positive integer or, Set(X) is the domain of r-element
subsets Sofa given domain X such that the size SI YxS Ix and the probability P(S) is
proportional to the product I-Ixs Px(x), i.e., P(S) cx: I-Ixs Px(x).

There are various natural domains D of all finite nonempty subsets of a given domain X
such that each Set (X) is a subdomain of D.

DEFINITION 2.11. Set(X) is the domain ofnonempty subsets ofX such that lSI YxS
and P(S) 1-IxS Px(x).

We need to check that s P(S) converges. For each positive integer n, we have

P(x) P(Xl)""" P(xn).
X ...,X EX

In the sum on the right, each P(S) occurs n! times (and there are some additional terms with
repeated x’s). So Ys:lsl=n P(S) _< ..

Another possibility is to define a probability distribution on the collection of nonempty
finite subsets of X that corresponds to the following experiment: first choose a positive integer
n with respect to the default probability and then choose an n-element subset with respect to

Seth (X); call this alternative domain Set’(X).
In many respects, AP functions differ from polynomially bounded functions. Here is one

illustration.
PROPOSITION 2.12. For every countable family {fl, f2 ofAPfunctions on BS there

exists an APfunction F on BS that is not majorized by any 3.
Proof By induction on i, select elements xi of BS such that

1. [Xi[ > [xj] for all j < i, and
2. 2 [x/I > fi(xi).

Such elements exist because each fi is AP. Define

2Ixl if ::li (x xi)
F (x)

0 otherwise.

No fi majorizes F because F(xi) > j (xi). It remains to check that F is AP. We have

x 21xi-1 f(x)P(x) " Z. ixi----l 2-lxil . IXi[3

and the last sum is finite because all elements xi are of different lengths.

3. Domain reductions. In this section, we define and discuss many-one reductions, both
deterministic and randomizing, between domains. These are the only sort of reductions used
in this paper.

DEFINITION 3.1. A function f from domain X to domain Y satisfies the domination
condition ifPx[f- (fx)]/Pr(fx) is AP on X.
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COROLLARY 3.2. An injectivefunction ffrom domain X to domain Y satisfies the domi-
nation condition ifand only ifPx(x)/Pr(fx) is AP on X.

THEOREM 3.3 [BG ]. Let f be an arbitrary function from a domain X to a domain Y.
Thefollowing statements are equivalent:

For every APfunction T on Y, the composition T o f is AP on X, and
If (x)lr is AP on X and f satisfies the domination condition.

This theorem, with T regarded as the running time of an algorithm on Y, suggests the
following definition.

DEFINITION 3.4. A deterministic reduction from a domain X to a domain Y is an AP
time computable function f from X to Y such that If (x)lr is AP on X and f satisfies the
domination condition.

Such a reduction and an AP time algorithm on Y yield an AP time algorithm on X.
COROLLARY 3.5. Deterministic reductions of domains compose. Therefore the relation

ofdeterministic reducibility ofdomains is transitive.
Also recall the two domains Set(X) and Set’(X) of finite nonempty subsets S of X defined

above.
LEMMA 3.6. The identityfunction reduces Set(X) to Set’(X) and Set’(X) to Set(X).
Proof The proof is obvious. [-]

LEMMA 3.7. Let a function f reduce a domain X to a domain Y and suppose that f is
one-to-one. Then, for each positive integer or, the function

F{Xl x,} {f(Xl) f(x,,)}

reduces Set (X) to Set (Y).
Proof Let r be an arbitrary positive integer, A Set (X) and B Set (Y). It suffices

to prove that F satisfies the domination condition. Since F is one-to-one, it suffices to prove
that Pa (S)/PB F (S) is AP on Set (X).

Since f satisfies the domination condition, the ratio p(x) Px(x)/Pr(fx) is AP on X.
Ignoring constant factors, we have

PA(S) 1-LesPx(x) HP(x)PB(FS) 1-L, es Pr (fx) es

It remains to prove that the last product is AP on A.
Let 6 witness that p is AP so that

P(X)
xX ]-P(x) <

It follows that

p(x),V,r
xx Ixll/P(x) <

The terms where p(x)T < remain _< and therefore sum up to at most 1, and the other
terms become smaller. The number e 8/o- witnesses that [-IxeS p(x) is AP on Set (X). We
have
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The first ofthe three inequalities holds because the geometric mean I-Ixs Ix / is bounded
by the arithmetical mean of the same numbers Ix I, which is bound by the size SI. To prove
the second inequality, note that every summand on the left-hand side is obtained when you
multiply the cr copies of the infinite series. Concerning the third inequality, we have already
checked that the infinite series in square brackets converges. It remains to apply Lemma
2.3. [3

LEMMA 3.8. Suppose that domains X and Y have the same universe and the same

probability distribution. The identity function deterministically reduces X to Y ifand only if
the size function of Y is AP on X.

Proof Use Theorem 3.3.
PROVISO 3.9. Restrict attention to domains X such that the size function of X is AP on

the domain X’ obtainedfrom X by redefining the size ofa string as its length.
COROLLARY 3.10. A function f from a domain X to a domain Y reduces X to Y ifand

only if f is AP time computable and satisfies the domination condition.

Proof. Let Y’ be the domain obtained from Y by redefining the size as length. Since the
length (f(x)) of f(x) is bounded by the time needed to compute f(x), it is AP on X. Thus

f reduces X to Y’. Now use Lemma 3.8 and the transitivity of the deterministic reducibility
relation. ]

Reductions are used in the usual way to define the notion of a complete problem in a

complexity class, i.e., a problem in the class to which all problems in the class are reducible.
Unfortunately, deterministic reductions are too weak to yield a good notion of completeness;
see [Gu where it is shown that complete problems in this sense must (under the reasonable
assumption that nondeterministic exponential time differs from deterministic exponential time)
have special probability distributions (nonflat, in the terminology of [Gu ]). Therefore, we use
the larger class, suggested in [VL], of randomizing reductions, i.e., we allow the computation
of the reducing function to flip coins. To introduce randomizing reductions, we need some

auxiliary notions.
Terminology and notation. A set S of binary strings satisfies the prefix condition if no

string in S is a prefix of a different string in S. If A is a subset of the cartesian product U V
of sets U and V then, for each x 6 U, A(x) {y (x, y) 6 A }.

The notion of dilation was introduced in [Gul] and used in [BG1], [BG2]. The idea is to
combine the probability distribution on instances and the probability distribution of coin flips
into one probability distribution. In the following definition, think of A as the set of pairs
(x, s) where x is an input to a randomizing algorithm and s is a sequence of coin flips just
sufficient to make that algorithm, with input x, produce an output.

DEFINITION 3.11 (cf. [Gul ], [BG ]). A dilation ofa domain X is a domain A such that
the universe of A is a subset of X BS such that, for every x X of nonzero
probability, A (x) is nonempty and satisfies the prefix condition;
the sizefunction I(x, s)l Ix I; and
the probability distribution P(x, s) P(x)2-Isl / Ytzxx 2-1tl"

DEFINiTiON 3.12. Let A be a dilation ofa domain X. Then

Density,x (x) 2-I1 and Rarityzx (x)
zx) Densityzx (x)

Further, A is nonrare if the rarity function Rarityzx(x) is AP on X. A is almost total if
RarityA(x) for every x ofnonzero probability; in terms of coin flips, that means that, if
we repeatedly flip a fair coin to produce a string of O’s and ’s, then, with probability l, we
will eventually obtain a string in A(x). Finally, A is trivial if for every x X of nonzero
probability, A(x) contains the empty string (and therefore contains no other string).
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Theorem 3.3 generalizes to randomizing reductions.
THEOREM 3.13 [BG2]. Suppose that F is a nonrare dilation of a domain X and f is a

functionfrom F’ to Y. Then thefollowing statements are equivalent:
If(x)l, is AP on F and f satisfies the domination condition;

for every nonrare dilation A of Y and every APfunction T on A, the composition
T (f (x, s), t) is AP on the dilation I", A ofA that comprises pairs (x, st) such that
(x, s) I" and (f (x, s), t) A.

DEFINITION 3.14. A (randomizing) reduction ofa domain X to a domain Y consists ofa
nonrare dilation F ofX and a deterministic reduction f of F to Y.

Randomizing reductions of domains compose in the following sense. If r’ and A are
nonrare dilations of X and Y, respectively, and and if f F ---+ Y and g A Z
are randomizing reductions of X to Y and of Y to Z, then there is a composite reduction
gof 1-’.A ZofXtoZ. Here F . A is as in Theorem 3.13 and g o f is defined
by (g o f)(x, st) g(f (x, s), t) whenever (x, s) 6 F and (f (x, s), t) A. (Although this
composition is not the ordinary composition of functions, it does yield a category of domains
and random functions.)

COROLLARY 3.15. The relation of (randomized) reducibility is transitive.

DEFINITION 3.16. Let E be an alphabet. A randomizing algorithm on E* is an algorithm
A on E* x BS, but the two input strings, a string x over E and a binary string s, play different
roles. The string x is viewed as the input, and the string s is viewed as a sequence ofcoinflips.
It is supposed that A does notflip a coin unless the computation requires another random bit.

DEFINITION 3.17. A dilation A of a domain X is (AP time) certifiable if there exists a

randomizing algorithm A on E( such that

for every x X ofnonzero probability and every binary string s, A outputs YES on

input (X, s) ifand only if (x, s) A, and
the computation time ofA is AP on A.

The need for certifiable reductions arises when dealing with decision problems. We
consider algorithms that, given an input x of nonzero probability, produce a correct output on
any random string s 6 A (x) but may produce an incorrect output on s ’ A (x). When the
correctness of the output cannot be verified efficiently, the certifiability of A will be needed
to justify believing the output.

DEFINITION 3.18. A reduction (1-’, f) ofa domain X to a domain Y is certifiable if F is

certifiable.
LEMMA 3.19. Certifiable reductions ofdomains compose.
Proof. Chase the definitions and apply Theorem 3.3.
As an example ofhow much easier it may be to deal with randomizing reductions, consider

the problem of reducing BS to FRACTION. To avoid trivial solutions, like constant functions,
let us require that different elements of BS are taken to different elements of FRACTION. The
problem is easily solved with the help of randomization.

LEMMA 3.20. There exists a randomized reduction (F, f) from BS to FRACTION such
that f (x, Sl) - f (x2, s2) whenever Xl # x2.

Proof. F (x) comprises all binary strings s of length Ix such that the numbers (represented
by binary strings) s and lx are relatively prime. Since the chance that a random s is relatively
prime to lx is sufficiently large [HW], 1-" is nonrare, f (x, s) s/Ix. 71

4. Search problems.
DEFINITION 4.1. A (randomized) search problem SP(X, W) is given by a domain X (of

instances) and a PTime computable relation W(x, w) (the witness relation) between elements

of X and arbitrary strings in a fixed alphabet. The problem is: Given an instance x with
W(x) 76 0, find an element of W(x) (a witness for x).
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DEFINITION 4.2. SP(X, W) is AP time solvable if there exist a nonrare dilation F of
X[{x W(x) 7 0} and an AP time algorithm M on F that, given any (x, s) F with
Px(x) > 0, finds a witness for x. Such a pair (1-’, M) is called an AP time solution for
SP(X, W). A solution (F, M) is almost total if F is so.

This notion of AP solvability may seem weaker than it is.
THEOREM 4.3 [BG2]. Every AP time solvable search problem SP(X, W) has an almost

total solution.
DEFINITION 4.4. A (randomizing) reduction ofSP(X, U) to SP(Y, V) consists of
Dilation: A nonrare dilation F of X,
Instance transformer: A deterministic reduction f off to Y, and
Witness transformer: A PTime computablefunction g((x, s), v) such that ifs 1-’(x)

and v V(f(x,s)) then g((x, s), v) U(x).
THEOREM 4.5 [BG2]. The reducibility relation on search problems is transitive, and a

problem SP(X, U) is solvable in AP time if it is reducible to some problem SP(Y, V) which is
solvable in AP time.

The notion ofreduction allows us to define complete problems in the usual way. SP(X, W)
is complete for a class C of search problems if it is in C and every problem in C reduces to it.

5. Decision problems.
DEFINITION 5.1. A (randomized) decision problem DP(X, P) is given by a domain X of

instances and a subset P of X. Instances in P are called positive, and instances in X P
are called negative. The problem is: Given an instance x X, decide whether x is positive
or negative.

DEFINITION 5.2. DP(X, P) is AP time solvable (or AP time decidable) if there exist a
nonrare certifiable dilation ofX and an AP time algorithm M on F that, given any element
(x, s) 1-" with Px(x) > O, decides whether x is positive or negative. The pair (F, M) is an
AP time solutionfor DP(X, P). A solution (F, M) for DP(X, P) is almost total if F is so.

Note that certifiability is required, as we cannot check whether the output of M (yes or

no) is correct. Contrast this with search problems where the assumed computability of the
witness relation lets us check whether the output (an alleged witness) is indeed a witness and
certifiability is therefore not required.

Again, the notion of AP time solution may seem weaker than it is.
THEOREM 5.3. If DP(X, P) is AP time solvable then it has an almost total AP time

solution.

Proof. Let (F, M) be an AP time solution for a decision problem DP(X, P) and let A be
a certifying algorithm for F. For each s F (x), let s’ be the computation of A on (x, s) and
s" be the computation of M on (x, s). Define

W {(x, (s, s’, s")): (x, s) r’}.

Obviously, the relation W is PTime computable. (The intended algorithm for computing
W uses A and M; we need not check (x, s) 6 F because this follows from A(x, s) providing
s’.) The dilation F and a combination of the algorithms A and M give an AP time solution for
the search problem SP(X, W). By Theorem 4.3, this search problem has an almost total AP
time solution (A, N). For each (x, t) A with Px(x) > 0, N outputs a triple (s, s’, s") W.
By the definition of W, s s(t) F(x) and therefore s(t)" is a computation of M deciding
whether x is positive or negative.

The dilation A is certifiable. Given an instance x of nonzero probability and an arbitrary
string t, the desired certifying algorithm A’ runs N on (x, t). If a prefix to of belongs to

A(x), N will produce an output on (x, to) and A’ will output "yes" in the case where to or
"no" in the case where to is a proper prefix of t. Suppose that no prefix of belongs to A (x).
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Since A is almost total, both tO and are prefixes of strings in A. The computation of N on
(x, t) will stop without producing any output, waiting for another random bit; in such a case
A will output "no."

Let N’ be the modification of N that, given (x, t) A with Px(x) > 0, outputs only the
result (yes or no) of the computation s(t)". The pair (A, N’) constitutes an almost total AP
time solution for DP(X, P). 1

Note the role of the certifying algorithm A. The certifiability of dilation was unnecessary
in the case of search problems, but in the case of decision problems it plays an important role.

DEFINITION 5.4. A (randomizing) many-one reduction of DP(X, P) to DP(Y, Q) com-
prises

a nonrare certifiable dilation F of X, and
a deterministic reduction f from I" to Y (the instance transformer) satisfying the
following correctness property: For all (x, s) F,

f(x,s) 6 Q = x 6 P.

THEOREM 5.5. The many-one reducibility relation on decision problems is transitive, and
a problem DP(X, P) is AP time decidable if it reduces to some problem DP(Y, Q) that is AP
time decidable.

Proof. Use the fact, established in 3, that randomizing domain reductions
compose. [3

DEFINITION 5.6. A many-one reduction (1-’, f) ofDP(X, P) to DP(Y, Q) is deterministic

if I" is trivial. In this case, the reduction (F, f) is specified only by the instance transformer
f; F may be identified with X.

LEMMA 5.7. The identity function deterministically reduces any decision problem FI to

the decision problem FI’ obtainedfrom FI by redefining the size ofa string as its length.
Proof Use Corollary 3.10. [3

A decision problem is hard for a class C of decision problems if every problem in C
reduces to it. A decision problem is complete for C if it belongs to C and is hard for C.

RNP is the class of decision problems with PTime computable probability distributions.
PTime computable distributions are defined in [Le] and analyzed in [Gu ].

6. Positive matrices. We now turn from the general theory of randomizing algorithms
and reductions to the specific problem, Matrix Transformation, whose completeness for RNP
we prove in 10. We begin with information about unimodular matrices.

Call a unimodular matrix (i.e., an element of SL2 (Z), a two-by-two matrix with determi-
nant 1) positive if it has no negative entries. Positive matrices form a monoid PM SL2 (N).
In this section, a column is a column of two relatively prime nonnegative integers; for nota-
tional simplicity, we view a positive matrix as the pair of its columns. If u is a column, let
U be the upper and u2 the lower components of u. Partially order columns componentwise:
u < v if/’/1 --< 1)1 and/’/2 _< l)2, and u < v if u < v and either u < 1) or bt 2 < U2. Define
max(X) to be the maximal entry of a positive matrix X. In this section,

Ao-
0

LEMMA 6.1.
1. (u, v) x Ao (u + v, v), and (u, v) X Bo (u,u + v).
2. If Ao is a right divisor of a positive matrix (u, v) in PM then u > v, and if Bo is a

right divisor of (u, v) in PM then u < v.
3. Ifthe maximal entry m ofa matrix (u, v) appears in two or more places then m 1.
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Proof Part (1) is obvious, and (2) follows from (1).
(3) If rn occurs twice in the same row or the same column, then it divides the determinant

and therefore rn 1. So assume this does not happen. If vl u2 m then the determinant
cannot be positive. Ifu v2 m then uv2 vu2 > m2 (m 1)2 2m and
therefore rn 1.

The second statement of Lemma 6.1 implies that the monoid generated by the matrices
A0 and B0 is free. This fact is noted in [Ei, Chap. VI, 12]. The following theorem should be
known too, but we do not have an appropriate reference.

THEOREM 6.2. The monoid PM is isomorphic to the monoid BS of binary strings. The
two indecomposable nonunit elements are the matrices Ao and Bo.

Proof. Since A0 and B0 generate a free monoid, it suffices to prove that every nonunit
positive matrix (u, v) is a product of matrices A0 and B0. Define weight(u) u + u2 and
weight(u, v) weight(u)+ weight(v). The proof is an induction on s weight(u, v). Since
the entries of the main diagonal are not zero, s >_ 2.

The case s < 3 is easy" A0 and B0 are the only nonunit matrices of weight < 3. Suppose
that s > 3. Then rn max(u, v) > 1. Exploiting the symmetry, we may suppose that rn

appears in u. If ul rn then 1/m (Ull)2 vluz)/m > 1)2 U2 and therefore U2 > l)2.

Similarly, if u2 rn then u > v. Thus, the column u v has nonnegative entries. The
determinant of (u v, v) equals and therefore (u v, v) is an element of SLz(N). By
the induction hypothesis, (u v, v) is a product of matrices A0 and B0. By Lemma 6.1(1),
(u, v) (u v, v) A0.

COROLLARY 6.3. If a positive matrix (u, v) is not the unit matrix then one of the two

columns is greater than the other

Proof The fact has been established in the proof of Theorem 6.2.
Call the greater column of a nonunit positive matrix major; in the case of the unit matrix,

call either column major. The other column of the matrix will be called minor.

LEMMA 6.4. The major column and one bit indicating whether it is thefirst or the second
column uniquely define the minor column.

Proof. Without loss of generality, the given matrix (u, v) is not the unit matrix. It
follows that both components of the major column are positive. By virtue of symmetry,
suppose that u is the major column. We show that the minor column v is the least column
such that u l)2 U21)l 1. Let w be any column such that ul/)2 U21/) 1. Then

Ul (//92 V2) Uz(tO1 Vl) UlUzk for some k because u and u2 are relatively prime; hence

tOl Vl "k- kUl and w2 v2 + ku2. If k < 0 then either w or w2 is negative. Hence k > 0
and therefore wl > v, W2 P2.

LEMMA 6.5. There exists a PTime algorithm that, given a column u, computes the minor
column of the unique positive unimodular matrix with thefirst and major column u.

Proof Use the extended Euclid’s algorithm [Knl ].
Remark 1. Instead of columns, we could use rows above in this section. This would

cause some insignificant changes in Lemma 6.1 (for example, the first statement would say
that A0 (u, v) (u, u + v), and B0 (u, v) (u + v, v) where u is the upper row of the
given matrix and v is the lower row), but Corollary 6.3 and Lemma 6.4 remain true.

Let (n) be the length of the binary notation for n.
DEFINITION 6.6. We define a domain structure on the monoid PM. It is the uniform

domain with the size function IX[ e(max(X)). Thus, PM is the monoid and domain of
positive matrices.

Strictly speaking, the elements of a domain should be strings. For this purpose, we may
regard a matrix as a list of its entries in binary notation. Then Proviso 3.9 is satisfied.

LEMMA 6.7. The relative probability Pr,[X IXI l] (2-21).
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Proof Let g(l) f(l) mean that g(l) (R)(f(/)), i.e., that there exist positive constants
c, c’, and 10 such that cf(1) < g(l) < c’f(1) for all > 10 [Kn2]. It suffices to prove that
the number N(1) of positive matrices of size is (R)(22t). Recall that b(m) is the number
of positive integers n < m that are prime to m, and that (m) b(1) +... + 4)(m)
3m2/rr2 + O(m logm) [HW, Thm. 330]. Thus,

N(l) , dp(m) (21 1) (2l-l) (R)(22t).
e(m)=/

By Theorem 6.2, PM is isomorphic to BS as a monoid. There are exactly two isomor-
phisms of PM onto BS. One of them takes A0 to 0 and B0 to while the other one takes A0
to and B0 to 0. Let I be the isomorphism that takes A0 to 0, and let J be the corresponding
isomorphism 1-1 from binary strings to PM. It is easy to check by induction on the length of
the given string x that if x starts with a zero (respectively, one) then the lower (respectively,
upper) row of J (x) is major (see "transposed" Lemma 6.1 in Remark 6). Notice that the size of
a matrix X may be quite different from the length of the corresponding string I (X). It is easy
to see that the isomorphism I is not computable in polynomial time: A matrix A) ( )is
of size e(n) whereas the string 0 I (A)) is of length n.

LEMMA 6.8. I is AP time computable.
Proof. The following recursive algorithm computes I (X). If X is the unit matrix then

I (X) is the empty string. Suppose that X (u, v) differs from the unit matrix. If u is the
major column, w u v and z I (w, v) then I (X) z0, and if v is the major column,
w v u and z I (u, w) then I (X) z l. The computation time of that algorithm is
essentially proportional to II (X)I, which is AP by Lemma 6.12. q

The isomorphism J is PTime computable but PPrvl does not dominate PBs with respect to
J and thus J fails to reduce BS to PM.

THEOREM 6.9. PPM does not dominate PBs with respect to J.
Proof By contradiction, suppose that the function g(x) Ps[x]/PpM[Jx] is polynomial

on average with respect to PBs and fix e > 0 to witness that fact. Thus,

Z 2_ncxz > -(g(x))
n x" Ixl=n

n n(n + 1)

so, as a function of n, the conditional expectation of (g(x)) for strings of length n,

Yx: Ixl=n(g(x))2- is o(n3). We obtain the desired contradiction by proving that this ex-

pectation is not bounded by any polynomial of n.
Let IJxl. By Lemma 6.7,

g(x) (/2.22/. n-2.2-n).

Lets(x) be the sum ofthe entries ofthe major row of Jx. Clearly, s(x) (R)(2t). Hence it
suffices to prove that the expectation En Yx[(S(x)Z/2n)" 2 of the function [s(x)Z/2n]
is not bounded by a polynomial of n. (The factor n -2 in g(x) will not matter as it is the
reciprocal of a polynomial, and 12 will not matter as it is > 1.) We may restrict our attention
to e < 1/2. Let y range over strings of length n 1. [3

LEMMA 6.10. There exists some ot > such that every

a(y) (1/2)[s(yO)2e + s(yl)Ze]/s(y)2e >_ or2

Proof Let a > b be the two entries of the major row of J (y), and , b/a. Then

A (y) (1/2) [(2a + b)2e + (a + 2b)2]/(a + b)2e (1/2)[(2 + V)2 + (1 -t- 27’)2]/(1 + ,)2.
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Let 3 1/(1 + y). Then A(y) (1/2)[(1
Consider the function f(t) 2e of a real variable t. The graph of f is concave be-

cause f"(t) 2e(2e 1)t2e-2 < 0. Since 0 < 3 < 1, the chord C between the points
(1 + 3, f(1 + 3)) and (2 3, f(2 3)) lies strictly above the chord Co between the points
(1, f(1)) and (2, f(2)). Further, the center of the interval [1 + 3, 2 3] coincides with the
center 1.5 of the interval 1, 2], and therefore the center (1.5, A (y)) of C lies directly above the
center (1.5, -k22e]/2) of Co. The arithmetical mean +22e]/2 of numbers 1 and 22e exceeds
their geometrical mean U. Thus, A(y) > [1 + 22e]/2 > U. The desired c

(1/2)[1 + 22’]/2.
We continue to prove Theorem 6.9. Let A(y) and ot be as in Lemma 6.10, and let x range

over strings of length n and y over strings of length n 1. We have

E. E[(s(x)Z/2"). 2-"1 2-"e. E[s(x)Ze. 2-"1 > 2-". E[s(y)2e. A(y). 2-("-)].
X X y

By Lemma 6.10,

En 2-" Z[s(y)2e or2. 2-("-1)1 c Z[(s(y)2/2n-1) 2-(n-l)] otEn-l.
y y

It follows that En is fa (or") and therefore is not bounded by a polynomial of n.
Recall the notion of a (simple) continued fraction [HW]. Here is an example:

81 13
=4 =4+ =4-1- =4+ =4+

417 17 (3) -+ + +13 (--5
3+a

[4, 1, 3, 41.

Similarly, every positive rational number r can be uniquely represented by a continued
fraction [at a0] where at is a nonnegative integer, and each ai with 0 < < is a positive
integer, and a0 is an integer > 2 unless 0; the integers ai > 0 are called partial quotients.

LEMMA 6.11. Suppose that x is a nonempty binary string and let m < n be the two

entries of the major row of J (x). Then Ix equals the sum s (n, m) of the partial quotients in
the continuedfractionfor n/ m.

Proof If Ix then m n and s(n, m) Ix I, Suppose that Ix > 1. By
virtue of symmetry, we may suppose that x y0; the other case is similar. Let (i, j) be the

major row of J(y). By Lemma 6.1, the major row (n, m) of J(x) is (i + j, j). It suffices to

prove that if < j then s(n, m) s(j, i) + 1, and if > j then s(n, m) s(i, j) + 1. Since

J (y) is not the unit matrix, neither nor j is zero. In any case,

n i+j j

m

Ifi <jand
j

[at,.. a0lthen n __[at+l,.. a0l, sos(n m)=s(j i)+l

If j _< and -i [a, ao] then
J

n

--m =l+=[l’at ao],

so s(n, m) s(i, j) + 1.
LEMMA 6.12. 1I (X) is AP on PM.
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Proof Let s (n, rn) be as in Lemma 6.11. We use the following strong result of Yao and
Knuth [YK]: Y-mm_ s(n,m) (6n/rr2)(lnn)2+ O(n(logn)(loglogn)2) (R)(n(logn)2).
Let X be a matrix of size > 0, and let a(X) < b(X) form the major row of the matrix
X. Then Yx:,x=n s(b(X), a(X)) (R)(n(logn)2). By Lemma 6.11 bx=n II(X)I
(R)(n(logn)2) and therefore Yx:txI--I II(X)I f2(21./22t). Now use Lemma 6.7 to check
that the expectation of II (X)I with respect to the conditional probability Plr[X IXI 1] is
bounded by a polynomial of l. It follows (see Lemma 2.3) that I (X) is AP on PM.

7. Positive matrix correspondence problem.
DEFINITION 7.1. Let T be a nondeterministic Turing machine with binary input alphabet.

The bounded halting problem BH(T) is the randomized decision problem with domain BS
PI such that an instance (x, n) is positive ifand only if T has a halting computation oflength
< n on x. Call an instance (x, n) of BH(T) robust if either T has a halting computation of
length < n on x or else T has no halting computation on x at all. RBH(T) is the restriction

ofBH(T) to robust instances.
DEFINITION 7.2. WBS is the domain of binary strings where Ix is the length of x and

P(x) PpM(Jx). Let T be a nondeterministic Turing machine with binary input alphabet.
The weird halting problem WH(T) and its robust version RWH(T) are similar to BH(T) and
RBH(T) except the domain is WBS PI rather than BS PI.

LEMMA 7.3. For a certain U, RWH(U) is hardfor RNP.
Proof Some RBH(T) are RNP complete, by Corollary of Theorem in [Gul]. (Actu-

ally, a slightly different version of bounded halting problems was considered in [Gu 1 ]. It was
supposed there that n > Ixl and P(x, n) x n-32Ixl. However the same proof works. Also,
the identity function deterministically reduces that older version of every RBH(T) to the new
one.) Thus it suffices to reduce an arbitrary RBH(T) to an appropriate RWH(U). We will do
just that.

One might be tempted to take U T and to use the identity mapping as a reduction. By
Theorem 6.9, the identity function fails to do the job.

For every binary string s, let N(s) be the integer with binary representation Is. If N(s)
k, let S(k) s. Given a binary string y, the desired U computes x S(max(J(y))), turns
itself into T and then runs on input x. We construct a reduction (1-’, f) from RBH(T) to

RWH(U). Here 1-" is a dilation of BS PI, and f is a function from 1-’ to WBS PI.
Define 1-’ (x, n) to comprise binary strings s of length > Ix such that N(s) is prime to

and less than N(x). It is obvious that the dilation F is certifiable. By Theorem 328 in [HW],
the number 4(k) of positive integers prime to and less than k is f2(k/log log k). Note that, if
j is relatively prime to k, then so is k j. Thus, half of the integers counted by q (k) are > ,
and so the cardinality of 1-’(x, n) is >_ c(N(x)). It follows that I" is not rare:

Densityr(x)_ -- 2_lsl>_ 2_lxl=f2 ( )=2( )
sr(x) sr(x)

loglogN(x) log Ixl

By Lemma 6.4, for each (x, n, s) F, there exists a unique positive unimodular matrix
M(x, s) with first and major column (N(x), N(s)). View M as a function on 1-’; we check
that it reduces 1-" to PM. By Lemma 6.5, the function M is PTime computable. To check the
domination property, use Lemma 6.7 and the fact that M is injective.

The desired f is given by f ((x, n), s) (y, t(x, s) + n) where y I (M(x, s)) and
(x, s) is the time that U needs to convert y into x. First, we check that f takes robust instances

of BH(T) to robust instances ofWH(U) and has the correctness property. By the definition of
U, it halts on y if and only if T halts on x. Moreover, if T halts within < n steps on x then U
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halts within (x, s) + n steps on y. Now suppose that U halts on y. Then T halts on x. Since
(x, n) is robust, T halts within n steps on x. Hence U halts within (x, s) + n steps on y.

Next, we check that f is AP time computable on 1-’. We have to prove that y and (x, s)
are computable in AP time relative to 1-’. In the case of y this follows from the definition
y I (M(x, s)), the fact that M reduces 1-’ to PM, Lemmas 6.8 and 6.12 and Theorem 3.3.
Now consider t(x,s). It is the time that U needs to compute x S(max(J(y))) from y,
which is bounded by a polynomial of lYl because J, max, and S are all PTime computable.
So, by Lemma 2.3, (x, s) is AP on 1-’. In addition, it is computable in AP time relative to F,
because it can be computed by first computing y (which we already saw takes AP time) and
then computing x from y while running a clock (which takes time essentially t(x, s)).

Finally, we check that f has the domination property. Notice that f is one-to-one, so we
can use Corollary 3.2. In addition, the probability functions for WBS PI and its restriction
to robust instances differ by a constant factor, so we can compute with the former instead of
the latter. We have

Pr((x, n), s) Pr ((x, n), s)
x (t(x, s) + n)(t(x, s) + n -t- 1).

PwBsP(Y, t(x, s) + n)) PWBS(Y)
The fraction on the right is AP on F because PWBS(Y) PpM(M(x, s)) and M has the
domination property. Now use Lemma 2.3 and the fact that (x, s) is AP on F.

The direct product PM PM is a domain and monoid of positive matrix pairs; the
multiplication of matrix pairs is componentwise: (X, Y1) x (X2, Y2) (X1X2, Y1Y2). If S
is a set of positive matrix pairs, let Sn comprise products P1 x x Pm where m < n and
each Pi S. In the following definition, PMC stands for positive matrix correspondence.

DEFINITION 7.4. For eachpositive integer or, PMC(cr) is the decisionproblem with domain

PM x Seto(PM x PM)x PI,

where an instance (A, S, n) is positive if and only if there exists a pair (X, Y) in S such
that AX Y. An instance (A, S, n) of PMC(cr) is robust if either AX Y for some pair
(X, Y) in Sn or else the whole submonoid ofPM x PM generated by S has no pair (X, Y)
with AX Y. RPMC(cr) is the restriction ofPMC(cr) to robust instances (A, S, n).

THEOREM 7.5. Some RPMC(cr) is hardfor RNP.
Remark 2. Replacing PM with BS in the definition of RPMC(cr) gives a variant RPCP(cr)

of the Post Correspondence Problem; this variant has been proved RNP complete for not
too small cr in [Gul]. (Actually, RPCP(r) is slightly different from the version in [Gul]
but the difference is immaterial. For readers with 5.1 of [Gull before them, we indicate
the changes needed in the completeness proof to cover our variant. Remove the clause L0
from the definition of L(w) to obtain a reduced set L’(w) of pairs. Instead of the instance
(L(w), p(m)), use the instance (wso, L’(w), p(m)).) If we ignore probabilities and deal with
decision problems only then the isomorphism J of3 gives rise to a polynomial time reduction
of RPCP(cr) to PMC(cr). Unfortunately, this reduction fails to have the domination property
and it is difficult to alter in any way: The correctness property of the reduction is too closely
related to fact that J is an isomorphism. Theorem 7.5 is not proved by a reduction from
RPCP(cr), but the proof of completeness of RPCP(r) is used in an essential way.

Proof of Theorem 7.5. Fix a Turing machine U witnessing Lemma 7.3. We will reduce
RWH(U) to RPMC(r) for appropriate r. The variant RPCP(r) of the Post Correspondence
Problem was defined in a remark above. According [Gul, 5] (with changes indicated in the
remark), there exists a PTime reduction

F(x, n) (xx’, K(x), p(n))
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of RBH(U) to some RPCP(cr) such that Ix’l O(log Ixx’l) and IK(x)l O(log Ixx’l).
(Concerning the size bounds, see in particular Lemma 5.1 in [Gu ].) Extend the isomorphism
J to sequences of pairs of binary strings. The function

G(x, n) (J(xx’), J(K(x)), p(n))

is the desired reduction of RWH(U) to RPMC(cr). Clearly, G is AP time computable and has
the correctness property. Ignoring factors bounded by a polynomial of Ix I/ n from above and
by an inverse polynomial of Ix + n from below, we have

PRPMC()[G(x, n)] > Pr,M[J(x)] PRWH(X, n).

The inequality here depends on the fact that Ix’l and K (x)l are logarithmically small compared
to Ix I. This ensures that the entries in the matrices J (K (x)) have sizes logarithmic relative to

Ixl and the entries in J(xx’) J(x)J(x’) have sizes IJ(x)l / O(log Ixl). These logarithms
in the sizes contribute polynomials in Ix as factors in the probabilities, and such factors are
ignored.

Remark 3. In [Gu2], Theorem 7.5 has been stated in a stronger form; instead of RPMC(cr)
it referred to RPMC(cr, c) where the (A, S, n) were required to have ISI O(log IAI). Our
proof of the theorem does not establish the stronger result automatically. Although K (x)l is
logarithmically small compared to Ixl, we cannot conclude that IJ (K (x))l is logarithmically
small compared to IJ(x)l or IJ(xx’)l, since J may shrink x or xx’ much more than it shrinks
K (x). Since J shrinks only very few strings, the stronger form of the theorem may well be
true, but we have not checked this since it does not seem to be worth the additional effort.

8. Matrix correspondence problem. In this section, a matrix is a unimodular matrix, a
column is a column of two relatively prime (not necessarily positive) integers, and a matrix is
seen as the pair of its columns. Call a matrix or a column positive (respectively, negative) if all
its entries are nonnegative (respectively, nonpositive). If u is a column then u 1, u2 are the upper
and the lower entries of u, and lul is the positive column v such that l) lui I. Positive columns
are ordered componentwise, as in 1. If u is a column then max(u) max(lUll, lu21). Any
component of a column u with the absolute value max(u) is major, and the other component is
minor. If X is a matrix (u, v) then max(X) max(max(u), max(v)). Any entry of a matrix
X with the absolute value max(X) is the major entry. If u, v are the two columns of a matrix
X and lul > Ivl then u is the major column and v is the minor; in the case of the unit matrix,
both columns are major and both are minor.

LEMMA 8.1. For every matrix X (u, v),
1. it is impossible that one ofthe numbers u 11)2, bl21)1 is positive and the other is negative.

If they are both positive then lul v21 lU2Vll 1, and if they are both negative then

lU2Vll- lulv2l 1;
2. if X is not one of the followingfour matrices

l) (-1 o _o__1), (__ )’ ( )
then either

Proof (1) If one of the numbers U v2, U2Vl is positive and the other is negative then
lucy2 U2Vll > + which is impossible. If the two numbers are positive then lulo=l
lUoll uo= U=Vl 1, and if the two numbers are negative then lu.ol lUlo=l
/’/1 V2 /,/2Vl 1.

(2) Suppose that X is not one of the four matrices, and suppose that neither lul > Ivl nor

Ivl > lul. Without loss of generality, lull > Ivl and lu21 < Iv21; otherwise replace (u, v)
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with the matrix (v, -u). Since X is neither the unit matrix nor its negative, either/’/2 or v is
not zero. Hence [ulv2[- luzvl >_ ([v[ + 1)([UZ[ + 1) --lUZVl[ lU21 + IVll-+- >_ 2 which
contradicts (1).

LEMMA 8.2. Ifmax(u, v) > then (u, v) has only one major entry.

Proof The proof is very similar to the proof of the second part of Lemma 6.1. There are
some minor differences however, andmfor the reader’s conveniencemwe present the proof.
By contradiction suppose that m max(u, v) > but (u, v) has two or more major entries.
If two major entries occur in the same row or column then m divides the determinant, which
is impossible. Thus, there are exactly two major entries. Since (u, v) may be replaced
with (v,-u), we may suppose that the two major entries form the second diagonal, i.e.,

lu21 Ivl m. If U21)l > 0 then the determinant is negative which is impossible. Hence
U21)I < 0. ByLemma 8.1, uv2 < 0and luzvll- lulv21 > m2-(m 1)2 2m- > 3,
which is false. [3

LEMMA 8.3. For every two matrices (u, v) and (u, v’), there exists an integer k, such that
v’=v+ku.

Ult)Z-U21)l andthereforeu(vz-V2) uz(vf-v) uluzkProof u v2 u2 P

for some k. If neither component of u is zero, the claim is obvious. Suppose that one of the
components of u is zero. By symmetry, let ul 0. Then v v, luzl and the claim is
clear. [3

LEMMA 8.4. Let X (u, v) be any matrix with max(X) > 1. If u (respectively, v)
is the major column of X then there exists exactly one additional matrix of the form (u, v’)
(respectively, (u’, v)) where the column v’ (respectively, u’) is minor Moreover, v’ v 4- u

(respectively, u’ u 4- v). If the major column is positive or negative then one of the two

possible minor columns is positive and the other one is negative.

Proof. It suffices to consider the case when u is the major column because if (u, v) is
a counterexample with the major column on the right then (-v, u) is a counterexample with
the major column on the left. Further, it suffices to consider the case when the major entry
is positive because if (u, v) is a counterexample with a negative major entry then (-u,-v)
is a counterexample with a positive major entry. Let ui be the major entry of u and (u, v’)
be another matrix with major column u. By Lemma 8.3, v’ v / ku for some k. Since

ui > 1, vi 0. Ifvi > 0 then k -1, andifvi <0thenk- 1. Note also that ifvi >0
(respectively, vi < 0) then indeed u is the major column of the matrix (u, v u) (respectively,
(u, v / u)). Now suppose that u is positive. Obviously, ul > 0 and u2 > 0. By part of
Lemma 6.1, v is either negative or positive. If v is positive (respectively, negative) then v’ is

negative (respectively, positive).
Let SL2 (Z) denote not only the modular group but also the uniform domain of unimodular

matrices with IXI e(max(X)).
LEMMA 8.5. Let m > and X be a random unimodular matrix with max(X) m. The

probability that X is positive is 1/8, and the probability that X is the inverse of a positive
matrix is 1/8 as well.

Proof. Let So be the collection of matrices X with max(X) m. The inverse of a

matrix ( ,) is the matrix (, -a); thus max(X-1) max(X) and therefore So is closed
under inversion. It follows that the number of positive matrices in So equals the number of the
inverses of positive matrices. Hence it suffices to prove only the first statement of the lemma.

Let S be the collection of So matrices X such that the major entry of X is positive. For
every (u, v) in So, exactly one of the two matrices (u, v), (-u, -v) belongs to S. It remains
to prove that the probability of a random $1 matrix being positive is 1/4.

Since the major entry of an $1 matrix exceeds 1, the minor component of the major column
is not zero. Let $2 be the collection of $1 matrices such that the minor component of the major
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column is positive. For every $1 matrix X, let X’ be the result of multiplying by -1 the
diagonal of X that contains the minor component of the major column. Exactly one of the two
matrices X, X belongs to $2. It follows that $2 contains exactly one half of the elements of
$1. It remains to prove that the probability of a random $2 matrix being positive is 1/2. Now
use Lemma 8.4.

The direct product SL2 (Z) SL2 (Z) is a domain and monoid of matrix pairs" the multi-
plication of matrix pairs is componentwise: (X, Y) (X2, Y2) (X X2, Y Y2). If S is a set
of matrix pairs, let S comprise products P Pm where m < n and each Pi S. Let
cr be a positive integer. In the following definition, MC stands for Matrix Correspondence.

DEFINITION 8.6. For each positive integer or, MC(cr) is the decision problem with domain
SLz(Z) Set(SLz(Z) SLz(Z)) PI where an instance (A, S, n) is positive ifand only if
there exists a pair (X, Y) S such that AX Y.

Let cr witness Theorem 7.5.
THEOREM 8.7. MC(cr) is hardfor RNP. Moreover, so is its restriction to the subdomain

ofthose instances (A, S, n) where each pair in S consists ofpositive matrices.

Proof The identity function reduces PMC(cr) to the desired restriction of MC(cr) and
therefore to MC(r) itself. To check the domination property, use Lemmas 3.7 and 8.5.

9. Linear transformations of the modular group.
THEOREM 9.1. Suppose that T SL2(Z) SL2(Z)) is linear in the sense that, if

X Y= Yi with X and all Yi in SLz(Z), then T(X) y= T(Yi). Then there exist B
and C in SLz(Z) such that either, for all X SLz(Z), T(X) BXC or, for all such X,
T(X) BX C where the superscript denotes transpose.

Proof We first normalize T so that T(1) I, where I is the identity matrix. If the given
T does not fix I, then we consider T’ given by T’(X) T (I)- T (X), and we observe that the
hypotheses of the theorem about T imply the same hypotheses about T’ and the conclusion
about T’ (with C B-) implies the same conclusion about T. Thus we may as well work
with T’, which fixes I, instead of T. So, from now on, we assume that T (I) I.

Notation. Mz(Q) (respectively, M2(C)) is the vector space of two-by-two matrices
with rational (respectively, complex) entries. As usual, SLz(Q) (respectively, SL2(C)) is the
multiplicative group of two-by-two matrices X with rational (respectively, complex) entries
such that det(X) 1.

Our next goal is to show that the linearity hypothesis on T implies that T can be extended
to a linear transformation (in the usual sense) on Mz(Q). Let/3 be the set of the following
four matrices in SL2 (Z):

0,)_,, I),
It is easy to see that every matrix in the standard basis for M2 (Q)

00), (00 (,0 (00
is a linear combination (with integer coefficients) of the/3 matrices, so that/3 is a basis for
Mz(Q). There is no question what the linear extension of T should be; it is the unique linear
transformation " that agrees with T on these four basis matrices. Our task is to show that
it agrees with T on the other matrices in SLz(Z) as well. Any SLz(Z) matrix X is a linear
combination, with rational coefficients, of the four SL2 (Z) matrices in the basis; to show that
T (X) 7 (X), it suffices to prove that T (X) is the similar linear combination of T-images of
the four matrices. Thus, it suffices to show that any linear dependence relation with rational
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coefficients that holds between some matrices in SL2(Z) also holds between their T-images.
Furthermore, we may suppose that the coefficients are integers (since we can multiply by a
common denominator of the rational coefficients) and in fact that the coefficients are all + (as
other coefficients can be replaced by repeated terms). Comparing what we need to prove with
the hypothesis of the theorem, we find that we need only check that T (-X) -T(X) for all
X E SLz(Z). But this is easy; just apply the hypothesis to the linear relation X -X+X+X.

From now on, we write T not only for the given function but also for the corresponding
linear transformation of Mz(Q) (called 7 above), and for the unique extension of this to a
linear transformation of M2(C).

We note for future reference that if a matrix X from M2(C) has integer entries then so
does T (X). Indeed, this claim is true by hypothesis if X has determinant and in particular for
the four/3 matrices. By linearity of T, the claim follows for any X that is a linear combination
with integer coefficients of/3 matrices. In particular the claim is true for the four matrices in
the standard basis of Mz(Q) and therefore it is true for all X in M2(C).

We also need that T preserves determinants, i.e., that det T(X) det(X) for all X E

M2(C). This is true by hypothesis if X 6 SLz(Z), but some work will be needed to extend it
to more general X.

Begin by considering X 6 Mz(Q). For such an X, the following two conditions are
equivalent: (1) The determinant and the trace of X both vanish; (2) There are at least two
distinct nonzero rational numbers r for which I + rX SLz(Z). This follows from the
formula

det(l + rX) + r tr(X) + r2 det(X).

If (1) holds, then I + rX has determinant for all r, so we can satisfy (2) by taking any two
r’s for which the entries of rX are integers. Conversely, if (2) holds then we have two linear
equations satisfied by the determinant and the trace of X, namely

r tr(X) + r2 det(X) 0

for each of the two r’s. As the two equations are linearly independent, (1) follows.
It is clear, from inspection of condition (2), that if X satisfies it then so does T (X). Thus,

T maps the set N of matrices satisfying (2) or, equivalently, (1) into itself. T therefore also
maps the linear span )Q of N into itself. Note that the trace of every , matrix is zero and that
matrices with zero trace form a three-dimensional subspace of M2(Q). Since N contains the
matrices

(00 ), (01 00), and ( -1 -1)’
it follows that is exactly that three-dimensional subspace. In this three-dimensional vector
space/, N is a cone, the zero-set of the quadratic form det.

We check that, for some k, det(T (X)) k. det(X) for all X of trace zero. Let X be

so that det(X) -x2 yz. As T is linear and det is quadratic,

det(TX) ctx
2 d-- fly2 _. /Z2 -I- 3xy + exz + (yz

for some coefficients ct,/3, ?’, 3, e, . Since T maps N onto itself, det(TX) 0 ifdet(X) 0.
Choose y x2 and z -1 so that det(X) 0 and therefore det(TX) 0. We have that,
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for all x, OX2 -1"- flY4 -- y -’l" X gX ’X2 0, SO that c ( and/3 ?, e 0.
Thus, det(TX) otx2 + otyz -c det(X).

Consider in particular the matrices

X= (10 ) and 21+X= (12 32),
and note that X has trace zero while 2I + X 6 SL2(Z). So we have

det(T(2I + X))

--det(2I + T(X))
4 + 2. tr(T(X)) + det(T(X))

4 + 2.0 + k det(X)

=4-3k,

so k and det(T (X)) det(X) for all rational X of trace zero.
For rational X of arbitrary trace, we can write X r I + Y where r is rational and Y

Then by what we have already proved, T (Y) has trace zero and the same determinant as Y.
So

det(T(X)) det(T(rI + Y))

r2 + r. tr(T (Y)) + det(T (Y))
r2 + det(Y)

det(rI + Y) det(X).

This shows that T preserves determinants of rational matrices. It follows that it preserves
determinants of real matrices (by continuity) and of complex matrices (by analytic continu-
ation). (Here is a more elementary argument. We have the equation det(T(X)) det(X)
when all four entries are rational. If we let one entry, say the upper left one, vary over com-
plex numbers while the other three entries remain fixed rational numbers, then the equation
remains true because a polynomial equation in one variable that holds infinitely often must
hold identically. Then we let another entry vary, while the remaining three stay fixed, one
being an arbitrary complex number and the other two rational. Repeating the process for each
entry in turn, we find that the equation holds for all complex values of the entries.)

Summarizing what we have achieved so far, we have a linear, determinant-preserving
transformation T on M2(C), which sends I to itself and sends integer matrices to integer
matrices. Our immediate goal is to show that there is a matrix B E SL2(C) satisfying the
conclusion of the theorem with C B-1 (as T(1) I), not only for all X 6 SLz(Z) but
for all X 6 M2(C). (This information is essentially contained in [W, pp. 19-21], but for the
reader’s convenience we give a different, more detailed proof.) Once this is done, we will
complete the proof by showing that the entries of B must be integers.

Until we reach our intermediate goal, we shall be working in the complex vector space
M2(C), and it will be convenient to use the following basis for this space:

0 0 01), R (0I=(01 10) P=(0 ’)’ Q=(-1 0)"
The advantage of this basis is that the determinant is given by a very simple formula

det(al + pP + qQ + rR) det ( a +
+ ri a

+ ri a2 + p2 W q2 + r2.
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As T is linear and preserves determinants and I, it preserves eigenvalues; indeed, if
X x I has determinant zero then so does T(X x I) T (X) x I. In particular, T (10 )
has eigenvalues and 0; viewed as a transformation of 2-component vectors, it is a projection
onto some line along some other line, which means that it has the form

P) (F s) ( pF psT( 00)=(q qr qs)
for some p, q, r, s. Furthermore, since the eigenvalues are and 0, the trace is 1, so pr 4- qs
1. This means that the matrix

q r

has determinant 1. The transformation X AXA-1 sends I to itself and sends ( o)to
(; ), just like T. So the linear transformation

T’(X) A-’T(X)A

preserves determinants and fixes both I and ( ) and therefore also their linear combination
P. If we achieve our intermediate goal for T’, the same result will follow immediately for T.
Indeed, if T’(X) BXB-1 then T(X) (AB)X(AB)-, while if T’(X) BXtB-1 then
T(X) (AB)Xt(AB)-. So we may work with T’ instead of T.

Thus, we assume that T fixes both I and P. Furthermore, as T preserves the quadratic
form det, it also preserves the associated bilinear form

(det(X + Y) det(X) det(Y)),(X, Y) -which has, relative to our chosen basis, the standard form

(al + pP +qQ +rR, a’l + p’P +q’Q +r’R) =aa’ + pp’ +qq’ +rr’.

(Usually, complex linear spaces are equipped with inner products that are linear in one factor
and conjugate-linear in the other. That is not the case here; our inner product is linear in both
factors.)

As T preserves this inner product and fixes I and P, it must leave invariant the set
of vectors orthogonal to both I and P, namely the linear span of Q and R. So we have
T(Q) q Q + rR for some scalars q and r. Also, we have

det(Q) det(T(Q)) det(qQ 4- rR) q2 4- r2.

There is a complex number v such that (v + (1/v))/2 q. (Just solve a quadratic equation
for v; of course there is a second solution Iv.) Note that

v+- + v-- =q2 +r2,
1)

so r +(v (1/v))/2i. Replacing v with 1/v if necessary, we can arrange that

q v 4- and

Let u be either of the square roots of v, and let

/1// ( u
0

,(,)r-- u---#
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Note that

M ( x y) M_=( u2y) (x vy)z to z to z to

In particular, the transformation X - MXM-1 fixes I and P (just as T does) and it sends

(1 to

( 0 v) ( 1)( 0 O1 ) ( 1)( 0 i)v+- + v--
-; 0 v i v 0

=qQ+rR

T(Q).

So T’(X) M-T(X)M preserves determinants and fixes I, P, and Q. As before, it suffices
to reach our intermediate goal for T’ rather than T. So from now on we assume that T fixes
I, P, and Q.

It follows that T fixes the subspace orthogonal to I, P, and Q, namely the subspace
spanned by R. So T (R) is a scalar times R, and the scalar can only be -t- because T preserves
determinants. If the scalar is 1, then T fixes all four basis matrices, hence is the identity. If, on
the other hand, the scalar is 1, then T (X) p-1X p, because the right side of this equation
defines a linear transformation which, like T fixes I, P, and Q and reverses the sign of R. In
either case, T has the required form, so we have achieved our intermediate goal.

We now return to the original T, normalized to fix I and extended to M2(C), which we
now know to have the form T(X) BXB-1 or T(X) BXtB- for some B 6 SL2(C). We
also know that if the entries of X are integers then so are those of T (X). What we still need
to show is that the entries of B are integers. Without loss of generality, we may suppose that
T(X)-- BXB-1.

Let X be the matrix with a single entry equal to 1, say the entry in position i, j, and all
other entries zero. Then the entries of T (X), namely

(BXB-1),,t- Bk,i(B-1)j,l

are integers for all k and I. But, as B has determinant l, the entries of B- are the same as
those of B, except for their signs and their positions in the matrices. Thus we see that the
product of any two entries of B is an integer.

In particular, the square of each entry of B is an integer, so each entry is the product of
an integer and (possibly) the square roots of certain distinct primes.

Suppose p is a prime whose square root occurs in one of the entries. Then v/ must
occur in every entry, for the product of an entry containing 4rfi as a factor and another entry
not containing it could never be an integer. So occurs as a factor of every entry of B. But
then p is a factor of det(B) 1. This contradiction shows that no square roots occur.

So every entry of B is an integer, and the proof is complete. [3

We saw that an arbitrary linear transformation T over SL2(Z) extends uniquely to a linear
transformation over the vector space Mz(R) of all four-by-four real matrices. Let Mat(T) be
the matrix of (the extension of) T in the standard basis:

l).
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LEMMA 9.2. We have

T(Xl x2) (ylx3 x4 Y3
Y2 ) Mat(T) x2 y
Y4 x3 Y3

x4 Y4

Proof The proof is obvious. [3

The entries of Mat(T) are the entries of the four matrices obtained by applying T to the
standard basis. By Theorem 9.1, these are integers.

By Theorem 9.1, there are unimodular matrices B and C such T(X) BXC for all
unimodular matrices X or T (X) BXtC for all unimodular matrices X. Call T right in the
first case and left in the second. The determinant of Mat(T) is +1 because

det(Mat(T)) x det(Mat(T-))= det(T x T-) 1.

LEMMA 9.3. Right transformations are exactly those with determinant + 1.
Proof. It suffices to prove that if T is right then detMat(T) 1, because a left T is

the product of the transposing transformation (whose matrix has determinant 1) and a right
transformation. So suppose that T (X) BXC for some unimodular matrices B, C and all
unimodular (and therefore all two-by-two real matrices) X.

Now forget about unim.odular matrices and think about real matrices. Every pair (B’, C’)
of nonsingular two-by-two real matrices gives a linear transformation T X - B XC’ over
two-by-two real matrices that has an inverse, so that the matrix Mat(T’) of T in the standard
bases is nonzero. Now continuously transform B and C to the unit matrix. In the process T is
continuously transformed to the identity, whose matrix has determinant 1, and the determinant
of T remains nonzero all the time. Therefore its initial value cannot be -1.

LEMMA 9.4. There is a PTime algorithm that, given a four-by-four integer matrix M,
determines whether M Mat(T) for some T.

Proof If M Mat(T) then, by Theorem 9.1, there exist unimodular matrices B and
C such that either T(X) BXC for all unimodular matrices X or T(X) BXtC for all
unimodular matrices X. We show how to find out whether there is a pair (B, C) satisfying the
first condition and even how to find all pairs (B, C) satisfying the first condition. The case of
the second condition is similar.

Suppose that T (X) BXC for all unimodular matrices X. Due to the unique extendibil-
ity of T, T(X) BXC for all two-by-two real matrices. Let

B---( bl b2) C- ( C1 c2)b3 b4 c3 c4

Computing the products BXC where X belongs to the standard basis and using Lemma 9.2,
we have

blCl blc3 b2cl b2c3 1blc2 blc4 b2c2 b2c4
b3cl b3c3 b4cl b4c3
b3c2 b3c4 b4c2 b4c4

Thus we can recover all bi/bj and all Ci/Cj. So we recover B and C up to scalar factor.
We recover the scalar factor, except for the sign, using the equalities det(B) det(C) 1. It
follows that the pair (B, C) is unique except for an over-all sign. [3



26 ANDREAS BLASS AND YURI GUREVICH

10. Matrix transformation. In this section we prove that Matrix Transformation is hard
for RNP.

For an arbitrary numerical matrix X, let max(X) be the maximal absolute value of the
entries of X. Recall that e(n) is the length of the binary notation for n and Mat(T) is the
matrix of a linear transformation T.

DEFINITION 10.1. LT (standing for "Linear Transformations") is the uniform domain of
linear transformations of SLz(Z) with ITI e(max(Mat(T))).

It will be convenient to ignore the distinction between a linear transformation T over
SLy(Z) and its matrix Mat(T).

For all unimodular matrices B and C, let T,,c be the linear transformation X - C-1XB.
LEMMA 10.2. The function (B, C) w- Mn,c reduces the subdomain ofpositive pairs in

SL2 (Z) x SL2 (Z) to LT.
Proof. We need to check only that the function f(B, C) M,c has the domination

cproperty. Recall that the inverse of a matrix (t, d) is the matrix (d_, a)" It follows that
max(f(B, C)) max(B) max(C) and therefore IBI / ICI < If(B, C)l < IBI + ICI.

Let If(B, C)I, let M range over LT, and let B, C range over unimodular matrices.
Using # as the cardinality symbol, we have

#{M" IMI 1} < 2#{(B, C) < IBI / ICI _< + 1}
/+1

[#{B" IBI- j} #{C" l- j < ICI <_ l- j + 1}].
j=l

By Lemma 8.5, the number of unimodular matrices of size m > is eight times the
number of positive unimodular matrices of size m. According to Lemma 6.7, the later number
is O(22m). It follows that, modulo a constant factor,

/+1

#{M" IMI--l}< 1).
/=1

We saw in the previous section that, for each M in LT, the pre-image of f- (M) has at
most two elements. It follows that, modulo bounded factors,

P(f- f(B, C)) 22(/+ 1)
< --1 / _< I(B, C)l +

P(f(B, C)) 22t

which is AP on SL2(Z) SL2(Z).
If S is a subset of LT, let S be the set of products Tm T where rn < n and each T/ 6 S.

First we prove that an auxiliary version of matrix transformation is hard for RNE
DEFINITION 10.3. For eachpositive integer or, MT(cr) is the decisionproblem with domain

SLz(Z) Set (LT) Plwhere an instance (A, S, n) ispositive ifandonly ifthere exists T Sn

that transforms A to the unit matrix.
THEOREM 10.4. Some MC(cr) is hardfor RNP.
Proof Let cr witness Theorem 8.7. We reduce the subdomain of MC(cr) described in

Theorem 8.7 to MC(cr). If S is a sequence of positive matrix pairs, let S’ be the result of
replacing each pair (B, C) in S with the linear transformation TB,c(X) C-XB. The
desired reduction is f(A, S, n) (A, S’, n). To check the correctness property, note that

AB Bm C1 Cm if and only if the transformation TBm,C TB,C, takes A to the unit
matrix.

It remains to check that f reduces the relevant subdomain of SLz(Z) (SLz(Z)
SLz(Z)) PI to the domain SLz(Z) (LT) PI. It suffices to check that the function
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S - S’ reduces (SL2(Z) SL2(Z)) to LT. By Lemma 3.7, it suffices to check that the
function (B, C) T,c reduces SLz(Z) SLz(Z) to LT. Now use Lemma 10.2. q

DEFINITION 10.5. MT is the decision problem with domain SL2 (Z) Set(LT) PI such
that an instance (A, S, n) is positive ifand only if there exists P Sn with A P(1).

COROLLARY 10.6. MT is RNP complete.
Proof. The identity function deterministically reduces MT(cr) to MT. We omit checking

that MT is in RNE [3

Remark 4. Let 7r(j) be any PTime computable nondecreasing function from positive
integers to positive integers such that the inverse function 7r-l(j) mini[n:(/) > j] is
polynomially bounded. For example, zr(j) j. The restriction of MT (respectively, MT(cr))
to instances (A, S, n) with n rr(lAI) remains RNP complete. The proof is the same proof
except we start with the corresponding version of the bounded halting problem, which has
been proved RNP complete in [Gul, 9].

11. Bounded membership problem. In this section, we briefly consider a natural sim-

plification ofMT(cr) where the question is whether the given unimodular matrix X is a product
of at most n factors taken from a given finite subset (assumed closed under inverses) of SL2(Z).
This is a bounded version of the membership problem [Mi] for SL2(Z). We show that it is
NP complete. It is interesting open problem whether a natural randomization of it is RNP
complete. We begin with the analogous bounded version of the membership problem for the
additive group of integers.

DEFINITION 11.1. Integer Sum is the following NP problem:
Instance" A positive integer K, a finite set S of positive integers, and a positive

integer n.

Question: Can K be represented as zim=l 6ibi where rn < n, the numbers bi are (not
necessarily distinct) elements of S, and t3 G 1, ?

The restriction n on the number of summands is important. It is easy to decide whether or
not K can be represented as a sum of elements of S t3 {-b b 6 S}; just compute the greatest
common divisor of the elements of S and check whether it divides K.

LEMMA 11.2. Integer Sum is NP complete.
The fact may be well known. It was not known to us. Suzanne Zeitman, a graduate

student of Gurevich, proved the lemma.

Proof The proof is by reduction from X3C, Exact Cover by 3-Sets [GJ], which is the
following NP problem:

Instance: A positive integer q and a collection C of 3-element subsets of the set

{1,2 3q}.
Question: Is there an exact cover C c C for X (so that each element of X belongs to

exactly one member of C’)?
The transformation f we use resembles that used in the reduction of 3-Dimensional

Matching to partition [GJ]. Given an instance (q, C) of X3C, let be the length of the binary
notation for q and B be the collection of binary strings of length 3ql. View a B string as a

sequence of 3q blocks (substrings) of length 1. For each i, < < 3q, let ai be the integer
represented by a B string with exactly one 1, which appears at the rightmost position of the
th block.

CLAIM 11.3. If Zql otia Zql fliai and 0 <_ oli, fli < q for each i, then o[ fli for
each i.

Proof By the definition of I. [3

Define

f(q, C) (K, {y(T) T 6 C}, q),
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where X Yq, ai and each y(T) ,iT ai. If C’ is an exact cover of C, then the
cardinality of C’ is q and K is represented as the sum of the q numbers y(T) such that T 6 CI.

Now suppose that K _,jm=l ej y(Tj) where rn < q and ej {1, -1} and Tj 6 C. Then

let K+ y{y(Tj) ej >" 0} Zql otia and K- y{y(Tj) /3j < 0} Yql ’i ai, so
that K+ K + K-. Clearly, O m < q. Similarly, ’i _< q. For each T 6 C, let zi(T)
equal if 6 T and equal 0 otherwise.

First consider the case K- 0. By Claim 11.3, we have that, for each i, j zi (Tj) 1.
Thus, the sets Tj. form an exact cover.

By contradiction, suppose that K- > 0. Then the number of j’s with ej > 0 is less than
q and therefore there exists an with IY 0. Since K+ K + K-, we have, by the claim,
that 0 o/i + Vi which is impossible.

DEFINITION 11.4. The bounded membership problemfor the modular group, in short BM,
is thefollowing NP decision problem:

Instance: A unimodular matrix X, afinite set S ofunimodular matrices and a positive
integer n.

Question: Can X be represented as 1-Iim= Yi where rn < n and, for each i, either Y or
y-1 is in S?

COROLLARY 11.5. BM is NP complete.
Proof For each integer y, let

If g(y) Y and g(z) Z then g(y + z) YZ and g(-y) Y-. This gives rise to the
following reduction of IS to BM:

F(K, S, n) (g(K), {g(y) y S}, n).

One natural way to randomize BM is to view the domain ofBM as SL2 (Z) Set(SL2 (Z))
PI. The corresponding randomized decision problem is probably decidable in AP time.

Acknowledgments. We thank Suzanne Zeitman for allowing us to publish her proof that
Integer Sum is NP complete. We thank Abraham Sharell, the team of Belanger and Wang,
and the referees for pointing out various flaws in the previous versions of this paper.
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TIGHTER LOWER BOUNDS ON THE EXACT COMPLEXITY OF STRING
MATCHING*
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Abstract. This paper considers the exact number of character comparisons needed to find all occurrences of
a pattern of length m in a text of length n using on-line and general algorithms. For on-line algorithms, a lower
bound of about (1 + 4(m9.1)) n character comparisons is obtained. For general algorithms, a lower bound of about

(1 + ) n character comparisons is obtained. These lower bounds complement an on-line upper bound of about

(1 + 3(m+l)) n comparisons obtained recently by Cole and Hariharan. The lower bounds are obtained by finding
patterns with interesting combinatorial properties. It is also shown that for some patterns off-line algorithms can be
more efficient than on-line algorithms.

Key words, string matching, pattern matching, comparisons, complexity, lower bounds
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1. Introduction. The classical string matching problem is the problem of finding all
occurrences of a pattern w[1...m] in a text t[1...n]. String matching is among the most
extensively studied problems in computer science. A survey of the various algorithms devised
for it can be found in [Ah90].

Among the most efficient algorithms devised for string matching are algorithms that gain
information about the pattern and text only by performing comparisons between pattern and
text characters. Such algorithms need not have any prior knowledge of the (possibly infinite)
alphabet from which the pattern and text are drawn. We investigate the exact comparison
complexity of string matching in this model and obtain lower bounds on the number of com-
parisons required (in the worst case). These lower bounds allow the algorithms to preprocess
the pattern (but not the text). The lower bounds remain valid even if the algorithms do know
the alphabet in advance, provided that the alphabet contains enough characters not appearing
in the pattern.

Two kinds of comparison based algorithms have been studied. An on-line algorithm is
an algorithm that examines text characters only in a window of size m sliding monotonically
to the right; furthermore, the window can slide to the right only when all matching pattern
instances to the left of the window or aligned with the window have been discovered. A
general (or off-line) algorithm is an algorithm that can access both the pattern and the text in
an unrestricted manner.

Perhaps the most widely known linear time algorithms for string matching are the Knuth-
Morris-Pratt [KMP77] and Boyer-Moore IBM77] algorithms. We refer to them as the KMP
and BM algorithms, respectively. The KMP algorithm makes at most 2n m comparisons
and this bound is tight. The exact complexity of the BM algorithm was an open question until
recently. It was shown in [KMP77] that the BM algorithm makes at most 6n comparisons if
the pattern does not occur in the text. Guibas and Odlyzko [GO80] reduced this to 4n under
the same assumption. Cole [Cole91 finally proved an essentially tight bound of 3n f2 (n !m)
comparisons for the BM algorithm, whether or not the pattern occurs in the text.
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The versions of the KMP and BM algorithms considered in the preceding paragraph are
comparison-based. It is interesting to note that both algorithms have variants that are not purely
comparison-based and do not fall into the category of algorithms considered in this paper. The
failure function of the KMP algorithm [KMP77] yields finite automata that perform string
matching by reading each character exactly once. However, simulations of these automata
require prior knowledge of the alphabet and the number of comparisons needed to simulate
each transition depends on the alphabet size. Transitions can be simulated in unit time by
using text characters to address an array of pointers, but this is not allowed in our model.

The standard BM algorithm [BM77] uses two shift functions to determine the distance
to shift the pattern when a mismatch occurs. One of these shift functions, the occurrence

shift, gives the rightmost position in the pattern in which the unmatched text character occurs.
An efficient implementation of this shift function is again alphabet dependent. The second
shift function used by the BM algorithm is comparison-based. The analysis of Cole [Cole91]
shows that the occurrence shift function does not improve the worst-case behaviour of the BM
algorithm. This occurrence shift function is very important in practice, however, as it ensures
sublinear time in various probabilistic settings (see [BGR90]). For a study of how the KMP,
BM, and other algorithms behave in practice the reader is referred to [HS91 ].

Apostolico and Crochemore [AC91] gave a simple variant of the KMP algorithm which
makes at most n comparisons. Apostolico and Giancarlo [AG86] gave a variant of the BM
algorithm which makes at most 2n rn + comparisons. Crochemore et al. [CCG92] showed
recently that remembering just the most recently matched portion reduces the upper bound of
BM from 3n to 2n comparisons.

Recently, Galil and Giancarlo [CGG90], [GG92] analyzed and modified a string matching
4algorithm designed by Colussi [Co1191 they showed that it makes at most n comparisons.

In fact, [GG92] give this bound in a sharper form as a function of the period z of the pattern; the
rnin{z,m-z}+2boundbecomesn+(n-m) min{, 2m }. Galil and Giancarlo [GG91] have also shown

4that any on-line algorithm for string matching must perform at least n O (1) comparisons
for some strings (the string aba is an example). It will be shown here that this lower bound
also applies to general algorithms, if only pattern-text comparisons are allowed.

The algorithm of Galil and Giancarlo [GG92] is efficient for relatively short patterns.
It may become inefficient for longer patterns. Breslauer and Galil [BG92] and Cole and
Hariharan [CH92] have shown that the string matching problem becomes easier as the length
of the pattern increases. Breslauer and Galil [BG92] developed an algorithm that performs

log rnat most (1 + O(--)) n character comparisons for texts of length n and patterns of length
m. Cole and Hariharan [CH92] obtained an algorithm that performs at most (1 / O()) n
comparisons. As we shall see, this is essentially tight.

Galil and Giancarlo [GG91] showed that any on-line algorithm must perform at least
2(1 + -) n O (1) comparisons for some patterns of odd length m, and that any (general)

algorithm must perform at least (1 + ).n O (1) comparisons for some patterns of length m.
In this work we improve the lower bounds for both on-line and off-line algorithms. We

also show that for certain patterns off-line algorithms can be more efficient than on-line algo-
rithms. Some of our lower bounds apply in a model in which both text-text and pattern-text
comparisons are allowed. We suspect that for some patterns text-text comparisons can improve
the efficiency of string matching algorithms.

Our improved lower bounds are the following: For on-line algorithms that use only
16pattern-text comparisons, a lower bound of (1 + 7m+27 n O (1) character comparisons

is obtained, for rn 16k + 19 where k > 1. For on-line algorithms that are allowed to
use both pattern-text and text-text comparisons, a lower bound of (1 + 4(m9+ 1) n O (1)
character comparisons is obtained for rn 36k + 35, where k > 0. For general off-line
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algorithms that are allowed to use both pattern-text and text-text comparisons, a lower bound
2of (1 + -5) n O (1) character comparisons is obtained for rn 2k + 1, where k > 2.

4 O (1) character comparisons for rn 3 if onlyWe also get an off-line lower bound of n
pattern-text comparisons are allowed.

The on-line lower bounds presented come very close to the on-line upper bound of (1 +
3(m+l) n obtained by Cole and Hariharan [CH92]. The worst-case comparison complexity
of string matching is therefore almost exactly determined, it is asymptotically of the form

d 9 8(1 + ) n where for on-line algorithms < d < and for general algorithms 2 < d < 5"
Our work builds on the work of Galil and Giancarlo [GG91 ]. Our point of view, however,

is a bit different. Galil and Giancarlo [GG91 investigated the number of comparisons required
only as a function of n, the text length, and m, the pattern length. We are interested in the
number ofcomparisons required as a function of the text length and the specific pattern sought.

In the next section we explain, in more detail, the rules of the string matching game in the
comparison model setting. In 3 we describe the adversary arguments that lie at the heart of our
lower bounds proofs. The off-line lower bounds presented in 4 follow almost immediately
from the arguments of 3. A specific lower bound is obtained for every pattern. This lower
bound depends on the first and second periods of the pattern (see next section). These off-
line lower bounds are shown to be tight for an interesting family of patterns. Exploiting the
additional restrictions for on-line algorithms, we obtain, in 5 and 6, improved on-line lower
bounds. The lower bound of 5 depends again on the first and second periods of the patterns.
Additional periods and more complicated combinatorial structures are used in 6. In 7 we
obtain some on-line upper bounds (for strings of the form abae) that match the on-line and
some off-line lower bounds of4 and 5. Finally, in 8 we exhibit a pattern (abaet) for which
an off-line algorithm (it is actually on-line with a small look-ahead) performs better than any
on-line algorithm.

A preliminary version of this paper has appeared in [CHPZ93].

2. Preliminaries. The algorithms we consider are allowed to access the text and the
pattern only through queries of the form "t[i] w[j]?" or "t[i] t[j]?". To each such
query the algorithm is supplied with a "yes" or "no" answer. An algorithm is charged only for
the queries it makes; all other computations are free of charge. Algorithms may adaptively
choose their queries depending on the answers to earlier queries. An algorithm in this model
may be viewed as a sequence of decision trees. Similar comparison models are used to study
comparison problems such as sorting, searching, and selection.

For a string w, let c(w) denote the minimal constant for which there exists a string
matching algorithm that finds all occurrences of the pattern w in a text of length n using at
most c(w).n -t- o(n) comparisons (between text and pattern characters and between pairs of
text characters). A variant of c(w) is c* (w) in which the algorithm is not allowed to compare
pairs of text characters. Obviously, c(w) <_ c*(w).

In the definition of c(w) and c*(w), we allow unrestricted off-line algorithms that have
random access to all the characters of the text. By contrast, we define ck (w) and c, (w) to be the
corresponding minimal constants when the algorithms have access to the text only through a
sliding window of size Iwl +k (where w denotes the length of w). Furthermore, the algorithm
is only allowed to slide the window past a text position when it has already reported whether
an occurrence of the pattern starts at that text position. Algorithms using a sliding window of
size wl (i.e., k 0) are traditionally called on-line algorithms. We call algorithms that use

larger windows finite look-ahead or window algorithms. Clearly c(w) < c(w) < co(w) for
any k > 0. We show in 8 that for some to and some k, c(w) < co(to). More specifically, we
show there that c4(abaa) < c0(abaa). This means that for some patterns, algorithms that
use larger windows may be more efficient than all algorithms that use smaller windows. It is
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still an open problem whether there exists a string w for which c(w) < ck(w) for every k > 0.
That is, it is not known whether there exists strings for which an optimal off-line algorithm is
better than any finite look-ahead algorithm. It is clear however that ck(w) is nonincreasing in
k. The following lemma is also easily established.

LEMMA 2.1. For any string w we have lim, Ck(to C(to).
Proof. Let c(n) be the number of comparisons required, in the worst case, to find all

occurrences of w in a text of length n using an unrestricted algorithm. By the definition of
c(w) we get that c(n) < c(w).n + d(n) where d(n) o(n). For every k > 0 consider now
the following algorithm with look-ahead k. The algorithm finds all occurrences of w in its
window of size k -4- Iwl using at most c(k + Iwl) comparisons. The window is then slid by
k + positions and the same process is repeated. The number of comparisons performed by
this algorithm on a text of length n is at most

where

n 3 c(k-4-Iwl) < k(w).n A-k(w)
k 11

k+lwl d(k+lwl)
(w) c(w) +

k+l k+l

and d(w) is some constant (depending on w and k). In particular we get that c(w) < (w).
It is now easy to check that lim__, (w) c(w) and therefore lim_,o c(w) <_ c(w). It is
clear however that lim__, c(w) > c(w) and the required equality follows. [3

It is easy to see that < c(w) <_ co(w), c*(w) < c(w) for every string w. The KMP
(w) < 2, for every w. The algorithm of Galil and Giancarloalgorithm shows that < co

,(to) < 4[GG92] shows that < co 3, for every w. The algorithm of Breslauer and Galil

[BG92] shows that < c)(w) < + 41g2m+2 for every string of length m. Finally, the
for every stringalgorithm of Cole and Hariharan [CH92] shows that < c(w) < + 3(m+l)

to of length m. The algorithms (of [KMP77],[GG92],[BG92], and [CH92]) mentioned here
are all on-line and they use only pattern-text comparisons.

2 for some patterns ofGalil and Giancarlo [GG91] showed that co (to) > co(to) > + ff-43
odd length m. We show that for infinitely many values of rn there exists strings of length rn for

9 We also show that for infinitely many values of rn therewhich Co(W) > co(w) >_ + 4(m+l)
16 This shows that the algorithm of Coleexists strings of length rn for which c (w) >_ + 7m+27

2and Hariharan is not far from being optimal. We further show that c*(w) >_ c(w) >_ A m+3
for some patterns of odd length rn >_ 5, showing essentially that the lower bounds obtained
by [GG91] for on-line algorithms also hold for general algorithms.

Let w be a string of length m. We say that z (1 _< z < rn) is a period of w if and only if
w[i] w[i + z] for every < < rn z. Let zl be the minimal period of w. (A minimal

period exists since rn is always a period of w.) Let z2 be the minimal period of w which is not
divisible by zl. If such a second period does not exist we set z2 cxz. We call zl the period
of w and zz the second period of w. Periodicity properties play a major role in the sequel.

It is well known (see, e.g., [KMP77]) that if z and z2 are periods of w and if z -4- z2 <

Iwl / gcd(z, z2) then gcd(zl, z2) is also a period of w. If zl and z2 are the first and second
periods of to then gcd(z, z2) is not a period of to and, as a consequence, zl + z2 > Iwl -4- 2.

3. Adversary arguments. Our lower bounds are derived using an adversary that fills in
the text while answering the algorithm’s queries. The adversary always "tiles" the text with

(overlapping) occurrences of the pattern. Every character of the text eventually becomes part
of an occurrence, which the algorithm must find. Consequently the algorithm must establish
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the identity of each text character and it can achieve this only by getting at least one "yes"
answer for each position. The adversary tries to avoid giving "yes" answers whenever possible.
It gives a "yes" answer only when a "no" answer would either contradict a previous answer
or prevent it from completely tiling the text. The arguments of this section are generalizations
of similar arguments of Galil and Giancarlo [GG91].

The previous statement, that at least one "yes" answer must be obtained by the algorithm
for each text position covered by an occurrence of the pattern, seems obvious. It is indeed im-
mediate if only pattern-text comparisons are allowed. A slightly more complicated argument
is needed to handle the possibility of text-text comparisons.

LEMMA 3.1. A comparison based algorithm can be certain about the identity of s text
characters in a text only after receiving at least s "yes" answers.

Proof We construct a graph G which has one vertex for each text position and one
vertex for each of the k distinct symbols which appear in the pattern w. Every edge in G
corresponds to a "yes" answer received by the algorithm. If a "yes" answer was given to
a query "w[i] t[j]?" then an edge is added between the vertex corresponding to t[j]
and the vertex corresponding to the symbol at w[i]. If a "yes" answer was given to a query
"t[i] t[j]?" then an edge is added between the vertices corresponding to t[i] and t[j].

At any stage of the algorithm the graph G constructed so far represents the positive
information known about the characters in the text. The text positions corresponding to
vertices in components of G which contain a pattern symbol vertex are the only text positions
where the identity of the character is known. Since the alphabet size is unlimited, the character
at any other text position is not yet determined. Since a component of size p containing a
pattern symbol vertex has p text vertices and at least p edges, the total numbers of
known text positions is at most the total number of "yes" answers. 1

Next we describe a scheme using which the adversary can give any algorithm a relatively
large number of "no" answers. We begin with a simple example.

The pattern string is aba, and let n 3r + for some r >_ 1. We consider the family
.T" {to v e {0, }r} of text strings of length n defined as follows. Place a’s in positions 3j,
for 0 < j < r, of all texts to. In positions 3j + 1, 3j + 2 of to, put ba if vj 0 and ab if

vj 1. (For simplicity, we number the positions here from 0.) This family may be depicted
schematically as

ba ba ba
a a a a
ab ab ab

Finding all occurrences of aba in a text string from .T" is equivalent to determining the
index vector v e {0, }r. An adversary can force at least one "no" answer before revealing
each bit of v.

The following definition generalises the properties of the example.
DEFINITION 3.2. Let w be a string. A family {to v 6 {0, }r} of texts of length n

such that0 Ul ,Uis said to be r-separating for w if there exist distinct indices u ur,

the following holds:
1. Forevery v (v vr) 6 {0, 1}r and for every i, thetextto contains an occurrence

of w starting at position u/ if and only if vi 0 and an occurrence of w at position u] if and
only if vi 1.

2. The answer to any query of the form "w[i] t[j]?" is either "yes" for all texts to,
or "no" for all texts to, or "yes" for a text to if and only if vk e, for some fixed < k < r

and e 6 {0, 1}.
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3. The answer to a text-text query "t[i] t[j]?" is either "yes" for all texts to, or "no"
for all to, or "yes" for to if and only if vk el, or "yes" for to if and only if vk v el,

or "yes" in to if and only ifv, el andre2 e2, for some fixed < k,k2 < r and
e, e2 E {0, }. (If f" contains only symbols from the pattern then 3. follows from 1. and 2.)

In the example given before Definition 3.2, there is no text-text query whose answer is
"yes" if and only if v, el and Vk 62, for some fixed < kl k2 _< r and el, 62 E {0, }.
Such a situation may arise however for patterns w that contain more than two distinct characters.

We are now ready to prove the next lemma.
LEMMA 3.3. If is an r-separating familyfor w then, for any comparison-based algo-

rithmfor w, there exists a text tv f"for which the algorithm receives at least r "no" answers

before being able to locate all the occurrences of w in to.
Proof The adversary maintains a set E containing linear equations over the binary field

GF(2) in the variables v yr. At any stage, there is at least one vector v {0, }r that
satisfies all the equations of E, and if a vector v {0, }r satisfies all the equations of E then
the text to is consistent with all answers given so far by the adversary. Further, the number of
equations in E is at most the number of"no" answers given by the adversary. At the beginning
E , and as no query has been made, all texts are still possible. This is how the adversary
responds to a new query"

If the answer to the query is the same for all texts to for which v is a solution of E,
the adversary responds with this common answer. The set E remains unchanged and all the
invariants remain satisfied.

Otherwise, the adversary answers with a "no". It then adds an equation to. E in the
following way. As the answer to the current query is not the same for all the texts in f’, there
exist, by Definition 3.2, either a single equation e or two equations el and e2 such that the
answer to the query is "yes" in to if and only if v satisfies el or both el and e2.

If the answer to the query, according to to, is "yes" if and only if el is satisfied, then U,
the equation obtained from el by complementing its free coefficient, is added to E. If the
answer to the query, according to to, is "yes" if and only if both el and e2 are satisfied, then
at least one of el and e2 is independent of the equations of E, as otherwise the answer would
have been the same for all surviving texts. If e does not depend on E then the equation e-i- is
added to E, otherwise is added. It is easy to verify that all the required invariants are still
satisfied.

The algorithm’s task is done only when there is a unique solution to E. This happens only
when the set E contains at least r equations. An equation is added to E only as a result of a
"no" answer. The adversary can therefore give the algorithm at least r "no" answers.

Lemmas 3.1 and 3.3 can be combined together to give a lower bound of n + r if, in
every text to of the separating family f" used in Lemma 3.3, every text position is covered
by an occurrence of the pattern w. Such separating families will be constructed in the next
section.

4. Off-line lower bounds.
THEOREM 4.1. If W is a string and z, Z2 are its first and second periods then c(w) >

z +z"
Proof Assume without loss of generality that n r(z + z2) + Iwl for some r > 1. For

every v 6 {0, }r construct a text to of length n in which, for every 0 < j < r, occurrences
of w start at j (z + z2), and either at j (z + z2) + z or j (z + z2) + z2 according to whether

vj 0 or vj 1. It is easy to verify that f" {to v E {0, }r} is an r-separating family for
0w where uj j (z / z2) + z and uj j (z + z2) + z2, for 0 < j < r. This construction is

depicted in Fig. (note that z + z2 > Iwl / 2), Consider now a comparison-based algorithm
A that finds all occurrences of w in a string of length n. According to Lemma 3.3, A gets at
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j (z, -t- z2) (j -t- )(z, --t- z2)

z+z2-1wl

FIG. 1. The configuration used to prove that c(w) > + Zl "+<2

least r "no" answers for at least one text t,,o, where v0 6 {0, 1}r. It is also easy to see that
every text t,, and in particular t,o, is completely covered with occurrences of u,. According
to Lemma 3.1, A must therefore get at least n "yes" answers on too. In total, A must make, in

)n lu,I comparisons for a text of length n. [3the worst case, at least n + r (1 +
6As an example, note that for the string aa, z 2 and z2 3 and therefore c(aLa) > .

The separating family used to obtain this lower bound may be depicted as

ba ba ba
aba aba aba aba

ab ab ab

This family has the property that, in every text of the family, every position is covered by an
occurrence of aba. The separating family for aba given after Definition 3.2 did not have this
property.

As a further example, note that for the string abaa we have zl 3 and z2 4, and
8therefore c(abaa) > 7. In 8 it will be shown that this bound is tight, i.e., c(abaa) 7.

We will see from Theorem 7. that c0(abaa) . This provides an example of a string for
which off-line algorithms can be more efficient than on-line algorithms.

THEOREM 4.2. lf w is a string, Zl, Z2 are its first and second period, and 2z2 Zl < Iwl
then c(w) >_ 1.- .

Z2

Proof The proof is very similar to the proof of Theorem 4.1. A separating family, in
which every text is almost completely tiled with occurrences of w, nay be obtained this time
without using occurrences of w that are common to all the texts of the family.

Assume that n rz2 + Iwl / z for some r >__ 1. For every v 6 {0, }r, construct a text t,,
of length n in which, for 0 < j < r, occurrences of w start at jzz if v.i 0 or at jz2 + (zz z
if vj 1. It is again easy to check that - {t,, v 6 {0, }r} is an r-separating family for w

0 u jz2 + (ze z) for every 0 < j < r The constnctionwhere this time u jz2 and
is depicted in Fig. 2. Note that if z, z2 (z < z2) are periods of w then so is 2z2 z. As
2z2 z _< Iwl, every position in a text t, except perhaps the first and last z2 Zl positions, is
covered by an occurrence of w. Thus, as in the proof of Theorem 4. l, we can show that any
algorithm must perform, in the worst case, at least n(l + +/-) O(Iwl) comparisons. [3

z
As an example, for the string aabaa we have z 3, z2 4 and 2z2 zl __< iwl and

therefore c(aabaa) _> ,. The separating family used this time is

ba ba ba
aa aa aa aa

ab ab ab

4THEOREM 4.3. c* (aba) .
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jz2 (j + 1)z2 (j + 2)z2 (j +. 3)z2

2 --Zl
Iwl-(2z,,-z)

2z2-z

FIG. 2. A configuration used to show that c(w) > + z--"

Proof. The upper bound will follow from Theorem 7.1. The lower bound does not follow
from Theorem 4.2 as the condition 2z2 z < Iw[ is not satisfied. A specialized argument
is needed in this case. The argument given here assumes that only pattern-text comparisons
are allowed. It does not extend in a simple manner to the case in which both pattern-text and
text-text comparisons are allowed.

The lower bound is obtained using the separating family for aloa given after Defini-
tion 3.2. A complication arises, however, as texts in this family are not completely covered
by occun’ences of aba.

Assume that n 3r + for some r > 1. The adversary starts by putting a’s in all text
positions 3j for 0 _< j < r. It will set positions 3j + 1, 3j + 2 to either a13 or loa only after
replying with a "no" to at least one query concerning these positions.

The adversary answers the queries ofthe algorithm in the following way. Ifthe queried text
position was already set by the adversary, the answer consistent with this setting is returned.
If the query is "t[3j + kl a?" or "t[3j + k] loT’ where k 1, 2, and position 3j + k
has not yet been set, the adversary responds with a "no". It then sets positions 3j + 1, 3j + 2
to either ab or ha, whichever is consistent with its "no" answer.

All text positions of the form 3j + and 3j + 2 will eventually be covered by occurrences
of aba. The adversary therefore forces at least one "no" answer and two "yes" answers for
each such pair. Positions of the form 3j are not necessarily covered by occurrences of aloa.
If, however, position 3j is not covered by such an occurrence, then positions 3j 2, 3j
are set to ba and positions 3j + 1, 3j + 2 are set to ab. An algorithm must still query position
3j at least once in such a case, to either verify or rule out an occun’ence of ala starting at
position 3j 1. This completes the proof. [3

For a nonperiodic string w (i.e., a string with Zl Iwl, z c), the above theorems
give only the trivial lower bound, c(w) >_ 1. This bound is tight, however, as the many string
matching algorithms (see, e.g., those of [Co1191],[GG91], and [CH92]) perform at most n
comparisons when searching for a nonperiodic pattern in a text of length n.

As a corollary to Theorem 4.2 we get the following corollary.
COROLLARY 4.4. For k, f. > 2 we have c(atbat’) > + max{k,f}+2"

Pro@ It is easy to check that the first and second periods of w akba are z
max{k, g} + and z2 max{k, ’.} + 2 and that 2za z max{k, } + 3 _< Iwl k / / 1.
The claim follows immediately from Theorem 4.2.

In 7 it will be shown that the bounds given in Corollary 4.4 are tight. They can even be
matched using on-line algorithms. As a further corollary to Theorem 4.2 (or Corollary 4.4)
we get the following corollary.
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COROLLARY 4.5. For every m 2k + 1, where k > 2, there exists a string tom (-- a:ba:)
of length m such that any algorithm thatfinds all the occurrences of Wm in a text of length n

2must make at least (1 + --45)n 0 (1) comparisons in the worst case.
We know (see the last paragraph of 2) that if z and z2 are the first and second periods of

Iwl+3w then z + z2 >_ Iwl / 2. As z2 >_ za + 1, we get that z2 > I--T-]" Corollary 4.5 is therefore
the strongest result of its kind implied by Theorem 4.2.

5. On-line lower bounds I. In this short section we show that the lower bound, c(w) >

I+E,1 obtained for off-line algorithms only when 2z2 Zl _< Iwl, holds for on-line algorithms
even if this condition does not hold.

THEOREM 5.1. Ifw is a string and z2 is its second period then co(w) > -Proof. Suppose that an on-line algorithm has just found an occurrence of w n the text.
The window will now be slid by at most z positions to the right. Place two copies of w shifted
by z and z2 positions below w, as shown in Fig. 3. Denote these copies by w and w". Since

z2 Zl is not a period of w, the two copies w’ and w" must disagree in at least one position after
the end of the found occurrence of w. The adversary will extend the found occurrence of w
by either w’ or w" in a way that will force the algorithm to get at least one "no" answer. If the
algorithm makes a query whose answer is identical under both continuations, the adversary
gives the algorithm this common answer. At some stage the algorithm has to make a query
that distinguishes between the two incompatible continuations. No matter what this query is,
the adversary answers it by "no". The adversary now chooses the continuation consistent with
this "no" and answers all further questions accordingly, until the algorithm finds the chosen
occurrence. By then the algorithm has either made at least Zl + queries and can slide the
window by only Zl positions, or has made at least z2 + queries and can slide the window by
only z2 positions. Note that to verify an occurrence of the pattern in the text, the algorithm
must get at least one "yes" answer for each character of this occurrence. This process will be

).n O (1) queries onrepeated again and again, forcing the algorithm to make at least (1 + zS
a text of length n. 1

FIG. 3. The configuration used to prove that co(w) > + l.
Z2

In the next section we obtain, using more complicated arguments, better lower bounds
for on-line algorithms (see Corollaries 6.3 and 6.5).

6. On-line lower bounds II. In (the proof of) Theorem 5.1 it was shown that for every
nonperiodic pattern the adversary can force any algorithm to make at least one mistake (i.e.,
get at least one "no" answer) for each occurrence of the pattern used in the tiling of the text.
Now we show that for certain patterns the adversary can force any algorithm to make at least
two mistakes for each such occurrence. The algorithm of Cole and Hariharan [CH92] makes
at most two mistakes for each such occurrence, so no adversary can force all algorithms to
make at least three mistakes for each occurrence of the tiling.

THEOREM 6.1. Let to be a string of length m and let z < z2 < < z be periods of w
such thatfor every < < .j < k, zj Zi is not a period of w.

(i) lfnoneofthemultisets {w[m + zj] < j < k}.fi)r < < z contains a
"*(w) > -character exactly k times, then co z"
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(ii) If in addition, none of the multisets {(w[m + il zj], w[m 6- i2 zj]) 1 < j < k}
2for < il < i2 <_ Zl contains exactly k equal pairs, then co(w) > 6- zT"

Before proceeding with the proofofthis theorem, we try to clarify the conditions appearing
in it. Consider k 6- copies of w, positioned in an array of k 6- rows numbered 0, k,
and rn 6- z, columns numbered rn 6- zk, where the copy in the th row is shifted zi
positions to the right with respect to the copy in the 0th row. Such arrays are depicted in
Fig. 4(a) for the string Wl0 1213451121 with Zl 7, Z2 9, and Z3 10, and in Fig.
4(b) for the string wl2 121342531121 with Zl 9, z2 11, and z3 12. A multiset
{w[m + zj] < j < k} contains the k characters appearing in column rn + of rows

k in the array corresponding to w. The requirement in clause (i) above is that in each
column that lies after the end of the copy of the 0th row, but at or before the end of all the other
copies, no character appears in all but one of the rows. It is easy to check that in both cases
depicted in Fig. 4 this condition is satisfied. Note that when k 3 this condition requires that
the three characters in such a column will either all be equal or all be distinct.

1213451121

1213451121

1213451121

1213451121

(a) The set up (Wl0; 7, 9, 10)

121342531121

121342531121

121342531121

121342531121

(b) The set up (tO12; 9, 11, 12)

FIG. 4. Two simple setups in which Theorem 6.1 can be applied.

To check the condition of clause (ii) above, one needs to look at pairs of such columns
and compare the pair of characters appearing in each row. The number j of equal pairs is
required to satisfy j - k 1. It is easily verified that this condition is satisfied in the array
of wl0 1213451121 but not in the array of w2 121342533_3_21. Thus for w0 we

6 , 7obtain co(wlo) >_ -, while for w2 we can only infer co (w2) >_ g.
Proof The proof (of both statements) is a simple extension of the proof of Theorem 5.1.

Suppose that an on-line algorithm hasjust found an occurrence ofw in the text. The window can
be slid at most z positions to the right. Below w, place k copies of w shifted by z, z2 z,
positions, respectively. (The reader may refer to Fig. 3 imagining that k instead of just two
copies appear there.) Since none of zj zi is a period of w, each pair of copies must disagree
in at least one position after the end of the found occurrence of w. The adversary will extend
the found occurrence of w by one of the k copies in a way that will force the algorithm to get
at least two "no" answers. If the algorithm asks a question whose answer under the above k
continuations is the same, the adversary gives the algorithm this common answer. At some
stage the algorithm has to make a query to which the answer is "yes" according to some of the
continuations, and "no" according to the rest of them. The adversary will answer this query
with a "no". Conditions (i) and (ii) imply that at least two continuations are consistent with
this "no" answer. The adversary now gives the common answers to all queries that do not
distinguish between the remaining continuations. At some stage the algorithm has to make
another query to which both answers are possible. Again, the adversary answers this with
a "no". At least one continuation is consistent with all the replies given by the adversary.
The adversary chooses one of them and answers all subsequent queries accordingly, until the
algorithm finds the next occurrence of w. By then the algorithm has made at least zi 6- 2
queries, for some < < k, and it can slide the window by only Zi positions.
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We will henceforth say that (w; Zl, Z2 Zk) is a setup if w is a string, and zl < Z2 <
< Zk are periods of w, and none of zj zi, for j, is a period of w. The string wl0 is the

shortest string for which a setup satisfying the conditions ofTheorem 6.1 can be obtained. The
string w12 is the shortest string for which a setup that satisfies condition (i), but not condition
(ii), of Theorem 6.1 can be obtained. The two last statements were verified using a computer
search.

We next show how to obtain from each setup satisfying the conditions of Theorem 6.1 an
infinite sequence of such setups. This helps in the investigation of the asymptotic number of
comparisons required as the length of the pattern strings tends to infinity. The infinite sequence
is obtained by padding the basic setup.

Let u and v be strings, pad(u, v) denotes the string obtained by placing a copy of v
before and after each character of u. Thus pad(121, 0 0) 0 0 3_ 0 0 2 0 0 3_ 0 0 and in general
[pad(u, v)[ ([u[ + 1)(Iv[ + 1) 1.

THEOREM 6.2. If (w; Zl, Z) is a setup satisfying the conditions of Theorem 6.1 and
if we pad(w, 0e), then

co(we) > + 2(Iwl+l_______) .1
z, [weI+l

Proof If the setup (w; Z zk) satisfies the conditions of Theorem 6.1 then so does
the setup (we; ( + 1)Zl (g + 1)z,). To see this, note at first that (g + 1)Zi for < < k
is indeed a period of we pad(w, 0e) and that none of ( + 1)(zj zi) for - j is such
a period. To verify the first condition of Theorem 6.1, note that every column in the setup
(we; (g. + 1)zl (e + 1)z) is either a column of the setup (w; Zl z) or an all-zero
column. The second condition is verified in a similar way. The statement of the theorem then
follows from Theorem 6.1, applied to (we; ( + 1)Zl (g + 1)z,), and from the fact that

2 + 2(Iwl+l) [-]+ (e+l)zk z---F---" Iwel+-----"
Theorem 6.2 motivates the search for setups (w; zl zk) satisfying the conditions of

Theorem 6.1 for which 2(Iw[ + 1)/z is as high as possible. The best such setup that we have
found with k 3 is the following (w35; 25, 30, 32)"

12121121213412156781479121212112121

12121121213412156781479121212112121

12121121213412156781479121212112121

12121121213412156781479121212112121

9 As a corollary to Theorem 6.2 we obtain the nextFor this setup, 2(Iwl + 1)/z -4"
corollary.

COROLLARY 6.3. For every m 36k + 35, where k > O, there exists a string Wm of
length rn such that any on-line algorithm that finds all the occurrences of Wm in a text of

9 )?l 0(1) comparisons in the worst case.length n must make at least (1 + 4(m+l)
Using a computer enumeration we have verified that no better setup with k 3 is possible

with a pattern of length at most 250. However, better setups that satisfy the first condition of
Theorem 6.1 can be obtained by using four instead of three overlaps.

Let

The following lemma is easily verified.
LEMMA 6.4. The setups (ug; 8k + 12, 12k + 17, 14k + 18, 14k + 20) for k > satisfy

the first condition of Theorem 6.1.
The setup (u; 20, 29, 32, 34) for example is
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12112133312112133312121121333121121
12112133312112133312121121333121121

12112133312112133312121121333121121

12112133312112133312121121333121121

12112133312112133312121121333121121

As lull 16k + 19, we get as a corollary the following.
COROLLARY 6.5. Foreverym 16k+ 19, where k > 1, there existsastring Wm(-- uk) of

length m such that any on-line algorithm that uses onlypattern-text comparisons tofind all the
16 )n O (1) comparisonsoccurrences OfWm in a text oflength n must make at least (1 + 7m+27

in the worst case.
Corollary 6.5 is asymptotically better than Corollary 6.3 and it is the best on-line bound

we have obtained. We have verified using a computer search that no better setup with four or
five overlaps can be obtained using strings of length at most 250.

We believe that if (w; zl zk) is a setup satisfying the conditions of Theorem 6.1 then
7Izl >_ wl. If this is true, then the result of Corollary 6.5 is essentially the best that can be

obtained using our methods.

7. On-line upper bounds. The next theorem exhibits an interesting family of strings for
which Theorem 5.1 is tight.

*(akbae) + max{k,e}+2"THEOREM 7.1. For every k, g. > we have c0(abae) co
Proof The lower bound is a corollary of Theorem 5.1. A matching upper bound is fairly

straightforward for the case k < e, but needs more care when k > . We will describe an
algorithm that works in both cases.

Algorithm for abae. The algorithm is described as a sequence of steps, in each of which
a text character is compared to the aligned pattern character. In the case of a mismatch or if an
occurrence of the pattern has been verified, the window is shifted along to the next position at
which a pattern occurrence is possible. We represent the state of the algorithm before each step
by an information string uxv, where u {0, a}k, v {0, a}e, and x {0, A, b}, describing
(part of) the current knowledge the algorithm has about the text characters in the window. A
"0" in the information string indicates that no information is available on the corresponding
position. An "a" (or a "b") indicates that the character in that position is known to be an a (or
a b). An "A" (or a "B") indicates that the character in the corresponding position is known not
to be an a (or a b). The state can be written in the specified form because, after any necessary
window shift, the information string must be consistent with the pattern. Our algorithm makes
only "a?" and "b?" queries, and we choose to forget any negative information represented
by "B". We shall call the (k + 1)-st position in the window the b-position and all the others
a-positions. An a-position is always queried for an a. A b-position is always queried for a b.

In terms of the information strings, the algorithm is simply described.
IF there is some 0 in the information string

THEN query the rightmost 0
ELSE {x =A] query the b-position

This procedure is repeated until the text string is exhausted. To prove the upper bound
we first establish the following pair of invariants.

Invariants. (i) If x b then v ae.
(ii) If x 0 then u does not contain the subword ae+l.
Invariant (i) holds because x can only become b after an information string of the form

uOae, and following any shift we again have x b.
For Invariant (ii), while x 0 no tests in u are made, and the only a’s shifted into u

come from v. These are separated from the previous contents of u by the "x" of the previous
information string.
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Nearly all comparisons can be associated with text positions in the following way. Any
query made at an a-position is associated with the corresponding text position. When x 0
and the b-position is queried, a b result is associated with that text position. If the result is
B then care is needed since, if e < k, this result will be represented as a 0 in u. However, in
this case a shift of size e + will be made and, by Invariant (ii), at least one 0 will be shifted
out from the information string. The query is associated with the text character corresponding
to any one such 0. The remaining case is when x A and the b-position is queried. Such
a query is not associated with any text position. We note that after such a query a shift of

+ max{k, e} is always made, and that the resulting information string will have x 0. Since
a window shift is made in any step which changes x 0 to x A, clearly a cumulative shift
of at least 2 + max{k, } positions must occur between any two such "extra" queries. The
upper bound follows. [3

As a corollary we get that Theorem 5.1 is also tight for all members of the a’ba family
to which it can be applied.

*(a:bae) + max{k,e}+2
COROLLARY 7.2. For k, e > 2 we have c(a’bae) co

8. Look-ahead is useful. In this section we present a string matching algorithm, specif-
ically tailored for the string abaa. The algorithm uses a window of size eight and its per-
formance matches the general lower bound obtained for abaa using Theorem 4.1. Thus,

c(abaa) c4(abaa) < c0(abaa) and abaa is therefore a string for which
look-ahead is useful.

The abaa algorithm presented here sheds some light on the intricacy of optimal string
matching algorithms. The description of it is quite complicated. Optimal algorithms for longer
strings may have even more complicated descriptions.

Algorithm for the string abaa. The algorithm requires a window of size 8. A state of
the algorithm is given as an information string cr 6 U={0, a, A, b, B}’, where cr represents
information known about the text symbols in (a prefix of) the window. To describe the
algorithm, we specify for each state the next query to be made, the amount of shift, and the
next state corresponding to the two possible answers. We represent a? queries and b? queries
by a single or double underline, respectively, under the appropriate symbol of the information
string. For example, in state P in Table 1, an a? query is made at the fourth position in the
window.

TABLE
The main transition table ofthe abaa algorithm.

state inf. & query

P aO00
Q
R aOOaO00
S aOOaOOaO
T aAO0
U 0

transitions
match mismatch

state shiftstate shift

R 0
T 0
S 0

P@H 7
P ff D 3
P 0

Q 2
u 2
QF 5
T@G 6
Q 2
U

For certain information strings, the task of finding all pattern occurrences decomposes
into two logically disjoint tasks, checking occurrences in some finite prefix and checking in
the remainder. Such a state is represented in the tables by a pair of states with the connective. For example, in state R of Table 1, if the seventh symbol is found not to be an a then it
is sufficient to check separately for occurrences within the first five positions (state F) and in
the text string beginning at the sixth position (state Q).
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Table 2 shows, for each finite subproblem which arises in this way, the next query to
be made and the number of queries required in the worst case to resolve that subproblem.
The latter is computed recursively by following the transitions in Table 2. A "/" in Table 2
indicates that a full occurrence of the pattern has been found and the treatment of the current
subproblem is finished. A "--" indicates that the treatment of the current subproblem has
ended without finding such an occurrence.

TABLE 2
The secondary transition table of the abaa algorithm.

state inf. & query
A aOaa

B abOa
C aOaO
D aOOa
E aOOaa
F aOOaO
G aOOaOOa

H aOOaOOaa

new state
match mismatch

A
A
A D
C D

D(g B F
E (g A D (g D

worst-case cost

In Table 1, the main part of the algorithm is presented. The graph showing the transitions
between states of Table is given in Fig. 5. The corresponding number of comparisons to
make the transition and finish any consequent subproblem and the resulting shift are shown
on each arrow. It can be verified that the worst case corresponds to iterating the cycle PR S,
and this proves that ca(abaa) < 7"

1,0

1,1

1,0

FIG. 5. The transition diagram ofthe abaa algorithm.

9. Concluding remarks. What is the hardest string to find? The perhaps disappointing
* (aba) 4 , 4answer is aba (or mum and dad and so on). We know that co 5 and that co (w) < 5
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for any string to [GG92]. We believe that Co(to) < 4
3 whenever wl 4 but this is not

established yet (except for Iwl >_ 8 [CH92]). This would imply that aba and its like are
strictly the hardest strings to find. It is interesting to note that while we have shown here that

*(aba) co(aba) 4 the exact value of c(aba) is not known yet. We onlyc* (aba) co 3’
6 4know that < c(aba) < 3"

The task of computing the exact value ofc (to) or any of the other three variants, for every
* (to) co (to) can in principlegiven pattern to, seems at present to be very hard. The constants co

be computed algorithmically since an on-line algorithm can have only a finite number of states
representing the current information and only a finite number of possible next queries. Among
optimal on-line algorithms for each to, there are some in which the next query depends only
on the information state, and there is only a finite though huge number of different algorithms
of this kind for every w. The task of finding c(w) and c* (to) may be even harder. We do not
know at present whether c(w) and c*(w) are always rational, although it would be very odd
if they were not.

A small gap still remains between our lower bounds and the upper bounds of Cole and
Hariharan [CH92]. While closing this gap will have no practical value, we think that it may
reveal many interesting properties of strings and string matching algorithms.

Acknowledgment. The authors thank an anonymous referee for suggestions which im-
proved the paper.

Note added in proof. Shlomit Tassa and the last two authors have recently shown that
c(aba) < , thus proving that text-text comparisons can help.
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PLANAR STRONG CONNECTIVITY HELPS
IN PARALLEL DEPTH-FIRST SEARCH*

MING-YANG KAO

Abstract. This paper proves that for a strongly connected planar directed graph of size n, a depth-first search
tree rooted at a specified vertex can be computed in O (log n) time with n log n processors. Previously, for planar
directed graphs that may not be strongly connected, the best depth-first search algorithm runs in O (logl n) time with
n processors. Both algorithms run on a parallel random access machine that allows concurrent reads and concurrent
writes in its shared memory, and in case of a write conflict, permits an arbitrary processor to succeed.

Key words, linear-processor NC algorithms, graph separators, depth-first search, planar directed graphs, strong
connectivity, bubble graphs, s-t graphs
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1. Introduction. Depth-first search is one of the most useful tools in graph theory [4],
[34]. The depth-first search problem is the following: Given a graph and a distinguished
vertex, construct a tree that corresponds to performing depth-first search in the graph starting
from the given vertex.

The parallelization of depth-first search has been studied by numerous authors. Reif
showed that lexicographic depth-first search is P-complete even for general undirected graphs
[30]. For unordered depth-first search, Smith gave the first NC algorithm for planar undirected
graphs [32]. The processor complexity of his algorithm was reduced to linear by He and Yesha
[15]. Independently, Ja’Ja and Kosaraju [16] and Shannon [31] also achieved the same result.
Aggarwal and Anderson gave a randomized NC algorithm for general undirected graphs [2].
The author studied the problem for directed graphs, and found an NC algorithm with n4

processors for a planar directed graph of size n [17]. This was followed by the randomized
NC algorithm of Aggarwal, Anderson, and Kao for general directed graphs [3].

Recently, Kao and Klein gave an algorithm that computes depth-first search trees in
O (log1 n) time with n processors for planar directed graphs that may not be strongly connected
[19].

This paper shows that for a strongly connected planar directed graph of size n, a depth-
first search tree rooted a specified vertex can be computed in O (log n) time with n/log n
processors. This algorithm runs on a parallel random access machine that allows concurrent
reads and concurrent writes in its shared memory, and in case of a write conflict, permits an
arbitrary processor to succeed.

Both the algorithm of this paper and that of the author and Klein use directed graph sepa-
rators defined by the author [17], and follow the framework of the randomized NC algorithm
for general directed graphs [3]. The algorithm in this paper achieves a superior complexity by
exploiting topological properties of strongly connected planar directed graphs. The strongly
connected components of key subgraphs created in the course of the algorithm have very
regular structures. A major task of the algorithm is to recursively maintain and utilize these
structures.

This paper is organized as follows. Section 2 reviews basic definitions and relevant facts
about planar directed graphs. Section 3 reports new results on computing strongly connected

*Received by the editors March 4, 1992; accepted for publication (in revised form) September 17, 1993. A
preliminary version of this paper appeared in the Proceedings of the 1992 International Computer Symposium,
Taichung, Taiwain, Republic of China, December 13-15, 1992, pp. 309-316.
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This research is supported in part by National Science Foundation Grants CCR-8909323 and CCR-9101385.
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components. Section 4 discusses directed graph separators; a more detailed discussion about
separators is given in the Appendix. Section 5 details this paper’s depth-first search algorithm
for strongly connected planar directed graphs.

2. Basics of planar directed graphs. A planar directed graph is one that can be embed-
ded on a plane such that the edges intersect only at common end vertices or start vertices [6],
[7], 14], [35]. A plane digraph is a planar directed graph with a given planar embedding.

For subtle technical reasons, a planar graph in this paper may have multiple edges but
does not have loop edges.

2.1. Strong graphs. For brevity, a strongly connected component of a directed graph is
simply called a strong component. Similarly, a strongly connected plane digraph with at least
one vertex is simply called a strong graph.

The goal of this paper is to efficiently compute a depth-first search spanning tree of a

strong graph rooted at a specified vertex.

2.2. Faces, boundaries, and orientations. Let G be a connected plane digraph. If the
vertices and edges of G are deleted from its embedding plane, then the plane is divided into
disconnected regions. Exactly one of the regions is infinite; all others are finite. Each region
is called aface of G. The infinite region is the external face; the finite regions are the internal
faces.

Let f be a face of G. The boundary of f, denoted by/3(f), is the set of edges and
vertices surrounding f. If G contains at least two vertices, by its connectivity,/(f) can be
arranged into a unique undirected cycle by having an observer stay inside f and walk around
/3(f) once. This cycle is called the boundary cycle of f. It may not be edge-simple.

Let e be a boundary edge of f. The orientation of e with respect to f is defined as follows"
Case (1): f is the external face. The edge e is positive (respectively, negative) with
respect to f if it points in the counterclockwise (respectively, clockwise) direction
on the boundary cycle of f.
Case (2): f is an internal face. The edge e is positive (respectively, negative) with

respect to f if it points in the clockwise (respectively, counterclockwise) direction
on the boundary cycle of f.

2.3. Holes, boundaries, and orientations. Let G be a connected plane digraph. Let H
be a connected subgraph of G. If the vertices and edges of H are removed from the embedding
plane of G, then the plane is divided into disconnected regions. Exactly one of the regions is
infinite; the others are all finite. Each region is called a hole of H. The infinite region is the
external hole; the finite regions are the internal holes.

Let X be a hole of H. The boundary of X, denoted by/(X), is the set of vertices
and edges surrounding X. If H contains at least two vertices, by its connectivity,/3(X) can

be arranged into a unique undirected cycle by having an observer stay inside X and walk
around/3(X) exactly once. This cycle is called the boundary cycle of X. It may not be
edge-simple.

Let e be a boundary edge of X. The orientation of e with respect to X is defined as

follows:
Case (1): X is the external hole of H. The edge e is positive (respectively, nega-
tive) with respect to X if it points in the counterclockwise (respectively, clockwise)
direction on the boundary cycle of X.
Case (2): X is an internal hole of H. The edge e is positive (respectively, nega-
tive) with respect to X if it points in the clockwise (respectively, counterclockwise)
direction on the boundary cycle of X.
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2.4. Combinatorial embeddings and data structures. Let G be a connected planar
directed graph. Algorithmically, a planar embedding of G is encoded by the boundary of
its external face and the clockwise cyclic order of the edges incident with each vertex. Such an
encoding is called a combinatorial planar embedding of G. Topologically, a planar embedding
is uniquely specified by its corresponding combinatorial embedding.

The cyclic edge incidence in a combinatorial embedding is further encoded by the fol-
lowing data structure: For each vertex, there is a doubly linked circular list consisting of the
edges incident with that vertex in the clockwise order. These lists can be used to efficiently
trace the boundary cycles of the faces of G. They can also be used to trace the boundary cycles
of the holes of a connected subgraph.

Given a connected planar directed graph of size n, a combinatorial planar embedding can
be computed in O (log n) time with n log log n/ log n processors on a deterministic Arbitrary-
CRCW PRAM [29].

2.5. Planar embeddings induced by vertex contraction. In this paper, vertex contrac-
tion contracts only connected vertex subsets of a connected plane digraph. This ensures that
planarity is preserved.

For technical reasons, all multiple edges created by vertex contraction are kept while all

loop edges are deleted.
Let G be a connected plane digraph. Let H be the subgraph induced by a connected

vertex subset of G. Let G’ be the graph constructed from G by contracting H into a vertex

H’. If H consists of at most one vertex, then G’ and G are the same. Otherwise a planar
embedding for G’ is specified as follows:

For every vertex u ’ H, the clockwise cyclic order of the edges incident with u is
the same in G and G’.
The edges around each nonempty hole X of H stay together around H’, and their
clockwise cyclic order around H is the same as their cyclic order around the boundary
cycle of X in the negative direction of X.
All uncontracted edges on the boundary of the external face of G remain on that of
G’, and have the same orientations with respect to both external faces.
If H contains a boundary vertex of the external face of G, then H’ is on the boundary
of the external face of G’.

In general such a planar embedding is not unique. Any planar embedding that fits this con-
struction is suitable for the purposes of this paper.

LEMMA 2.1. Given a connected plane digraph ofsize n, a planar embedding induced by
contracting a disjointfamily of connected vertex subsets can be computed in 0 (log n) time

with n/log n processors.
Remark. If vertex contraction is required to delete all multiple edges that it creates, then

computing an induced embedding may take more than linear space to achieve O (log n) time
on n/log n processors.

Proof The edges around a new vertex of G’ are collected by processing the doubly
linked circular lists of the combinatorial embedding of G. The computation takes O(log n)
time and n/log n processors, using optimal parallel algorithms for list ranking [5], [9], [13],
prefix computation [23], [24], tree contraction [1], [8], [11], [10], [22], [27], [28], and planar
connectivity 12]. [3

3. New results for computing strong components. This section first reviews previous
results on computing strong components and directed spanning trees, and then reports new
results on how to compute the strong components of a graph that is obtained by deleting or

contracting a subgraph.
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3.1. Directed spanning trees.
THEOREM 3.1 [20]. For a strong graph of size n, a directed spanning tree rooted at a

specified vertex can be computed in 0 (log2 n) time with n/log n processors on a deterministic
Arbitrary-CRCW PRAM.

3.2. Compactness and strong components. Let H1 and He be nonempty connected
subgraphs of a connected plane digraph. H encloses Hs if Hs is in an internal hole of H1.

A compact strong component of a connected plane digraph is one that encloses no strong
component. For a plane digraph that may not be connected, a strong component is compact if
it is compact in the connected component that contains it.

THEOREM 3.2 [1 8]. For a plane digraph of size n with ot noncompact strong compo-
nents, the strong components can be computed in O([logs(ct + 2)]. logs n) time with n log n
processors on a deterministic Arbitrary-CRCW PRAM.

3.3. Deleting a vertex subset from a strong graph. Let G be a directed graph. Let H
be a subgraph or vertex subset of G. Let G H denote the graph obtained by removing from
G the vertices in H and their incident edges.

THEOREM 3.3. Assume that G is a strong graph of size n and H is a subgraph with ,
connected components. Given G H, the strong components ofG H can be computed in
O l-log2 (y + 2)]. log2 n) time with n/ log n processors.

Proof The noncompact strong components of G H can be counted using the three
facts below. Let W be a noncompact strong component of G H.

By G’s planarity and strong connectivity, at least one connected component of H is
enclosed by W in G.
By G’s planarity, if some connected component of H is enclosed in G by both W
and a distinct strong component W’ of G H, then one of W and W’ encloses the
other in G.
By G’s strong connectivity and planarity, some connected component H’ of H is
enclosed by W in G but not by any strong component of G H that is itself enclosed
by Win G.

The mapping from W to H’ is a one-to-one mapping from the noncompact strong components
of G H to the connected components of H. Thus, G H has at most ?, noncompact strong
components, and this theorem follows from Theorem 3.2. [3

3.4. Deleting an edge subset from a strong graph. Let G be a strong graph. Let U be
a vertex subset of G. Let D be a subset of the edges in G incident with U. Let G’ be the graph
obtained by deleting from G the edges in D.

Let W be a connected subgraph of G. A vertex of G is absorbed by W in G if it either is
a vertex in W or is enclosed by W in G.

THEOREM 3.4. Let n be the size of G. Let 09 be the number of vertices in U. Given
G’, the strong components of G’ can be computed in 0 [logs (2o9 + 2)]. logs n) with n/ log n
processors.

Proof. The noncompact strong components of G’ can be counted using the three facts
below. Let W be a noncompact strong component of G’.

By G’s planarity and strong connectivity, some vertex in U is absorbed by W in G.
By G’s planarity, if some vertex in U is absorbed by both W and another strong
component W’ of G’, then one of W and W’ encloses the other in G.
By G’s strong connectivity and planarity, some u U is absorbed by W in G but not
by any strong component of G’ that is itself enclosed by W in G, possibly except a

unique component W" that contains u as a boundary vertex of its external face.
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The mapping from W to u maps at most two noncompact strong components, namely W and
W", of G’ to u. Thus, G’ has at most 2co noncompact strong components, and this theorem
follows from Theorem 3.2. [3

3.5. Contracting connected vertex subsets in an acyclic graph. Let G be an acyclic
connected plane digraph. Let H be a subgraph of G. Let G’ be the graph obtained from G by
contracting each connected component of H into a vertex.

THEOREM 3.5. Assume that G is ofsize n and H has y connected components. Given Gt,
the strong components of G’ can be computed in O([-log2(, + 2)]. log2 n) time with n/ logn
processors.

Proof Since a noncompact strong component has at least two vertices, by the acyclicity
of G each noncompact strong component of G’ contains at least one contracted connected
component of H. Because two distinct strong components of G cannot contain the same
contracted connected component of H, G’ has at most ?, noncompact strong components.
This theorem then follows from Theorem 3.2. [3

4. Directed graph separators. Intuitively, a separator of a graph is a subgraph whose
removal disconnects the graph into small pieces [25], [26].

4.1. Cycle separators and k-path separators. Most of the works on parallel depth-first
search rely on finding some form of graph separator. The algorithms for planar undirected
graphs employ undirected cycle separators [15], [16], [32]. The algorithm for general undi-
rected graphs uses path separators [2].

The notion of a directed graph separator was originally introduced for depth-first search
in planar directed graphs [17]. It was then used for general directed graphs [3]. Here it is
tailored for a strongly connected directed graph G:

A vertex subset or subgraph is heavy (respectively, light) for G if it has more than
(respectively, at most) two thirds of the vertices in G.
A separator of G is a set S of vertices such that no strong component in G S is
heavy for G.
A cycle separator is a vertex-simple directed cycle whose vertices form a separator.
A single vertex is considered a cycle of length zero. Thus, if the removal of a vertex
separates a graph, the vertex is a cycle separator.
For a positive integer k, a k-path separator is a set of k vertex-disjoint vertex-simple
directed paths whose vertices form a separator. A 1-path separator is simply called
a path separator.

The author showed that every directed graph has a directed path separator and a directed
cycle separator [17]. These results are included in the Appendix. For a graph of size n, the
proofs of these results yield a sequential algorithm that computes a path separator in optimal
O(n) time, and an algorithm that computes a cycle separator in O(n log n) time.

Aggarwal, Anderson, and Kao improved to O(n) the sequential time for computing a
directed cycle separator [3]. They also showed that computing cycle separators and computing
depth-first search trees are NC-equivalent.

4.2. Computing cycle separators for strong graphs.
LEMMA 4.1. Given a strong graph of size n, a two-path separator can be computed in

O (log2 n) time with n/ log n processors.
Proof Let T be a directed spanning tree of the given graph. By the work of Lipton and

Tarjan [25], there exist two vertices x and y such that the two tree paths of T from the root to
x and from the root to y form a separator. A two-path separator is easily obtained from these
tree paths. By Theorem 3.1, T can be computed in O (log n) time with n/log n processors.
Thenx and y can be found in O(logn) time withn/logn processors [21]. [3
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LEMMA 4.2. Given a strong graph ofsize n, apath separatorcan be computed in 0 (log3 n)
time with n / log n processors.

Proof. Let G be the given graph. First, use Lemma 4.1 to obtain a two-path separator
for G, and then use the procedure MergeTwoPaths in Fig. to compute a path separator. To
combine P and Q, MergeTwoPaths first deletes the maximum subpath from the up-end of P
while maintaining the separator property of P and Q. It then similarly processes Q so that
the joining path R exists. The proof for the correctness of MergeTwoPaths is similar to that
of Theorem A.2 in A.3.

Procedure MergeTwoPaths
Input: a strong graph G, and a two-path separator P u Up and Q
1)1, l)q.
Output: a path separator S of G.
begin

1. Let s be the largest index such that some strong component Zs of G
({u u U Q) is heavy for G.
(Remark. Us Zs.)

2. if s does not exist then return S Q.
3. Let P’ be the path u Us.

(Remark. P’ and Q form a two-path separator.)
4. Let be the smallest index such that some strong component Zt of G (P’ U

l)t+ l)q }) is heavy for G.
(Remark. vt Zt.)

5. if does not exist then return S P’.
6. Let Qt be the path vt Vq.

(Remark. P’ and Q’ form a two-path separator.)
7. Compute a directed path R in Zs t2 Zt from Us to vt.

(Remark. Zs Zt is strongly connected.)
8. Let S be the directed path formed by P’, R, Q’.

(Remark. S is vertex-simple.)
9. return S.

end.

FIG. 1. A procedure for merging a two-path separator into a path separator.

As for the complexity, it suffices to show that MergeTwoPaths runs in O(log3 n) time
with n/log n processors. Zs, Zt, s, and are computed by binary search and Theorem 3.3
in O (log n) time with n/log n processors. R is obtained by computing a divergent directed
spanning tree rooted at Us in the subgraph induced by Zs Zt. This uses Theorem 3.1 and
takes O (log2 n) time with n/log n processors. Thus, the complexity of MergeTwoPaths is as
stated. [q

THEOREM 4.3. Given a strong graph of size n, a cycle separator can be computed in
O(log n) time with n/ log n processors.

Proof The proof is similar to those of Lemma 4.2 and Theorem A.2. [3

5. Parallel depth-first search. Section 5.1 gives an overview of this paper’s algorithm
for performing depth-first search in a strong graph. Sections 5.2-5.6 discuss key techniques
used in the algorithm. Section 5.8 details the algorithm.
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5.1. An overview. Let G be a strong graph. Let r be a vertex in G. The goal is to
construct a depth-first search spanning tree rooted at r for G. Such a tree will be recursively
constructed using cycle separators.

First, compute a cycle separator of G. Then compute a path separator starting from r by
finding a directed path from r to the cycle separator. This path and the cycle separator form
a path separator S after an appropriate edge on the cycle separator is removed. S will be a
branch of the final depth-first search tree.

Let G’ G S, i.e., the remaining graph that is not searched by S. Suppose that the
search is continued in G’ starting from a vertex r’ that is the end vertex of an edge pointing
from the last vertex of S. This time the search recurses on the subgraph Br, that consists of
all the vertices reachable from r’ via directed paths in G’. The graph Br’ is called a dangling
subgraph. (See 5.5.)

Because S is a separator of G, the strong components of G’ are all light for G. However,
Br, may contain several such strong components. Consequently, Br’ may still be too large
for small depth recursion. To avoid this problem, a set of directed paths is removed from G
such that the remaining directed graph has small dangling subgraphs. These removed paths
will form a subtree, called a partial depth-first search tree, in the final depth-first search tree.
(See 5.5.)

A dangling subgraph of a strong graph is a special kind of a graph called a bubble graph.
The structures of a bubble graph can be exploited to efficiently process the dangling subgraphs.
(See 5.2.)

A strong graph is in fact a special case of a bubble graph. The depth-first search algorithm
in this paper actually takes a bubble graph as input, and computes a depth-first search tree by
recursing on bubble subgraphs. (See 5.7.)

5.2. Bubble graphs. A strong component of a directed graph is a sink component if it
has no outgoing edges to any other strong component.

Let B be a plane digraph. B is called a bubble graph rooted at a vertex r if the following
conditions hold:

Every vertex in B can be reached from r via directed paths.
The vertex r is a boundary vertex of the external face of B, and every sink component
of B contains at least one boundary vertex of the external face.

For example, since a strong graph is the only strong component of itself, it is trivially a
bubble graph rooted at any boundary vertex of its external face.

From this point onwards, it is assumed that a bubble graph has a specified root. For
brevity, that root will not be explicitly mentioned unless there is a risk of ambiguity.

LEMMA 5.1. Let B be a bubble graph rooted at r. Let n be the size of B.
1. The strong components of B can be computed in O(log2 n) time with n/ logn pro-

cessors.
2. A directed spanning tree of B rooted at r can be computed in O(log2 n) time with

n/log n processors.

Proof Statement follows from Theorem 3.2 and the fact that a bubble graph has no
noncompact strong components. To prove Statement 2, let B’ be the strong graph obtained
from B by adding a directed edge from each sink component of B to r via the external face
of B. Note that a directed spanning tree of B’ rooted at r is also one for B. The graph B’ and
a desired tree in B’ can be computed by means of Statement and Theorem 3.2, respectively,
both within the desired complexity. [3

5.3. Heavy bubble graphs and splitting components. For a directed graph G and a
vertex sabset (a vertex or a subgraph) H of G, let 7(H, G) denote the set of vertices that H



PLANAR STRONG CONNECTIVITY HELPS 53

can reach via directed paths in G. For all strong components W and W2 of G, W2 is called a
descendant component of W if W W2 and W can reach W2 via directed paths.

Let k be a positive integer. A bubble graph is called k-heavy (respectively, k-light) if it
has more than (respectively, at most) k vertices. A strong component W of a k-heavy bubble
graph B is a k-splitting component of B if 17(W, B)I > k and no descendant component of
W satisfies this inequality.

The depth-first search algorithm of this paper will find a cycle separator of a k-splitting
component of B, and then use the separator to break B into bubble subgraphs with smaller
k-splitting components.

5.4. Computing a splitting component via s-t graphs. An acyclic plane digraph is
called an s-t graph if it has a unique source and a unique sink, and they are on the boundary
of its external face.

THEOREM 5.2. Given a k-heavy bubble graph of size n, a k-splitting component can be
computed in O(log2 n) time with n/ log n processors.

Proof. Let B be a k-heavy bubble graph. A k-splitting component of B is computed by
converting B into an s-t graph as follows.

Let B be the graph obtained by adding a vertex in the external face of B and a
directed edge pointing to from each sink component of B.
Let B2 be the graph obtained from B by contracting each strong component of B
into a vertex. The vertices in B2 are assigned weights. The weight of is 0. For each
vertex w that is contracted from a strong component W of B, the weight of w is the
number of vertices in W.

Note that B2 is an s-t graph. Its sink is t, and its source is contracted frona the strong component
of B that contains B’s specified root.

By Lemmas 5.1 (1) and 2.1, B2 can be computed in O (log2 n) time with n / log n proces-
sors. Next, the cardinality of 7(W, B) for each strong component W of B is computed in

O(log2 n) time on n/log n processors by applying to B2 a slight generalization of the descen-
dant counting algorithm of Tamassia and Vitter for s-t graphs [33]. With the cardinality of
7(W, B) computed, a k-splitting component of B is identified in a straightforward manner in
O (log n) time with n/ log n processors.

5.5. Partial depth-first search trees and dangling subgraphs. Let B be a bubble graph.
A partial depth-first search tree of B is a subtree of a depth-first search tree of B such that
both trees are rooted at the specified root of B.

Let T be a partial depth-first search tree of B. Let x, x2 xt be the vertices of T listed
in the postorder traversal sequence of depth-first search, i.e., in this sequence xi is marked
right after all its descendants in T are marked.

For each xi, let Yi,1 Yi,ki be the vertices that are not in T but are the end vertices of
the edges pointing from xi. The order of Yi,1 Yi,ki is arbitrary. This is the postorder that
will be used to search B T starting from xi. A y vertex may have several different indices
if it is adjacent from several x vertices.

The dangling subgraph of B, denoted by D(i, j), with respect to (i, j) and T is the
subgraph induced by the vertices in B T that can be reached from Yi,j but not from any y
vertex before Yi,j in the intended postorder traversal sequence of the y vertices, i.e., 79(i, j)

T(Yi,j, B T) 1,3{7-(yi,,j,, B T)li’ < v (i’ m j’ < j)}.
For each nonempty 79(i, j), the directed edge from xi to Yi,j is called the dangling edge

associated with D(i, j).
The next two lemmas provide a natural way of extending T into a complete depth-first

search tree by recursing on the nonempty dangling subgraphs in parallel.
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LEMMA 5.3. Let r be the specified root of B. Let H be a connected subgraph of B that
contains r. Let u be a vertex that is not in H but is adjacent to orfrom H. Then the subgraph
ofB induced by (u, B H) is a bubble graph rooted at u.

Proof. Let Bu be the subgraph of B induced by R(u, B H). First, by the definition of
Bu, the vertex u can reach every vertex in Bu via directed paths in Bu. Next, because r is a
boundary vertex of the external face of B, by the connectivity of H and by the relationship of
r, H, and u, the vertex u is a boundary vertex of the external face of B,.

Let W be a sink component of Bu. The following discussion shows that W contains a
boundary vertex of the external face of B,,. Because B is a bubble graph, B contains a directed
path Q yl ys from W to a boundary vertex on the external face of B. There are two
cases based on whether Q intersects H or not.

Case (1): Q does not intersect H. Then Q lies in Bu. Because W is a sink component
of B,, the path Q lies in W. Therefore, W contains the last vertex of Q, which is a

boundary vertex on the external face of B,.
Case (2): Q intersects H. Let y be the first vertex of Q that is in H. Because r E H
is a boundary vertex on the external face of B, by the adjacency of H and ys-1, the
vertex ys-I is a boundary vertex of the external face of B,,. Furthermore, because W
is a sink component of Bu, the vertex Ys-1 is in W. [3

LEMMA 5.4. Let f2 be the set ofdangling subgraphs ofB with respect to T. Let L be the
set of the associated dangling edges. Then thefollowing statements are true:

1. Each nonempty D(i, j) is a bubble graph rooted at Yi,j. Hence Yi,j is chosen to be
the specified root of 79(i, j).

2. The dangling subgraphs are disjoint.
3. A depth-first search tree of B can be formed by T, L, and a depth-first search tree

for each dangling subgraph with at least two vertices.

Proof The first statement is obtained by recursively applying Lemma 5.3. The other two
statements are straightforward. [3

5.6. Computing dangling subgraphs with respect to a path. This section shows how
to compute the dangling subgraphs with respect to a partial depth-first search tree that is a

path. The computation is based on two bisection strategies using the subroutines in Figs. 2
and 3.

5.6.1. Analyzing the subroutine in Fig. 2.
LEMMA 5.5. Let Y be the set of the end vertices of the edges in B that pointfrom PI to

B- P. Then, R(Y, B- P) W- {w}.
Proof The proof has two directions.
(Y, B P) W {w}: Let y E 7(Y, B P). Then, B P2 contains a directed

path Q from P1 to y. Note that Q1 contains no edge from D. On the other hand, because A1
is strongly connected, there is a directed path Q2 from y to P such that Q2 and P intersect
at only one vertex. Because Q2 contains no outgoing edges from P, it has no edge from D.
Let Q be the directed path formed by Q1 and Q2. Because Q goes from P to P, it becomes
a directed cycle in A2 that contains w. Because Q contains no edge from D. it remains a
directed cycle in A. Therefore, y 6 W {w}.

7"(Y, B P) W {w}: Let z 6 W {w}. Then A contains a vertex-simple directed
path R1 from w to . Let R2 be a directed path in At that corresponds to R and intersects
P only at one vertex x. Note that x is the start vertex of R. Because A1 is constructed by
adding incoming edges to r and because the edges in D are removed from A, the vertex x is
in P1 and the edges of R2 are in B P2. Therefore, z 6 R(Y, B P). [3

LEMMA 5.6. Let B be a bubble graph of size n. Then the procedure in Fig. 2 correctly
computes an output as specified in 0 (log2 n) time with n/ log n processors.
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Procedure SubOneComputeDSG
Input: a bubble graph B rooted at r, and a vertex-simple directed path P
Xp x with Xp r and p > 2.
Output: two graphs B and B2 constructed from B, and two paths P2
Xp Xrp/21+ and P1 Xrp/2l x with following properties"

1. B and B2 are bubble graphs rooted at Xp/2q and Xp, respectively.
2. P and P2 are vertex-simple directed paths, respectively, in B and B2

starting from their specified roots.
3. The nonempty dangling subgraphs and the associated dangling edges of B

with respect to P are exactly those of B with respect to P1 and those of

B2 with respect to P2.
4. The total size of B and B2 is at most the size of B.

begin
1. Letq [p/2].
2. Let P be the subpath of P formed by Xq xl.

3. Let P2 be the subpath of P formed by Xp Xq+l.
4. Let D be the set of edges in B that point from P2 to B P.
5. if B is strongly connected

then let A B
else let A be the graph obtained from B by adding a directed edge from
each sink component to r via the external face of B.

6. Let A2 be the graph obtained from A by contracting P into a vertex w.
(Remark. The edges in D are now outgoing edges of w.)

7. Let A3 be the graph obtained from A2 by deleting the edges in D.
8. Let W be the strong component in A3 that contains w.
9. Let B be the subgraph of B induced by (W {w}) t_J P.

10. Let B2 be the graph obtained from B by contracting (W- {w})UP t2{Xq+
into Xq+.

11. return B, B2, P, and P2.
end.

FIG. 2. Thefirst subroutinefor computing dangling subgraphs.

Proof The second and the fourth output property of the procedure are straightforward.
The other two properties are shown below.

Property 1: By Lemma 5.5, B is the subgraph of B induced by 7(Xq, B P2).
Therefore, by Lemma 5.3, B1 is a bubble graph rooted at Xq. Then, because B2 is
obtained from a bubble graph by contracting a connected vertex subset, it is a bubble
graph rooted at Xp.
Property 3: By Lemma 5.5, the nonempty dangling subgraphs and the associated
dangling edges of B with respect to P are exactly those of B1 with respect to P and
those of B B1 with respect to P2. Because B B may or may not be a bubble
graph, B is contracted instead of deleted. The contraction of B1 into Xq+l may add
new edges in B2 from B (B U P2) to Xq+l. However, this contraction creates
no new edges in B2 from Xq+l to B (B t_J P2). Such edges would point from B1
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Procedure SubTwoComputeDSG
Input: a bubble graph B rooted at r with k _> 2 edges outgoing from r.
Output: two graphs B and B2 constructed from B with the following properties:

1. B and B2 are bubble graphs rooted at r.
2. The nonempty dangling subgraphs and the associated dangling edges of B

with respect to r are exactly those of B and B2 with respect to r, where r
is considered as a path of a single vertex.

3. The outdegrees of r in B and B2 are at most k/2] and lk/2J, respectively.
4. The total size of B and B2 is at most the size of B.

begin
1. Leth [k/2].
2. Let y Yk be the k end vertices of the outgoing edges of r in B.
3. Let D be the set of the edges from r to Yh+l yk in B.
4. if B is strongly connected

then let A B
else let A be the graph obtained from B by adding a directed edge from
each sink component to r via the external face of B.

5. Let A2 be the graph obtained from A by contracting {r, y Yh into a
vertex w.
(Remark. The edges in D are now outgoing edges of w.)

6. Let A3 be the graph obtained from A2 by deleting the edges in D.
7. Let W be the strong component in A3 that contains w.
8. Let B1 be the subgraph of B induced by (W-{w})U{r, y Yh without

the edges in D.
9. Let B2 be the graph obtained from B by contracting (W {w}) U

{r, y yh} into r.
10. return B1 and B2.

end.

FIG. 3. The second subroutinefor computing dangling subgraphs.

and thus their end vertices would have been included in B. Therefore, contracting
B into Xq+ does not change the nonempty dangling subgraphs and the associated
dangling edges of B B with respect to P2.

As for the complexity, Steps 1-4 can be done in O(logn) time with n/logn processors.
Step 5 can be done via Lemma 5.1(1) in O (log2 n) time with n/log n processors. Step 6
is done via Lemma 2.1 in O(log n) time with n/log n processors. Step 7 can be done in
O(log n) time with n/log n processors. Because A is a strong graph, A2 remains a strong
graph. Because the edges of D are adjacent to to in A2, by Theorem 3.4, W can be computed
in O (log2 n) time with n! log n processors. Step 9 can be done in O (log n) time with n / log n
processors. Step 10 can be done via Lemma 2.1 in O (log n) time with n/log n processors.
Thus, the total complexity of the procedure in Fig. 2 is as stated. U

5.6.2. Analyzing the subroutine in Fig. 3.
LEMMA 5.7. Let B be a bubble graph of size n. Then the procedure in Fig. 3 correctly

computes an output as specified in O(log2 n) time with n/ log n processors.
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Proof The proof is similar to those of Lemmas 5.6 and 5.3. A subtle point is as follows.

B may contain some of Yh+l,..., Yk. The dangling subgraphs of B with respect to such
vertices are empty. Therefore, the edges in D can be deleted from B without affecting its
nonempty dangling subgraphs. This deletion ensures that the outdegree of r in B is [k/2].

Remark. The procedure in Fig. 3 can be simplified by replacing Steps 5-9 with the
following steps. This simplification decreases the apparent symmetry between the procedures
in Figs. 2 and 3.

6’. Let A be the graph obtained from A1 by deleting the edges in D.
7’. Let W’ be the strong component in A’ that contains r.
8’. Let B1 be the subgraph of B induced by W’ without the edges in D.
9’. Let B2 be the graph obtained from B by contracting B into r. [3

5.6.3. Computing dangling subgraphso The next theorem uses the procedures in Figs.
2 and 3 to compute the nonempty dangling subgraphs with respect to a path.

THEOREM 5.8. Let B be a bubble graph of size n. Let P be a vertex-simple directed
path of B starting from its specified root. Then the nonempty dangling subgraphs and the
associated dangling edges of B with respect to P can be computed in O(log n) time with
n/log n processors.

Proof The computation is divided into two phases:
Phase iteratively applies SubOneComputeDSG to B and P to bisect P. In O (log n)
iterations, a collection of bubble subgraphs of B is obtained such that each subgraph
B’ contains only one vertex of P.
Phase 2 iteratively applies SubTwoComputeDSG to each B’ to bisect the outdegree
of its root. In O(log n) iterations, a collection of even smaller bubble subgraphs
of B is obtained. Each subgraph B" is rooted at a vertex y. BI’ either has exactly
one outgoing edge from y or consists of only y. If B" consists of only y, then its

corresponding dangling subgraph of B is empty. Otherwise, B" {y is a nonempty
dangling subgraph of B. Its associated dangling edge is the outgoing edge of y in B".

The correctness and complexity of this computation,follow directly from Lemmas 5.6
and 5.7. [3

5.7. Parallel depth-first search in bubble graphs. Figure 6 details this paper’s algo-
rithm for performing depth-first search in a bubble graph. Its subroutines are described in
Figs. 5 and 4.

LEMMA 5.9. Assume that B is a bubble graph ofsize n. The procedure in Fig. 4 correctly
computes an output as specified in 0 (log n) time with n/log n processors.

Proof Let S’ be the set of vertices in S A W. Assume that some dangling subgraph
B’ of B with respect to S is 2m/3-heavy. Because B has at most m vertices, B’ is the only
2m/3-heavy dangling subgraph of B. Note that W is the only 2m/3-splitting component of
B included in the subgraph (W, B). Thus, the 2m/3-splitting components of B’ must be
strong components of W S’. Then, because S’ is a separator of W, the output property of
the procedure holds.

As for the complexity of the procedure, Steps 1, 5, and 6 are obvious. Step 2 employs
Theorem 5.2. Step 3 uses Theorem 4.3. Step 4 is done by means of Lemma 5.1 (2). Steps 7
and 8 use Theorem 5.8. Thus, the total complexity is as stated. [3

LEMMA 5.10. Let B be a bubble graph of size n. The procedure in Fig. 5 correctly
computes an output as specified in 0 (log4 n) time with n/log n processors.

Proof At Step 2 in Fig. 5, by the output properties of SplitHeavyDSG, the 2m/3-splitting
components of the input bubble graph to each call of SplitHeavyDSG are all light subgraphs
of a 2m/3-splitting component of the input bubble graph to the previous call. Thus, the while

loop at Step 2 iterates O (log n) time, and this lemma follows directly from Lemma 5.9. [3
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Procedure SplitHeavyDSG
Input: a positive integer m, and a 2m/3-heavy bubble graph B that has at most m
vertices.
Output: a partial depth-first search tree S of B, the set A of all dangling subgraphs
of B with respect to S, and the set K of the associated dangling edges, where S
satisfies either property below:

1. No subgraph in A is 2m/3-heavy.
2. Some subgraph in A is 2m/3-heavy and its 2m/3-splitting components

are all light subgraphs of a single 2m/3-splitting component W of B.
begin

1. Let r be the specified root of B.
2. Let W be a 2m/3-splitting component of B.
3. Let C be a directed cycle separator of W.
4. Let P be a vertex-simple directed path in B from r to C such that P and C

intersect at only one vertex u.
5. Let e be the edge on C pointing to u.
6. Let S be the vertex-simple directed path formed by P and C without the

edge e.
7. Let A be the set of dangling subgraphs of B with respect to S.
8. Let K be the set of the associated dangling edges.
9. return the tuple (S, A, K).

end.

FIG. 4. A procedurefor splitting a heavy dangling subgraph.

THEOREM 5.11. Let B be a bubble graph ofsize n. Let r be the specified root of B. Then
a depth-first search tree of B rooted at r can be computed in O(log5 n) time with n log n
processors on a deterministic Arbitrary-CRCW PRAM.

Proof The computation is done by the procedure in Fig. 6. This theorem then follows
directly from Lemmas 5.4 and 5.10, and the fact that by the output property of ComputePar-
tialTree, the depth of recursion of ComputeDFSTree is O(log n).

5.8. Parallel depth-first search in strong graphs. The next theorem states the main
result of this paper.

THEOREM 5.12. Let G be a strong graph ofsize n. Let r be a vertex in G. Then a depth-
first search spanning tree of G rooted at r can be computed in 0 (log5 n) time with n/log n
processors on a deterministic Arbitrary-CRCW PRAM.

Proof The external face of G can be changed so that r is a boundary vertex on
that face. Then, by the strong connectivity of G, it is a bubble graph rooted at r. Therefore, this
theorem follows from Theorem 5.11 and the fact that the external face can be changed in
O(logn) time on n/logn processors using list ranking [5], [9], [13] and prefix computation
[231, [241.

Appendix. All graphs have cycle separators. The following discussion uses depth-first
search trees to compute graph separators [17].

A.1. Path and cycle separators of weighted graphs. A weighted graph is one with
nonnegative vertex weights. To avoid triviality, assume that at least one vertex has a positive
weight.
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Procedure ComputePartialTree
Input: a bubble graph B with rn vertices.
Output:

1. a partial depth-first search tree T of B such that all dangling subgraphs are
2m/3-1ight;

2. the set f2 of the dangling subgraphs of B with respect to T.
3. the set L of the associated dangling edges.

begin
1. (T, f2, L) +-- SplitHeavyDSG(m,B).
2. while some B’ is 2m/3-heavy do

begin
2-1. Delete B’ from
2-2. Delete the dangling edge of B’ from L.
2-3. Add the above edge to T to form a larger tree.
2-4. (S, A, K) SplitHeavyDSG(m,B’).
2-5. Add S to T to form a larger tree.
2-6. Add A to
2-7. Add K to L.

end.
3. return the tuple (T, f2, L).

end.

FIG. 5. A procedure for computing a partial depth-first search tree.

Procedure ComputeDFSTree
Input: a bubble graph B with at least two vertices.
Output: a depth-first search tree T of B.
begin

1. (T, f2, L) +-- ComputePartialTree(B).
2. Add L to T to form a larger tree.
3. for each B’ 6 f2 with at least two vertices do

begin
3-1. T’ +-- ComputeDFSTree(B’).
3-2. Add T’ to T to form a larger tree.

end.
4. return T.

end.

FIG. 6. A procedurefor computing a depth-first search tree.

Let G be a weighted directed graph. Let H be a subgraph or vertex subset of G. Let
G H be the subgraph obtained by removing the vertices in H and their incident edges.

Let W(H) be the total weight of H. The set H is called heavy for G if kV(H) > kV(G)/2.
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Remark. The threshold for heaviness here is different from that in 4.1, which is 2/3.
A separator S of G is a vertex subset such that no strong component of G S is heavy

for G. A cycle (respectively, path) separator is a vertex-simple directed cycle (respectively,
path) such that its vertices form a separator.

For tchnical uniformity, a vertex is considered a trivial cycle. Thus, if a vertex forms a
separator, it is a cycle separator. The empty set is considered both a trivial cycle and a trivial
path. Thus, if the empty set forms a separator, it is a cycle separator as well as a path separator.

A.2. Computing path separators from depth-first search trees. The next theorem can
be applied to a weighted undirected graph by substituting each undirected edge with a pair of
directed edges.

THEOREM A. 1. Every weighted directed graph has a path separator
Proof. Let G be a weighted directed graph. Without loss of generality, assume that G

is strongly connected. Otherwise, replace G with its maximum-weight strong component.
Every path separator of that component is also one for G.

A path separator P for G is constructed as follows. Let T be a depth-first search spanning
tree ofG rooted at an arbitrary vertex r. Let zl zn be the vertices of G in the corresponding
depth-first search postorder. Let p be the smallest index with W(zl)+...+W(Zp) > W(G)/2.
Then, W(z) +... + l/V(Zp_) < 1IV(G) and W(Zp+) +... + W(zn) < W(G)/2.

Let P be the tree path in T from r to Zp. Let GL Z Zp- }. Let GR G (GctA P).
Note that W(GL) < YV(G)/2 and W(GI) < 1IV(G)

P is shown to be a path separator as follows. Draw G on a plane in such a way that for all
postorder indices and j with > j, the vertex zi is either to the right of zj or is an ancestor
of zj in T [4].

The vertex Zp either is an ancestor of or is to the right of every vertex in G t because p
is greater than the postorder indices of all vertices in Go. Also, every vertex in Gg is to the
right of Zp because the postorder indices of vertices in G are all greater than p and because
P consists of Zp and all its ancestors. Therefore, every vertex in Gg is to the right of every
vertex in Go.

Because in depth-first search no edge points from left to right, every strong component
of G P is either entirely in Gc or entirely in Gg. Thus, the weight of a strong component
of G P is at most 1/V(GL) or W(GR). 71

A.3. Computing cycle separators from path separators. The next theorem can also
be applied to a weighted undirected graph by edge substitution. Note that a separator obtained
by the theorem actually consists of one of the following: no vertex, a single vertex, or at least
three vertices. Thus it does not degenerate into an undirected edge after edge substitution is
undone.

THEOREM A.2. Every weighted directed graph has a cycle separator.

Proof Let G be a weighted directed graph. Let P u Up be a path separator of G
obtained by Theorem A. 1.

P is converted into a cycle separator as follows. Let s be the largest index such that some
strong component Zs of G {u Us-} is heavy for G. Then us Zs because the path
u Us is still a separator. If s does not exist, then the empty set is a trivial cycle separator.
Otherwise, continue the conversion and let P’ u Us.

Let be the smallest index such that a strong component Zt of G {U/+l us} is
heavy for G. Then ut Zt because the path ut us is still a separator.

There are two cases based on whether s or not. If s t, then Us is a trivial cycle
separator. Otherwise, ut q Zs and Us q Zt. Because Zs and Zt are heavy for G and are
strongly connected, Zs N Zt contains a vertex z such that there is a vertex-simple directed path
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Q from Us via Zs Zt to z and then via Zt Zs to Ut. Because Zs t_J Z contains none of
ut+l Us-i, the path Q and the path ut us form a vertex-simple directed cycle with at
least three vertices. This cycle is a separator because the path U U is a separator. El
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Abstract. If u(x) and v(x) are polynomials of degree n and m, respectively, m < n, all the coefficients of
the polynomials generated by the Euclidean scheme applied to u(x) and v(x) can be computed by using O(log n)
parallel arithmetic steps and n:/log n processors over any field of characteristic 0 supporting FFT (Fast Fourier
Transform). If the field does not support FFT the number of processors is increased by a factor of log log n; if the
field does not allow division by n! the number of processors is increased by a factor of n. This result is obtained by
reducing the Euclidean scheme to computing the block triangular factorization of the Bezout matrix associated with

u(x) and v(x). This approach is also extended to the evaluation of polynomial gcd (greatest common divisor) over
any field of constants in O (log n) steps with the same number of processors.

Keywords. Euclidean scheme, greatestcommon divisor, Hankel and B6zout matrices, computational complexity,
parallel algorithms
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1. Introduction. Let

U(X) UiXt, I)(X) E UiXt
i=0 i=0

be two polynomials with coefficients in a field F. The Euclidean scheme, applied to u (x) and
v(x), generates a sequence of polynomials ri (x), qi (x), such that

() ro(x) u(x), rl (x) v(x)
ri- (x) ri (x)qi (x) ri+ (x), i=1 L,

where -ri+l (x) is the remainder of the division of ri_ (x) and ri(x) and rL (x) is the greatest
common divisor (gcd) of u(x) and v(x). If deg(ri(x)) n i, 0 n, the Euclidean
scheme is carried out in n steps and the quotients qi (x) are linear polynomials. We refer to
this situation as the normal case.

The computation of the coefficients of the polynomials in (1) can be performed in O (n2)
arithmetic operations by means of the synthetic division algorithm. Moreover, in the normal
case this computation is asymptotically optimal since all the n(n 1)/2 coefficients of the
polynomials ri (x) cannot be computed with less than n(n 1)/2 arithmetic operations.

The first polylogarithmic parallel solution to the Euclidean scheme computation was given
in [7] (hereafter we assume the customary arithmetic PRAM model of parallel computation,
where in each step each processor performs at most an arithmetic operation). The algorithm
of [7], based on the theory of subresultants [8], [9], reduces the problem to computing n2

determinants of size O(n) in O(log2 n) steps with O(n+2’5-’) processors, where o < 2.38 is
the exponent of matrix multiplication complexity. In 18] the number of processors is reduced
to O (n’+), but still obtains a processor-inefficient algorithm.

The first processor-efficient algorithm requiring O (n2) processor has been devised in [3]
but only in the normal case and over fields of characteristic 0. This algorithm relies on an
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interesting property that relates Hankel matrices (see the definition in 2) to the Euclidean
scheme. We prove that in the normal case the Euclidean scheme computation is equivalent
to computing the LU factorization of the Hankel matrix H(u, v) generated by the rational
function v(x)/u(x). Other interesting properties relating structured matrices, the Euclidean
scheme, and the gcd, have been proved in [1], [2], and [15].

In this paper we generalize the results of [3] to any field of constants F and to the abnormal
case. By using suitable results from the theory of partial realizations (see 14] and Proposition
3.1), we prove that the coefficients of all the polynomials in (1) are univocally determined
by any block LU factorization of the Hankel matrix H(u, v) associated with u(x) and v(x)
(compare Proposition 3.2), or more conveniently, by any block LU factorization of the matrix
JB(u, v)J where B(u, v) is the B6zout matrix ofu (x) and v(x) and J is the permutation matrix
having in the antidiagonal (see the definitions in 2 and relation (13) in 3). More specifically,
if JB(u, v)J /,//,7" is such a factorization, then we prove that the entries of suitable
columns of/ coincide with the coefficients of the polynomials ri (x) of (1). Therefore, for any
algorithm for computing the block LU factorization of the matrices H(u, v) and J B(u, v)J
there is a corresponding algorithm for computing the coefficients of the polynomials generated
by the Euclidean scheme that has the same computational cost.

In order to devise efficient algorithms for the block LU factorization of J B(u, v)J, we

investigate suitable properties of the Schur complements of the leading principal submatrices
of J B(u, v)J. In particular we prove that the Schur complement of the th nonsingular
leading principal submatrix of JB(u, v) J is J B’J, where B’ B(ri, ri+l) is the B6zout
matrix associated with the polynomials ri (x) and ri+l(X) of (1).

Based on these results, we devise a parallel algorithm for the computation of the block
LU factorization of the matrix JB(u, v)J over any field F, in O(log n) parallel steps with
n2p(n)qF(n)/logn processors, where pv(n) if F supports FFT, pv(n) log logn
otherwise, q(n) if F allows division by n !, qv(n) n otherwise.

The algorithm, relying on the divide-and-conquer strategy, is based on the above property
ofthe Schur complements, and on the recently devised techniques for Hankel-like and Toeplitz-
like computations [4], [5], [20].

Concerned with the computation of the gcd of u(x) and v(x), we extend the results of
[3] to any field of constant and to the case of B6zout matrices. We give a simpler proof of the
results of [3] (see the next Proposition 3.6) characterizing gcd in matrix form. Moreover we
prove that gcd(u(x), v(x)) is univocally determined by a suitable vector in the kernel of the
matrix JB(u, v)J (see Corollary 3.1). Based on these results, we devise a parallel algorithm
for the gcd computation in O(log2 n) parallel steps with n2p(n)q(n)/log n processors.

The use of B6zout matrices, rather than Hankel matrices, also leads to better upper bounds
to the number of digits needed for the computation in the case of polynomials with integer or
rational coefficients (see our comments in 4 and [5] and [13]).

The paper is organized as follows: in 2 we introduce the definitions and the tools needed
for our analysis. In 3 we prove the theoretical results relating the Euclidean scheme and gcd
computation to Hankel and B6zout matrices. Finally, in 4 we devise the algorithms for the
block LU factorization of JB J (Euclidean scheme computation) and for the computation of
a vector in the kernel of JBJ (gcd computation), and perform their parallel cost analysis.

2. Preliminaries. Let u (x) Y7=0 uixi and v (x) rn xii=0 vi be two polynomials of
degree n and m, respectively, where rn < n. Let

ll)Jf (z, w) ai,jz
i,j=O
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be a formal power series in the variables z and w. We associate with f (z, w) the semi-infinite
matrix A (ai,j), i, j 0, and, for any natural n the n x n matrix An (ai,j), i, j
0 n 1, the finite section of A. We refer to f (w, z) as to the generating function of A
or of An. It is easy to check that

zu(z) wu(w)
Z--tO

is the generating function of a Hankel matrix, that is, a matrix whose (i, j) entry is a function
of/+ j,i, j =0, n 1.

Let Z be the down-shift matrix that has entries Zi,j if j + 1, Zi,j 0 otherwise.
Z is a special Toeplitz matrix. (A matrix is Toeplitz if its (i, j) entry is a function of j.)

The n x n matrix Fu obtained by replacing the last row of Zr by the vector
(--blO/ll --bin_l/bin) T is the Frobenius (companion) matrix associated with u(x). We
denote by T (a0 an-1) the lower triangular Toeplitz matrix having entries ai-j, > j.

The expression

u(z)v(w)- v(z)u(w),(2)

which is easily verified to be a polynomial in w and z, is called the Bdzoutian of u(x) and v(x).
The B6zoutian is a rather special bilinear form which appears in the context of the theory of
equations, in stability theory, and in the classical elimination theory 16], 19], 11 ], [23]. The
n n matrix B(u, v), whose generating function is (2), is called the Bdzout matrix or, more
simply the Bzoutian of u(x) and v(x). The following matrix representation of the B6zoutian
[19] can easily be proved:

(3) B(u, V) -JT(vn Vl)TT (u0 Un-1) -}- JT(un Ul)TT (vo On-l),

where J is the permutation matrix having in the antidiagonal, i.e., its (i, j) entry is for
j=n-i-l,i,j=O n-1.

Remark 2.1 Given the mth row and the last row of B(u, v), together with the entry
(0, 0) lying in the first row and in the first column of B(u, v), it is possible to compute the
coefficients of the polynomials unv(x) and u(x)/un. In fact, if m < n, the last row of B(u, v)
is Un[Vo Vn-1], which defines the coefficients of unv(x). Moreover, the mth row b of
B(u, v) is

(4) bT -pm[Uo Un-1] q- [Urn Un, 0 0] "..
O

Vn_l t1)0

and this relation can be used to express the coefficients of bl(X)/bl as linear functions in Un-1.
Indeed, assume for simplicity that un 1, so that the last row of B(u, v) gives us the value
of m and the coefficients vo Vm. Moreover, rewrite (4) as an n x n system of linear
equations:

O O
V0 Vm

[U0 Un-1] --Vmln nu

0 V0 l)m

b" [0 O, V0 Vm_l].
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Remove the last equation of this linear system and consider the triangular Toeplitz system
consisting of the last remaining n m equations. From the latter system, express Un un-2
in terms of Un-1. Substitute Um un_ in the first m equations and express them via u_.
Since we are given the entry in the first row and in the first column of B(u, v), we may define
the remaining unknown value u,_.

Another property, which directly follows from representation (3), is that the matrix B(u, 1)
is an upper triangular Hankel matrix:

B(u, )

Let h be a constant independent of n and Li, U?, h, be lower triangular Toeplitz
matrices. Any matrix A y./h= ZiUi is called Toeplitz-like, any matrix B Y/h=l JLiU
is called Hankel-like. From (3) it follows that B(u, v) is a Hankel-like matrix.

Now consider the formal power series

(5)
v(x-) +

E hiXiXU(X-1) /=0

whose coefficients are related to the coefficients of u(x) and v(x) by the triangular Toeplitz
system of equations

h0
h h0

(6) h2 h h0

Hn Vn-1
Hn-1 Vn-2
lln -2 Vn-3

where we assume vi 0 for > m. The above power series defines the n x n Hankel matrix
H(u, v), whose (i, j) entry is hi+j, i, j 0, 1, n 1. Relation (6) immediately implies
the following.

PROPOSITION 2.1. Foranypair ofrelativelyprimepolynomials u (x) v(x) ofdegree n and
m, respectively, m < n, the matrix H(u, v) is nonsingular, moreover, for any nonsingular
n x n Hankel matrix H there exists a pair of relatively prime polynomials u(x), v(x), (u(x)
monic), of degree n and m, respectively, m < n, such that H H(u, v). The polynomials
u(x) and v(x) are related to H(u, v) by thefollowing equation:

H(u, v)(uo Un-1)T --un(hn h2n-1),

(Vn--1 VO) T T(ho hn-)(Un u)r,
where h2n-1 is any number.

Proof Observe that the first n equations of (6) allow us to express the coefficients of
v(x) in terms of the coefficients of u(x). The remaining n equations constitute a system in the
unknowns uo Un-, whose matrix is H(u, v), with known terms -u(h hzn_l) T.
Therefore, if det H (u, v) -y: 0, then there exists unique (up to a scalar factor and once h2n-1
has been fixed) solution u(x) to this system, and consequently, there exists unique polynomial
v(x). In this case gcd(u(x), v(x)) otherwise the above linear system would have more
than one solution. Vice versa, if det H(u, v) 0, the above system (with hzn-1 fixed) would
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have more than one solution, say, u(x), v(x) and a(x), b(x) of degrees t, s, respectively,
s < t. Therefore, from the relation

V(X-1) b(x-1)
0 modx2n

xu(x-1) xa(x-1)

it follows that

v(x-)a(x-1) u(x-)b(x-1) 0 mod x,

that is, since the left-hand side is a polynomial in x- of degree at most 2n it follows that

v(x)a(x) u(x)b(x) O,

hence u(x) and v(x) have a common nonconstant divisor. [3

Remark 2.2. Let H H(u, v) be an n n nonsingular Hankel matrix. Then m
deg v n k if and only if hi O, O, k 1, h O, that is, if and only if
det Hi O, k, where Hi is the leading principal submatrix of H.

We recall a classical result relating the matrices H(u, v) and B(u, v) 17], 16], 10].
PROPOSITION 2.2. Let Fu be the n n Frobenius matrix associated with the polynomial

u(x) ofdegree n. Let v(x) be a polynomial ofdegree m < n. Then we have

B(u, v) B(u, 1)H(u, v)B(u, 1),

B(u, v) B(u, 1)v(Fu),

moreover, if u(x) and v(x) are relatively prime then

B(u, k)H(u, v) I,

where v(Fu) -im=o viFiu and k(x) is the polynomial of degree less than n such that
k(x)v(x) 1 mod u(x).

Compare the first and second representations of B(u, v) given in Proposition 2.2. Since
B(u, 1) is nonsingular it follows that

(7) H(u, v) (B(u, 1))-v(Fr).

If H (u, v) is singular the above relation allows us to characterize the kernel of H(u, v); in
fact, the following result holds.

LEMMA 2.1. Let u (x) and v(x) be twopolynomials ofdegrees n andm, respectively, where
m < n. Then v(Fu)Z 0 if and only if v(x)z(x) 0 mod u(x), where z(x) "i=0n-1Zi xi"
Therefore, v(F’) is singular ifandonly ifr (x) gcd(u (x), v(x is a nonconstantpolynomial.
Moreover, if u(x) w(x)r(x), the null space of v(F’) is {z 6 C z(x) p(x)w(x)}.

Proof Since (FT) e(0) e(i), 0 n (where e(i) denotes the ith column of the
n n identity matrix), the first column of v(Fr) is (vo, v Vm, 0 0) r. Therefore,
v(Fr)z v(Fr)z(Fr)e) s(Fr)e), where s(x) v(x)z(x) mod u(x) is a polynomial
of degree less than n. Hence, v(Fr)z 0 if and only if v(x)z(x) 0 mod u(x). In
particular, z(x) must be a multiple of w(x), i.e., there exists a polynomial p(x) such that
z(x) p(x)w(x), t3

The above lemma will be used in order to characterize the polynomial gcd in terms of the
Hankel matrix (Proposition 3.6).
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3. Theoretical results. In this section we analyze correlations between the matrices
H(u, v), B(u, v), and the coefficients of the polynomials generated by the Euclidean scheme
applied to u (x) and v (x).

It is well known that Hankel matrices and their factorizations are related to the polyno-
mial remainder sequences by means of the nonsymmetric Lanczos process for tridiagonalizing
general non-Hermitian square matrices. (We refer the reader to [12] and [21] and to the refer-
ences given there.) Here, we first recall a result of 14] which relates triangular factorization
of Hankel matrices to orthogonalization processes. Then we will prove that suitable rows of
the matrix --1 such that H(u, k) [,)T is a block LDLT factorization of H(u, k) yield
the coefficients of the remainders generated by the Euclidean scheme applied to u(x) and
v(x). Here the polynomial k(x) is the solution of the congruence v(x)k(x) mod u(x).
Then we prove that the matrix L- can be obtained, bypassing the computation of k(x) and
the inversion of the matrix/, just by computing the L factor of the block LDLT factorization
of JB(u, v)J. Finally, by proving some properties of the Schur complements of the B6zout
matrices, we arrive at the complete equivalence between the Euclidean scheme and the block
LDLT factorization of the matrix JB(u, v)J. We conclude this section by proving that the
coefficients of gcd(u (x), v(x)) can be directly obtained from a suitable vector in the kernel of
JB(u, v)J.

Let us start by recalling the following basic result of [14].
PROPOSITION 3.1. Let H (hi+j) be a semi-infinite Hankel matrix and Hn be its n n

finite section. Suppose that Hn is nonsingular and let 0 mo < rn < < mL n be
integers such that det Hm :/: 0, L, det H 0, otherwise. Let 6i mi mi-l.
Let 79n be the class of block diagonal matrices diag(T1 TL) where Ti is a 8i 8i lower
triangular (with respect to the antidiagonal) Hankel matrix. Then we have the following
results"

(1) There exists an upper triangular matrix R having unit diagonal entries, such that
RT Hn R D, D 79n. In particular one can choose

R =/ (q0, Zq0 Z’-q0, ql, Zql Z82-1ql ZS-lqL-1),

where Z is the down-shift matrix, qo e() qr. ((l 0T) (li -H-l(h,n
h2mi_l) T L 1"

(2) any uppertriangularmatrix R (r0, r, rn-), such that RT HnR Dn, is such
that r qi, where we assume 80 0;

(3) set Qi(x) (1, x xn-)qi, O, L, where

hn+l )qL -H
h:n

and we have

Qi(x) ci(x)Qi-l (X) Oi-1Qi-2(x),
Qo(x) 1, Q_I (x) O,

i--1 L,

where Ci(X) are monicpolynomials ofdegree i and Oi_ are constants L.
It is easy to show [12], [21] that the polynomials Qi(x), 0 L, are orthogonal

with respect to the symmetric bilinear form (b(x), c(x)) bT Hnc, b(x) (1, x xn-)b,
c(x) (1, x xn-)c on the linear space of polynomials of degree less than n. This is the
basic relationship between Hankel matrices and systems of orthogonal polynomials generated
by three-term recurrence relations.
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It is interesting to point out that the block triangular factorization of Proposition 3.1 is not
generally unique.

Applying Proposition 3.1 to the matrix Hn H(u, v) it is possible to characterize the
vectors qi and, consequently, the polynomials Q (x). We have, in fact, the following result.

PROPOSITION 3.2. Let u(x) and v(x) be monic polynomials ofdegrees n and m, respec-
tively, such that n > m, gcd(u(x), v(x)) 1. Then for the monic polynomials Qt.(x),
Qt- (x) defined in Proposition 3.1 for H H(u, v), we have

Qt(x) u(x), Qt-l(x) k*(x),

where k*(x) is the monic polynomial associated with k(x) (i.e., k*(x) ck(x) for a nonzero
constant c), and k(x)v(x) mod u(x). Hence, thepolynomials Qi(x), O, L are
the monic polynomials associated with the polynomials obtained by applying the Euclidean
scheme to u(x) and k(x).

Proof. For Proposition 2.2 we have

H(u, v)k e(n-l), k (ko kn-1) T, ki 0, > deg k(x).

In particular, since

(8) Hi(u, v)(ko ki_l)T =0, i> 1-t- deg k(x)

(this condition does not apply if deg k(x) n 1), we have

detHi =0, i=l+ deg k(x) n-l, detHi0, i= deg k(x)

(for the uniqueness of k(x)), hence deg k(x) m/-l; moreover,

(9) Hm,_ (ko km._l-1 -km._ (hmL_,, h2m._-I

From parts (1) and (3) of Proposition 3.1 it follows that Q/-I k*(x). Now, let

if(x) (x -ot)u(x), f)(x) (x -ot)v(x), ot F.

ForLemma2.1 the vectoru (u0, ul u,,_l, 1) r generates the kernel ofthe matrix H(if, 7).
Thus, from H (i, fi)u 0 we obtain that

H(u, v)(uo Un-)T -(hn+l h2n) T,

that is, u (x) Q/ (x). fi
The above results can be restated in the following way: Given two monic and relatively

prime polynomials u(x) and v(x), the coefficients of the polynomials generated by the Eu-
clidean scheme applied to u(x) and v(x) are given by suitable rows of the matrix -1, where
H(u, k) )r is a block triangular factorization of H(u, k) and the polynomial k(x)
solves the congruence v(x)k(x) mod u(x). It is easy to show that if H(u, v) LDL is
a block triangular factorization of H(u, v), then

H(u, k) [,)r, where/-1 jLr B(u, 1), /-1 JDJ

is a block triangular factorization of H(u, k). Therefore, the computation of the coefficients
of all the polynomials generated in the Euclidean scheme, applied to the polynomials u(x)
and v(x), is reduced to computing the block triangular factorization H(u, v) LDL and to
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matrix-vector products with a lower triangular Hankel matrix. This way, unlike [3], we avoid
the computation of the polynomial k(x) and the inversion of the matrix L. Moreover, since

(10) JB(u, v)J JB(u, 1)H(u, v)B(u, 1)J,

the block triangular factorization of H(u, v) can be obtained from the block triangular factor-
ization of JB(u, v)J ///2,r. Indeed, we may choose/- j/r j (recall that the block
LU factorization is not unique), therefore suitable columns of/ give the coefficients of the
polynomials generated by the Euclidean scheme.

Observe that the entries of H (u, v) may grow exponentially with n, whereas the entries
of JB(u, v)J are bounded by 2nlzv, where/z and v are upper bounds to the moduli of the
coefficients of u (x) and v(x), respectively. Moreover, if u (x) and v(x) have integer coefficients
then J B(u, v)J has integer entries. This makes computing the block triangular factorization
of J B(u, v)J more convenient than computing the block triangular factorization of H(u, v),
and leads to an algorithm having a lower Boolean cost (see [5] and [13]).

The results proved so far imply the reduction of the Euclidean scheme computation to
computing the block LDLr factorization of JB(u, v)J. In order to devise efficient parallel
algorithms for the computation of this factorization we will investigate suitable properties of
the Schur complements of the nonsingular leading principal submatrices of J B(u, v)J.

Given the matrix

where M and R are square matrices and M is nonsingular, the Schur complement of M in A is
the matrix S R QM-1P. It is well known that if A is nonsingular then S is nonsingular
and S-1 is the right lower corner submatrix of A-1.

Now denote (H (u, v))i, (JB (u, v) J)i the x leading principal submatrix ofH(u, v) and
JB(u, v)J, respectively, and observe that in the hypotesis of Proposition 3.2, from Remark
2.2 we have

det(H(u, v))i 0, 1 n m 1, det(H(u, 1)))n_ :: O.

Therefore from (10) it follows that

(11) det(JB(u, v)J)i O, n m 1, det(JB(u, v)J)n-m 7/= O.

We recall the following result of [22] concerning the generating function of the Schur com-
plements.

LEMMA 3.1. If Q is an n x n matrix having generatingfunction

a(z)b(w) b(z)a(w)

and det Qi 0, 1, det Ot 7 O, then the Schur complement of Ot in Q has
generating function

at(z)bt(to) bt(z)at(to)

where at(z) z-ta(z) and bt(z) is defined by the recurrence

bo(z) b(z),
b(O)

zbj+l(Z) bj(z) at(z)
at(O)
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Applying Lemma 3.1 we prove the following basic result relating the Schur complement
of the first nonsingular leading principal submatrix of JB(u, v)J to the remainder s(x) of the
division of u (x) and v (x).

PROPOSITION 3.3. Let S be the Schur complement of(JB(u, v)J)n-m in JB(u, v)J, then
we have

S JB(v, s)J,

where u(x) q(x)v(x) s(x), deg s(x) < m.

Proof. The generating function of J B(u, v)J is easily verified to be

--l(Z)(llO)tO -JI- (W))(Z)Zn-m

where if(z) z"u(z-1) and O(z) zmv(z-) are the reversed polynomials of u(z), v(z),
respectively. Therefore, for Lemma 3.1, the generating function of the Schur complement S
is given by

l)n_m (Z)Un_m (ll)) Un_m (Z)Vn_m (11))

where v,,-m(Z) 5(z), and

(12)
uo(z) a(z),

uj(O)zu+ (z) u(z) (z)-, j -0 n-m- 1.

Now observe that the polynomials uj (z) in (12) have degrees n j, j 0 n m, and that
zn-j uj (z -1) are the polynomials obtained at the stage j of the synthetic polynomial division
algorithm applied to u(x) and v(x), so that

Ign-m+l (Z) --g(Z)Zm-deg s-l, U(Z) q(z)v(z) s(z), deg s(z) < m.

Therefore

lln-m(Z) Zm-deg S(z) -[- /(Z), fl
n-m(O)
(0)

Hence, the generating function of S is

_)(Z)g(w)wm-deg _[_ )(W)g(z)zm-deg
Zm ll)

so that S JB(v, s) J. [-]

Now consider the Schur complement Sk and Sh+k of Ak, Ah+k, respectively, in A, where
A, Ak, Ah+k, are nonsingular matrices and Ak, Ah+k are the leading principal submatrices of
A of dimension k x k, (h + k) (h + k), respectively. Since S- and -Sh+k are the right lower
corner submatrices of A- of sizes k x k and (h + k) x (h / k), respectively, we have that

Sh+k is the Schur complement of (S)h in S. Therefore we may inductively apply (11) and
Proposition 3.3, obtaining the following proposition.

PROPOSITION 3.4. Let u (x) and v(x) be monicpolynomials ofdegrees n andm, respectively,
such that n > m, gcd(u(x), v(x)) 1. Let ml < < mr. n be integers such that

det nmi O, L, det Hj O, j 5 mi,



72 DARIO BINI AND LUCA GEMIGNANI

where the semi-infinite Hankel matrix H is generated by the power series (5). Then

det(JB(u, l))J)mi O, L, det(JB(u, v)J)j O, j mi.

Morover, for the Schur complement Smi of(JB(u, v)J)m in J B(u, v)J thefollowing relation
holds:

Smi JB(ri, ri+l)J,

where ri(x), L is the remainder sequence obtained by applying the Euclidean
scheme to u (x) and v(x).

Remark 3.1. From the above result it follows that the nonsingular leading principal sub-
matrices of JB(u, v)J have sizes mi n deg ri(x).

Let li n mi q- deg ri(x) q-- and Pmi (JB(u, v)J)m for L. The
following result relates the matrices Pmi, L to the polynomials defining the Pad6
approximants of the power series (5).

PROPOSITION 3.5. In the hypothesis ofProposition 3.4, we have

Pmi T(un,.. uli) T (i) (1i))-1 (u(i) (i) (i) (i) -T )T(rtmi u JB ,1) )JT(umi u T(un,.. Ul

where the polynomials U (i) (X), V (i) (X) are such that

H(u (i), V (i)) (H (u, l)))mi
mi mi--1

U (i)(x) E ui)xr’ v(i)(x) E vi)xr"
r=O r=O

Proof The proposition follows from the relation

Pmi (JB(u, l))J)m T(un Uli)(H(u, V))miT(un Uli) T

in the view of Proposition 2.2 and (10). [3

Propositions 3.4 and 3.5 lead to the following block factorization of J B(u, v)J:

Jn(u, v)J (Pmix ST)w ( XPill 0)i ( PmiO smiO )(lo p-1XZ)mil

( O)(Jn(u(i)v(i)) J 0)(TTTTP-1XT)mi(13) xpT-1T I d JB(ri, ri+l)J 0 Imi

where

Smi W- Xp-1xT- JB(ri ri+l)J, T T(un,.. Uli)(B(u (i) 1))-lJ.
mi

Proposition 3.4 and Remark 2.1 allow us to express the coefficient vector ri+l of the
(i + 1)st remainder ri+(x) as

ri+l J(W- Xp-1xT)je(n-m)
mi

that is, ri+l can be computed by solving an mi mi system with matrix Pm,. Observe that emi
is the sum of products of pairs of triangular Hankel and Toeplitz matrices. Matrices having
this structure are called Hankel-like matrices and have very strong computational properties
[41, [51, [201.
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In the case where the polynomials u(x) and v(x) have integer coefficients, the solution of
the above Hankel-like system can be performed over the integers by multiplying both members
by det Pmi. This way the polynomial det Pmiri+l (x) has integer coefficients having moduli
O((2n#v)mi). In the next section we will recursively apply (13) in order to compute the
polynomials ri (x) with a low parallel cost

The assumption gcd(u(x), v(x)) is no loss of generality. Indeed, it is easy to see
that if gcd(u(x), v(x)) rL(x) the Euclidean remainder sequences {ri(x)} and {qi(x)} can
be recovered by the polynomial sequences {:i(x)} and {i(x)} generated by the Euclidean
scheme applied to u(x)/rL (x) and v(x)/rc (x).

Let us conclude this section by analyzing the matrix formulation of computing gcd. The
algorithm for the gcd computation given in [3] relies on the following characterization of gcd
stated in terms of the Hankel matrix H (u, v). Here we propose a different proof that does not
make use of the zeros of the polynomials u(x) and v(x) as it is done in [3]; this allows us to
extend the computation over any field of constants.

PROPOSITION 3.6. Letu(x), v(x) be two monicpolynomials ofdegrees n, m, respectively,
m < n; r(x) gcd(u(x), v(x)) be a monic polynomial ofdegree n k, and Hi be the
leading principal submatrix ofH(u, v). Then we have

(a) rank(H(u, v)) k, det Hk - 0, det Hi Ofor > k,
(b) if Hk+lW 0, w (L0i)i=0 k, W, 1, that is, if

to/_l h2/-I

then

k

u(x) r(x) Z toixi"
i=0

Proof Assume that u(x) w(x)r(x) and v(x) t(x)r(x), so that w(x) and t(x) are
relatively prime. From (7), we obtain that

H(u, v)z 0 :=, v(Ff)z O.

So, the problem is reduced to analyzing the null space of v(Fur). Now, by the virtue of Lemma
n-1 xi (X)2.1, v(Fu)Z 0 holds if and only if the polynomial z(x) Yi=0 zi is such that z

p(x)w(x) for some polynomial p(x). Since {z(x) z(x) p(x)w(x), deg p(x) <_
n k is a linear space of dimension n k, we have that rank H (u, v) rank v(F’) k.
Moreover, by choosing p(x) xJ, j 0 n k 1, we satisfy the relations (a)
and (b).

From Lemma 2.1 and (10) it follows that Proposition 3.6 can be rewritten in terms of the
B6zout matrix B(u, v).

COROLLARY 3.1. In the hypothesis ofProposition 3.6 we have
(a) rank(B(u, v)) k, det(JB(u, v)J) :/: O, and det(JB(u, v)J)i O, > k,
(b) if(JB(u, v)J)+y 0, y (Y0 yk)r, y then

k

u(x) r(x) E tOixi’
i=0

where w (B(u, 1)J)k+y, w (wo wk) T, and (JB(u, v)J)i denotes the x leading
principal submatrix of J B(u, v)J.

In the next section we will devise an algorithm for computing gcd(u(x), v(x)) based on
the above corollary.
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4. The algorithms and their cost analysis. By using the results of 3 we devise new
algorithms for the computation of polynomial gcd and of the coefficients of the polynomials
generated in the Euclidean scheme.

We make use of the following computational results some of which have been recently
proved in [4], [5], [6], [20]. In order to express the computational cost we use the functions
pv(n) and qF(n), defined by pv(n) if the field F supports FFT, pv(n) log log n
otherwise, qv(n) if F allows division by n!, qv(n) n otherwise.

Let Li, UiT, h, be lower triangular Toeplitz matrices with entries in the field F,
where h is a constant independent of n. Consider the Hankel-like matrix A y= JLiUi.
The matrix A is determined by its displacement generator made up by the set of vectors which
are the first columns of the matrices Li and U/r.

PROPOSITION 4.1. For the Hankel-like matrix A thefollowing computational results hold:
The computation ofr rank (A) can be performed in 0 (log2 n) parallel steps with
n2pv(n)qv(n)/logn processors assuming the nonsingularity of the r r leading
principal submatrix of A.
If A is nonsingular the solution of the linear system Ax b can be performed in

O(log2 n) parallel steps with n2pv(n)qv(n)/ log n processors. Moreover, A -1 is still
a Hankel-like matrix and its displacement generator can be computed in O(log2 n)
parallel steps with n2pv(n)qv(n)/ log n processors.
The computation of the matrix-vector product Ax can be performed in O(logn)
parallel steps with npv(n) processors.
The product of Hankel-like matrices is still a Hankel-like matrix, its displacement
generator can be computed in O(log n) parallel steps with npv(n) processors.
The computation ofthe quotient and remainder ofthe division oftwo polynomials of
degree at most n can be performed in O(log n log log n) parallel steps with npv(n)
processors.

Let us describe the algorithm for the computation of gcd(u(x), v(x)). Without loss of
generality we assume that m < n. If m n then we consider the polynomials u(x) and
(x) v(x) mod u(x).

ALGORITHM 4.1. Computing gcd.
Input: natural numbers m and n, m < n, and the coefficients uo u, vo, Vm of

i=0 l)i/=0 UiX P(X)tWO polynomials u (x) m xi
Output: The coefficients of gcd(u(x), v(x)) r(x).
Computation:

1. Compute rank B(u, v) k. Set n k + 1.
2. Solve the k k system Cy b, y (y_ y0), where C (JB(u, v)J) and

b T(u, u)(v v,_2) T(v, v)(ut u,_2/) ’.

3. Compute w (B(u, 1)J)g+l (Y0 y)V, yl 1.
4. Compute r (x) such that u (x) r (x)w (x).

Corollary 3.1 implies the correctness of the algorithm. Moreover, observe that the matrix

JB(u, v)J satisfies the condition of Proposition 4.1. Therefore all the computation can be
performed in O(log2 n) parallel steps with n2pv(n)qv(n)/log n processors.

In the view of Proposition 3.6 the above algorithm could be rewritten by replacing the
matrix JB(u, v)J with the Hankel matrix H(u, v), the matrix C and the vector b at stage
2, with the matrix (H(u, v)) and the vector (h h2_l) r, respectively, obtaining the
algorithm of [3]. However the entries of H(u, v) may grow exponentially with n whereas the
entries of B(u, v) have moduli bounded by q 2nlzv, where [uil < #, Ivil < v. Moreover,
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if u and v have integer coefficients, then the matrix B(u, v) has integer coefficients and all the
computation can be kept within the integers.

It is possible to prove (see [5] and [13]) that if u(x) and v(x) have integer coefficients
represented with d binary digits (bits), then the computation ofAlgorithm 4.1 can be performed
with at most O(n(d + logn)) bits. Moreover, if u(x) and v(x) have rational coefficients
represented as pairs of d-digit integers, then O (nZ(d -k- log n) bits are sufficient to compute
gcd(u, v) by using integer arithmetic.

ALGORITHM 4.2. Computing the coefficients of the polynomials generated by the Eu-
clidean scheme applied to u(x) and v(x) by means of the block triangular factorization of
JB(u, v)J.

Input: natural numbers m and n, and the coefficients uo un, vo Vm of two
polynomials u (x) Zi=0 l)iXZ/=0 Uixi V(X)

Output: The coefficients of the polynomials generated by the Euclidean scheme applied
to u (x) and v (x).

Computation:
1. Compute r(x) :gcd(u(x), v(x)) and replace u(x), v(x), n and rn with u(x)/r(x),

v(x)/r(x), n deg r(x) and rn deg r(x), respectively.
2. If n m > n/2 set k n rn, otherwise compute rank (JB(u, v)J)/2 and set

k rank (JB(u, v)J)[n/2].
3. Let be such that k mi and factorize JB(u, v)J as in (13). Compute

P-lmi XP Smi W- XpIx
and the coefficients of ri(x), ri+ (x), by using Proposition 3.4 and Remark 2.1.

4. Compute the coefficients of u <i (x), vi (x) such that

H(u(i), V (i)) (H(u, V))mi,

that is, apply Proposition 2.1 to the matrix (H(u, l)))mi which is nonsingular for (10)
and Remark 3.1.

5. Recursively apply Algorithm 4.2 to J B(u (i), v(i))J, J B(ri, ri+l)J, obtaining

JB(u (i), v(i))J L’D’L’r, JB(ri, ri+)J L"D"L’’.

6. Set

I O) L’ O, ,)(o
and obtain the coefficients of all the ri (x)’s.

7. Recover the coefficients ofthe polynomial generated by the Euclidean scheme applied
to u(x) and v(x), from the coefficients of the polynomial generated by the Euclidean
scheme applied to u (x) /r (x) and v (x) / r (x).

The correctness ofthe algorithm follows from (13). Observe that stage can be performed
by Algorithm 4.1. Stage 2, which consists in the rank computation of a Hankel-like matrix,
can be performed in O(log2 n) steps with nZpF(n)qF(n)/logn processors. Concerning the
computation at stage 3 we observe that, since Pmi, Pi, XP and Smi are Hankel-like

matrices, it is sufficient to compute only their displacement generators for the cost of O (log2 n)
steps with nZpF(n)qv(n)/log n processors. Stage 4 is reduced to solving a Hankel system for
the cost of O(log2 n) steps with nZpF(n)qv(n)/log n processors. At stage 6, O(log n) steps
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with n2/log n processors are sufficient to compute the triangular factor L; the same complexity
bound applies to stage 7.

Therefore each recursive step of the algorithm can be performed in O (log2 n) parallel
steps with nZpv(n)qF(n)/log n processors.

It is easy to check that O (log n) recursive steps are sufficient for the algorithm. In fact,
from Remark 3.1 deg ri(x)=n-mi, andsince deg ri+l(X)< n/2(i.e.,mi+l > n/2),then

deg ri(x) deg ri+l (x) mi+l mi > n/2 mi.

Hence, by applying another recursive step to J B(ri, ri+l)J we obtain two diagonal blocks:
the first of size n/2 mi already factorized, the second of size n/2 (for simplicity we as-
sume n even). Hence, the overall cost of Algorithm 4.2 is O(log n) parallel steps with
n2pF(n)qF(n)/log n processors.

With the same cost it is possible to compute also all the polynomials generated by the
extended Extended Euclidean Scheme (EES) by solving at most n linear systems defined by
the same Toeplitz-like matrix. In fact the polynomials si (x) and ti (x) generated by EES,

So(X 1, S (X) 0, Si(x)
to(X) 0, tl (x) 1, ti (x)

Si-2(X) qi(x)si-1 (X),
2 L,

ti-2(X) qi(x)ti-l(X),

satisfy the equation

(14) Si(X)U(X) -]- ti(X)l)(X) ri(x), 1, 2 L.

Rewriting (14) in matrix form we obtain

ti ri, i=1,2 L,

where Si, ti, ri are the vectors associated with the polynomials Si(X), ti(x), and ri(x), re-
spectively, filled with zeros up to the dimension m, n, rn + n, respectively, and R is the
(m + n) x (m + n) resultant (Sylvester) matrix of u(x) and v(x), that is, R IT11T2], where

T1 and T2 are Toeplitz matrices of sizes (m +n) x m and (m +n) x n, respectively, with the first
rows (un, 0 0) and (Vm, 0 0) and the first columns (un, u,-1 u0, 0 0)r and
(Vm, Vm- V0 ,0) r, respectively.

We may assume without loss of generality gcd(u(x), v(x)) 1, otherwise we apply
Algorithm 4.1. Therefore R is nonsingular and

si) -1

ti
=R ri, L.

The matrix R is Toeplitz-like and the following relation holds [5]:

R-1 L1U1 -t-L2U2,

where L l, U1, L2, and U2 are suitable triangular Toeplitz matrices. Then the computation of
the vectors si, ti, L can be performed in two stages:

1. compute the matrices L1, U1, L2, U2,
2. compute (L1U1 d- L2U2)ri, L.

Stage can be performed for a cost of O(logz n) steps with n2pF(n)qr(n)/logn pro-
cessors [5]. Stage 2 consists in computing L simultaneous matrix-vector products with a
Toeplitz-like matrix, so that the overall cost of the EES is dominated by the cost of computing
the polynomials ri (x).
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A GRAPH-THEORETIC GAME AND ITS APPLICATION TO THE k-SERVER
PROBLEM*

NOGA ALONf, RICHARD M. KARPt, DAVID PELEG, AND DOUGLAS WEST

Abstract. This paper investigates a zero-sum game played on a weighted connected graph G between two
players, the tree player and the edge player. At each play, the tree player chooses a spanning tree T and the edge
player chooses an edge e. The payoff to the edge player is cost(T, e), defined as follows: If e lies in the tree T then
cost(T, e) 0; if e does not lie in the tree then cost(T, e) cycle(T, e)/w(e), where w(e) is the weight of edge e
and cycle(T, e) is the weight of the unique cycle formed when edge e is added to the tree T. The main result is that

game on any n-vertex graph is bounded above by exp(O(v/log n log log n)). It is conjecturedthe value of the that
the value of the game is O (log n).

The game arises in connection with the k-server problem on a road network; i.e., a metric space that can be
represented as a multigraph G in which each edge e represents a road of length w (e). It is shown that, if the value of
the game on G is Val (G, w), then there is a randomized strategy that achieves a competitive ratio ofk(1 + Val(G, w))
against any oblivious adversary. Thus, on any n-vertex road network, there is a randomized algorithm for the k-server

problem that is k exp(O (v/log n log log n)) competitive against oblivious adversaries.
At the heart of the analysis of the game is an algorithm that provides an approximate solution for the simple

network design problem. Specifically, for any n-vertex weighted, connected multigraph, the algorithm constructs a

spanning tree T such that the average, over all edges e, of cost (T, e) is less than or equal to exp(O (v/log n log log n)).
This result has potential application to the design of communication networks. It also improves substantially known
estimates concerning the existence of a sparse basis for the cycle space of a graph.

Key words, k servers, spanners, spanning trees, average stretch
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1. Introduction. Let G be a connected multigraph, and let w be a function from the
edge set of G into the positive reals; w(e) is called the weight of edge e. Consider a two-

person zero-sum game between a tree player and an edge player. At each play the tree player
chooses a spanning tree T and, simultaneously, the edge player chooses an edge e. The payoff
cost(T, e) is defined as follows. For an edge e that does not lie in the tree T, let cycle(T, e)
denote the weight of the unique cycle formed when edge e is added to the tree T. Then

cost(T, e) I 0
cycle(T,e)/w(e)I

if e lies in the tree T,
otherwise.

Our main interest is in determining the value of this game for particular weighted multi-
graphs, and in determining an upper bound on the value in terms of the number of vertices.

We introduce some standard terminology. A mixed strategy for the tree player is a
probability distribution p over the spanning trees of G, assigning to each spanning tree T a
probability p(T); similarly, a mixed strategy for the edge player is a probability distribution
q over the edges, assigning to each edge a probability q (e). The min-max theorem of game
theory tells us that

rain max p(T)q(e)cost(T, e) max min p(T)q(e)cost(T, e).
P q q PT e T
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The common value of these two expressions is called the value of the game, and is denoted
Val (G, w). In the special unweighted case in which w(e) for all e, the value is denoted
VaI(G).

Our main results with respect to the game are as follows:
For every weighted n-vertex multigraph G, w,

Val(G, w) < exp(O(v/logn loglogn)).

There is an infinite sequence {Gn}n>_l of graphs such that Gn has n vertices and
Val(Gn) f2(logn).

We also provide a near-tight analysis of the game on several simple classes of graph
topologies, including cycles, cycles with cross edges, grids and hypercubes.

At the heart of our analysis of the game on arbitrary multigraphs is an algorithm that
provides an approximate solution for the simple network design problem of [JLR]. Specif-
ically, for any n-vertex weighted, connected multigraph, our algorithm constructs a span-
ning tree T such that the average, over all edges e, of cost(T, e) is less than or equal to

exp(O (v/log n log log n)). This algorithm provides us with a strategy for the tree player in
the game. As a byproduct, our algorithm improves the main result of [SV] that deals with the
choice of a sparse basis for the cycle space of a given graph. The authors of [SV] show that
for every n-vertex graph there is a spanning tree so that the average length of a fundamental
cycle is O (/-d), whereas our result improves this estimate to exp(O (v/log n log log n)).

A somewhat more general network design problem is the optimum communication span-
ning tree problem studied by Hu [Hu]. This problem extends the simple network design
problem by introducing a communication requirement matrix on the vertices, and charging for
each pair of vertices a cost proportional to their distance in the chosen spanning tree times their
communication requirement. It can be shown that this seemingly more general problem is in
fact reducible to the simple network design problem on multigraphs, so that any (approximate)
solution for the latter problem can be translated into a solution for the former (with the same
approximation ratio).

The game arises in connection with the k-server problem on a road network; i.e., a metric

space that can be represented as a multigraph G in which each edge e represents a road of length
w(e). The class of these metric spaces seems to be one of the most natural ones for considering
the k-server problem, as any real configuration of roads forms such a network. Note that any
nontrivial road network has infinitely many points; a continuous circle, for example, can be
represented by a road network with two vertices and two parallel edges joining them.

We show that if the value of the game on G is Val(G, w), then there is a randomized
strategy that achieves a competitive ratio of k(1 + Val (G, w)) against any oblivious adversary.
Thus, on any n-vertex road network, there is a randomized algorithm for the k-server problem
that is k. exp(O (v/log n log log n)) competitive against oblivious adversaries.

In addition, the spanning tree algorithm has potential application to the design of com-
munication networks. Shortest-path trees are among the basic tools used in communication
networks for various control tasks. Given a graph H, let path (H, u, w) denote the weighted
distance (i.e., the length of the shortest path) between u and w in H. A shortest-path tree for
the graph H w.r.t, some vertex r is a tree T with the property that for every vertex v in H, its
distance from r in T is the same as in H, i.e., path(T, v, r) path(H, v, r).

The obvious drawback of a shortest-path tree w.r.t, r is that while it yields optimal routes
from r to any other node, the quality of the routes provided by the tree between other pairs of
nodes may be poor. A natural measure for the quality of the path connecting nodes u, to in
the tree T is its stretchfactor (or dilation), defined as path(T, u, to)/path(G, u, to). Classes
of graphs for which there exist spanning trees with low worst-case stretch factor, termed tree
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spanners, are studied in [Cai]. However, in general, looking for a tree with low worst-case
stretch factor may be a hopeless task, since such a tree may not always exist. In particular, it
is clear that there are graphs of diameter D for which any spanning tree incurs a worst-case
stretch of f2 (D) for some pairs of nodes (the unit-weight cycle oftwo-D vertices is an example
for such a graph). It may therefore be useftd to look for trees that attempt to minimize the
average stretch factor over all graph edges, or even over all pairs of vertices in the graph. This
problem is referred to in [JLR] as the simple network design problem, and is shown therein to
be NP hard. Our result provides a method for constructing such a tree, which in some cases
may provide an attractive alternative to the standard shortest-path tree.

Let us comment that another viable alternative involves insisting on good bounds for the
worst-case stretch, at the cost of allowing cycles in the spanning structure. It is known that for
every graph there exist relatively sparse spanning subgraphs, termed spanners, guaranteeing
this property [ADDJ], [PS], [PU]. However, the use of a tree as our spanning structure may
sometimes be preferred due to its practical advantages, in terms of simplicity of the routing
and control processes, lower total channel costs, and so on.

2. Basic examples. In this section we consider the game on several example graphs. The
natural road networks that are not trees include cycles and grids. The solution of the game
for the grid is difficult; asymptotics will appear in 6. Here we content ourselves with easier
examples. A strategy for the edge player has value v if the minimum expected payoff for any
tree against it is v, and a strategy for the tree player has value v if the maximum expected payoff
against it for any edge is v; in other words, the value of a strategy is the payoff it ensures. The
min-max theorem guarantees optimal strategies with the same value. Note that if the game
has value v, then any choice given nonzero probability in the optimal strategy for one player
must have expected payoff exactly v against the optimal strategy for the other player.

EXAMPLE 2.1. The complete graph. Let G be the unweighted n-vertex simple complete
graph. If the edge player chooses uniformly among the edges, then selection of any tree

2 of payoff 0 and probability n2___2 of a positive payoff. The minimumwill have probability
positive payoff equals the length of the shortest cycle, which is 3. Therefore the expected
payoff is at least 3 .6 Equality holds only for the n-vertex stars, because other trees have
fundamental cycles of lengths exceeding 3. If the tree player chooses uniformly among the n
n-vertex stars, then any edge has probability 2 of payoff 0 and probability (n2) of payoff 3

guaranteeing payoff at most 3 6. Hence uniform edge selection and uniform star selection

are optimal strategies, and Val(G) 3 6. [-]
n

With arbitrary weights, the complete graph becomes rather complex. Therefore, let us
consider simpler graphs and introduce weights.

EXAMPLE 2.2. Cycles and multicycles. If G is the n cycle, let Ti be the tree omitting edge
i, and let wi be the weight on edge i, with W Zi ti. If the tree player assigns probability

1/3i
Pi - to Ti, then every edge has expected payoff If the edge player assigns probability
0/to edge then every tree has expected payoff Hence Val(G w)V

Now let G be the multigraph whose underlying simple graph is an n cycle, with G having
ni copies of edge i. Suppose that each copy of edge has weight wi, and let W Y wi.
Each tree consists of one copy of each of n edges. Let Ti denote the trees having no

1/)copy of edge i, and suppose these are chosen with equal probability totaling Pi. If Pi -,
as before, then the expected payoff for a copy of edge j is + 2(1 pj)(1 ) < 3

(as in a multigraph, two parallel edges form a cycle of length 2). Hence Val(G, w) < 3. In
fact, even for the unweighted case Val(G) can be arbitrarily close to 3 when n and {ni} are

appropriately chosen. In particular, if wi and ni m for all i, then when the edge player
chooses edges uniformly the expected payoff of any tree is + 2(1 )(1 ), so Val(G) >

2 2 2 [-]
nm
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FIG. 1. A portion ofthe twisted prism.

In order to obtain higher values of the game for unweighted graphs, it is apparent that
we need to have a substantial fraction of nontree edges, and that a large diameter will allow
some of those edges to generate a large cost. (In any case, a small diameter leads to a small
Val (G).) The cycle meets the second criterion but fails the first, which suggests the following
example.

EXAMPLE 2.3. Cycles with diagonals. Given n even, let G be the graph consisting
of an n cycle C together with the chords joining antipodal points on the cycle. We prove

4 6.2 < Val(G) < 3 , we do not have an exact solution for this graph. The upper bound
n edges on C and theis achieved as follows. Let T be a tree consisting of a path of

diagonals having one endpoint in the path. Ifthe tree player plays the n rotations of T with equal
2 n 2 6probability, then the expected payoff of an edge of C is 0. +4. + (7 + ). 3 ,
+ 2 This upper boundand the expected payoff of a diagonal is 0. (1 )+ (n/2+ 1). .

is not optimal, since in particular, the strategy of sticking to the edges of C (and choosing
them uniformly) does not guarantee a payoff greater than for the edge player.

The uniform edge strategy establishes the lower bound. A tree containing no diagonals
has expected payoff [n + ()( + 1)], which is quite large. (Indeed, such a tree is simply
the cycle C except one of its edges. The cost of this edge with respect to the tree is n and
the cost of each diagonal is n/2 + 1). For any other tree T, we claim there are at least two
edges of C not in T that complete fundamental cycles of length at least + 1. Therefore, the
expected cost of T is at least [( + 1)2 +4( 1)] 2- (since the cost of each nontree
edge is clearly at least 4.) To prove the claim, view G as a M6bius band or twisted ladder (see
Fig. 1); the cycle wraps around twice, and the diagonals become rungs of the ladder. Select a
diagonal edge e in T. Label the vertices u Un/2 counterclockwise from one end of e and
vl vn/2 counterclockwise from the other end. Let F be the component of T containing
e that is obtained from T by deleting either or both of U lVn/2 and vu/2 from T, if they are
present. Let [j] be the largest index such that ui F [vj F]. Then cost(T, Uibli+l)
cost(T, vjvj+) > 7 + 1, because the choice of implies that the path in T between ui and

n i}, and both ofui+l must contain at least one of {uk, vk} for each k in {i +
them for some k. This is similar for vj vj+.

EXAMPLE 2.4. Weighted cycle with diagonals. Consider the graph G given in Example
2.3, but suppose the edges of C have weight and the diagonals have weight w > 1. Assume
that n is an even multiple of k. Let Tk be a tree obtained by taking equally spaced diagonals,
growing a path of length [k_A1 clockwise and [__2 counterclockwise from each endpoint of
each diagonal taken, and adding cycle edges on one semicircle to connect these components.

nThe cost of a nontree cycle edge is 2k + 2w, except for two edges with cost + w. The total
cost of a set of k consecutive nontree diagonals is

2 [(k + 1t/2] [_(k + 11/2] 2(k 1) + [_-].2(k 1) + 2 + 2
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If the rotations of Tk are selected with equal probability, then the expected cost of an edge of
n 2k The expected cost of a diagonal (if k isC is [( + w)2 + (2k + 2w)( 1)] 2 - k n"

even) is 2 + 2wk k’l If we choose k , ,/-w, then we obtain Val(G, w) < 2.707 71

All of our examples here have values bounded by constants. However, it is relatively easy
to construct examples for which Val (G) f2 (log n). As is well known there are 4-regular
graphs on n vertices with girth c log n (cf. [Bo], pp. 107-109). For any tree, the n + nontree
edges each have cost at least c log n. Hence against the uniform edge strategy every tree
has expected cost at least ()log n. In 5, we will see that the N-vertex grid also has cost
(R) (log N).

3. An application: The k-server problem on an undirected network. Our game on
graphs first suggested itself in connection with the k-server problem, which was introduced
in [MaMcS1] and has been studied by many researchers. The problem is set in a metric space
M and involves the use of k servers to process a sequence of requests. At any stage in the
processing of the sequence of requests, each server is located at a point in M; the initial
locations of the servers are stipulated as part of the problem. Each request is specified by
a point r M. A request at r is processed by moving one of the servers from its present
location to r; the cost ofprocessing the request is the distance the server moves. A deterministic
on-line algorithm is a deterministic rule for deciding which server to move in response to a
request. The choice must be determined by the initial positions of the servers and the sequence
of requests up to the present request. It is because the choice is not allowed to depend on

knowledge of future requests that the algorithm is called on-line.
For any pair zr, p, where rr specifies the initial positions of the k servers and p specifies a

finite sequence of requests, and for any deterministic on-line algorithm A, let A (rr, p) denote
the cost that A incurs in processing the sequence of requests p, starting with the servers in
the initial positions :r. We may also associate with the pair r, p a real number OPT(r, p)
denoting the minimum possible cost of processing the request sequence p, starting with the
servers in the k-tuple r of initial positions; O PT(:r, p) can be viewed as the cost that would
be incurred by an optimal off-line algorithm that knew the entire request sequence, as well as
the initial positions of the servers, in advance, and thus could determine the least expensive
way of processing the entire request sequence.

Research on the k-server problem focuses on determining the factor in extra cost that a
deterministic on-line algorithm must pay because of the handicap of making its decisions on-
line, without knowing the future. This is formalized as follows. Let C be a positive constant.
The deterministic on-line algorithm A is called C-competitive if there exists a positive constant
a such that, for all pairs rr, p,

A(r, p) <_ C OPT(zr, p) + a.

In [MaMcSI] it is shown that for every positive integer k, every metric space M with at least
k + distinct points, and every C less than k, there does not exist a C-competitive deterministic
on-line algorithm. Thus, except in trivial cases, it is impossible to achieve a competitive factor
less than k. On the other hand, in [FiRaRa] it is shown that for every positive integer k and
every metric space M, there exists a C-competitive deterministic on-line algorithm for some
C, where C depends on k but not on the metric space. Thus a bounded competitive factor is
always achievable. Chrobak and Larmore [ChLa] consider a special type of metric space that
might be called a tree-like road network. Such a network consists of a tree T in which each
edge {u, v} is an interval of length w(u, v) between vertex u and vertex v. The metric space
consists of the union of all these intervals. The distance between two points x and y is just
the length of the unique simple path between x and y in the network. Chrobak and Larmore
show constructively that for any tree-like road network, and any number of servers k, there is
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a k-competitive deterministic on-line algorithm, matching the lower bound of k established in
[MaMcS1].

It is also possible to consider randomized on-line algorithms, in which the server to move
at each step is chosen by a random experiment which, of course, takes into account the initial
positions of the servers, the sequence of requests up to the present one, and the choices made
by the algorithm at previous steps. In the case of a randomized algorithm, the cost A (rr, p)
is a random variable. In defining the competitive factor achieved by a randomized on-line

algorithm, we view the request sequence as being specified by an adversary who is trying to
foil the algorithm. We distinguish between two types of adversaries: the oblivious adversary,
who specifies the entire sequence of requests in advance, and the adaptive adversary, who,
in specifying the next request, can take into account the algorithm’s responses to all previous
requests. In this paper we restrict attention to oblivious adversaries. The randomized algorithm
A is said to be C-competitive (against oblivious adversaries) if there exists a positive constant
a such that for every k-tuple zr of initial positions and every request sequence p,

E[A(rr, p)] < C COST(rr, p) + a,

where E denotes mathematical expectation. Several examples are known in which randomized
algorithms can achieve a smaller competitive factor than deterministic ones [BBKTW], [BLS],
[FKLMSY].

We consider the k-server problem on a class of metric spaces that generalize the tree-like
road networks of [ChLa]. Such a space is specified by a multigraph G in which each edge e

has a positive real weight w(e). The edge e {u, v} may be viewed as an interval of length
w(e) between vertices u and v. The metric space M(G, w) consists of the union of all these
intervals; the distance between two points x and y is just the length of the shortest path between
x and y; we shall sometimes refer to such a metric space as a road network.

The following theorem establishes a connection between our two-person game and the
k-server problem on a road network.

THEOREM 3.1. Let G be a multigraph and to a function assigning to each edge of G
a positive real weight to(e). Then for every k, there is a k(1 + Val(G, to))-competitive
randomized on-line algorithmfor the k-server problem on the road network M(G, w).

Proof. The algorithm is as follows.
Using an optimal mixed strategy for the tree player in the game defined by G and to,

select a spanning tree T in G.
Along each edge e not in T, choose uniformly a random point x(e), and place a
"roadblock" at x(e); more precisely, replace e {u, v} by two intervals [u, x (e)
and [x2(e), v], where x(e) and x2(v) are new points, distinct from all points in
the original metric space. The edge [u, Xl (e)] is of the same length as the interval
[u, x(e)], and the interval [x2(e), v] is of the same length as the interval [x(e), v].
This transformation converts the original road network to a tree-like road network
with the same set of points but a different distance function.
Process the request sequence by executing the (deterministic) Chrobak-Larmore
algorithm on this derived tree-like road network.

Let the random variable A (zr, p) denote the cost that the above randomized algorithm
incurs in processing the request sequence zr, starting from the initial server positions p. Let
0 PT (zr, p) denote the optimal off-line cost of processing p, starting from server positions
on the road network defined by multigraph G and weight function w. Let the random variable
0 P T’ (7r, p) denote the optimal off-line cost of processing p, starting from the server positions
zr, in the tree-like road network constructed by the algorithm. By the k-competitiveness of
the Chrobak-Larmore algorithm, A(zr, ,o) < k 0 PT’(r, ,o) + a. To complete the proof, we
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shall show that

() E[O PT’(re, p)] < (1 + Val(G, w))O PT(zr, p).

Suppose that the tree player has selected a spanning tree T of G and then for each nontree
edge e has placed a roadblock at a random point x (e). Consider a particular sequence ofmoves
on the original road network that processes the sequence of requests p starting from the initial
k tuple of server positions re at cost OPT(re, p). Let p PIP2... Pt. For 1, 2 t,
let x (i) be the index of the server that processes request i. Then it is possible to satisfy p on
the derived tree-like road network by having server x(i) process request Pi, for each i. The
server may not be able to follow the same path it would have followed on the original network,
because of the presence of roadblocks. However, the server can simulate the path it would
have followed on the original road network, except that whenever it encounters a roadblock
x(e), it traverses the unique path in the tree-like road network between Xl (e) and x2(e) in
order to get to the other side of the roadblock. The cost of each such detour is cycle(T, e),
the weight of the unique cycle formed by the edge e with the tree T.

We now compute the expected cost of all the detours, given that the tree player uses an
optimal mixed strategy. Let p(T) be the probability that the tree player chooses spanning tree
T. Let d (e) be the distance that servers travel along edge e in a particular sequence of moves
achieving cost O PT (re, p) in the original network; then

Z d(e) 0 PT(re, p).

Ifx (e) is a randomly chosen point along edge e, then the expected number of times that servers
d(e)cross the point x (e) is -7" Each crossing of the point x (e) requires a detour of cost 0 if e lies

in T and cycle(T, e) if e does not lie in T. Thus, the expected cost of detours associated with
the edge e is exactly d(e)cost(T, e), and the expected total cost of detours is

EE p(T)d(e)cost(T, e) 0 PT(re, p) ZZ p(T)q(e)cost(T, e),
T T

where

d(e)
q(e)

OPT(re, p)

But since the sequence of numbers {q(e)} constitutes a probability distribution, it follows
that the expected sum of detours is bounded above by O PT(re, ,o)Val(G, w), and hence (1)
follows.

COROLLARY 3.2. There is a 2k-competitive randomized algorithm on the circle.

Proof. This follows immediately from Example 2.2 (or even from its special case corre-
sponding to a cycle of two vertices).

Note that as shown in [FRRS] there is a deterministic O(k3)-competitive algorithm for
the circle.

4. An optimization problem related to the tree game. In this section we introduce a
natural optimization problem and show that it is closely related to our graph-theoretic game.
Let G be a connected multigraph with edge multiset E and let w be a function that assigns
to each edge e in G a positive weight w(e). Assume that the edge weights are normalized so
that the lightest edge has weight 1. For any spanning tree T of G, and any edge e of G, let
path(T, e) denote the weight of the path in T between the endpoints of e. Define

cost*(T, e) path(T, e)/w(e)
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Also, for every subset of edges E’, denote

cost* (T, E’) Z cost* (T, e).
eE’

Let S(G, w, T) cost*(T, E)/IEI. Let Sopt(G, to) min S(G, w, T), where T ranges
over all spanning trees of G. In the unweighted case, where w(e) for all e, we abbreviate
S(G, w, T) by S(G, T) and Sopt(G, to) by Sopt(G). We shall show that the problem of finding
a spanning tree that minimizes S(G, w, T) is closely related to the problem of finding optimal
strategies for the tree player and edge player in a variant of our tree game. In this new
game, the payoff to the edge player when the edge player chooses edge e and the tree player
chooses spanning tree T is cost*(T, e). Let the value of this game be denoted Val*(G, to).
In the unweighted case, we abbreviate Val*(G, w) by Val*(G). Then, since Icost(T, e)
cost*(T, e)l < for every edge e, IVal(G, w) Val*(G, w)[ < 1. Thus, our new game is
very closely related to the original one.

Let G, w be a weighted multigraph. The operation of replication of an edge e replaces
the edge e by one or more parallel edges of weight w(e) between the endpoints of e. Any
weighted multigraph created from G, w by a sequence of such operations is said to be obtained

from G, w by replication.
THEOREM 4.1. Val*(G, tO) SUPG,,w, Sopt(G’, tot), where G’, w’ ranges over all

weighted multigraphs obtainedfrom G, w by replication.
Proof. Recall that

Val*(G, w) max minZ p(T)q(e)cost*(T, e),
q p

T

where q ranges over probability distributions for the edge player, and p over probability
distributions for the tree player. For each fixed probability distribution q, T Ze p(T)q(e)
cost*(T, e) is minimized by a probability distribution p concentrated on one tree; this is an
instance of the general observation that if one of the players in a zero-sum two-person game
announces his mixed strategy, then the other player can play optimally by choosing a pure
strategy. It follows that

Val*(G, w) max minZ q(e)cost*(T, e).
q T

Now consider any weighted multigraph G’, w’ obtained from G, w by replication. Let d(e)
be the number of copies of edge e, and let q(e) be d(e)/(e d(e)). Then q is a probability
distribution, and

Sopt(G’, w’) nn q(e)cost*(T, e).

It follows that Sopt(G’, to’) <_ Val*(G, w). Conversely, let q be the probability distribution
for the edge player that maximizes min- Y’-e q(e)cost*(T, e). For any (large) integer M,
let Ga4, wa4 be obtained from G, w by making + [Mq(e)l copies of each edge e. Then
clearly, as M tends to infinity, Sopt(GM, toM) converges to Val*(G, w). The conclusion of
the theorem follows. [3

An edge-transitive graph is a graph G such that for any edges e, e’ in G there is an
automorphism o" in the automorphism group I"(G) such that cr takes the endpoints of e to
the endpoints of e’. In the case of an unweighted edge-transitive graph, we prove that the
optimization problem solves the game.

THEOREM 4.2. If G is edge-transitive, then Val*(G) Sopt(G).
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Proof If the edge player plays each edge with equal probability, the expected payoff is at
least Sopt(G) for any tree. Let T be a tree with S(G, T) Sopt(G) and let T be the collection
of images of T under the elements of 1-’(G). For each T’ 6 T, let the probability of playing
o’(T) be If’(a)l! times the number of automorphisms cr such that or(T) T’.

We claim that the expected payoff for this tree strategy is Sop (G) for every edge, which
completes the proof. Note that cost*(T, e) cost*(cr(T), or(e)). Also, Lagrange’s theorem
states that if a group (I-’(G)) acts on a set S (= E(G)), then the number of group elements
taking e 6 S to any member of its orbit (including to itself) is the same. Hence the expected
payoff for edge e is

,ocost*(tr(T)e)= t* -It--q1 cos (T, cr (el)

Sopt(G). [3

I1-’1 cost.(TIrl IEI e’

5. Upper and lower bounds for the tree game.

5.1. A lower bound. We begin with a lower bound on Val* (G).
THEOREM 5.1. There exists a positive constant c such thatfor all n, there exists an n-vertex

graph Gn such that Val*(Gn) > c Inn.
Proof The following is a known result in extremal graph theory (cf. [Bo], pp. 107-109):

There exists a positive constant a such that for all n there exists an n-vertex graph Gn with
2n edges such that every cycle in Gn is of length at least a Inn. Let T be any spanning
tree in G. Then, for any nontree edge e, cost*(T, e) > a Inn 1. Since more than half

t*(T, e) > l(a Inn 1).the edges are nontree edges, it follows that for every T,
Thus Sopt(G) > -l(alnn 1) and it follows from Theorem 4.1 that Val*(G) _>
-(a Inn 1)2

We next give a preliminary result showing that for bounding Val* (G) from above, it is
sufficient to consider multigraphs with at most n (n -I- 1) edges, counting multiplicities. (Note
that in the context of the k-server problem we are really interested only in graphs. However,
the construction technique employed in our proof makes it necessary to prove the result in the
more general setting of multigraphs.)

LEMMA 5.2. For every n-vertex multigraph G, w, there exists a multigraph G’, w’ on the
same set of vertices and at most n(n + 1) edges such that Sopt(G, to) <_ 2. Sopt(G’, ll)’).

Proof Let E be the edge multiset of G, and let Eset be the (maximal) set of distinct edges
in E, where two edges are considered distinct if they don’t have the same pair of endpoints.
(That is, Eset contains a single representative edge u v for every pair of vertices u and v that
are adjacent in G.) For each edge e 6 Eset, let d(e) be the number of copies of e in E, and
let w’ (e) be the lowest weight of a copy of e in G, w. Then the cardinality of E (i.e., the total
number of edges in G counting repetitions) is

d(e).
eEE

Consider a new multigraph G’ with the same set of distinct edges, but with each edge e

occurring r(e) times instead of d(e) times, where

d(e)lEsetl J(2) r(e) /
IEI

Then the cardinality of the edge multiset E’ of G’ satisfies

(3) IE’I r(e) < IE’e’l-F
eEE

IEsetl , d(e) 2lESetl.IEI eEset
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Since Eset contains at most one edge per pair of endpoints, including self-loops, it follows
that G’ has at most n(n + 1) edges, as required.

It remains to bound Sopt(at, 113’). Combining (2) and (3) we get

(4) r(e) >
d(e)lEsetl d(e)lE’l

IEI 21El

The multigraph G’ has a spanning tree T such that

(5) Sopt (G’, w’)
IE’I

r(e)cost* (T, e, w’)
E

with the notation cost* (T, e, u) denoting cost* defined with respect to a weight function u.

Using (4) and (5) and the choice of w’, we find that

Sopt(G’ to’)> d(e)cost*(T,e, w).
21El eEset

But since T is a spanning tree of G as well as G’, this last expression is at least Sopt (G, w)/2,
so Sopt(G, to) < 2Sopt(G’, to’).

5.2. An upper bound for unweighted graphs: outline. Before we state and prove
our upper bound for Sopt(G, tO) on general (weighted) graphs, it is instructive to sketch the
construction in the simpler setting of an unweighted graph.

Our construction is based on the concepts ofclusters and partitions. A cluster is a subset of
the vertices whose induced subgraph is connected. Apartition ofa given graph G (V, E) is a
collection of disjoint clusters whose union is V. The basic procedure used in the construction
is a variant of the clustering algorithm of [Aw]. The construction involves a parameter x
depending on n. This parameter is required to satisfy x(n) > and be monotone increasing
in n (with x(n) --+ cx), but its precise definition is left to be specified later. The output of the
procedure is a partition of the given graph into clusters with low radii (specifically, radii at most

y (n) O (x (n) In n)), with the additional property that "most" of the graph edges are internal
to clusters, and only a fraction of 1/x (n) of the edges connect endpoints in different clusters.
We refer to edges of these two types as "internal" and "intercluster" edges, respectively.

A spanning tree can be built on the basis of such a partition as follows. First, construct
a shortest-path spanning tree Tc (as defined earlier) for every cluster C in the partition. Note
that since the partition is composed of disjoint clusters, these spanning trees form a spanning
forest in the graph. Now connect the forest into a single tree by selecting a suitable tree of
intercluster edges.

This last step can be carried out recursively. Given the partition, create an auxiliary
multigraph by collapsing each cluster C into a single vertex vc, and including an edge
between two such vertices of G for each original edge connecting these clusters. (Here is why
it is useful to handle multigraphs in this algorithm, rather than simple graphs.) Next, apply
the same procedure recursively to (, and obtain a tree 7. The final tree T will consist of the
union of T and the trees Tc constructed for each cluster C.

Observe that internal edges will typically enjoy a lower cost than intercluster edges. This

is because the path connecting the endpoints of an edge uw internal to a cluster C in the final
tree T is the path connecting u and w on the tree Tc, and the partitioning algorithm guarantees
that C has a low radius. In contrast, for an intercluster edge u lu2, where u C1 and u2 C2,
the path connecting u and u2 in T is not simply the path connecting vc and vc2 in the tree
T. Rather, this path is expanded when retracting from G to G by replacing each vertex vc on
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it with an appropriate path segment on the internal tree Tc. This heavier cost for intercluster
edges is compensated for by the fact that these edges are only a Ix(n) fraction of the entire
edge set, and therefore their contribution to the average cost is controllable.

The cost analysis is carried along the following lines. Let f (n, m) be the maximum of
S(G, T) over all connected multigraphs G with up to n vertices and rn edges, where T is the
spanning tree of G constructed by the above algorithm. Then

f (n, m) < 2y(n) + x---" f (n, mix(n)). 5y(n)

This inequality can be explained as follows. The first term in the right-hand side of the
inequality denotes the contribution of the internal edges. This term is bounded above by
2y(n) since each cluster is of radius at most y(n). The second term denotes the contribution
of the intercluster edges. In this term, the factor 1/x(n) is an upper bound on the fraction of
intercluster edges. The number of edges in is at most rn/x(n), thus the expected cost of
an edge in G is at most f (n, rn/x (n)). Now consider an intercluster edge e u v, and let )7
be the path connecting its endpoints in , namely, 7 (e eq), where each ei uivi

is an intercluster edge connecting the vertices vci_ and vc, in , for _< _< q, and u 6 Co
and v Cq. The path 7 can be expanded in G to a path ?, connecting u and v, by taking the
following steps:

1. inserting between ei and ei+l a subpath of the tree spanning Ci, connecting vi and
vi+l(forl <i <q-l),

2. inserting a subpath of the tree spanning Co, connecting u and v, and
3. inserting a subpath of the tree spanning Cq, connecting Vq and v.

Each of these q + subpaths is of length at most 2y(n), namely, twice the radius of the
corresponding cluster. Therefore the total length of the resulting path ?’, for a given path 7 of
length q, is at most q + 2(q + 1)y(n). Thus each connecting path in G expands by a factor of at
most (q + 2(q + 1)y(n))/q <_ 5y(n) in G. This accounts for the factor f(n, m/x(n)). 5y(n)
in the second term.

Finally, using the above inequality and choosing x (n) optimally as exp(/ln n In In n), we
find that f(n) < exp(O(/lnn lnlnn)).

5.3. An upper bound for weighted graphs" outline. For understanding the weighted
case, it is convenient to think of the above algorithm as an iterative, rather than recursive one.
From this point of view, think of the main clustering procedure as a "machine," to which the
graph is "fed" for a number of iterations. In each iteration j > 1, the procedure constructs a

partition for the current graph Gj (where G is the original graph G), and then contracts the
clusters into single vertices, thus creating the graph Gj+I to be processed in the next iteration.
Each such iteration also reduces the number of "uncovered" edges by a factor of x, until all
edges are "covered." (An edge is covered if it is internal to some cluster we have already
constructed.)

Given this view of the partitioning process, one can analyze the radii of the clusters
constructed at each iteration j > (henceforth called "j clusters"). For that purpose, it
is instructive to review the partitioning process in more detail. The partitioning procedure
creates the clusters sequentially. Each cluster C is "grown" by starting at a single vertex, and
successively merging it with layers of neighbouring vertices. This merging process is stopped
once the number of outgoing edges of the current cluster C (namely, edges with one endpoint
in C and one outside C) is at most a 1/x(n) fraction of the number of internal edges (namely,
edges with both endpoints in C). As will be shown later on (in the formal proof for the
weighted case), this merging process is bound to halt after adding no more than, say, y(n)/3
layers. Hence each j cluster has radius at most y(n)/3 in the current graph Gj. However,
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in the original graph G, such j clusters have radius rj < yJ+ (n). This can be easily argued
by noting that when a j cluster is constructed, each merged layer increases the radius by an
additive factor of up to

(6) + 2rj_,

where the is contributed by the added edge, and the 2rj_ by the diameter of the (j 1)
cluster corresponding to the endpoint of that edge in Gj. The bound on rj follows inductively
since at most y(n)/3 layers are merged.

Let us next outline the modifications needed for handling the weighted case. The main
problem that needs to be overcome is that in this case, all edges cannot be treated alike, since
when growing a cluster, a single layer merging step will increase the radius of the resulting
cluster by the weight of the heaviest merged edge, rather than by just one, thus the radii of
constructed clusters cannot be controlled.

The algorithm thus needs to be modified as follows. It is necessary to break the set of
edges E into classes Ei, > 1, according to weights, with Ei containing all edges whose
weight is in the range [yi-1, yi) for an appropriately chosen parameter y y(n, x) (with x
a parameter to be determined in the same spirit as in the unweighted case). Intuitively, we
would like to handle the lighter edges first. (We may, and will, assume that the minimum
weight of an edge is 1.)

We now feed the classes Ei to the "machine" in a pipelined fashion, with overlaps. Namely,
in iteration only the edges of E are considered, in the next iteration E2 is added, and so on.
In general, the class Ei is taken into consideration for the first time in the th iteration, and is
processed for the next p O (In n ! In x) iterations, each reducing the number of unsatisfied
edges in it by a factor of x, until the entire set Ei is exhausted.

A crucial point that must be explained at this point is the role of the parameter y in the
construction. In the weighted case, this parameter has two different functions. The first is
similar to the one it had in the unweighted case, i.e., it is (more or less) the radius increase
bound for constructed clusters. That is, clusters constructed for the graph Gj in the jth iteration
will have at most radius y/3 in Gj. The second function of the parameter y is governing the
weight range of the edge classes.

The combination of these two functions implies that in the construction of new clusters
during a given iteration j, there is a balance between the contributions to the radius made by
previously constructed clusters and by new edges. This is what guarantees that cluster radii
are properly bounded in the original graph G as well. Specifically, the radius of a j cluster
(constructed in iteration j) is bounded by rj < yj+l. Formally, this can again be deduced
inductively, noting that when a j cluster is constructed, each merged layer increases the radius

by up to

(7) yJ + 2rj_ < 3yJ,

where (in analogy with (6)) the yJ is contributed by the added edge and the 2rj_ by the
diameter of the (j 1) cluster corresponding to the endpoint of that edge in Gj, and rj_ < yJ
follows by the inductive hypothesis. This, combined with the fact that at most y/3 layers are
added, yields the desired bound of r < yj+l by induction.

5.4. The upper bound for weighted graphs: formal proof. We are now ready to for-
mally state and prove the upper bound on Sopt.

THEOREM 5.3. There exists a constant c such thatfor n sufficiently large, every n-vertex

connected multigraph G and every weight function w satisfy Sopt(G, to) <
exp(cv/log n log log n).
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By Lemma 5.2, it suffices to prove the theorem for every n-vertex multigraph having at
most n (n + 1) edges in its edge multiset.

We shall use an iterative construction to obtain a suitable spanning tree of G. Again, the
construction involves a parameter < x < n depending on n, to be fixed later. Define

3 lnn
P= [lnx ]’ /z=9plnn, y=x/z.

Break the edge multiset E into subclasses El, for > 1, according to weights, defining

Ei {elw(e) [yi-1, yi)}.

(Recall that the edge weights are normalized to be greater than or equal to 1.)
As described above, the algorithm proceeds in iterations. In each iteration j we compute

some clusters in the graph Gj, and mark some of the edges as "covered." We then contract
the clusters into single nodes, thus preparing the multigraph Gj+I for the next iteration.

More precisely, let Eij, for i, j > 1, denote the multiset of edges from Ei that are still
uncovered at the beginning of iteration j. The purpose of the construction at iteration j is to
partition the vertex set into disjoint clusters such that

each cluster has a spanning tree of radius at most yj+l in G;
in every nonempty edge class El, <_ <_ j, the fraction of intercluster edges is at

most l/x; i.e., IE/+ll _< IEi
j I/x.

Note that this definition for the purpose of an iteration, and particularly, restricting the
second requirement to classes Ei for <_ j, implies that iteration j need only consider (and
process) edges from the edge multisets Ei for < j, i.e., edges of weight less than yJ, and may
ignore heavier edges. Avoiding heavier edges is crucial for guaranteeing the radius bound in
the first requirement, as discussed earlier.

We next present the procedure used for forming the partition in iteration j. This procedure
is a modified version of the clustering algorithm of [Aw]. The partition is constructed in a
"greedy" fashion by a sequence of stages, each stage building a single cluster. After each
stage, all the vertices of the graph that were included in the constructed cluster are eliminated
from the graph.

Consider the beginning of a stage and let K be a connected component of the subgraph
induced by the remaining vertices (i.e., the ones not yet included in any of the previously built
clusters). Choose arbitrarily a "root vertex" u in K. Stratify the vertices and edges of K into
layers according to their (unweighted) distance from u as follows. For each integer e > 0,
let V () be the set of vertices at (unweighted) distance e from u in K (where the unweighted
distance between two vertices is defined as the minimal number of edges in a path connecting
them). Also let E/(e) be the set of edges of E/ that join a vertex in V (e) with a vertex in
V () to V (e 1). Let * be the least g such that

(,) 1 <_i <_j, [E/(e+I)[_<-[E/(1)UE/(2)t0...t0
x

Note that such g always exists. The resulting cluster is the vertex set V (1) to V (2) t3. tO V (g*).
The vertices of this cluster are now eliminated from the graph, and the next stage is started.
This process of cluster generation continues until the graph is exhausted (i.e., all vertices are
assigned to clusters).

Let x (n) be a function of n that will be specified later. The spanning tree T in an n-vertex
multigraph G is constructed as follows:
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Set j= landGj=G.
Set x x(n), p,/z, y, and the edge classes El, as defined above.
While L_Ji Ei E I do the following:

1. Partition the vertex set of Gj into clusters as described above.
2. Construct a shortest-path spanning tree Tc in each cluster C of Gj.
3. Add each edge e of each of the constructed trees to the output tree T.
4. Construct the next multigraph Gj+I by contracting each cluster C into a single

vertex vc, discarding internal edges from L.Ji Ei, and replacing each intercluster
edge uu2, for ul 6 C and u2 6 C2, by a new edge connecting the correspond-
ing contracted vertices vc, and Vc2.

5. Setj=j4-1.
In order to analyze the output of our algorithm, we first bound the number of layers

added to a cluster during the clustering process in some iteration j. This growth is bounded
by showing that in iteration j, the only sets E{ considered by the algorithm (i.e., the only
nonempty ones) are those satisfying j p < < j.

LEMMA 5.4. lEVI _< IEil/xj-i for every < < j.

Proof The claim follows from the fact that IE/ll < IE I/x for every < < j.
To see this, note that by definition of the cluster construction proces.s, each time a cluster is
constructed in a connected component K, the number of edges of E[ connecting that cluster

to the vertices of K not selected for inclusion is at most 2 times the number of edges of

included in the cluster. Thus, in the entire graph the number of edges of E/joining vertices

in different clusters (constituting E{+) is at most times
The above lemma enables us to bound the (weighted) radius of clusters generated during

the execution.
LEMMA 5.5. In iteration j, the radius ofeach cluster in G is bounded above by yj+l.
Proof Let Bj denote the number of layers e* merged into any cluster in iteration j. We

first prove that Bj is bounded above by

(8) Bj < y/3 3pxlnn.

i+pTo see this, note that by Lemma 5.4, [E 0 for every > 1, which implies that the
augmentation rule (.) governing the addition of layers to the cluster need only consider edges
from classes EJi for j p + < _< j. Each additional layer e implies that some set E{ (e)
fails to satisfy this condition. Namely, for all such that < < e*, at least one such that
j-p + < < j satisfies

IE/(e)l > -IE/(1) E/(2)v... u E/(e l)I.
X

Thus

Since there are at most p possible values of i, by the pigeonhole principle it follows that for
*, there exists at least one such that caused the addition of a layer for at least [e*/p] times.
This satisfies

EI (1) tJ Ei (2) V... U EJi (e*)l >_ +

Since the number ofedges in the multigraph is at most n (n 4-1), it follows that, for n sufficiently
large, t.*/p < 3x In n, so (8) is proved.
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We now prove the main claim of the lemma, i.e., the bound on the radius of a cluster
created in the jth iteration by induction on j. In order to analyze all iterations together
(including also iteration 1), hypothesize iteration 0 as the one that yielded the initial graph
G, with each vertex representing a cluster of radius 0 (thus trivially satisfying the inductive
claim). Now for j > 1, suppose the claim holds up to j 1, and consider the jth iteration. At
the beginning of the iteration, every vertex of the multigraph represents a cluster of radius up
to yJ, by the inductive hypothesis. Also, every edge considered in iteration j is of length up to
yJ. Hence in constructing a cluster, each additional layer contributes up to 3y to the radius.
By inequality (8) above, the final radius is at most 3y y/3 yJ+, as required.

Using the above result we can bound the costs incurred by the edges, obtaining the
following.

LEMMA 5.6. cost*(T, E) < 4X2lZP+lEI.
Proof Let H/j denote the set of edges from Ei that were covered during iteration j, i.e.,

We first claim that for every edge e 6 HI,

(9) cost* (T, e)
path(T, e)

< 2yj-i+2
w(e)

To see this, note that since e is covered during iteration j, by the previous lemma
path(T, e) < 2yj+, while on the other hand, e 6 Ei implies w(e) > yi-1.

By Lemma 5.4,

(10) In/I _< IE{I < IEil/xj-i.

It follows from inequalities (9) and (10) that for every < < j,

(11) cost*(T, HI) < 2x2#j-i+2lEi I.

Summing these costs over < j < + p 1, we get that

i+p-1

cost*(T, Ei) < E cost*(T, HI) <_ 4x2#p+llEi
j=i

for every > 1. Summing the costs over all weight classes we get

cost*(T, E) E cost*(T, El) <_ 4xZ/zo+llEI,
i=1

and the lemma follows. q

It follows that the average spanning factor of the constructed tree T is bounded above by

inn

S(Gw T) < 4x2#p+l < 4x2(271n2n) 1+’ --x]lnx
Selecting x exP(v/lognloglogn optimizes this bound on S(G,w,T) as

S(G, w, T) < exp(O(v/lognloglogn)). This completes the proof of Theorem 5.3. [3

COROLLARY 5.7. There exists a constant c such thatfor n sufficiently large, every n vertex
connected multigraph G, w satisfies Val*(G, w) < exp(cv/log n log logn).
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Proof. By Theorem 4.1, Val*(G, w) max6,,w, Sopt(G’, to’), where G’, w’ ranges over
all the weighted multigraphs obtained from G, to by replication. The claim thus follows from
Theorem 5.3. Fl

We observe that the tree construction algorithm as described above can be used within
a procedure (based on the ellipsoid algorithm) for implementing the first step in the online
k-server algorithm of Theorem 3.1, yielding a polynomial-time algorithm for the problem;
i.e., the optimal strategy for the tree player can, in fact, be efficiently approximated.

li. Grids and hypercubes. In this section, we discuss the value of the game on un-
weighted grids and hypercubes.

ti.1. Upper bounds for d-dimensional grids. We consider the d-dimensional grid Gn,a
that is the Cartesian product of d n-vertex paths and has N na vertices. Formally, the vertex
set of Gn,d consists of all vectors of length d whose coordinates are in n }. The grid
contains an edge u v if the vectors u and v differ in exactly one coordinate where their values
differ by exactly 1.

A hypercube is edge-transitive, so Val*(G2,d) Sopt(G2,d). For G,2, the value of the
game can be approximated by the optimal tree. To see this, note that the n by n discrete torus
is edge-transitive. Any tree in the grid G is also a tree in the torus G’. If we choose a tree T

1) + c. On the other hand,in G with diameter less than cn, then S(G’, T) < S(G, T)(1
Val*(G’) > Val*(G), because the edge player on the torus has the option of playing only
edges in the grid. The upper bound we obtain is independent of d.

THEOREM 6.1. For the d-dimensional grid Gn,d with N na vertices, Sopt(Gn,d) <
2 log N.

Proof. Suppose n 2k. For the upper bound, we construct a tree Tk in Gn,a of diameter

&, < (2d- 1)(2k- 1) (2d- 1)(n- 1)

such that S(G,,,d, T) < 2d log n 2 log N. Partition the vertices of Gn,d into 2d subsets
inducing copies of Gn/2,d. There is a unique d cube Q consisting of one vertex from each
of these subsets. Form T by using a copy of Tk_ in each of the 2’* subsets and a spanning
tree of diameter 2d in Q (a breadth-first search tree from any vertex will do). Figure 2
illustrates the construction for G8,2. We have d _< (2d 1) + 2dk_, with do 0. Hence

N’ n)dd < (2d- 1)(2- 1). Note that Gn,d has dnd- (n l) dN(1 ) edges let (7
Also, the number of nontree edges that join the copies of Gn/2,d is dnd-1 (2d 1). We thus
have

S(Gn,d, Tk) <
2d.dN’ S(Gn/2,d Tk-l )+(dnd-1-2 + 1) (d+

J < S(Gn/2,d Tk-1) -I-(dk+!) < S(Gn/2,d, Tk-1) -[- 2dnl

Hence S(G,,d, Tk) < 2dk. 71

For the interesting special case of the hypercube Qd G2,d, which is edge-transitive, we
have a slightly better construction. This construction improves on the general case only by
roughly a factor of four, but it is still of interest, since it is conjectured to be optimal.

THEOREM 6.2. Val*(Od) Sopt(Od) <_ (d q- 1)/2.
Proof Equality holds for d 1, 2, with no choice of tree. For d > 2, construct a tree

Td by taking the optimal d 1-dimensional tree T* in copy A of Qd- and adding all edges
between this and the other copy of Qd-. The edges in copy A have the same cost* as before,
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FI6. 2. A spanning tree in G8,2.

and those between the copies have cost* 1. Each edge e in copy B corresponding to an
edge e’ in copy A has cost* (Te, e) cost* (T*, e’) + 2. We have

Sopt(Qd) < S(Qe, Te)

(d2e_l) ((d 1)2e-2(2 Sopt(Qd-1) + 2) + 2d-1

Hence Sopt(Qd) < dl Sopt(Qd-1) + 1, implying the claim inductively.
We believe that the general construction described above is essentially optimal for large n,

with Sopt (G,,d) 21g N +o(lg N). In the following sections we prove only that Sopt (G?/,e) >_
c log N for some constant c.

6.2. Lower bounds for two-dimensional grids. For clarity, it is useful to first present
the lower bound for the case of d 2, showing Sopt(Gn,2) >_ clg n + o(lg n). For this we
need several preliminary results.

LEMMA 6.3. IfA is a set ofat least 0/2 vertices in Gn,2, where ]A] <_ , then there are at
least 0/rows that A intersects but does notfill or at least 0/columns that A intersects but does
notfill.

Proof. Suppose A intersects r rows and s columns, with r >_ s. Then rs >_ a2 implies
r > 0/, and the result holds for A unless A fills at least one row. If A does fill a row then
n s _< r. Thus A intersects every row and every column. Now our goal is to prove that
there are at least 0/rows that A does not fill or at least 0/columns that A does not fill. For this
not to happen means that A fills more than n 0/rows and more than n 0/columns. This

?/2requires that A has more than n2 0/2 vertices, which is impossible if 0/2 _< [AI _< -. [3

LEMMA 6.4. IfA is a set ofat least 0/2 vertices in G?/,2, where AI < -, and B is a set of
at mostfour vertices in A, then there are at least -ff vertices in A that have neighbors outside
A and have distance at least from each vertex of B.

Proof. The preceding lemma guarantees a set C of at least 0/vertices in A that are in
distinct rows (or distinct columns) and have neighbors outside A. Since these are in distinct
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rows, a vertex of B can be within distance 6 of at most vertices in C. When we delete from
vertices remain.C the vertices that are too close to B, at least 7

nLEMMA 6.5. If T is a spanning tree of Gn.2 and < t < , then there are at least
edges e such that path(T, e) >

Proof. Since the grid has maximum degree 4, every subtree on rn > vertices in it (not
necessarily spanning) has an edge whose deletion separates it into two smaller subtrees, each
having at least m.____l >_. rn/8 of its vertices. Begin with T and successively delete edges from
the biggest remaining component, always splitting that component as evenly as possible. Do
this until edges have been deleted and the number of pieces is ]. On the average,
the pieces have about 8or2 vertices, with the smallest piece having at least c2 vertices. To see
this, note that at every stage, the largest piece has at most 8 times as many vertices as the

of the old largestsmallest piece, because whenever there is a new smallest size it is at least
size. Minimizing xl subject to xi <_ < Xm <_ 8Xl and X M yields xl 8m-3’
achieved when all the other variables are 8 times the smallest. Note also that the largest piece
must have fewer than half the vertices as soon as more than 16 pieces are requested.

Since each deleted edge of T is incident to two pieces, the average number of deleted
edges incident with a piece is less than 2. Hence at least half the pieces are incident with at
most four deleted edges. (Since otherwise the number of deleted edges would be too large.)
If A is the set of vertices of such a piece, let B be the vertices in A incident to these deleted
edges. By the preceding lemma, A has at least vertices having neighbors outside A whose
distance from each vertex of B is at least 6" The edges leaving A from these vertices do not
belong to T, since the only edges of T leaving A are incident to vertices of B. For any such
edge e, we have path(T, e) > 6, since the path in T between the ends of e must contain a
path in the piece of T induced by A from e to one of the vertices in B. Harvesting at least
endpoints of such edges from each of at least pieces of T (i.e., those pieces incident with

/12at most 4 deleted edges), yields at least such edges, since we might have counted each
for any edge we have counted twice, but we are notedge twice. (Of course, path(T e) > -trying to optimize the constants here.)

We are now ready to prove our lower bound.
THEOREM 6.6. Sopt(Gn,2) >_ 2-48 Inn O(1).
Proof. Given an arbitrary spanning tree T of Gn,2, the preceding lemma guarantees at least

/,/2
32---d edges with cost* at least 6 for any ot _< 6" We now choose an edge e at random, defining
a random variable X by X cost*(T, e). We seek a lower bound on E[X], the average cost*
of an edge, since Sop (Gn,2) E[X]. We rise the fact that, for a discrete random variable X

n letattaining nonnegative integer values, we have E[X] Yk>_ Prob(X > k) For k < 2-,
ot 16k. Then

n2

Prob(X > k) > >
1024k 2n (n 1) 2048

We thus obtain

[n/256J

1 > lnn O(1).E[X]>
2048 k 2048

6.3. Lower bounds for d-dimensional grids. More generally, we prove that Theorem
6.1 is optimal, up to a constant factor, for all n, d > 2.

THEOREM 6.7. There exists an absolute constant c > 0 such that for every n, d > 2,
Sopt(Gn,d) > cdlogn clogN.
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The proof of Theorem 6.7 requires several preparations. We prove it for, say, c 10-l.
(We note that we make no attempt to optimize the constants here and in the rest of the proof.)
Clearly, with this value of c, if both n and d do not exceed 105 there is nothing to prove and
hence we may assume that at least one of them does exceed 105, i.e.,

(12) max{n, d} > 105.

Suppose n, d > 2 and let G Gn.d (V, E). Denote M {1, 2 n}. Recall that
the vertices of G are naturally represented by all vectors of length d whose coordinates are
in M. If u v is an edge of G, where u, v 6 V, we say that the direction of the edge uv is
if is the unique coordinate in which u and v differ. In the course of the proof we need to
consider vectors whose coordinates except one are all determined. It is convenient to denote
a nondetermined coordinate by the symbol .. Thus, for a subset A C V and for a vector
v (v vd) with vi * and vj M for all j :fi i, we say that A intersects the vector
v if there is a u 6 A such that u coincides with v on all the coordinates but the th (i.e., the
projection of u on {1 d} \ {i} is equal to that of v). We say that A properly intersects v
if A intersects v and also its complement V \ A intersects v. Note that in this case there is at
least one edge uw of G in direction which joins a vertex u of A with a vertex w of V \ A,
with the property that both u and w coincide with v on all coordinates but the ith.

We need the following lemma, proved in [CFGS]. (The proof in [CFGS] is given only
for the case n 2, but the same proof works for all integers n. See also [A1].)

LEMMA 6.8 [CFGS]. Let D {1 d} be a finite set and let B1 Bm be subsets of
D such that each element ofD belongs to at least k ofthe sets Bi. Let ;F be afamily ofvectors
oflength d whose coordinates, indexed by the elements ofD, lie in M n }. For each
i, < < m, let i denote the set of all projections of the vectors in " on Bi. Then

Returning to the graph G (V, E) we now prove the following lemma.
LEMMA 6.9. Suppose A C V, IA[ xd, where x > is not necessarily an integer. Let

Ai denote the set of all vectors v such that A intersects v, where vi * and vj M for all
j :fi i. Let A’ denote the set ofall vectors v as above such that A properly intersects v. Then

d

IAil dx-i=1

and
d

IAII dxd-(1 -x/n).
i=1

Proof. Apply Lemma 6.8 to the grid Gn,d (V, E), where D is the set of d coordinates
in the vectors of V. Specifically, set f A, m d, k d and Bi D \ {i }. Clearly in
this case I/I IAil and hence, by the lemma

X
d(d-1) ---IA[d-1 <_ i IAil <_ - "=

IAil

This implies the first part of Lemma 6.9.
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To prove the second part, observe that since IAI xa, A cannot intersect without properly
intersecting more than xa/n vectors v whose ith coordinate is .. Thus IAII > IAil xa/n
for all i, and summation over < < d completes the proof of the lemma. [3

Let v be a vertex of G, let y be a positive real, and suppose 6 D 1 d}. Let
S denote the set of all vertices of G whose distance from v is less than y(d 1) and let Si
denote the set of projections of the members of S on D \ {i }. Denote by L (y, d) the maximum
possible cardinality of Si where the maximum is taken over all possible choices of v and i.

LEMMA 6.10. For all y > 0

(13) d) < 2Min{d-l’y(d-1)}(d- 1+ (d- 1)y).L(y,
\ d-1 /

Therefore, for all y > 1,

L(y, d) <__ (2e(y + 1))d-1

andfor all y <

L(y, d) <_ (2e2) (d-1)y

where e 2.71828... is the basis ofthe natural logarithm.
Proof Suppose v (vl va) and let F be a set of vertices of G whose distance from

v is at most y(d 1). Suppose, further, that no two members of F have the same projection
on D \ {i }. Clearly, it suffices to show that the cardinality of F is at most the right-hand side
of (13). If u (u ua) is a member of F then, for each j :fi i,/,/j l)j -- 6j, where

ffji IjI < y(d 1). The number of ways to choose the signs of all the ej-s which are not 0
is at most 2min{d-l’y(d-1)}, since there are at most min{d 1, y(d 1)} such ej. The number of
ways to choose the absolute values of the ejs is less than the number of ways to write y(d 1)
as an ordered sum of d nonnegative integers (the first d of which will serve as our numbers
?j), and this is precisely the binomial coefficient (d-lS(dl-1)Y)._ This completes the proof of

(13). The other two estimates follow from this one by using the fact that () < (ea/b)b for all
integers a and b and the fact that (1 + lz)Y e. [3

We can now return to the proof of Theorem 6.7. Let T be a spanning tree of G Gn,a.
3Let x be a real number, 1.5 < x < n. By deleting edges of T we can break it into connected

xcomponents each containing at most xd and at least vertices. (This is possible since the
maximum degree of a vertex of G (and hence of a vertex of T) is at most 2d, and thus if
we repeatedly split T into connected components by always splitting the biggest remaining
component as evenly as possible we will never have two components the ratio between the
sizes of which exceeds 4d.) It follows that the number of connected components, and hence

4dnthe number of deleted edges of T, does not exceed ---. Let U denote the set of all end vertices

of these deleted edges. Then UI < 8dn
Xd

Let xj denote the positive dth root of the number of vertices in the jth connected compo-
nent, (1 < j < t). Since xj < x < 0.75n for each j, Lemma 6.9 implies that the total number
of edges of G emanating from the jth connected component to vertices in other components

d-1is at least dxi Observe that if y is a real positive number and if an endpoint of such an
edge is at distance at least y(d 1) from all the vertices in U that lie in the same connected
component as that endpoint then the length of the elementary cycle corresponding to this edge
is greater than y (d 1). This is because the elementary cycle has to contain a vertex in U. We
next obtain a lower bound for the number of such edges. Let us fix a direction and consider
only edges in direction i. If we let A denote the set of vertices of the jth component Cj and
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use the notation of Lemma 6.9, we conclude that there are at least IAII vertices in Cj whose
projections on D \ {i} are pairwise different, such that from each such vertex there is an edge
in direction emanating to another connected component. By the definition of L (y, d), each
vertex of U can be at distance less than y(d 1) from no more than L(y, d) such vertices.
Summing over all connected components and over all d directions we conclude that the num-
ber of edges that join distinct components whose elementary cycles have length that exceeds
y(d 1) is at least

-l dxJ-1 IUIdL(y
2j=l

Since Igl 8dn’/x and since the minimum possible value of E}:I xJ-1 subject to the
a-I nd/x obtain the followingconstraint that x > xj 0 and )--1X nd is 7x we

lemma.
LEMMA 6.11. For each spanning tree T in G Gn,d andfor each real x, 1.5 < x _<_ 0.75n

andpositive real y, the numberofedges ofG whose elementary cycles have length that exceeds
y(d 1) is at least

nddnd
L(y, d)8d2

8x xd"

We can now prove Theorem 6.7. For technical reasons it is convenient to consider three
possible cases, depending on the values of the parameters n and d.

Case I. n < 80.
In this cased > 105 by (12). Putx 1.5, y 1/20. By Lemma 6.10, L(y,d) <

(2e2)’5(a-1) < 1.2a-1. Hence (since x 1.5)

nd (12)
d-1

L(y, d)8d2-2 < ]- 8d
dnd dnd

x 16x

Therefore, by Lemma 6.11 there are at least dnd dnd edges whose cycles have length16x 24

that exceeds (d 1), and since the total number of edges is dnd- (n 1) < dn’ and the

tree T was arbitrary we conclude that in this case Sopt(G,,,d) > -ff-6(d 1) > cd log n, as
needed.

Case II. d < 20.
In this case, which requires a little more work, n >_ 105, by (12). For each real x satisfying

3
(14) 1600 < x < -7n,

xd-Idefine y x/1600. By Lemma 6.10, L(y, d) < (2e(y + 1))’- < i60d. and hence

nd 8d dnd dnd
L(y, d)8d2xd < <

160d-1 x lOx’

where here we applied the fact that d > 2.
It follows from Lemma 6.11 that at least a fraction 1/(40x) of the edges have cycles of

length more than x(d 1)! 1600, for each x satisfying (14). Therefore, if X is the random
variable defined on the edges f of our graph G by letting X(f) be the length of the elementary
cycle of f divided by d- 1, it follows that for each x satisfying (14), the probability Prob(X >

x/1600) is at least / (40x). Therefore, by defining z x/1600 we conclude that for each
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integer z satisfying < z < 6--n, Prob(X > z) > 1/(64000z). Thus the expectation of X
is at least

/3n/6400J [3n/6400J

Prob(X > z) > > 10-61Ogn.
z=l z=l 64000z

The average cost of an edge with respect to the tree T is d times the expectation of X and
hence we conclude that in this case Sopt(Gn,d) > 10-6(d 1) logn > cdlogn, as required.

Case III. n > 80 and d > 20.
X Xd-IFor each real x, 30 < x < 0.75n define ybyy+ . By Lemma 6.10, L(y,d) < :

and hence

nd 8d dnd dnd
L(y d) . .8d2

xd 2d-1 x 16x

Therefore, by Lemma 6.11, for every x, 30 < x < 0.75n, with probability at least 1/(16x),
the random variable X defined in the previous case exceeds (x 4e)/(4e). As before (by
letting z F(x 4e)/4e] take integer values) it follows that the expectation of this random
variable is at least

[3n/(16e)-l]

E 64e(z 4- 1)
> 10-6 log n,

z>[30/(4e)-l]

and this implies that in this case too Sopt (Gn,d) > cd log n and completes the proof ofTheorem
6.7.
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FINDING k CUTS WITHIN TWICE THE OPTIMAL*

HUZUR SARAN AND VIJAY V. VAZIRANI

Abstract. Two simple approximation algorithms for the minimum k-cut problem are presented. Each algorithm
finds a k cut having weight within a factor of (2 2/k) of the optimal. One algorithm is particularly efficient--it
requires a total of only n maximum flow computations for finding a set of near-optimal k cuts, one for each value
of k between 2 and n.

Key words, graph partitioning, minimum cuts, approximation algorithms

AMS subject classifications. 68Q20, 68Q25

1. Introduction. The minimum k-cut problem is as follows: Given an undirected graph
G (V, E) with nonnegative edge weights and a positive integer k, find a set S c__ E
of minimum weight whose removal leaves k connected components. This problem is of
considerable practical significance, especially in the area ofVLSI design. Solving this problem
exactly is NP hard [GH], but no efficient approximation algorithms were known for it.

In this paper we give two simple algorithms for finding k cuts. We prove a performance
guarantee of (2 2/k) for each algorithm; however, neither algorithm dominates the other
in all instances. One of our algorithms is particularly fast; it requires only n max flow
computations, using the classic result of [GoHu]. In fact, within the same running time, this
algorithm finds near-optimal k cuts for each k, 2 < k < n. We also give a family of graphs
that show that the bound of (2 2/k) is tight for each algorithm. The problem of achieving
a factor of (2 e), for some fixed e > 0, independent of k, seems to be difficult, and may
possibly be intractable.

The minimum k-cut problem and its variants have been extensively studied in the past. For
fixed k, polynomial time algorithms for solving the problem exactly have been discovered by
[DJPSY] for planar graphs and by [GH] for arbitrary graphs. These algorithms have running
times of O(nC’), for some constant c, and O (n’), respectively. More efficient algorithms for
the case of planar graphs and k 3 are given in [He] and [HS]. Polynomial time algorithms
have also been developed for several variants [Ch], [Cu], and [Gu].

In [DJPSY], the complexity of multiway cuts is studied: Given an edge-weighted undi-
rected graph with k specified vertices, find a minimum weight k cut that separates these
vertices. They show that this problem is NP hard even when k is fixed, for k > 3. They
also give an approximation algorithm that finds a solution within a factor of (2 2/k) of the
optimal, using k max-flow computations. Using their algorithm as a subroutine one can get a
(2- 2/k) approximation algorithm for our problem; however this will require () calls and
is therefore not polynomial time in case k is not fixed.

We shall first present the more efficient algorithm, which we call EFFICIENT. The other
algorithm is called SPLIT. We will actually establish the (2 2/k) performance guarantee for
a slight variant of EFFICIENT. The weight of the k cut found by this variant dominates the
k cuts found by both EFFICIENT and SPLIT. Finally, we report on some preliminary results
obtained by applying these techniques to the balanced graph partitioning problem.

2. Algorithm EFFICIENT. Let G (V, E) be a connected undirected graph and let
wt E -- Z+ be an assignment of weights to the edges of G. We will extend the function wt
to subsets of E in the obvious manner. A partition (V’, V V’) of V specifies a cut; the cut
consists of all edges, S, that have one endpoint in each partition. We will denote a cut by the

*Received by the editors August 7, 1992; accepted for publication (in revised form) May 28, 1993.
Department of Computer Science and Engineering, Indian Institute of Technology, New Delhi-110016, India.
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set of its edges, S, and will define its weight to be wt (S). For any set S

___
E, we will denote

the number of connected components of the graph G’ (V, E S) by comps(S).
We will first find a k cut for a specified k. Our algorithm is based on the following greedy

strategy" It keeps picking cuts until their union is a k cut and in each iteration it picks the
lightest cut; in the original graph, that creates additional components.

Algorithm EFFICIENT:
i. For each edge e, pick a minimum weight cut, say, s that

separates the endpoints of e.
2. Sort these cuts by increasing weight, obtaining the list

S1, Sm
3. Greedily pick cuts from this list until their union is

a k cut; cut si is picked only if it is not contained in

SI to’’" to Si-1
(Note: in case the algorithm ends with a cut B such that comps(B) > k, we can easily

remove edges from B to get a cut B’ such that comps(B’) k.)

Notice that since edge e is in Se, s to to S E, and so this must be an n cut.
Therefore, the algorithm will certainly succeed in finding a k cut.

Let b bt be the successive cuts picked by the algorithm. In the next lemma we show
that with each cut picked we increase the number of components created, and hence the total
number of cuts picked is at most k 1.

LEMMA 2.1. For each i, < < 1, comps(b1 to... 13 bi+l) > comps(b 13... to bi).
Proof Because of the manner in which EFFICIENT picks cuts, bi+l (bl to I._) bi).

Let (u, v) be an edge in bi+l (bl 13... to bi). Clearly, u and v are in the same component in
the graph obtained by removing the edges of b 13 t3 bi from G, and they are in different
components in the graph obtained by removing b tO... to bi+l from G. Hence, the latter graph
has more components. [3

COROLLARY 2.2. The number ofcuts picked, l, is at most k 1.
Notice that at each step we are indeed picking the lightest cut that creates additional

components: among all edges that lie within connected components, we choose the edge
whose endpoints can be disconnected with the lightest of the cuts from the original graph.

The complexity of our algorithm is dominated by the time taken to find cuts s Sm.
This can clearly be done with rn max flow computations. A more efficient implementation is
obtained by using Gomory-Hu cuts. Gomory and Hu [GoHu] show that there is a set of n
cuts in G such that for each pair of vertices, u, v V, the set contains a minimum weight cut

separating u and v; moreover, they show how to find such a set using only n max flow
computations. The cuts s Sm can clearly be obtained from such a set of n cuts.

Incorporating all this, we get a particularly simple description of our algorithm. First,
notice that step 3 is equivalent to

3’. Find the minimum such that
comps(sl 13... 13 si) > k. Output the k cut Sl 13... to si.

Next, observe that when implemented with Gomory-Hu cuts, Algorithm EFFICIENT
essentially boils down to the following:

i. Find a set of Gomory-Hu cuts in G.
2. Sort these cuts by increasing weight, obtaining the list

g gn-1.

3. Find the minimum such that comps(gl to... U gi) >_ k.

The algorithm extends in a straightforward manner to obtaining near-optimal k cuts for
each k, 2 < k < n, with the same set of Gomory-Hu cuts.
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3. Performance guarantee for EFFICIENT. In this section we shall prove the next
theorem.

THEOREM 3.1. Algorithm EFFICIENTfinds a k cut having weight within a factor of
(2 2/ k) ofthe optimal.

Let bl b be the successive cuts found by Algorithm EFFICIENT; B bl t3... t_J bt.
Central to our proof is a special property of these cuts with respect to an enumeration of all cuts
in G. Let cl, c: be such an enumeration, sorted by increasing weight, such that bl bl
appear in this order in the enumeration. Such an enumeration will be said to be consistent
with the cuts b b. For any cut c in G, index(c) is its index in this enumeration.

The union property. Let s Sp be a set of cuts in G, sorted by increasing weight. Pick
any enumeration of all cuts in G, cl, c: that is consistent with sl Sp. We will say that
Sl Sp satisfy the union property if, intuitively, w.r.t, any such enumeration, the union of
the cuts in any initial segment of cl, c2 is equal to the union of all cuts sj contained in this
initial segment. More formally, pick any consistent enumeration of all cuts in G, let be any
index, < < index(sp), and let Sq be the last cut in the sorted order having index at most i.
Then, cl U ci sl t.) Sq.

LEMMA 3.2. The cuts bl bl satisfy the union property.

Proof. Suppose the cuts do not satisfy the union property. Then there is an enumeration
of all cuts in G, c, c: that is consistent with bl bl, and yet there is an index i,
< index(bt), such that

where bq is the last cut on our list having index at most i. The smallest such index will
be referred to as the point of discrepancy. Let us fix an enumeration for which the point of
discrepancy is maximum. Clearly, the point of discrepancy will have index less than index(b).

Let bq+l be the next cut picked by our algorithm, and let index(bq+l) j. Because of the
manner in which we fixed the enumeration, wt(cj) > wt(ci) (otherwise we could interchange
ci and cj, and obtain an enumeration in which discrepancy occurs at a larger index).

Clearly, bq ci and c U U ci- b U bq. Let e 6 ci (c t.) t.) ci-1). Then,
e q bl ... Obq. Clearly, wt (Se) < wt (ci), where Se is a minimum weight cut that disconnects
the endpoints of e. Now, our algorithm must pick edge e with a cut of weight at most wt (Se),
and hence at most tot(ci). Since wt(bq+l) > tot(ci), this means that e b ...t_Jbq, leading
to a contradiction. [3

Remark. Since bl bl are drawn from s Sm, the latter cuts also satisfy the union
property. For similar reasons, g gn- satisfy the union property as well.

Let A be a minimum weight k cut in G. The second key idea in our proof is to view A as the
union of k cuts as follows: Let V Vk be the connected components of G’ (V, E A).
Let ai be the cut that separates Vi from V V/ for _< _< k. Then A [,.J= ai. Notice

that Y’=I wt(ai) 2wt(A) (because each edge of A is counted twice in the sum). Assume
without loss of generality that wt(al) < wt(a2) <_... <_ wt(ak).

The (2 2/k) bound is established by showing that the sum of weights of our cuts,
bl bt is at most the sum of weights of a a_, i.e.,

k-1

wt (B) <_ Z wt (bi) < wt (ai)
i=l i=l

_< 2(1 / k)wt (A),

since a is the heaviest cut of A.
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Actually, it will be simpler to prove a stronger statement. We will consider a slight variant
of EFFICIENT that picks cuts with multiplicity; cut bi will be picked times if its inclusion
created additional components, i.e., if (comps(b1 t.3.., t_J bi) comps(b1 tO... tO bi-l)) t.

So, now we have exactly k cuts; let us call them bl bk-, to avoid introducing
excessive notation. As before, b bk_ are sorted by increasing weight, and moreover we
shall assume that cuts with multiplicity occur consecutively. We will show that

k-1 k-1

Z wt(bi) < Z wt(ai)... (i).
i=l i--1

For the rest of the proof, we will study how the cuts ai’s and bj’s are distributed in
c, c2 an enumeration of all cuts in G w.r.t, which b b-i satisfy the union property.
Denote by oti the number of all cuts aj that have index _< i, i.e., oti I{ajl index(aj) < i}l.
We will show that for each index i, < < index(a_), the number of cuts bj having index
< is at least cti (of course, cuts bj are counted with multiplicity). If so, there will be a
1-1 map from {b b_ onto {al a_ such that if bi is mapped onto aj, then index
(bi) < index(aj). This will prove (i).

Two nice properties of the cuts ai’s and bj’s will help prove the assertion of the previous
paragraph. Denote by A the union of all cuts aj that have index _< i, i.e., Ai .Jaj:index(aj)<i aj.

Similarly, let Bi Ubj:index(bj)<i bj.
The next lemma shows that for each index i, the cuts bj are making at least as much

progress as the cuts aj’s, where progress is measured by the number of components created.
LEMMA 3.3. For each index i, comps(A/) < comps(B/).
Proof The lemma is clearly true for > index(bk_). For _< index(b_l), Bi

c tO to ci, since the cuts b b-i satisfy the union property. Therefore, Ai C_ Bi, and
the lemma follows, fq

It is easy to construct an example showing that each cut aj may not necessarily create
additional components. Yet, at each index i, the number of components created by the cuts aj
is at least o/i - 1. This is established in the next lemma.

LEMMA 3.4. For each i, <_ < index(a,_l), comps(A/) >_ IY + 1.

Proof. Corresponding to each cut aj having index <_ i, the partition Vj will be a single
connected component all by itself in the graph Gi (V, E Ai). Let us charge aj to this
component of Gi. Since index (a,) > i, the component of Gi containing Vk will not get
charged. The lemma follows. [3

At this point we have all the ingredients to finish the proof. Consider an index i, <
< index(a,_). By Lemma 3.4, comps(A/) > O/i -[- 1. This together with Lemma 3.3 gives

comps(Bi) >_ cti -+- 1. For each additional component created by us, we have included a cut bj
(by including cuts with appropriate multiplicity), and thus it follows that the number of cuts
bj having index < is at least ui. The theorem follows.

Remark. The proof given above shows that any set of cuts satisfying the union property
will give a near-optimal k cut. This explains why the Gomory-Hu cuts work.

Clearly, the proof given zbove holds simultaneously for each value of k between 2 and n.
Hence we get a set of near-optimal k cuts, 2 < k < n. Notice that at the extremes, i.e., for
k 2 and k n, we get optimal cuts.

THEOREM 3.5. Algorithm EFFICIENTfinds a set of k cuts, one for each value of k,
2 < k < n; each cut is within a factor of (2 2/k) of the optimal k cut. The algorithm
requires a total ofn maxflow computations.

Using the current best known max flow algorithm [GT], [KRT], our algorithm has a
running time of O(mn2 + n3+e), for any fixed e > 0.
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4. Algorithm SPLIT. Perhaps the first heuristic that comes to mind for finding a k cut
is the following.

Algorithm SPLIT: Start with the given graph. In each iteration, pick the lightest cut in
the current graph that splits a component, and remove the edges of this cut. Stop when the
current graph has k connected components.

Notice that SPLIT, like EFFICIENT, is also a greedy algorithm. Whereas EFFICIENT
picks a lightest cut in the original graph that creates additional components, SPLIT picks a
lightest cut in the current graph.

SPLIT needs to find a minimum weight cut in each new component formed--this can be
done using n max flow computations in a graph on n vertices. Hence SPLIT requires
0 (kn) max flow computations to find a k cut.

We shall establish a (2 2/k) performance guarantee for SPLIT as well. However, first
let us point out that neither algorithm dominates the other. Consider the following graph on

eight vertices, {a, b, c, d, e, f, g, h }. The edges and their weights are as follows.
wt (a, b) 3,
wt (a, c) 3,
wt (b, d) 7,
wt (c, e) 7,
wt (d, e) O,
wt(d,f) 4,
wt (f g) 5,
wt(g, h) 5,
wt(e,h) =4.
Now, for k 3, the cuts found by SPLIT and EFFICIENT have weights 13 and 14,

respectively, but for k 4, the weights are 20 and 19, respectively.
THEOREM 4.1. The k cutfound by Algorithm SPLIThas weight within afactor of(2 2/k)

ofthe optimal.
Proof. In Theorem 3.1 we showed that a slight variant of EFFICIENT, that picks cuts

with appropriate multiplicity, has a performance bound of (2 2/k). We will now prove that
the weight of the k cut found by SPLIT is dominated by the weight of the k cut found by this
variant.

Let bl bk-1 be the cuts picked by the variant. Notice that since SPLIT picks a
minimum weight cut in a component, it splits it into exactly two components. Therefore,
SPLIT picks exactly k cuts, say, dl d/-l.

By induction on i, we will show that wt (di) < wt (bi) for < < k 1. The assertion is
clearly true for 1. To show the induction step, first notice that comps(dl U. t_J di) +
and comps(b U... t_J bi+l) _> + 2. Therefore, there is a cut bj, < j < + 1, that is
not contained in (d tA tA di). By the proof of Lemma 2.1, this cut will create additional
components, and is available to SPLIT. Hence, SPLIT will pick a cut of weight at most wt (bj).
Since wt(bj) < wt(bi+l), the assertion follows, l-1

5. Lower bound. We will show that the bounds established in Theorem 3.1 and Theorem
4.1 are tight in the following sense.

THEOREM 5.1. Forany 0 < e < 1, there is an infinitefamily ofminimum k-cut instances
(G, wt, k) such that the weight ofthe k cutfound by each algorithm, EFFICIENTand SPLIT,
lies in the range

[(1 e)(2 2/k)W, (2 2/k)W],

where W is the weight ofan optimal k cutfor the instance. Moreover, k is unbounded in this
family.
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Proof. The kth instance, in which we want to find a k cut, consists of a graph on 2k
vertices, V {Ul Uk-1, Vl Vk}. The only edges are (with weights specified)

Wt(lli, Ui+I) fl for < < k- 2,
wt(u_l, vl) ,
wt(vi, vi+l) u forl_<i <k-l,
Wt (111, l)k) tY,

where ot is a positive integer, and/3 2ct (1 ).
The minimum k cut, A, picks all edges of weight ct, and so wt (A) ku. Each algorithm,

EFFICIENT and SPLIT, picks the k cut, B, consisting of all edges of weight/. So wt (B)
(k- 1)/3 2(k- 1)or(1- ). Hence

wt(B)/wt(A) (2 2/k)(1 e).

This proves the theorem.

6. Balanced graph partitioning. Given an edge-weighted graph, G (V, E), wt

E -- Z+, with an even number of vertices, the balanced graph partitioning problem asks
for a partition of V into two sets, V and V:, each containing half the vertices, such that
the weight of the cut separating V1 and V: is minimized. This problem is NP hard [GJ]. It
models realistic situations such as circuit partitioning and is frequently used in practice. (See
[KL] for the well-known "swap" heuristic for this problem.) We give the first approximation
algorithm for this problem; it achieves a performance ratio of n/2. The algorithm extends in
a straightforward manner to the problem of partitioning the graph into k equal size pieces, for
any fixed k. The performance ratio achieved for this problem is ()n. In the past, [LR] and

2[LMPSTT] have used multicommodity flow for obtaining a 5, 5 graph partition algorithm that
: graph partition each sideis within an O(log n) factor of the best balanced partition (in a 5, 5

2 fraction of the vertices).of the cut has between 5 and 5
Our algorithm uses the fact that there is a pseudopolynomial time algorithm for deter-

mining whether n given numbers a an can be partitioned into two sets each of which
adds up to W/2, where Ei%l ai W. This algorithm is based on a straightforward dynamic
programming approach, and has a running time of O (n W) [GJ]; if the answer is "yes," it finds
a valid partition as well.

Balanced graph partitioning algorithm:
1. Find a set of Gomory-Hu cuts +/-n G.
2. Sort these cuts by increasing weight, obtaining gl gn-l-

3. Find the minimum such that the connected components of
G’ (V,E (gl U... Ugi)) can be partitioned into two sets
containing vertices each.

The complexity of our algorithm is dominated by step 1, since the total time required by
step 3 is O(n3). We will use the following property of the partitioning problem to establish
the bound of n/2.

LEMMA 6.1. Let n be an even integer, and let al a(n/2)+l be positive integers such that

+1
ai --n.

i=1

Then the answer to the partitioning problem is "yes."
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Proof Without loss of generality assume that the ai’s are sorted in decreasing order.
Notice that in order to maintain a sum of n, if al 2 then a2 a(n/2)-I 2 and

an a(n/2)+l 1. In this case, the ai’s can clearly be partitioned. In general, let k be the
largest index such that ak > 1, i.e., the last + k numbers are l’s. It is easy to see that
the sizes of ai’s exceeding 2 determine the number of l’s in the following manner:

(1)
k

y(ai --2)-- -k- 1-k -2.
i=1

Now, associate ai 2 distinct l’s with each ai that exceeds 2. By (1) this is feasible, and
moreover exactly two l’s will be left over unassociated. For each ai exceeding 2, we will
include ai in one partition and its associated l’s in the other partition. This effectively gives
the former partition a weight of 2 more than the latter. Hence, once again we are essentially
left with partitioning numbers of the form 2, 2 2, 1, 1. [3

As before, let c, c2 be an enumeration of all cuts in G, ordered by increasing weight,
and let B g U tO gi be the set of edges picked by our algorithm. Let ck be the first cut
in the enumeration that yields an optimal balanced partitioning of G.

nLEMMA 6.2. wt (B) < wt (ck).
Proof As in Algorithm EFFICIENT, among the cuts g gi, pick gj iff it is not

contained in (g t3... U gj-1). Let b bt be the cuts picked in this manner. Clearly,
B b tO. t_J bt. The proof is based on Lemma 3.2, i.e., the fact that the cuts bl bt satisfy
the union property. This and the fact that the components of G’ (V, E C) can certainly be
partitioned into equal sized sets, for any set C containing c, imply that index(bt) < k. Now
by Lemma 2.1, < n 1, thereby giving a factor of (n 1). To achieve a better factor, notice
that Lemma 6.1 implies that < n/2. Therefore wt(B) < YI=I wt(bi) < -wt(cl).

n is tightfor our algorithm.LEMMA 6.3. The bound of
Proof As in Theorem 5.1, for any , 0 < < 1, we will give an infinite family of

W], whereinstances on which the cut found by our algorithm lies in the range [(1 ) W,
W is the weight of the optimal cut. The kth instance consists of a graph on 2k vertices
{u, v, ul...uk-, v vk_}, and edges (with weights) Wt(ui, u) or, 1 < < k
1, tOt(l)i, 1)) Or, < < (k 1), wt(u, v) =/, where c (1 )/3. It is easy to see that
our algorithm finds a cut of weight kot, and the optimal cut has weight/. [3

THEOREM 6.4. The algorithm given above finds a balanced partitioning of an edge-
weighted graph, using n max-flow computations. The weight of the cutfound is within a

factor ofn/2 of the optimal. Moreover, the bound ofn/2 is tightfor our algorithm.

7. Discussion and open problems. It will be interesting to see how Algorithms SPLIT
and EFFICIENT compare in practice, even though neither algorithm dominates the other in
worst-case performance. Our guess is that SPLIT will typically give lighter k cuts.

Notice that the graphs given in Theorem 5.1 help establish the (2 2/k) lower bound for
the k cut found for each k, 2 _< k _< (n + 1)/2, where n is the number of vertices in the graph
(n is odd), but not for higher values of k. Certainly, the bound of (2 2/k) is not tight for
k n, since we get the optimal cut. Is there a better analysis of our algorithms for k > n/27

Is there a better approximation algorithm for the minimum k-cut problem? We believe that
the problem of achieving a factor of (2 e), for some e > 0, independent of k, is intractable.
The minimum k-cut problem is MAX-SNP complete [Pa], and hence by the recent result of
[ALMSS], achieving a factor of -t- e, is NP complete for some e > 0.

Our investigation of the balanced graph partitioning problems appears to be quite pre-
liminary, and it should be possible to improve the bound. Interesting special cases are (a) the
graph is planar, and (b) all edge weights are 1. Since the graphs used in Lemma 6.3 are planar,
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the lower bound for our algorithm holds for case (a). It is easy to see that if ties are resolved
arbitrarily in our algorithm, Lemma 6.3 holds for case (b) as well; however, this seems to be
a small hurdle. It will also be useful to consider the version of the balanced graph partition-
ing problem in which vertices have weights; in this case the pseudopolynomial algorithm for
partition will not be useful.

Finally, some of these methods may be useful for obtaining approximation algorithms for
other NP-hard graph partitioning problems (see [GH] and [GJ]).

Acknowledgments. We wish to thank Fan Chung, Samir Khuller, Laszlo Lovasz, Milena
Mihail, Christos Papadimitriou, Umesh Vazirani, and Mihalis Yannakakis for valuable dis-
cussions and comments.
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THE SERIAL TRANSITIVE CLOSURE PROBLEM FOR TREES*
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Abstract. The serial transitive closure problem is the problem, given a directed graph G and a list of edges,
called closure edges, which are in the transitive closure of the graph, to generate all the closure edges from edges
in G. A nearly linear upper bound is given on the number of steps in optimal solutions to the serial transitive closure
problem for the case of graphs that are trees. "Nearly linear" means O(n t(n)), where ot is the inverse Ackermann
function. This upper bound is optimal to within a constant factor.
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1. Introduction. A directed graph is transitive if, whenever there is an edge from a node
X to a node Y and an edge from Y to Z, there is an edge from X to Z. The transitive closure
of G is a smallest transitive, directed graph containing G. We write X Y to indicate the
presence of an edge from X to Y. It is easy to see that any edge in the transitive closure of a
graph G can be obtained from the edges of G by a series of zero or more closure steps, which
are inferences of the form

A--+ B B--+ C
A --- CIn other words, if A --+ B and B --+ C are edges in the transitive closure of G, then A --+ C

is too. This is because G plus the edges that can be derived by closure steps from edges in
G both must be in any transitive graph containing G and also form a transitive graph on the
nodes of G.

The serial transitive closure problem is the problem of deriving a given subset of edges,
which we call "closure edges," in the transitive closure of a directed graph. A solution to the
serial transitive closure problem is a sequence of closure steps that generates all of the given
closure edges and the size of a solution is the number of closure steps in the solution. In this
paper, we give upper and lower bounds on the size of optimal solutions to the serial transitive
closure problems for directed graphs that are trees. It should be stressed that the set of closure
edges can be any subset of the edges in the transitive closure of the graph (but not in the
graph). The degenerate case of deriving a single closure edge A - B is quite simple, since
the minimum number of closure steps required will be one less than the length of a shortest
path from A to B. The general question of determining the optimal size of a solution is made
difficult by the fact that, when a set of closure edges is being derived, it may be possible for
individual closure steps to aid in the generation of multiple closure edges. In other words, it
is not necessary to generate each closure edge independently. It is also important that the set
of closure edges will, in general, not be all the edges in the transitive closure of the graph; the
problem of deriving all the edges in the transitive closure of the graph is uninteresting because,
in this case, exactly one closure step is needed per closure edge.

The authors’ interest in the serial transitive closure problem arose in the study of the
lengths of propositional proofs with and without the deduction rule. The serial transitive
closure problem is directly related to the question of how efficiently Frege proof systems can
simulate nested deduction Frege proof systems. More information on these proof systems and
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supported in part by National Science Foundation grant DMS-8902480.
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the application of the serial transitive closure problem to proof lengths can be found in [2],
[4], [3]. The present paper is an expansion of portions of [2], [4].

The serial transitive closure problem is potentially applicable to problems in networks. As
an example, suppose a communication network is given where the nodes are, say, computers,
and an edge from X to Y indicates that X is capable of sending messages to Y. Correspondingly,
a set of closure edges is a set of edges of desired connections. If the closure edges are in the
transitive closure of the network, then it is possible to establish the desired connections by
having nodes relay messages (much like real-world nets such as Usenet). A closure step would
correspond to determining that, since X can (indirectly) transmit to Y and Y can (indirectly)
transmit to Z, X can indirectly transmit to Z. The size of a solution to the serial transitive
closure problem would correspond to the number of indirect communication links that must
be established to set up the desired connections. (It should be mentioned that this example
completely glosses over important issues such as the bandwidth of the connections.)

The serial transitive closure problem is formally defined as follows.

Serial Transitive Closure Problem.

An instance consists of

A directed graph G with m edges and

A list of n closure edges Xi --+ Yi (i n) that are in the transitive closure of
G but not in G.

A solution is a sequence of edges Ui --+ Vi (i s) containing all n closure edges
such that each Ui --+ Vi is inferred by a single closure step from earlier edges in the solution
and/or edges in G. We call s the number of steps of the solution.

Note that the number of steps in a solution counts only closure steps and does not count

edges that are already in G. A directed graph is a tree if it is a tree in the usual sense, with
root at the top and with all edges directed downward or with all edges directed upward.

The outline of this paper is as follows. In 2, we state and prove the main results, which
give near-linear upper bounds on size of solutions to the serial transitive closure problem for
trees. Our near-linear upper bounds are of the form O(n .or(n)), where or(n) is the extremely
slow-growing inverse Ackermann function. In 3 we show that the upper bound is optimal
for trees, using a theorem used by Tarjan 13] for an algorithm for the Union-Find problem.
It is not known whether our upper bound is optimal for the case where the directed graph G
is linear, i.e., G is a tree with each nonleaf node having only one child. However, we argue
at the end of 3 that our construction cannot be easily improved for the linear case, since our

approach gives an explicit construction for weak superconcentrators and there is a lower
bound on the size of constant depth superconcentrators [10] that prevents the possibility
that a simple modification can lead to an improvement of our construction.

The methods of our paper do not apply to graphs that are not trees, and we do not know
any nontrivial upper or lower bounds on the size of solutions of serial transitive closure
problems for general graphs.

Our proof methods for our upper bounds (Theorem 2 through Corollary 2.8) are related
to the constructions of weak superconcentrators by [6], [7], and are also similar to prior
methods for creating algorithms for range queries on linear lists [15] and on free trees [8].
In fact, as one of the referees pointed out, it is possible to derive Corollary 2.8, as a corollary
to the proofs (but not the theorems) contained in [15], [8]. Similar constructions have also
been used for adding edges to trees to reduce their diameter ]. However, it is useful to

give direct proofs in this paper since the serial transitive closure problem is of independent
interest (e.g., as applied in [4], [3]).
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2. Upper bounds for trees. The "near-linear" upper bounds given below are stated
in terms of extremely slow growing functions such as log* and the inverse Ackermann
function. The function log x is the real-valued base two logarithm function. The log*
function is defined so that log* n is equal to the least number of iterations of the logarithm
base 2, which, applied to n, yields a value < 2. In other words, log* n is equal to the

.2
least value of k such that n < 22. where there are k 2’s in the stack. To get even slower
growing functions, we define the log(*/) functions for each >_ 0. The log*) function is
just the base 2 logarithm function rounded down to an integer and the log (*1) is just the log*
function. For > l, log (*i) (n) is defined to be equal to the least number of iterations of the
log(*i-l) function, which, applied to n, yields a value < 2. The Ackermann function can
be defined by the equations:

A(O,m) 2m,
A(n+ l,O)= 1,

A(n + 1, m + 1) A(n, A(n + 1, m)).

It is well known that the Ackermann function is recursive but dominates eventually every
primitive recursive function (see [9] for a proof). We next develop the basic properties of the
Ackermann function and the log* functions; see La Poutr6 [12] for a similar development
(his function c(i, m) is equal to our log(*i-1) (m)).

It is is easy to see, by induction on n, that A (n, 1) 2 for all n, because

A(n + 1, 1) A(n, A(n + 1,0)) A(n, 1).

Also, by induction on m, we have A (1, rn) 2m, since

A(1, rn + 1) A(0, A(1, m)) 2. A(1, m).

.2

Likewise, A(2, m) 22. where there are rn 2’s in the stack, since

A(2, rn + 1) A(1, A(2, m)) 2A(2’m).

PROPOSITION 2.1. Forn > 1, A(n, m) is the equal to the least such that log*n-1) (i)
m. Hence, log*n-1) A(n, m) m.

Proof. The proof is by induction on n. By the above definitions and comments, the
lemma holds for n 1, 2. Fix n and assume, as the induction hypothesis for n, that for all
i, rn, if A(n, m) <_ < A(n, m + 1), then log*n-l(i) m. To prove the corresponding
fact for n + 1, we use induction on rn. It is obvious for m 0 since A(n, 0) 0 and
A (n, 1) 2. For m > 0, we have that

log*n-l) A(n + 1, m) log*n-l) A(n, A(n + 1, rn- 1))
A(n + 1, rn- 1)

and, in addition, that

log*-l) (A (n + 1, m + 1)- 1) --log*-l)(A(n, A(n + 1, m))- 1)
=A(n+l,m)-l.

The last equality is justified by the induction hypothesis that A (n, A(n + 1, rn)) is the least
value such that log*"-l)(i) A(n + 1, m). Thus we have shown that, if A(n + 1, m) <
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k < A(n+ 1,m+ 1), then A(n + 1,m- 1) <_ log*n-1)(k) < A(n+ 1,m). Iffollows that,
if A(n + 1, m) < k < A(n + 1, m + 1), then log*n-1) must be applied exactly m times to
k to yield a value < 2 A(n + 1, 1); i.e., that log*n)(k) m. [3

PROPOSITION 2.2. For > 1, log*i-1) (i) < 3.
Proof First observe that for all > 0 and x >_ 1, we have log*i) (x) < x. And for

> 0, log*i) (3) < 2. We now prove the proposition by induction on i. The base case,
1, is obvious. For the induction step, we have that log*i-1)(i + 1) < by the first

observation,and log(*i-1)(i) _< 3 by the induction hypothesis. Thus three applications of
log(*i-1) suffice to take + to a value less than 2. Hence log(*/) (i + 1) < 3. [3

DEFINITION. The inverse Ackermannfunction ot is defined so that ot (n is equal to the
least value of such that A(i, i) > n. Equivalently, a(n) is equal to the least such that
log(*i-) n < i.

MA1N THEOREM 2.3. Let > O. If the directed graph G is a tree then the serial
transitive closure problem has a solution with 0 (n + m log*i) m) steps.

MAIN THEOREM 2.4. Ifthe directed graph G is a tree then the serial transitive closure
problem has a solution with O((n + m) or(m)) steps.

Another definition of the inverse Ackermann function has been given by Tarjan 13]
who defines

c(m, n)= least/ > ls.t.A(i, 4[m/n]) > logn.

We will also prove below that for G a tree, the serial transitive closure has a solution with

O((n + m)(n + m, m)) steps.
Theorem 2.7 below is a restatement of Theorem 2 with explicit constants. The rest of

our upper bounds will be corollaries of Theorem 2.7.
For the proofs of our main theorems we may assume without loss of generality that G

is a rooted tree with edges pointing away from the root. We always picture trees with the
root at the top, except in the special case of one-trees, which have fanout 1, the root is to
the left and edges point to the right. The concepts of child, father, ancestor, and descendent
are defined as usual. The size of a tree is defined to be the number of edges in the tree (not
the number of nodes). If a tree has e edges, then it has exactly e + nodes. We define a
subtree of a tree T to be any connected subset of the edges of T and their endpoints so that,
for all nodes X and Y in T, if X and Y have the same father, then X is in the subtree iff Y
is in the subtree. A subtree is unscarred if it consists of all the edges below a given node in
the tree. A subtree S may also be obtained by first removing some set of unscarred subtrees
and then letting S consist of all the remaining edges below some given remaining node: S
is said to have a scar at any of its leaf nodes that are roots of earlier removed (nontrivial)
subtrees. Two subtrees are sai.d to be disjoint if they have no edges ,n common; disjoint
subtrees may share a single node since the root of one may be a scar of the other. If X is a
node in T, then Tx denotes the subtree of T rooted at X. The immediate subtrees of a tree
T are the maximal proper subtrees of T, i.e., the trees Tx for X a child of the root of T.
The following lemma is well known: see, e.g., Brent [5].

LEMMA 2.5. Let N > 0 and T be a tree with >_ N edges. Then there is an unscarred
subtree of T that has size > N edges such that each of its immediate subtrees has < N
edges.

Lemma 2.5 is easily proved by taking a minimal subtree with _> N edges. The next
theorem restates and strengthens the case 0 of Theorem 2.3 with fairly tight bounds on
the constants. The log function is base 2.

THEOREM 2.6. Ifthe directed graph G is a tree then the serial transitive closureproblem
has a solution with n + m [log m] closure steps.
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X0 Xl X2 X3 X4 X5 X6 X7 X8

FIG. 1.

Proo We will first derive < m [log m] edges, called auxiliary edges; each auxiliary
edge will be obtained with a single closure step. The choice ofauxiliary edges is independent
of the closure edges; however, from the edges in G and the auxiliary edges each closure
edge can be obtained with (at most) one additional closure step.

For illustration purposes, we first prove the theorem for G a one-tree and then do the
general case. Although the general case includes the linear case, the proof of the linear case
presents the main ideas more clearly.

Linear case. Assume G is a one-tree; that is, each node except the leaf has a single
child. In this case we may assume the nodes of G are named Xo Xm and that the edges
of G are just Xi Xi+l for 0 < < m. The auxiliary edges will be derived in rounds, the
first round will in essence split G into two subtrees of rn/2 edges, the second round splits
G into four subtrees of m/4 edges, etc., for a total of [log m] rounds. The process is
illustrated for the case m 8 in Fig. 1; the upper edges of Fig. are derived in the first
round and the lower edges in the second round.

Round 1. Xlm/21 is the midpoint of the one-tree G. The auxiliary edges added in
round are the edges of the form Xj X[m/2 for 0 < j < [m/2/ and the edges of the
form X[m/2 Xk for m/2 < k < m. There are exactly m such edges and they can be
derived with rn closure steps if we derive them in the right order; namely, letting j range
from [m/2J down to 0 and letting k range from [m/2J + up to m. (Actually only
rn 2 closure steps are needed since two of the auxiliary edges are already in G.)

Round 2. Round split G into two halves; the midpoints of these two halves are

X[m/4 and X[3m/4J. In round two, auxiliary edges to and from these midpoints are derived.
Namely, (1) the edges Xj X[m/4 with j < [m/4]; (2) the edges X[m/4 Xj with
[m/41 < j < [m/21; (3)the edges Xj --> X[3m/4j with [m/21 _< j < [3m/41; and (4)the
edges X[3m/41 "+ Xj with [3m/4J < j < m. There are rn such edges, and by deriving
them in the right order, each can be obtained with a single closure step. (Again, taking into
account duplicate edges, fewer than rn closure steps are needed for round 2.)

Round e. For round number e we add auxiliary edges incident on the nodes X Lk.m/2e.]
for odd values of k. Specifically, for each odd value k < 2 the following auxiliary edges are
derived: (1) the edges Xj X lk.m/2ej for L(k 1)m/2el < j < Lk. rn/2el and (2) the

edges X[t,.m/ZeJ -’-> Xj for [k.m/ZeJ < j <_ (k + 1)m/ZeJ. Again, there are exactly
rn such edges (some of them duplicates of edges from G and edges from earlier rounds);
this is seen by using the obvious one-to-one correspondence with the edges of G. And by
deriving them in the right order, each auxiliary edge is obtained with a single closure step.

Since there are exactly [log m] rounds and fewer than rn closure steps are needed
in each round, it is clear that there are _< rn Llog rn/auxiliary edges and that the number of
closure steps so far is bounded by rn Llog rn/.
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Now we claim that each of the n closure edges can be obtained with at most a single
closure step from the rn [log rn/ auxiliary edges (of course some of the closure edges may
also be auxiliary edges). To prove this, suppose Xi Xj is a closure edge; of course,
+ < j. Find the least value of e such that for some odd k, < k. tn/2el < j. If

either of the inequalities are actually equalities, then Xi -- Xj is an auxiliary edge added
in round e and no additional closure step is needed. If both inequalities are strict, then
Xi --+ X lk.m/2 and X l,.m/2 Xj are both auxiliary edges and from these the closure
edge Xi --+ Xj can be derived with one closure step.

It follows that all the closure and auxiliary edges are derived with fewer than n +
m Llog m/closure steps and Theorem 2.6 is proved for G a one-tree.

General case. The proof of Theorem 2.6 for G a tree uses a construction similar to
the proof of the linear case. For the general case, we use Lemma 2.5 to split G into multiple
subtrees of size less than half the size of G (one of these is scarred); then we similarily split
these subtrees into subtrees of size less than one quarter the size of G, etc. As in the linear
case, we derive auxiliary edges of G as we split G into subtrees; this process will be done
in < log rn rounds.

Round 1. By Lemma 2.5 there is a node X in G such that Gx has > m/2 edges, but
the immediate subtrees of Gx have size < m/2 edges. Let G G be the immediate
subtrees of Gx. Let Go be the tree obtained by removing Gx from G; i.e., Go is the scarred
subtree with root at the root of G and with a single scar at X.

During Round 1, the following auxiliary edges are derived: (1) for each ancestor Y
of X the edge Y X is an auxiliary edge, and (2) for each descendent Y of X the edge
X -- Y is an auxiliary edge. By deriving auxiliary edges in the correct order (namely,
shorter edges first), only one closure step is needed for each auxiliary edge. There are at
most m auxiliary edges and thus fewer than rn closure steps are needed in round 1.

The subtrees G0 G are disjoint and partition the nodes of G. They will be treated
in the next round.

The total number of closure steps used to derive auxiliary edges in Round 2 is less than

Round e. The previous round resulted in G being split into multiple, disjoint
subtrees of size < rn/2e-1 In round , we separately consider each such subtree H which
is of size rnn > 2 and process it in the manner of round 1. Since the subtree H is of size
rn t4 > 2, Lemma 2.5 gives a node X in H such that Hx has size > m/4/2 and each of Hx’s
immediate subtrees have size < rn/4/2. Now auxiliary edges are added from each ancestor
of X in H to X and from X to each of its descendents in H; there are < rn/4 such auxiliary
edges and each can be added with at most one closure step. The immediate subtrees of Hx
and the subtree H with Hx removed have size < rn/4/2 and will be treated in next round.

Since the total size of all the disjoint subtrees is no more than rn edges, fewer than rn
closure steps are used in this round.

The process of adding auxiliary edges ends when all the subtrees being considered have
size < 2; namely after no more than [log rn/rounds. Thus at most rn [log rn closure steps
are needed for deriving auxiliary edges.

As in the linear case, each of the n closure edges can be obtained with at most a single
closure step from the rn [log m/auxiliary edges. To prove this, suppose Y and Z are nodes
in G and Y Z is a closure edge; of course, Y is an ancestor of Z. Find the greatest value
of, such that Y and Z are in the same subtree H considered during round . Of course, the
nodes Y and Z are in different subtrees in the next round. Hence the node X chosen to split
subtree H in round has Y as an ancestor and Z as a descendent (or possibly, X Y and
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Z is a descendent of X). Thus the edges Y X and X Z are auxiliary edges derived
during round and the closure edge can be added with a single further closure step.

Thus the total number of inference steps needed for a solution of the serial transitive
closure problem is less than n + m [log m and Theorem 2.6 is proved.

The rest of proof of Theorem 2.3 proceeds by proving the following theorem by induc-
tion on i.

THEOREM 2.7. Let > O. If the directed graph G is a tree then the serial transitive
closure problem has a solution with (1 + 2i)(n + m log(*/) m) steps.

Proof When 0, the theorem is just a restatement of Theorem 2.6. So fix >
and assume the theorem holds for 1. We prove the theorem by splitting G into subtrees
of size log(*i-1) m, adding auxiliary edges, and using the auxiliary edges to derive some of
the closure edges; we iterate this process log(*/) m many times, after which the subtrees all
have size < 1. The derivation of the closure edges from the auxiliary edges will depend on
the induction hypothesis.

Let us begin by describing the reduction process, which will be used iteratively. The
input to the reduction process is a subtree T of G" we assume T has M > 1 edges. The
output of the reduction process will consist of a set of node-disjoint subtrees of T and the
derivation of the closure edges whose endpoints are in T but are in different subtrees output
by T. The reduction process has three steps:

Step 1. In the first step, T is partitioned into subtrees and auxiliary edges are derived.
By iteratively applying Lemma 2.5, T can be split into a finite set of subtrees To Tk

so that (1) the edges of the Tj’s partition the edges of T" (2) for each j > 0, Tj has size
> log(*i-1) M edges" (3) for all j > 0, each immediate subtree of Tj has < log(*i-) M
edges; and (4) To has root at at the root of T and the rest of the Tj’s have a root that is a scar
of another subtree in the partition. Clearly there will be at most M/log(*i-) M] many
subtrees in the partition.

The following auxiliary edges are derived in Step 1" (1) for each Tj. with root X, the
edges X -+ Z for all other nodes Z of Tj are auxiliary edges of the first kind; and (2) for
each j and p such that the root Y of Tp is a scar of Tj, the edges X --+ Y for all ancestors X
of Y in Tj are auxiliary edges ofthe second kind. Figure 2 illustrates the choice of auxiliary

FIG. 2. Node X is the root of T2 and a scar of TI. Hand-drawn edges are the auxiliary edges derived in Step 1.
The edges ofthe second kind are the two edges with head X; one ofthese is also ofthe first kind.
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edges. It is easy to see that by deriving shorter edges first, each auxiliary edge can be derived
by single closure step. Further, we claim that there are < 2M auxiliary edges. It is easy to
see that there < M auxiliary edges of the first kind, since each node in T is at the head of at
most one such auxiliary edge. To bound the edges of the second kind, note that if Tj has the
root Y of Tp as a scar then the ancestors of Y in Tj consist of the root of Tj and some of the
nodes in one of the immediate subtrees of Tj. The edge from the root of Tj to Y is also an
edge of the first kind and has already been derived. Hence there are < log(*i-l M auxiliary
edges from nodes inside Tj to Y. Also, the root of Tp cannot be the root of T (i.e., p # 0)
so there are at most M log(*i-1) M different trees Tp to consider. Taking the product of the
number of subtrees and the number of edges, we have that there are less than M auxiliary
edges of the second kind.

Step 2. In this step we merely describe the output of the reduction process. The output
trees are precisely the set of immediate subtrees of To Tk. Note that the output trees
are disjoint and partition the nodes of T other than the root node of T, but do not contain
all the edges of T. Each output tree has < log(*i-l) M edges.

Step 3. In the third step we derive every closure edge X -+ Y with X and Y in T but in
different output trees. Let N be the number of such closure edges. We derive these closure
edges by setting up a new instance of the serial transitive closure problem and applying the
induction hypothesis. The new instance will consist of a directed graph G’, which has as
nodes the roots of the trees To Tk and has as edges the auxiliary edges from Step
that connect these roots. The closure edges of the new instance are the edges X’ -- Y’,
which are obtained by the following method: for each closure edge X -+ Y (of the original
problem) such that X is a node in Tj and Y is a node in Tp with j 76 p, let Y’ be the root of Tp
and let X’ be the (scarred) leaf of Tj such that Y is a descendent of X’. It will be important
that X X’ and Y’ - Y are auxiliary edges (of the second and first kind, respectively).

Clearly the new instance of the serial transitive closure problem has < M/log(*i-1) M
edges in G’ and _< N closure edges. By the induction hypothesis, it has a solution of size
less than or equal to

+ 2(i- 1))IN+(1

which is trivially bounded by

M

log(*i-l) M
log(,i_l) ( M

log(*/-l’ M)]’
(1 + 2(i 1)). [N + M].

Given a solution to the new serial transitive closure problem, for all X, X’, Y, and Y’ as
above, we can derive the closure edge X --+ Y in two closure steps from the auxiliary edges
X X’ and Y’ -- Y and the closure edge X’ --+ Y’ of the new problem.

To conclude the description of the reduction process, we note that the total number of
closure steps needed in the reduction process is bounded by

2M + (1 + 2(i 1))(N + M) + 2N,

which is more suggestively written as

(1 + 2i)(N + M).

The overall procedure for proving Theorem 2.7 can now be very simply explained in
terms of iterating the above reduction process.

Round 1. Apply the reduction process to the whole tree G. This derives n closure
edges (nl is the value of N from the reduction process) and outputs a set of subtrees of G



SERIAL TRANSITIVE CLOSURE PROBLEM 117

that partition the nonroot nodes of G and are each of size < log(*i-1) m edges. The total
number of closure steps in Round is bounded by

(1 + 2i)(nl + m).

Round go The previous round generated a set of node-disjoint subtrees each of size
less than

log(*i-1) (log(*i-1) (... (log(*i-1) (m))...)).

g- times

Apply the reduction process (Steps 1-3) to all of these subtrees that contain more than one
edge; the overall result is that some number ne of closure edges are derived and that a set
of node-disjoint output trees each of size less than

log(*i-1) (log(*i-1) (... (log(*i-1) (m))...))

times

is generated. The total number of closure steps in round g is less than

(1 + 2i)(ne + m).

The rounds are iterated until all the subtrees have size _< 1; namely, in no more than
log(*/) m rounds. At the end every closure edge has been derived. The total number of
closure steps used is bounded by

log(*/)

(1 + 2i)(ne + m)
g=l

and since n n, the total number of closure steps is bounded by

(1 + 2i)(n + m log(*/) m).

That completes the proofs of Theorems 2.7 and 2.3.
We are now ready to prove Main Theorem 2.4.

Proof. By Theorem 2.7, the serial transitive closure problem for the graph G has a
solution with O((1 + 2i)(n + m log(*/) m)) steps, for any value of i. Let or(m)" by
the definition of the function or, we have log(*i-1) m < i. By Proposition 2.2, it follows
that log(*/) m < 4. Hence the serial transitive closure problem of G has a solution of size
bounded by

(1 + 2ot(m))(n + 4m) O((n + m)ct(m)). [3

We next give a bound on the number of steps in terms of Tarjan’s inverse Ackermann
function.

COROLLARY 2.8. If the directed graph G is a tree then the serial transitive closure
problem has a solution with 0 ((n + m)ot (n + m, m)).

Proof We argue similarly to the above proof, but now let equal max 1, ot (n + m, m) }.
Thus, by the definition of c(, ), we have A(i, 4[(n + m)/mq) > log m. By Proposition 2.1,
log(*i-1) (log m) < 4[(n+m)/m],andhencelog(*i)(logm) < 4[(n+m)/m]. Since/ >_ 1,
log(*/) (m) < 4 [(n + m)/m]. Thus, by Theorem 2.7, the serial transitive closure problem
has a solution with size bounded by

((In+m]))(l+2a(n+m,m)) n + m 4 O((n + m)(ct(n + m, m)))
m

whenever ot (n + m, m) > 0. [3
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3. Lower bounds.

3.1. The lower bound for trees. In this section we prove that our method of solving
the serial transitive closure problem for trees is optimal to within a constant factor; in
particular, linear size solutions are not always possible. Our proof is based on a theorem
of Tarjan [13] giving a lower bound on the worst case runtime of an algorithm for the
union-find problem. Tarjan’s lower bound applied only to a particular type of algorithm
for the union-find problem (Tarjan 14], Fredman and Saks [11 ], and La Poutr6 12] have
since given lower bounds for a much wider class of algorithms). Essentially, Tarjan gave
a lower bound for algorithms that rely exclusively on manipulating pointers (with certain
constraints). Since the serial transitive closure problem is framed so as to deal only with
edges and closure steps, it is not so surprising that we are able to modify Tarjan’s original
construction so as to give a lower bound for the serial transitive closure problem.

Our lower bound is obtained by constructing instances of the serial transitive closure
problem that require at least (n + m) ot(n + m) closure steps in any solution. The
construction is based on Tarjan’s lower bound; we will review the relevant definitions and
constructions but do not repeat Tarjan’s proof.

Following Tarjan, define S1 be the tree with two nodes: the root and one leaf. Define

Si+I to be the tree constructed by making two copies of Si and making the root of one copy
a child of the root of the other copy; pictorially, Si+I is

For example, $2 and $3 are the trees

Clearly Si has 2 nodes of which 2i-1 are leaves. Let T be a tree. A g-find is a pair of nodes
(a, b) in T such that b is a leaf and a is an ancestor of b. A (permissible) sequence of g-finds
is a sequence (ai, bi) of g-finds such that the bi’s are distinct and such that, for all < j, aj
is not a descendent of ai. G is a shortcut graph of T if G is a directed graph on the nodes
of T with each edge of T contained as a directed edge in T such that, if T is viewed as a
directed graph with edges directed downward, the graph G is a subgraph of the transitive
closure of T. If (ai, bi), N, is a sequence of g-finds, then the associated shortcut
graphs Go, GN are defined by letting Go have the edges from T (directed downwards),
and letting G be Gi-1 plus all edges (c, d) such that c and d are on the path in T from
ai to bi and such that d is a descendent of c. The cost of a particular g-find (ai, bi) in the
sequence is defined to be the distance from ai to bi in the shortcut graph Gi-1.

Tarjan defines a version of the Ackermann function that is slightly different from ours;
however, it is easy to see that Tarjan’s Ackermann function equals ours, except for the values
of A (i, 0).

The next theorem of Tarjan will lead to our lower bounds.
THEOREM 3.1. For all k > and > A (4k, 4), there is a sequence of 2i-2 g-finds in

Si such that each g-find has cost > k.
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For a proof of Theorem 3.1, apply [13, Thm. 15] with s 1. We can now prove our
lower bound.

THEOREM 3.2. Let k > 1. There is an instance of the serial transitive closure problem
in which the graph G has m 2a(ak’4)+l nodes and for which there are n 2a(nk’4)-I

closure edges such that any solution ofof the serial transitive closure problem requires at
least (k 1) 2a(4k’4)-I closure steps.

Proof Let the directed graph G be the tree Si (with edges directed downward), where
A (4k, 4) + 1. Clearly G has m 2a(4k’4)+l nodes. The instance of the serial transitive

closure problem is obtained by taking as closure edges, the n 2a(4k’4)-I g-finds given by
Theorem 3.1. Let Go Gn be the associated shortcut graphs.

We now must show that, because each g-find has cost k, any solution to this serial
transitive closure problem requires at least k steps per closure edge. To prove this, let

el es be a sequence of edges that comprise a solution to the serial transitive closure
problem. For each < s, define the rank of ei to be the least value ri such that ei is an edge
in Gr let ri n + if ei is not in Gn. Now reorder the edges el e according to their
rank, keeping edges of the same rank in the same relative order. We claim that the reordered
edges are also a solution to the serial transitive closure problem. This claim is easily proved
by noting that if an edge ei (Cl, c2) is inferred from edges (c, c3) and (c3, c2) and if ei is
in Gr then the other two edges must also be in Gr (by the definition of the shortcut graphs)
and thus have ranks < ri. Finally, we claim that that for all r < n there are at least k
edges with rank r. To prove this, consider the edges of rank r; these edges are inferred by
closure steps from the edges of rank < r and one of the edges is the rth closure edge. But
because the cost of the rth g-find is > k, at least k closure steps are required to derive
the rth closure edge from the edges of rank < r. [3

Let f(m, n) be the maximum number of edges required to solve serial transitive closure
problems for trees with m edges and n closure edges.

" (5n).LEMMA 3.3. For infinitely many values ofn, f(4n 1, n) > -Proof Let k > 5 and n 2a(4k’4)-I and A(4k, 4) + 1. Since Si has 4n nodes,
it has m 4n edges. By Theorem 3.2, f(m, n) > (k 1)n. It will suffice to show
c(5n) < 5k- 5. Now,

A(5k-5,5k-5) > A(5k-5,5)

A(5k 6, A(5k 5, 4))

> A (5k 6, A (4k, 4))

> 2a(4k’4)+2 since 5k- 6 > 2

> 5n

from whence, by the definition of or, ct(5n) _< 5k 5. [3

Since m 4n and hence 5n > m + n, the proof ofLemma 3.3 immediately implies
the following result.

THEOREM 3.4. f (m, n) >_ (n + m) a(n + m) for infinitely many values ofn with
m=4n-1.

3.2. Relations to weak superconcentrators. The above lower bound for the serial
transitive closure problem applies to the case where G is a general tree. Essentially the
same lower bound applies to binary trees, since any tree can be converted into a binary
tree by expanding any node that has more than two children into multiple nodes with two
children each. This expansion will at most double the number of edges in the tree and will
not make the solutions to the serial transitive closure problem smaller.
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However, we know of no way to extend the above argument to give a nonlinear lower
bound for the size of solutions to the serial transitive closure problem for the case where
the directed graph is linear, i.e., the case where each node in G has at most one incoming
edge and at most oJae outgoing edge (this was the simple case considered in the preliminary
portion of the proof of Theorem 2.6). On the other hand, there is a connection between
constant depth weak superconcentrators and our proof of the main theorems, that suggests
that our upper bound of n or(n) is the best that can be obtained for the linear case with our
techniques. Namely, our proof of Theorem 2.7, for the case where G is linear, implicitly
contains a construction of weak superconcentrators of optimal size (to within a constant
factor). We outline this construction below; a similar construction has already been given
by [6], [7].

It is also possible to use Yao’s lower bound on the size of (t, m)-structures [15] to

get a nonlinear lower bound on the number of auxiliary edges needed for our construction.
However, the lower bounded obtained in this way is not as good as the lower bound we
obtain below via weak superconcentrators.

We recall the definition of a weak superconcentrator. A network is a directed graph
with nodes ao am designated as inputs and with nodes b0 bm designated as outputs.
The inputs have no incoming edges and the outputs have no outgoing edges. A network is
synchronous if it is possible to associate with each node a depth, such that each input has
depth 0 and each edge in the network goes from a depth d node to a depth d+ node, and such
that the output nodes have a common depth. The depth of a synchronous circuit is defined to
be the depth ofthe output nodes. The network is said to be a weak (m+ 1)-superconcentrator
if the following property holds" if 0 < < jl < i2 < j2 < i, < j, < m are integers,
then the network contains k many node-disjoint paths from air to bjr, for r k. It is
a theorem of Dolev, Dwork, Pippenger and Widgerson [10] that depth 2i + 2 synchronous
weak (m + 1)-superconcentrators must have at least f2(m log(*/) (m)) many nodes. (Some
related, but weaker, lower bounds are given by Bodlaender, Tel, and Santoro ].)

Recall that in the proof of Theorem 2.7, we added auxiliary edges independently of
the choice of closure edges and then derived the closure edges with the aid of the auxiliary
edges. The net effect is, after the proof by induction has been unwound, that there were a
total of (1 + 2i)m log(*i(m) auxiliary edges added such that, for any two nodes A and B
with A an ancestor of B, there exists a path from A to B of length at most (2i 4- 2).2 This

path consists entirely of auxiliary edges and edges in G, of course. We claim that these
auxiliary edges can be made into a weak supercentrator of depth (2i 4- 2). To do this we
make (2i 4- 3) disjoint copies of G, called Go G2i+2 and construct a network on the
nodes in the union of these graphs.

To construct the weak (m 4- )-superconcentrator of depth 2i 4- 2, let G be a linear tree

withnodes Xo Xm andedges Xj Xj+I, for0 < j < m. Form (2i +3) disjoint copies
of G denoted Go G2i+2 and let X be the copy of Xj in G,. The weak superconcentrator

2i+2,
S" the X’s are the input nodes, the X are thewill be a directed graph on the nodes Xj,

output nodes and each X will be of depth k. First, the weak superconcentrator will have

the edges X X+ for all j, k. There are obviously 2(i + 1)(m + 1) edges of this first
kind. Second, the weak superconcentrator will have edges corresponding to the auxiliary
edges from the proofs of Theorems 2.6 and 2.7. Recall that Theorem 2.7 was proved by

The Ackermann function A(i,x) used in [10] is the same as Tarjan’s Ackermann function, and hence is the
same as our A(i,x) for x >_ 1. The function )(i,x) used in [10] satisfies log(*i)(x) .(i + 1,x) for all _> 0 and

2To justify the length (2i + 2) recall that at most (2i + 1) closure steps were needed to derive any possible closure
edge from the auxiliary edges this corresponds to a path of length (2i + 2).
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induction on i; by considering the auxiliary edges added to G in the proof of Theorem 2.6
and in all the induction steps of the proof of Theorem 2.7, it is easy to see that there are, in
total, < (1 + 2i)m log(*/) m auxiliary edges added to G. We must explain how the auxiliary
edges are translated into edges in the weak superconcentrator- the essential idea is that
each induction step of the proof of Theorem 2.7 adds two more layers of connections in
the weak superconcentrator. To make this more precise, recall that in proving Theorem 2.7
for we added 2m log*i)(m) many auxiliary edges and invoked Theorem 2.7 for
multiple times. If this proof by induction is "unwound," then each of these invocations of
Theorem 2.7 for adds many auxiliary edges and further invokes Theorem 2.7 for 2
multiple times, etc. The proof of Theorem 2.7 for 0 was just the proof of Theorem
2.6 (in particular, the linear case); this of course also added auxilliary edges. Now consider
all the auxiliary edges that are added during the unwinding of the proof of Theorem 2.7
for i; each auxiliary edge is associated with a value i’ < by considering which case of
Theorem 2.7 introduced the auxiliary edge (edges can be associated with more that one
value of i’ and in this case we count the edge multiple times). The weak superconcen-
trator contains all edges Xj-i’ X-i’+l and X)+i’+l X+it+2 where Xj --+ Xs is an
auxiliary edge associated with t. Since each auxiliary edge is put twice into the weak
superconcentrator,3 there are 2(1 + 2i)m log(*i(m) such edges put into the network.

Thus, in total, there are only O(i m log*i) m) edges in the weak (m + 1)-supercon-
centrator of depth 2i + 2. Hence our method of proof for the upper bound of Theorem 2.7
constructs optimal size weak superconcentrators and it seems, therefore, that no simple mod-
ification of the proof method can give a better upper bound for the linear case. Nonetheless,
it is open whether our upper bound for the linear case of the serial transitive closure prob-
lem is optimal for instance, it might be possible to give an improved construction by
not choosing the auxiliary edges independently of the closure edges. The point is that it is
not a priori necessary to construct a weak superconcentrator in order to get a solution to
a particular instance of the serial transitive closure problem. The lower bound methods of
13] and 10] do not appear to give a definitive lower bound for the linear case.
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NEW DECIDABILITY RESULTS CONCERNING TWO-WAY COUNTER
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Abstract. The authors study some decision questions concerning two-way counter machines and obtain the
strongest decidable results to date concerning these machines. In particular, it is shown that the emptiness, con-.
tainment, and equivalence (ECE for short) problems are decidable for two-way counter machines whose counter is
reversal-bounded (i.e., the counter alternates between increasing and decreasing modes at most a fixed number of
times). This result is used to give a simpler proof of a recent result which shows that the ECE problems for two-

*... for some nonnullway reversal-bounded pushdown automata accepting bounded languages (i.e., subsets of w w
words W wk) are decidable. Other applications concern decision questions about simple programs. Finally, it
is shown that nondeterministic two-way reversal-bounded multicounter machines are effectively equivalent to finite
automata on unary languages, and hence their ECE problems are decidable also.
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1. Introduction. A fundamental decision question concerning any class C of language
recognizers is whether there exists an algorithm to decide the following question: given an
arbitrary machine M in C, is the language accepted by M empty? This is known as the
emptiness problem (for C). Decidability (existence of an algorithm) of emptiness can lead
to the decidability of other questions such as containment and equivalence (given arbitrary
machines M1 and M2 in C, is the language accepted by M1 contained (respectively, equal)
to the language accepted by M2) if the languages defined by C are effectively closed under
union and complementation.

The simplest recognizers are the finite automata. It is well known that all the different
varieties of finite automata (one-way, two-way, etc.) are effectively equivalent, and the class
has decidable emptiness, containment, and equivalence (ECE, for short) problems.

When the two-way finite automaton is augmented with a storage device, such as a counter,
a pushdown stack or a Turing machine tape, the ECE problems become undecidable (no algo-
rithms exist). In fact, it follows from a result in [9] that the emptiness problem is undecidable
for two-way counter machines even over a unary input alphabet. If one restricts the machines
to make only a finite number of turns on the input tape, the ECE problems are still undecidable,
even for the case when the input head makes only one turn [8]. However, for one-way counter
machines, it is known that the equivalence (hence also the emptiness) problem is decidable,
but the containment problem is undecidable 11 ]. The situation is different when we restrict
both the input and counter. It has been shown that the ECE problems are decidable for counter
machines with a finite-turn input and a reversal-bounded counter (the number of alternation
between increasing and decreasing modes is finite, independent of the input) [8]. It is also
known that the ECE problems are decidable for two-way counter machines with a reversal-
bounded counter accepting bounded languages (subsets of w... w for some nonnull words
Wl w) [6]. Note that these machines can accept fairly complex languages. For example,
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it can recognize the language consisting of strings of the form 0 j where divides j. The
decidability for the general case when the input is not over a bounded language was left open in
[6]. We resolve this question here: We show that the ECE problems are decidable for two-way
reversal-bounded counter machines. We believe this is the largest known class of machines,
which are a natural generalization of the two-way finite automaton, for which the ECE prob-
lems are decidable. This result has some nice applications. We use it to give a simpler proof
of a recent result that the ECE problems for two-way reversal-bounded pushdown automata

* for some nonnull words 1/)1, l/)k)accepting bounded languages (i.e., subsets of w wk
are decidable. Other applications of this result concern decision questions about some special
classes of simple programs.

Finally, we consider the nondeterministic version of reversal-bounded multicounter ma-
chines. We show that when the input alphabet is unary, these machines accept only regular
languages. Since the proof is constructive, we obtain as corollaries that the ECE problems
for these machines are also decidable. This resolves an open question raised in [5], where a
similar result was shown for deterministic machines. This is the strongest result one can obtain
since it is known that deterministic reversal-bounded 2-counter machines over a*.., ak* (for
distinct symbols a a for some k) can accept nonsemilinear sets and have an undecidable
emptiness problem [8].

The rest of this paper is organized as follows. In 2, we show the decidability of the
ECE problems for two-way reversal-bounded counter machines. We give the applications in

3. Finally, we show the effective equivalence of two-way reversal-bounded nondeterministic
multicounter machines and finite automata over unary languages, along with the decidability
of their ECE problems in 4.

In the remainder of this section, we define the models of computation of interest and
related concepts. A language L is a subset of {0, }*. A language is strictly bounded over
k letters a a2, a, if it is a subset of * *a a2... a. A language is bounded over k nonnull
words w, w2 wt, if it is a subset ofw w2 w,. A counter machine is a finite automaton
augmented with a counter, whose value can be incremented, decremented, or tested for zero.
An r-input reversal 2DCM is a two-way counter machine whose input head makes at most r
reversals (but the counter is unrestricted). A two-way machine is sweeping if the input head
reverses only on the endmarkers. 2DCM(c, r) denotes the class of deterministic machines
having a two-way input head and c counters, each of which makes at most r reversals in
any computation. 2NCM(c, r) denotes the corresponding nondeterministic class. 2DPDA(r)
denotes the class of two-way deterministic pushdown automata whose pushdown stack makes
at most r reversals. 2NPDA(r) denotes the nondeterministic class.

In the following sections, we will study the emptiness problems for the above machines
on bounded languages. A straightforward argument shows that a machine of any type studied
in this paper accepts a nonempty bounded language if and only if there is another machine
of the same type that accepts a nonempty strictly bounded language. (Suppose a 2DCM(c, r)

* Leth be ahomomorphismthatM accepts a nonempty bounded language L c_ w 1/32 l/)k.

maps each word wi to a new letter si for < < k. Then there is another 2DCM(c, r) M’
that simulates M on wi whenever it reads the letter si. Clearly, M’ accepts h(L).) So when
we are dealing with the emptiness question for machines over bounded languages, we need
only handle the case when the machines accept strictly bounded languages.

2. Reversal-bounded counter machines. It was shown in [8] that many decision prob-
lems such as emptiness, containment, and equivalence for the class 2DCM(c, r) for c > 2
and r > are undecidable. The same paper raised the question of the decidability of these
problems for 2DCM(1, r) for r > 1. A partial answer was given in [6], where it was shown
that the emptiness problem for 2DCM(1, r) for r > over bounded languages is decidable.
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In this section we give a complete answer to this question; we show that the ECE problems
for the class 2DCM(1, m), where m > 1, are decidable. First, we consider the emptiness
problem and improve the result of Gurari and Ibarra by removing the requirement that the
language be bounded.

THEOREM 2.1. The emptiness problemfor 2DCM(1, r) is decidablefor every r > 1.
Proof Fix an r > 1, and let M be a 2DCM(1, r) with q states. We show that if L (M) :/: 0,

then M must accept an input in some bounded language over k words w, w2 w,, where
k and w, w2 wk depend only on M. Suppose M accepts some input x. Without loss of
generality, we assume there are exactly r + phases in the computation of M on x, such that
in each phase the counter is either increasing or decreasing.

Define the phase crossing sequence Ci at the boundary of two input squares to be the
sequence (s, d) of M’s states and input head directions at the times the input head crosses this
boundary during phase i. During an increasing phase, the input head crosses any boundary at
most 2q times, or else M, being deterministic, would get into an infinite loop. Hence, there
are at most (2q)! different crossing sequences for an increasing phase. During a decreasing
phase, the input head is allowed to go into a loop on the input tape (i.e., crosses some boundary,
say b0, twice in the same state and direction) until the counter becomes empty. In this case,
the input head crosses each boundary in the loop O (j) times, where j is the number of loop
iterations. (A boundary is in the loop if it is crossed by the input head between two crossings
of b0 in the same state and direction.) Each boundary outside the loop is crossed at most a
constant number of times.

Thus any crossing sequence during this phase can be written in the form Ci u vJw,
where

1. no pairs of state and direction appear twice in u or v,
2. no pairs of state and direction appear in u and in v,
3. to is a prefix of v,
4. lul / Iol _< 2q.

Hence there are at most (2q)!. (2q)2 < (2q + 2)! different crossing sequences during a
decreasing phase. (Note that j is a fixed number for each phase.)

Define the crossing sequence at the boundary of two input squares to be the string
C1#C2# #Cr+l ofthe phase crossing sequences at that boundary. From the above paragraph,
we can see that the number of different crossing sequences is bounded by c [(2q + 2)!]r+l,
which is independent of x. Hence we can rewrite x as uovu.., vkuk, such that 0 <

lu# I, pjI _< c for j k and the crossing sequences at the left and right boundaries of
each vj are identical. Call each vj a movable segment and each uj a separator segment. We
say two movable segments Vm and Vn are of the same type if they are identical and have the
same crossing sequences at the left and right boundaries. There are at most ctc+ different
types, where is the size of the input alphabet.

We now transform x to another string x’ by performing the following operation repeatedly
on x. If x z vz2v2z3, where v and v2 are movable segments of the same type, then we
rewrite x as x’ zv v2z2z3, i.e., we group two movable segments of the same type together.
IfM were a DFA, it would be immediate that M accepts x iff it accepts x’, because the crossing
sequences of v and v2 are identical. However, the transposition may affect the counter value
and alter the times and places of the counter reversals, so that the computations of M on x’
may be completely different from the computation of M on x.

Fortunately, this situation cannot happen. In fact, each phase in the computation of M on
x cannot end while the input head is reading v z2 v2, since the crossing sequences of Vl and v2
are identical. This implies that transposing z2 and v2 does not affect the times and places of
the counter reversals, nor does it affect the total net change to the counter value in each phase
by the input segment v z2 v2.



126 O.H. IBARRA, T. JIANG, N. TRAN, AND H. WANG

Hence, although the computations may not match step by step, each phase in the com-

putation of M on x’ ends with the same input head position (on z or z3), the same counter
value, and the same state as with the corresponding phase of M on x. Thus, M accepts x iff
M accepts

Apply the same process of partitioning and transforming recursively on zl and z2z3 (at
most Ix times), so that at the end, x can be written as a bounded word y
where Iwil < c, k < ctC+1, c (hence k) is independent of x, and M accepts x iff M accepts y.
But since the emptiness problem for 2DCM(1, r) on bounded languages is decidable [6], the
theorem follows.

In contrast to Theorem 2.1 we state and briefly sketch the proof of the following result
from [8].

THEOREM 2.2 [8]. The emptiness problemfor 1-input reversal 2DCM is undecidable.

Proof. We reduce the emptiness problem for Turing machines to this problem. Given an
arbitrary Turing machine M, we can find two 1DCM,M and M, and a homomorphism gl such
that L(M) g(L(M1) L(M2)). Furthermore, we can find a 1NCM M3 such that L(M3)
L(M2). By expanding the input alphabet with markers to dictate the nondeterministic choices
of M3, we can obtain a 1DCM M4 and a homomorphism g2 (which maps the markers to the
null string and leaves the other symbols the same) such that L(M3) g2(L(M4)). We also
modify M1 to include markers in its alphabet; the resulting machine M5 behaves like M and
ignores markers in its input.

From these constructions we have L(M) gg2(L(Ms) fq L(M4)), and it is now trivial
to construct from M4 and M5 a 1-input reversal 2DCM M’ such that L(M) gg2(L(Mt)).
Since the emptiness problem for Turing machines is undecidable, so is the emptiness problem
for 1-input reversal 2DCM.

Next, we show the decidability the equivalence and containment problems. For every
machine 2DCM(1, r), we can construct an equivalent halting one. Below we prove that this
is in fact true for every 2DCM(c, r). We first prove a lemma which shows how to modify a
2DFA to make it halt on every input. This lemma is slightly stronger than a similar result by
Sipser [10], since our simulating 2DFA behaves exactly as the original machine until it detects
that looping has occurred.

LEMMA 2.3. For every 2DFA N we can construct an equivalent halting 2DFA N’ such
that on each input N moves exactly like N until N enters a loop.

Proof. Let x aa2.., an be an input. For simplicity, assume N moves every step. For
each i, 1 < < n, define a relation R(i) as follows" For any two states p and q of N, the pair
(p, q) is in R (i) iff in state p, N will leave cell to the right and return to cell in state q
the next time. Clearly N doesn’t halt iff it moves to some cell in state q and (q, q) is in the
transitive closure of R(i). We construct a 2DFA N which simulates N and at the same time
tries to construct the relation R (i) for each cell being visited. To simplify the presentation, here
we will allow N’ to construct the relation R(i) nondeterministically. The nondeterminism can
be eliminated by the standard subset construction technique. Let 3N be the transition function
of N, and suppose N starts at cell 1.

N’ initializes R (1) to
constructs deterministically R(j 1) from the current R(j) as follows. For each pair (p, q),
N’ puts (p, q) in R(j 1) iff

1. S[6N(p, aj_) (s, right) & 6(s, aj) (q, left)], or
2. 3s sk[3N(p, aj_) (s, right), 6N(Sk, aj) (q, left) & (s, s2)

(s_, s) R(j)].
If N moves to the right, N’ constructs (nondeterministically) R (j + 1) from the current

R(j) as follows: For each pair (p, q) in R(j), M’ guesses a sequence of distinct states
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sl sk, such that N(P, aj) (sl, right) and N(Sk, aj+l) (q, left), and puts all
(s, s2) (sk_, s) in R(j + 1). In doing this, N’ also makes sure that no two pairs
in the resulting R(j + 1) share the same first state. Moreover, N’ also checks the validity
of the current R(j) and abandons the computation if some pair (p, q) in R(j) is nonreal-
izable, i.e., 8N(P, aj) (p’, left) for some state p’ or there exists no state q’ such that
N(q’, aj+l) (q, left).

N’ halts if it detects that at some cell j, N is in state q and (q, q) is in current R(j).
Clearly, during the simulation, a relation R(j) may contain some nonrealizable pairs. But it
is not hard to see that these nonrealizable pairs will not cause a false loop detection. Thus we
can establish the following claims. Suppose that N is at cell j.

1. If N is in state q and (q, q) is in the current R(j), then N is in a loop.
2. Suppose that the rightmost cell that N has visited so far is cell k. Then for any pair

(p, q) such that in state p, M will leave cell j to the right, stay in the cells j + through k,
and return to cell j for the first time in state q, (p, q) is contained in R(j).

Hence, N’ can detect if N will enter a loop correctly. [3

THEOREM 2.4. For any c and r > 1, we can effective convert a 2DCM(c, r) to a

2DCM(c, r) that halts on every input.

Proof. For simplicity, we prove the theorem for the case c 1. The idea is the same for
c > 1. Let M be a 2DCM(1, r) machine. We construct an equivalent halting 2DCM(1, r)
machine M’. M basically simulates M faithfully. We know that M can enter a loop only when
(i) M is in an increasing phase or (ii) M is in an decreasing phase but the moves do not affect
(i.e., really decrease) the counter. Call the latter a zero-decrease period. So besides simulating
M, M’ also checks if M will enter a loop in each increasing phase and each zero-decrease
period. The fact that M is able to realize this follows from the observation that M behaves
like a 2DFA in an increasing phase and a zero-decrease period, and the above lemma.

COROLLARY 2.5. For each c, Ur 2DCM(c, r) is effectively closed under complementation,
intersection, and union.

COROLLARY 2.6. The containment and equivalence problems for Ur 2DCM(1, r) are
decidable.

Open Question" Is 2DCM(c, r) closed under union or intersection?
A related interesting halting result is given below, where 2DCM(1, cxz) denotes a two-way

deterministic 1-counter machine whose counter can make unrestricted (unbounded) number
of reversals.

THEOREM 2.7. Each 2DCM(1, cx) machine accepting a bounded language can be made
halting.

Proof We first prove the theorem for unary languages. Let M be a 2DCM(1, c) machine
* We construct a 2DCM(1 cx) M’ that halts on all inputs and acceptsthat accepts L C a.

the same language. We may assume that upon acceptance M halts in a unique accepting
configuration.

First, observe that if M halts on some input x, then during the computation, the value
of the counter cannot exceed (q + 1)Ix I, where q is the number of states of M. Otherwise,
let be the first time the counter value of M on input x reaches (q + 1)Ixl. For each value
v < (q + 1)lxl, let (qo, iv) be the state and the head position of M the last time the counter
value reaches v before time t. Since there are at most qlxl different combinations, there are
two values v and w such that qv qw and iv io. But this implies that M will get into an
infinite loop on x, contradicting the assumption that M halts on x. Second, we may assume M
is normalized so that the input head moves from one endmarker to the other without reversing
the direction in between.
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M’ starts with the unique accepting configuration of M and performs a Sipser search
for the initial configuration. (A Sipser search performs a depth-first search on the connected
component (actually a tree) that contains the unique accepting configuration ofthe computation
graph of M on x. The vertices of the computation graph are the configurations, and the edges
reflect the transition function of M. It was shown 10] that such a search does not use more
space than originally required by M for space-bounded Turing machines. Here we adapt the
technique to work for counter machines.)

During the search, whenever the input head of M’ reaches an endmarker, then M’ verifies
that the counter value is at most (q + 1)lxl. If this is the case, M’ continues the search;
otherwise, M’ abandons the current path of the search tree and continues with the next one.
Because M makes sure that the counter value is within bound, the number of nodes in the
search tree is finite, and hence the Sipser search is guaranteed to halt. M’ accepts iff the search
fails. It is clear that M’ accepts L and M’ always halts.

The proof can be trivially extended to hold for strictly bounded languages over k letters
for any k > 1. The simulating machine M’ now performs the check whenever it reaches a

boundary between the k segments of the input, instead of the endmarkers. A more involved
argument is needed to show that the theorem holds for general bounded languages, since
now there are many ways to partition the input into repetitions of the k basic words. M’
needs to maintain in its finite control all possible partitions of the input in order to resume the
computation after performing the check.

We obtain from the above theorem the next corollary.
COROLLARY 2.8. The class of 2DCM(1, xz) on bounded languages is effectively closed

under complementation, intersection, and union.
Open Question: Is 2DCM(1, oo) closed under complementation or union?

3. Some applications. We give three applications of Theorem 2.1 in this section. First
we give a simpler proof of the decidability of the ECE problems concerning reversal-bounded
deterministic pushdown automata on bounded languages. This result first appeared in [7] as

a corollary of a rather difficult theorem.
THEOREM 3.1. The emptiness problemfor 2DPDA(r)for r > on bounded languages is

decidable.
The proof follows from Theorem 2.1 and the following lemma.
LEMMA 3.2. Let M be a 2DPDA(r) accepting a strictly bounded language over a ak.

We can effectively construct a 2DCM(1, r) machine M’ (not necessarily accepting the same
language) such that L(M) is empty iff L(M’) is empty.

Proof We may assume, without loss of generality, that on every step M pushes exactly
one symbol on top of the stack, does not change the top of the stack, or pops exactly one
symbol, i.e., M is not allowed to rewrite the top of the stack. In the discussion that follows,
we assume M is processing an input that is accepted, i.e., the computation is halting.

A writing phase is a sequence of steps which starts with a push and the stack is never

popped (i.e., the stack height does not decrease) during the sequence. A writing phase is

periodic if there are strings u, v, w with v nonnull such that for the entire writing phase,
the string written on the stack is of the form u v’w for some (the multiplicity), and the
configuration of M (state, symbol, top of the stack) just before the first symbol of the first
v is written is the same as the configuration just before the first symbol of the second v is
written. Note that to is a prefix of v. Clearly, a writing phase can only end when the input head
reaches an endmarker or a boundary between the ai’s. A writing phase can only be followed
by a popping of the stack (i.e., reversal) or another writing phase with possibly different triple
(u, v, w).
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By enlarging the state set, we can easily modify M so that all writing phases are periodic.
One can easily verify that because M is reversal-bounded, there are at most a fixed number
of writing phases (in the computation), and is effectively computable from the specification
of M.

il it,We now describe the construction of M’. Let x a ak be the input to M. The
input to M’ is of the form: y#cl#c2#... #ct, where the ci’s are unary strings; y is x but certain
positions are marked with markers m 1, m2 mt. Note that a position of y can have 0,
at most markers.

M simulates M on the segment y ignoring the markers. The ci’s are used to remember
the counter values. Informally, every time the counter enters a new writing phase, the machine
"records" the current value of the counter by checking the ci’s.

M’ begins by simulating M on y (ignoring the markers). When a writing phase is entered,
M’ records the triple (u 1, v, w) in its finite control and the multiplicity in the counter. Suppose
M enters another writing phase. Then M’ checks that the input head is on a symbol marked
by marker m ; hence M can "remember" the input head position. (If it’s not marked m 1, M
rejects.) Then it "records" the current value of the counter on the input by checking that the
current value is equal to c. (If it’s not, M’ rejects.) M’ restores the input head to the position
marked m and resets the counter to 0. It can then proceed with the simulation. Next time M’
has to record the value of the counter, M’ use the input marker m2 and checks c2, while storing
the triple (u2, v2, w2) in its finite control, etc. Popping of the stack is easily simulated using the
appropriate triple (u, v, w) and the counter value. Note that if in the simulation of a sequence
of pops, the counter becomes 0, M’ must first retrieve the appropriate ci (corresponding to
the pushdown segment directly below the one that was just consumed) and restore it in the
counter before it can continue with the simulation; retrieving and restoring the count in the
counter requires the input head to leave the input position, but M’ can remember the "new"
position with a new "marker." If after a sequence of pops M enters a new writing phase before
the counter becomes 0, the "residual" counter value is recorded as a new ci like before. We
leave the details to the reader. It is clear that M’ in in 2DCM(1, r) for some r.

Since the proof of Theorem 2.4 can be trivially modified to show that reversal-bounded
2DPDAs can be made halting, the class of languages they defined is effectively closed under
complementation. Hence, we have the next corollary.

COROLLARY 3.3. The containment and equivalence problemsfor 2DPDA(r)for r > on

bounded languages are decidable.
As a second application, we use Theorem 2.1 to show the decidability of the emptiness

problem for some classes of simple programs. The motivation for the following definition
comes from the study of real-time verification ].

DEFINITION 3.4. A simple program P is a triple (V, X, I), where V {A1, A2 An}
is a finite set ofinput variables, X q V is the accumulator, and I (il; i2; i) is a finite
list of instructions of the following form:

1. label s: X +-- X + Ai
2. label s: X +--X- Ai
3. label s: if X 0 goto label
4. label s: if X > 0 goto label
5. label s: if X < 0 goto label
6. label s" goto label
7. label s" halt

Note that the program is not allowed to change the value ofan input variable.
DEFINITION 3.5. For a program P, EMPTY(P) yes if there are integers (positive,

negative, or zero) al, a2 an such that P on this input halts; otherwise EMPTY(P) no.
The emptiness problemfor simple programs is deciding given P ifEMPTY(P) is yes.
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At present, we do not know if the emptiness problem for simple programs is decidable.
However, for some special cases, we are able to show that the problem is decidable.

One such special case is a program whose accumulator crosses the 0 axis (alternates
between positive values and negative values) at most k times for some positive integer k
independent of the input. Call such a program k-crossing, and in general, a program finite-
crossing if it is k-crossing for some k > 1.

For example, a program with three inputs A, B, C that checks the relation A (B C)i
for some can operate as follows: Add A to the accumulator, and iterate adding B and
subtracting C and checking if the accumulator X is zero after every iteration. (The program
halts if X is zero and goes into an infinite loop if X is negative.) Although the accumulator
alternates between increasing and decreasing modes arbitrarily many times (which depends
on the input), the accumulator crosses the 0 axis at most once. So such a program is 1-
crossing.

Although finite-crossing programs are quite powerful, there are programs that are not
finite-crossing. Here is an example of a program whose accumulator alternates between
positive and negative values an unbounded number of times:

X=O
a: X=X+A

if X 0 goto c
ifX>Ogotob
goto d

b: X--X-B
if X 0 goto c
ifX <Ogotoa

d: goto e
e: goto d
c: halt

If B A + /-, then there can be alternations of the accumulator between positive
and negative values.

Again, we apply Theorem 2.1 to show the emptiness problem for finite-crossing simple
programs is decidable.

THEOREM 3.6. The emptiness problem forfinite-crossing simple programs is decidable,
even when instructions oftheform X -- X + and X X 1, are allowed.

Proof. We give an algorithm to decide whether a finite-crossing simple program P halts
on any input. Suppose P has instructions and n input variables A1, A2 An. Define the
instantaneous description (ct, sign(X/)) of P at time to be the label of the instruction being
executed and the sign of the accumulator, which is either negative or nonnegative.

Consider a halting computation of P on some set of input values a, a2 an as given
by a sequence of IDs of P from start to finish. Since the accumulator of P alternates between
positive and negative values at most k times for some k > 1, this computation can be divided
into at most k + phases such that every ID in a phase has the same second component.
Because P is deterministic, some ID must be repeated after the first steps in each phase, and
hence the sequence of IDs in each phase can be written in the form of u v w, where each u, v,
and w is a concatenation of at most IDs.

Using this observation about finite-crossing simple programs, we construct a reversal-
bounded counter machine M such that M accepts some input if and only if P halts on some

input. Since M can make only a finite number of reversals on its counter, it cannot simulate P
faithfully. Rather, M uses the "padding" technique described in Lemma 3.2. For each phase in
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the computation of P, M precomputes the effect made on the counter by each possible loop v
of instructions and "stores" it in the input, i.e., M verifies that its input is padded with this extra
information. From then on, to simulate a loop M needs only add its corresponding net effect
to the counter, and hence to simulate a phase, M needs at most a constant number of counter
reversals. Also, to simulate the increment and decrement instructions, M introduces two new
variables, a+ and a_, which hold + and -1, respectively. We give a precise description of
the construction below.

M only accept inputs of the form oal#oa2#... #oa"#oa+#oa-#ob#ob2#... #Ohm where
m Yi= i!. M considers the first n + 2 integers coded in its input to be the input values
to P. The last m integers represent the net changes made to the accumulator by all possible
loops of instructions of length at most 1.

At the start of the computation, M verifies that its input has the desired form, and that
the last m integers indeed represent the respective changes to the accumulator by a loop of
instructions of length at most l, assuming the first n integers are the input values to P. Once
this is verified, M proceeds to simulate P. Because the computation in each phase is periodic,
M does not simulate P step by step once P gets into a loop of instruction. Instead, M records
the loop in its finite control and then uses the corresponding value in the latter part of the input
to make changes directly to the counter.

It is easy to see that M accepts some input iff P halts on some input. Furthermore, M
makes at most 21 counter reversals in each phase and at most 21m counter reversal in the initial
verification process. Hence M makes at most 21(k + + m) counter reversals during the
entirecomputation, and by Theorem 2.1 it is decidable whether L(M) 0. This proves the
theorem. [3

Remark. Allowing the use of "constant" instructions of the form X +-- X + and
X -- X 1 makes simple programs computationally more powerful. For example, the
relation R {A 21A} can easily be verified by a finite-crossing program with constant
instructions, but not by any program without constant instructions, even if it is not finite-
crossing.

Although finite-crossing programs can check fairly complicated relations, they cannot
verify multiplication and squaring.

Define MULT {(A, B, C)IC A B} and SQUARE {(A, B)IB A2}.
CLAIM 3.7. MULT and SQUARE cannot be verified byfinite-crossing programs.
Proof We use the proof technique in [6]. It is known that there is a fixed polynomial

p(y, xl xt) with integer coefficients such that it is undecidable to determine for an arbi-
trary nonnegative integer m whether or not p(m, xl xt) has a nonnegative integer solution
in x xt [4].

Clearly, finite-crossing programs can do addition and subtraction. IfMULT can be verified
by a finite-crossing program, then we can effectively construct, for each m, a finite-crossing
program Pm over A At, B Bs (for some s) such that Pm halts on A At,
sB Bs for some BI Bs if and only if p(m, A At) O. Pm uses the pro-
grams for MULT, addition and subtraction. Since we can decide emptiness for finite-crossing
programs, we can decide if the polynomial has a solution, which is a contradiction.

If SQUARE can be verified, then the relation R {(A, B, C, D, E, F, G, H)IB
A2,D C2,E A+B,F E2,G F-E,H A.B}canalsobeverifiedbya
finite-crossing program. Thus MULT can effectively be verified. But we already know this is
impossible.

Although finite-crossing simple programs may seem equivalent at first glance to counter
machines whose counters can become zero only a finite number of times regardless of its
input (we call those finite-reset counter machines), the latter are in fact much more powerful
computational devices. For example, there is a finite-reset counter machine M that accepts a
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set S similar to MULT, namely, S {Ox#(oY#)x x, y > }. M first checks that its input is
of the form Ox#OYl#Oy2#... #0yn and that n x. This requires reset of the counter. Next M
verifies that y > y2 by adding + y y2 to its counter; M rejects if the counter resets to
zero during this operation. Otherwise, y > Y2 and M adds 2y2 y to the counter so that
its value now becomes + Y2. Note that the counter does not reset during this operation. M
now checks that Y2 > Y3 and so on, until it has verified that Yl > Y2 > > Y,,. Finally, M
verifies that y Yn. It is easy to see that the whole computation requires only two resets of
the counter.

It follows from the above remark that the emptiness problem for finite-reset counter
machines is undecidable, because they can multiply and hence compute the value of any
polynomial p(y, Xl, x2 Xn) (see [3] for the proof of an analogous result). This contrasts
with Theorem 3.6.

We can use the same technique in Theorem 3.6 to show that the emptiness problem is
decidable for finite-reset counter machines on strictly bounded languages (and hence bounded
languages also; see the remark at the bottom of 1). Each accepting computation of such a
machine M can be divided into a finite number of phases at the times the counter value
becomes zero. Since the language is strictly bounded, it is easy to see that the counter makes a
reversal only at the boundary points, i.e., the endmarkers or the first symbols of each type. The
computation in each phase then can be rewritten in the form u v w, such that the lengths of u,
v, and to are bounded by some constant depending only M, and v starts and ends in the same
state and on the same boundary point. Again, the number of different such v’s is bounded by
a constant. So we can construct a finite-reversal counter machine M’, whose input is padded
with the net change to the counter value by each possible loop v, such that L (M) is empty iff
L(M’) is. From this and Corollary 2.8, we have the following.

THEOREM 3.8. The ECEproblemsforfinite-reset counter machines over strictly bounded
languages are decidable.

It is interesting to note that there are strictly bounded languages that can be recognized by
a finite-reset counter machine but not by any finite-reversal counter machine. One example is
L {0alb2 a n(b- c) for some n > 0}.

There is a restricted class of simple programs allowing "nondeterminism" that arises in
the theory of real-time verification ], as seen in the following definition.

DEFINITION 3.9. A restricted nondeterministic simple program is a simple program that
allows more than one choice of instruction for each label and has the property that the
accumulator X is nonnegative (nonpositive) after each instruction of theform X +- X + Ai
(X -- X- Ai).

It is an open question whether the emptiness problem for this class of simple programs
is decidable. However, we can show that the emptiness problem is decidable for restricted
deterministic simple programs.

THEOREM 3.10. The emptiness problem for restricted deterministic simple programs is
decidable.

Proof. We give an algorithm to decide whether a restricted deterministic simple program P
halts on any input. Suppose P has instructions and n input variables A 1, A2 A. Define
the instantaneous description (ct, sign(Xt)) of P at time to be the label of the instruction
being executed and the sign of the accumulator, which can be either positive, negative, or zero.

Consider a halting computation of P on some set of input values a, a2 a as given
by the sequence of IDs of P from start to finish. There can be at most IIDs with accumulator
value zero, or else P would never halt. These IDs divide the computation into a finite number
of phases. Because P is deterministic, some ID must be repeated after the first 21 steps in
each phase, and furthermore, no + consecutive IDs in each phase can have the same first
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component due to the constraint on the accumulator. Hence the sequence of IDs in each phase
can be written in the form uviw, where each u, v, and w is a concatenation of at most 21 IDs.

Using this observation about restricted simple programs, we construct a reversal-bounded
counter machine M such that M accepts some input if and only if P halts on some input, using
the same technique of Theorem 3.6. We leave the details to the reader. [3

We can allow comparisons between input variables and the emptiness problem still re-
mains decidable.

COROLLARY 3.1 1. The emptinessproblem is decidableforfinite-crossing simpleprograms
and restricted deterministic simple programs which use additional instructions oftheform

if p(Ai, Aj) goto label,

where Ai and Aj are input variables, and the predicate p is (for divides), >, <, or =.

Proof Suppose P1 is a finite-crossing simple program. We construct another program
P2 which precomputes all possible relations between the variables. P2 consists of many
segments, each of which simulates P1 for the appropriate relations among the variables. After
the preprocessing phase, P2 jumps to the appropriate segment.

In the case of a restricted deterministic simple program P1, the construction is similar,
but because of the constraint on the accumulator, we need to use additional input variables to
accomplish the testing of the relations. For example, suppose A and B are input variables,
and we need to check whether A lB. In this case, we use an additional variable C storing the
value A + B which P2 has to verify at the beginning. Then, P2 executes the following code
segment:

X=B
10: X=X-C

X=X+B
if X 0 goto 20
if X < 0 goto 30
goto 10

20" A divides B
30: A does not divide B

X initially has the value A B. Each iteration of the loop effectively adds A to X until
X 0 (A divides B) or X < 0 (A does not divide B). The resulting program P2 may violate
the constraint on the accumulator during this preprocessing phase, but only a constant number
of times; however, the proof of Theorem 3.10 still applies. 71

4. Nondeterministic reversal-bounded multicounter machines. We do not know if
the emptiness problem for Ur 2NCM(1, r) is decidable. In fact, the question is open even for

Ur 2NCM(1, r) machines accepting only bounded languages. However, we can show that
the ECE problems are decidable for [,.Jc Ur 2NCM(c, r) on unary alphabet. More precisely,
we prove that unary languages accepted by [,_Jc Ur 2NCM(c, r) machines are effectively
regular. This settles a conjecture of Gurari and Ibarra [5]. In [5] it was only shown that unary
languages accepted by [..Jc Ur 2DCM(c, r) machines are effectively regular. Our technique is
totally different. We first prove a lemma that characterizes regular unary languages.

LEMMA 4.1. A unary language L is regular iff there is a constant c depending only
on L such that for every w 0x L, x > c, there is some j, < j < c, such that
w’ oJnox-j L for all n > 1.

Proof The = direction is immediate, since the stated condition is simply the condition of
the pumping lemma for unary regular languages. Conversely, suppose L is a unary language
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that satisfies the condition of the lemma. Partition L into 2 subsets L0,1, L 1,1 Lc-,c,
so that Li,j {0 6 L j satisfies the condition for 0 and (x j) mod j}. Then each
Li,j is generated by its smallest element, and hence each Li,j and L is regular.

THEOREM 4.2. Every unary language accepted by a 2NCM(c, r) is regularfor c, r > 1.
Proof It suffices to show the theorem for 2NCM(c, 1), since we can reduce the number of

counter reversals by any 2NCM(c, r) to by adding more counters. We first show the theorem
for c 1, using the characterization given in Lemma 4.1, and then extend the proof to the
general case.

Suppose L is accepted by some 2NCM(1, 1) M with q states. To avoid stating unnecessary
constants, we will use the word "bounded" in the following to mean "boundedby some constant
depending only on q."

Let 0x be in L, and let C be an accepting computation of M on 0x. C has a simple loop
if there are some t < t2 such that at times t and t2 M is in the same state and on the same
input square, and furthermore M does not visit an endmarker during [t, t2]. A simple loop is
called positive or negative depending on the net change it makes to the counter value. C has
a sweep if there are some t < t2 such that at times tl and t2 M is on an endmarker, and M
does not visit an endmarker during (tl, t2).

So given a computation C, we decompose C into sweeps of length O(10xl) after first
removing all simple loops. Since each boundary is crossed at most q times in each direction,
the the number of different crossing sequences is bounded by Yq0(2q) < (2q)2q+l,
and so we can divide each sweep into a bounded number of clusters of identical movable
segments (segments which have the same crossing sequences at both ends) separated by
separator segments as explained in Theorem 2.1. Let b be the least common multiple of the
lengths of all types of movable segments. After consolidating, we may assume that every
movable segment has length b, and each sweep has exactly m movable segments for some
m f2 (10 I). (We consider sweeps that start and end on the same marker to have "empty"
movable segments whose net change to the counter is zero.) We use v(F) to denote the net
change to the counter value by a computation fragment F (such as a loop or a sweep) of C.
For example, v(C) O.

Suppose we add a segment of length b to the input 0x. We can obtain from C an "almost"
valid computation C’ by duplicating one arbitrary movable segment in each sweep. (The
simple loops are not affected since the input head never visits the endmarkers during a simple
loop.) We call a set of movable segments obtained by taking one movable segment from each
sweep a cross section E of C. A cross section E is called positive or negative depending on
the sign of v(E). Our strategy is to manipulate the sweeps, loops, and cross sections to obtain
from C an accepting computation of M on 0x+k’n for some bounded k and all n > 1.

We have the following seven cases.
1. C has a negative cross section and a positive cross section.

Let E+ be the least positive cross section and E- the least negative cross section. We
claim v(E+) is bounded; otherwise, we can obtain another cross section E by replacing a
movable segment in E by another choice in the same sweep with a smaller net change to the
counter value. (We know such a sweep and a movable segment must exist, because there is
a negative cross section.) We have 0 < v(E) < v(E+), contradicting E+’s minimality. The
same applies for E-. Letting k v(E+) + [v(E-)l, we can obtain from C an accepting
computation for 0x+kan, n > 1, by adding [v(E-)ln copies of cross section E+ and v(E+)n
copies of cross section E-.

2. C has only positive cross sections, but also negative simple loops.
Let E be a positive cross section and K be a negative simple loop of C. From K we can

obtain by cut-and-paste a new negative simple loop K such that v(K) is bounded. Letting
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k Iv(K’)l, we can obtain from C an accepting computation for 0x+kbn, n > 1, by adding
Iv(K’)ln copies of cross section E and v(E)n copies of simple loop K’.

3. C has only negative cross sections, but also positive simple loops. Symmetric to
Case (2).

4. C has only positive cross sections, but also positive simple loops.
If C has only positive cross sections, then the number of sweeps in the decreasing phase

cannot be bounded. To see this, recall that each sweep consists of rn movable segments
and some separator segments. Since C has only positive cross sections, we can choose any
combination of movable segments (one in each sweep) and still have a positive cross section.
Since there are m f2 (10x l) movable segments in each sweep, the net change to the counter
values by the movable segments in all sweeps is f2 (10 I). If the number of sweeps in the
decreasing phase is bounded, then the net change by the separator segments in those sweeps is
O (1), not enough to make the final counter value of C zero. Hence C cannot be an accepting

computation, a contradiction. So there is a sequence S of at most 2q + consecutive sweeps
in the decreasing phase such that S starts and ends in the same state on the same endmarker,
and v(S) < 0. Such a sequence is called a sweep loop.

Let E be a positive cross section and K be a positive simple loop of C. Again, we
can assume that v(K) is bounded. Let E’ be the subset of movable segments of E that
come from the sweeps in S, and let r be the least positive integer such that v(K)v(E) +
rv(K)(v(S) + v(K)v(E’)) is negative. Letting k v(K), we can obtain from C an accepting
computation for 0x+kbn, n > 1, by adding rv(K)n copies of the sweep loop S, v(K)n copies
of cross section E (E includes movable segments from the newly added copies of S), and
Iv(E) + r(v(S) + v(K)v(E’))ln copies of simple loop K.

5. C has only negative cross sections, but also negative simple loops. Symmetric to
case 4.

6. C has only positive cross sections, and no simple loops.
Since C has only positive cross section, again the number of sweeps in the decreasing

phase cannot be bounded, and there is some negative sweep loop. We can assume that C has
no sweep loops of net change o(10 I). (Otherwise, we can obtain by cut-and-paste from such
a sweep loop a new sweep loop S such that v(S) is bounded. This sweep loop is in effect a
simple loop, and we can proceed as in case 2 or 4.) Because the net change to the counter value
in the decreasing phase is not bounded by O(10 I) and there are no positive simple loops, the
number of sweeps in the increasing phase cannot be bounded either, and there is also some
positive sweep loop.

Let P be a positive sweep loop, and denote the net change by all separator segments in
P by s,. Select an arbitrary cross section of P (i.e., a set of movable segments in P, one
from every sweep), and denote its net change by ce. We can construct a new uniform sweep
loop P’ from P such that all cross sections of P’ are the same, by replacing all movable
segments in each sweep of P by the one selected for the cross section, and adding a extra
copies, where a is a bounded number specified in the next paragraph. The net change by P’
is v(P’) (m + a)cp + se. Similarly, we can obtain a new uniform sweep loop N’ from
N such that the net change by N’ is v(N’) (m + a)cN + SN, where CN and SN are defined
analogously.

Now suppose we can find cross sections c, and CN such that cISN CNSe is nonzero.
Let a be ICeSN CNS,I. Then k Igcd(v(P’), v(N’))l is bounded, since k must divide
cISN CNSe, and ce, CN, Sl, SN are all bounded. Hence, there are positive integers n, n2
such that n v(P’) + n2 v(P’) -k. In effect, we have a negative simple loop of net change
-k. In this case, we can obtain from C an accepting computation for 0x+kbn, n > 1, by
adding n la v(E)n/k copies ofpositive uniform sweep loop P’, n2av (E)n/k copies ofnegative
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uniform sweep loop N’, and an copies of a positive cross section E (E includes movable
segments from the newly added sweep loops).

It remains to show that we can always choose the cross sections c, and CN SO that
ClSN CNSl is nonzero. Suppose not. Then all sweep loops in C must be uniform, i.e.,
there is only one unique cross section for each sweep loop, or else we .can replace a single
movable segment in one of the cross sections to make CpSN --CNS, nonzero. Select arbitrarily
a positive sweep loop J and a negative sweep loop K and discard ICKI copies of J and IcjI
copies of K from C. Do this until it is no longer possible. At this point, either the number
of positive sweep loops or the number of negative sweep loops is bounded. Note that the net
change by all discarded sweep loops is zero, by our assumption.

If the number of negative sweep loops is bounded, then in fact the net change by all
separator segments in C is O (1), not enough to offset the net change by all movable segments
in C, which is f2 (10 I). So C cannot be an accepting computation, a contradiction. If the
number of negative sweep loops is not bounded, then since the number of positive sweep loops
is bounded, the total net change by the remaining sweeps must be negative (we noted earlier
that the net change by a negative sweep loop is -12 (10x I)1). Again, C cannot be an accepting
computation, a contradiction.

7. C has only negative cross sections, and no simple loops. Symmetric to Case (6).
In all cases, we can find some bounded k such that 0x+kbn is in L for all n > 1. Hence by

Lemma 4.1, L is regular. This concludes the proof of the theorem for c 1.
Now we show how to extend the above proof to the general case. Suppose L is accepted

by some 2NCM(c, 1) M. Let 0x be in L, and let C be an accepting computation of M on
0x. We partition C into simple loops, movable segments, and sweeps as for the case of
2NCM(1, 1), except that now these units are defined relative to a single counter. So there are c
different partitions of C, each concerning with net changes to only one counter and ignoring the
other counters. Proceed as in the construction above to find the size of the segment to be
added for each case, say klb, k2b kcb. Then the final input segment to be added is
k k2 kcbc. q

The proof of Theorem 4.2 also works even if we shorten instead of lengthen the input.
(In this case, we need to remove cross sections and simple loops but still add sweeps. We
adjust the definitions to make sure that cross sections and simple loops always exist in multiple
copies.) Thus, to decide whether a 2NCM(c, r) accept some input, we only need to check all
inputs of length at most a bounded constant. Since the membership problem for 2NCM(c, r)
is decidable [2], we have the following.

COROLLARY 4.3. The ECE problems for _Jc Ur 2NCM(c, r) on unary alphabet are
decidable.

This is the strongest result one can obtain since it is known that deterministic reversal-
bounded 2-counter machines over strictly bounded languages can accept nonsemilinear sets
and have an undecidable emptiness problem [8].
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ON THE OPTIMALITY OF RANDOMIZED c-fl SEARCH *

YANJUN ZHANG

Abstract. It is shown that the expected number of leaves evaluated by randomized ot-/ search for evaluating
uniform game trees of degree d and height h is O((Bd)h), where Bd d/2 + lnd + O(1). It was shown by
Saks and Wigderson [Proceedings of 27th Annual Symposium on Foundations of Computer Science (1986), pp. 29-
38] that the optimal branching factor of randomized algorithms for evaluating uniform trees of degree d is B*d
(d- + v/d + 14d + )/4 d/2 + O(1). As Bd/B + O(lnd/d),randomizedot- search is asymptotically
optimal for evaluating uniform game trees as the degree of tree increases.

Key words, game-tree evaluation, a-/3 search, randomized algorithms
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1. Introduction. A game tree is a rooted tree in which the root is a MAX-node, the
internal nodes at odd (even) distance from the root are MIN-nodes (MAX-nodes), and each
leaf has a real value. The value, or minimax value, of a MAX-node (MIN-node) is recursively
defined as the maximum (minimum) of the values of its children. The problem of game-tree
evaluation is that of determining the value of the root of a game tree. Game-tree evaluation
is used in computer programs for playing two-person games of perfect information such as
chess and checkers.

The best known heuristic in practice for evaluating game trees is the a- pruning proce-
dure [4], which we shall call o-fl search. The efficiency of a- search lies in its ability to
detect and prune away certain nodes whose values can no longer influence the value of the
root. A uniform tree is a tree in which each internal node has the same number of children
and each root-leaf path has the same number of nodes; for a uniform tree, the degree is the
number of children of an internal node, and the height is the number of edges on a root-leaf
path. Traditionally, the performance of a-fl search has been analyzed on uniform game trees
in the i.i.d, probabilistic model in which the values of leaves are drawn independently from
the distribution of a certain random variable, and the complexity of a game-tree evaluation al-
gorithm is the expected number of leaves evaluated by the algorithm. The branchingfactor of
an algorithm is the asymptotic limit of the hth root of the expected number of leaves evaluated
by the algorithm as the height of tree h increases.

It was shown by Knuth and Moore [4] that in the i.i.d, model the branching factor of a
weaker version of o-/ search using only "shallow cutoff" is (R) (d/In d) on uniform trees of
degree d, and conjectured that the branching factor of o-fl search remains (R) (d/In d). Their
conjecture was confirmed by Baudet [1] (cf. [7, p. 294]). The exact value of the branching
factor of a-fl search on random uniform trees of degree d was shown by Pearl [6] to be

R td where :d is the positive root of xd + x 0 and R i_ff_dld _+_ O,,(lnlndlnd ))--d
(cf. [7, p. 267]). A year later, Tarsi [9] proved that branching factor R is best possible for
evaluating random uniform trees in the i.i.d, model.

More recently, Saks and Wigderson [8] studied the game-tree evaluation by randomized
algorithms. A randomized game-tree evaluation algorithm can make random choices during
its execution in deciding which leaf to evaluate next, and the number of leaves evaluated
on a fixed input instance is a random variable. The complexity of a randomized game-tree
evaluation algorithm is the maximum of the expected number of leaves evaluated over all
instances ofgame trees. The randomized complexity for game-tree evaluation is the minimum
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of the complexity over all randomized game-tree evaluation algorithms. The chief advantage
of randomized algorithms is that no probabilistic assumptions are imposed upon the input
instances, as probabilistic assumptions may fail to reflect reality. Saks and Wigderson proved
in [8] that the randomized complexity for evaluating uniform game trees of degree d and

height h is (R)((B)h), where B (d + x/d + 14d + )/4 d/2 + 3/2 + O(d-)
is the optimal branching factor in the randomized model. The quantitative difference in
optimal branching factors B d/2 + O(1) of the randomized model and R tO(d/lnd)
of the i.i.d, model demonstrates a fundamental difference in the two probabilistic models.
Furthermore, they show that the optimal upper bound of O ((B)h is achieved by a randomized
version of SCOUT, a game-tree evaluation algorithm studied by Pearl [5]. SCOUT is a quite
different algorithm from or-/3 search; there is no dominating relation between SCOUT and or-/3
search in terms of the number of evaluated leaves. (See [7, pp. 246-250] for such examples.)
The question of whether randomized or-/3 search is also optimal was not resolved by the work
of Saks and Wigderson.

In this paper we show that randomized ct-/3 search is asymptotically optimal for evaluating
uniform game trees as the degree of tree increases. We show that the expected number of
leaves evaluated by randomized or-/3 search for evaluating uniform game trees of degree d
and height h is O((Bd)h), where Bd d/2 + O(lnd), and Bd/Bt + O(lnd/d), where

Bt d/2 + O(1) is the optimal branching factor. Our approach is similar to that used by
Knuth and Moore for the analysis of or-/3 search in the i.i.d, model. Instead of a direct analysis
of randomized ct-fl search, we shall analyze a weaker version of randomized or-/3 search using
only shallow cutoff. We show that the randomized ot-fl search using only shallow cutoff
achieves the claimed bound, thus asymptotically optimal as the degree of tree increases. It
follows that randomized or-/3 search is also asymptotically optimal.

2. or-/3 search. The execution of -fl search is a depth-first traversal of the input tree
during which certain nodes are evaluated and others are pruned away, thus not evaluated. The
pruned nodes are certified to have no influence on the value of the root. Let val(v) be the
minimax value of node v. Each visited node v is evaluated upon the return of the traversal
from the subtree rooted at that node with a return value r(v), which may or may not be equal
to val(v). The return value r(v) is recursively defined as the leaf value of v if v is a leaf or the
maximum (minimum) of the return values of the evaluated children of v if v is a MAX-node
(MIN-node). The depth-first traversal of c-/3 search visits the children of a node in the left-
to-right order. The randomized ot- search is an c-/3 search in which the children of a node
are visited in a random order, independent of the order in which other nodes are visited.

The pruning mechanism of ot-fl search consists of two parameters, the o bound and the/3
bound. The current value of a MAX-node (MIN-node) v, denoted by c(v), is the maximum
(minimum) of the return values of the evaluated children of v. The current value of a node be-
comes its return value upon the evaluation ofthat node. Let c(v) -c(+cx) for a MAX-node
(MIN-node) v with no evaluated children. An ancestor of v is a node on the path between v and

For the sake of completeness, we describe SCOUT in this footnote. SCOUT is a two-pass evaluation process
that tests the usefulness of a node before deciding to evaluate or discard it. To evaluate a node v, SCOUT recursively
evaluates a child u of v and sets c(v) =val(u). For each remaining child u’ of v, SCOUT first tests whether
val(u’) > c(v) or val(u’) < c(v) without determining the exact value of val(u’); such a test can be done as an
evaluation of an AND/OR tree of Boolean values. If val(u’) > c(v) for a MAX-node v or val(u’) < c(v) for a MIN-
node v, then recursively evaluate u’ and set c(v) =val(u’); otherwise, discard u without further evaluation. After all
children of v are processed, c(v) is returned (correctly) as val(v). SCOUT is also optimal in the i.i.d, model [7]. The
randomized SCOUT in [8] is to randomly select the next child for testing and evaluation.

2In [4], o-/3 search is described by a recursive program F2 in the negmax format; the correctness of or-/3 search
is proved via an invariant argument about program F2. For a node at which pruning occurs, F2 may compute a
different value than the return value of that node defined in this paper.
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the root, including v itself. The ct bound of v is a(v) max{c(w) w is a MAX-ancestor of v}
and the fl bound of v is fl(v) min{c(w) w is a MIN-ancestor of v}. During its traversal,
c-fl search maintains the c bound and fl bound of the currently visited node. The pruning
rule of ot-fl search is that the unevaluated children of a node v are pruned if ct(v) >_ fl(v).
Pruning occurs at v if the unevaluated children of v are pruned but v itself is not. All children
of the root r are evaluated, as r is a MAX-node and fl (r) +cx always.

In [4], Knuth and Moore described a weaker version of ot-fl search using only "shallow
cutoff," which is given by program F together with a proof of correctness, and analyzed its
asymptotic hehavior for evaluating uniform random trees in the i.i.d, model. For any node v,
define the shallow or-bound ot’(v) and the shallow fl-bound fl’(v) of v as follows. For root
r, let ot’(r) c(r) and fl’(r) +cx. For a MAX-node or MIN-node v - r, let w be the
parent of v, and define c’ (v) c(v) and fl’ (v) c(w) if v is a MAX-node, or t’ (v) c(w)
and fl’(v) c(v) if v is a MIN-node. By definition, c’(v) < or(v) and fl’(v) > fl(v).
Since ct’(v) < a(v) and fl’(v) > fl(v), condition a’(v) >_ 3’(v) guarantees the pruning
criterion ct(v) > fl(v). The pruning occurring at v is called a shallow cutoff if ot’(v) > fl’(v);
otherwise, it is a deep cutoff Hence, the pruning at v is a shallow cutoff when pruning criterion
or(v) > fl(v) is satisfied by the current values of v and the parent of v. Figure illustrates a
shallow cutoff and a deep cutoff for game trees of degree 2. A basic fact about shallow cutoff
is that a shallow cutoff cannot occur at a node that is evaluated first among its siblings. This is
because the current value of the parent node of v will be either cx or- when v is evaluated
first among its siblings, rendering the shallow cutoff condition a’ (v) >/3’ (v) impossible. This
fact will be used repeatedly in the later analysis.

10 v 10

5 15 )

(a)

(b)

M = MAX-node

m = MIN-node

FIG. 1. (a) a shallow cut at v" (b) a deep cut at v. In both (a) and (b), or(v) > 10 > 5 >/3(v).

We call the a-/3 search performing only shallow cutoffs shallow ot- search. A shallow
search in which the children of a node are visited in a random order is called randomized
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shallow o- search. We shall study shallow or-/3 search and randomized shallow ot-/ search
in the next two sections.

We end this section with a useful characterization of c-/3 search. For a leaf u of a game
tree, let A (u) be the maximum of the values of all left siblings of a MIN-ancestor of u, and let
B(u) be the minimum of the values of all left siblings of a MAX-ancestor of u. Notice that
A(u) and B(u) depend statically on the structure of the game tree and the minimax values of
nodes. The following criterion for a leaf u to be evaluated by oe-fl search in terms of A (u) and
B(u), in a similar way as the u bound and the/3 bound, was first shown in [2] and later in [1]
(cf. [7, p. 239]).

THEOREM 1. A leafu is evaluated by o- search ifand only if A (u) < B(u).

3. Shallow ot-fl search. In this section we prove some basic properties of shallow
search, and show the domination of (randomized) o-fl search over (randomized) shallow
search.

A fundamental relation between the return value r(v), the minimax value val(v), and
shallow bounds ct’(v) and fl’(v) for any node v evaluated by shallow ot-fl search is given
in Proposition 1. We note that neither (i) and (ii) of Proposition holds in general for
search when deep cutoffs are used. The proof of Proposition is not as straightforward as one
may think, due to the fact that the return value of a node may differ from its minimax value.
Proposition also provides a proof of correctness of shallow a-fl search.

PROPOSITION 1. Suppose that a nonleaf node v is evaluated in a shallow ot-fl search.
Then (i) if no pruning occurs at v, then val(v) r(v); in particular, val(r) r(r) where
r is the root; (ii) ifpruning occurs at v, then val(v) >_ r(v) >_ fl’(v) if v is a MAX-node or
val(v) _< r(v) <_ ot’(v) ifv is a MIN-node, where ot’(v) and fl’(v) are, respectively, the shallow
t bound and shallow fl bound of v before the evaluation of v.

Proof. We assume that v is a MAX-node. The case of a MIN-node v is symmetric. If
pruning occurs at v, by the pruning rule, r(v) ct’(v) >_ fl’(v), where fl’(v) is the current
value of the parent of v. Observe that fl’(v) does not change during the evaluation of v, thus
can be taken as being computed before the evaluation of v. This proves the second inequality
r(v) >_ fl’(v) of (ii).

We shall prove (i) and the first inequality of (ii) by induction on the order of evalua-
tion. Notice that (i) and (ii) hold for any evaluated leaf. Suppose that we have just eval-
uated v. We want to show that (i) and (ii) hold for v. Let Ul, u2 Ud, be the set of
evaluated children of v that were evaluated in that order. By induction, (i) and (ii) hold
for u, U2 Ud’. Define a sequence of indices ij <_ d’ as follows. Let i 1, and
for j >_ 1, ij+l min{k < d’l val(uk) >val(u#)}, and i* be the last ij. By definition,

val(ui,) <val(ui2) < <val(ui,) <val(v), and if no pruning occurs at v, val(ui,) val(v).
Hence, (i) and the first inequality of (ii) follow immediately if

(1) r(v) val(ui.).

We shall prove the following statements (a) and (b) from which (1) follows immediately,
given r(v) max<k<a,{r(uk)}.

(a) For j > 1, val(u#) r(u#).
(b) For ij < k < ij+l, r(uk) < r(u#) and for i* < k, r(uk) < r(ui.).
We prove (a) and (b) by induction on k 1, 2 d’. The basis of the induction is to

show that val(Ul) r(u). As ul is the first evaluated child of v, no pruning may occur at

ul. By induction of (i) on u, val(u) r(u). We now assume inductively that (a) and
(b) hold for all uk,, where k’ < k. Consider the MIN-node u. The shallow bound c’(u)
before the evaluation of u is o’(u) c(v) max,<{r(uk,)}. By induction of (a) and (b)
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on u, U2 Uk-1, and the definition of indices

(2) c’(u,) max{r(u,,)} { r(u#) val(u#) if ii < k < ij+l,
l,<l r(ui.) val(ui.) if i* < k.

Consider three cases of k.
Case 1. k ij+l, which is (a). In this case, we need to show val(uk) r(uk). By (2),

c’(u) val(u#) < val(U#+l) val(u) before the evaluation of u. If pruning occurs at
ut, by induction of (ii) on uk, we would have c’(u) > val(uk)ma contradiction. Hence, no
pruning occurs at ut, and by induction of (i) on u, val(u) r(uk).

Case 2. ij < k < ij+l, the first case of (b). In this case, we need to show r(uk) <_ r(u#).
If no pruning occurs at u, by induction of (i), val(u) r(ug). Since ij < k < ii+, val(uk) <
val(u#) r(u#) by induction of (a) on u#. So r(u) <_ r(u#) as desired. If pruning occurs at
u, by induction of (ii), r(ut) < ot’(u) before evaluation of uk. By (2), c’(u,) r(u#). So
again, r(u) <_ r(u#).

Case 3. i* < k, the second case of (b). This case is identical to Case 2 with i* in place
of ij. The induction on (a) and (b) is complete.

The following proposition states that in shallow oe-fl search the current value of a node
can be expressed in terms of minimax values of its evaluated children instead of their return
values. This fact is critical to the later analysis.

PROPOSITION 2. Let D(v) be the set ofchildren ofv evaluated by shallow a- search thus

far. Suppose that [D(v)[ > 0. Then c(v) maxue)(v){val(u)} if v is a MAX-node, or c(v)
min,ez)(vl {val(u)} if v is a MIN-node, where c(v) is the current value of v. Consequently,
c(v) < val(v) if v is a MAX-node, or c(v) >_ val(v) if v is a MIN-node.

Proof. Assume that v is a MAX-node. We use induction on ID(v)I. In the basis case
ID(v)l 1, no pruning occurs at the first evaluated child u of v. By Proposition l(i),
c(v) r(u) val(u). Assume inductively that c(v) =max,eD(v){val(u)}. Let MIN-
node u’ be the next evaluated child of v. By Proposition 1, if no pruning occurs at ut, then
r(u’) val(u’); otherwise, ot’(u’) c(v) > r(u’) >_ val(u’). In either case, let c’(v) be the
current value of v after u’ is evaluated, and we have c’(v) max{c(v), r(u’)} max{c(v),
val(u’)} maxuD,({val(u)} where D’(v) D(v)

One can derive a criterion for a leaf u to be evaluated by shallow c-/ search in terms of the
static structure of the tree, similar to the one given in Theorem in 2. Let v be an ancestor of
leaf u. Define A(v, u) (respectively, B(v, u)) to be the maximum (minimum) of the minimax
values of the children of v that are left siblings to the child of v that is the ancestor of u if v is
a MAX-node (MIN-node).

PROPOSITION 3. A leafu is not evaluated by shallow ot- search ifand only if there are a

MAX ancestor v ofu and a MIN ancestor w ofu where w is the parent of v or v is the parent
ofw such that A v u) > B w, u ).

Proof. Suppose that u is not evaluated by shallow or-/3 search. Let v be the ancestor
of u at which pruning occurs. We may assume that v is a MAX-node. Upon pruning at v,
c(v) ot’(v) > ’(v) c(w), where w is the MIN parent of v, and the evaluated children of
w (respectively, v) are exactly the left siblings of v (respectively, v’, where v’ is the child of
v that is an ancestor of u). By Proposition 2, c(v) A(v, u) and c(w) B(w, u). Hence,
A(v, u) > B(w, u). On the other hand, suppose that u is evaluated by shallow ot-/ search.
Let v be a MAX-ancestor of u and w a MIN-ancestor of u such that w is the parent of v or vice
versa. Upon the evaluation of u, by Proposition 2, A (v, u) c(v) ’(v) < ’(v) c(w)
B(w, u) if w is the parent of v, or A(v, u) c(v) ’(w) < 13’(w) c(w) B(w, u) if v
is the parent of w. In ether case, we have A (v, u) < B(w, u).

As a corollary, we conclude that o-/ search performs no worse than shallow ot-/ search
on any instance. This fact, though taken for granted in the literature, is not obvious because
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the return values computed by shallow o-fl search may be different than those computed by
ot-fl search.

COROLLARY 1. For any game tree T, we evaluate T by ot-fl search and again by shallow
ot- search. If a leaf u is evaluated by ot-fi search, then u is also evaluated by shallow ot-fl
search.

Proof. The proof follows immediately from Proposition 3, Theorem 1, and the fact that
A(v, u) < A(u) and B(v, u) > B(u). 71

COROLLARY 2. For any game tree T, let R(T) and R’ (T) be the expected number ofleaves
evaluated by randomized ot-fl search and randomized shallow ot-fl search, respectively. Then
R(T) < R’(T).

Proof. The proof follows immediately from Corollary and the fact that the execution
of randomized (shallow) c-fi search is equivalent to the execution of deterministic (shallow)
c-fl search on the randomly permuted input tree. 71

4. Randomized shallow ot-fl search. In this section we analyze the complexity of ran-
domized shallow c-fl search for evaluating uniform game trees. We show that the expected
number of leaves evaluated by randomized shallow ot-fl search on any instance of uniform
game tree of degree d and height h is (R)((Bd)h), where Ba d/2 + lnd + O(1).

We first state two probability facts about random permutations. In a permutation (a, a2,

an) of {1,2 n }, ai is a left-to-right maximum if ai > aj for all j < i. In other
words, ai is a left-to-right maximum if and only if position contains the maximum among
the values assigned to position 1, 2 i. For example, in permutation (a, a2, a3, a4, as)
(2, 1,4, 5, 3), the left-to-right maxima are al 2, a3 4 and a4 5.

LEMMA 1. The expected number of left-to-right maxima in a random permutation of
1, 2 n} is the nth harmonic number Hn + - + + -.

Proof The probability that position of a random permutation contains the maximum
among the values assigned to positions 1,2 is / i, as the maximum of these values is

equally likely to be at any position of 1, 2 i. Hence, the expected number of left-to-right
maxima is H, y’=l / k. 71

LEMMA 2. In a random permutation ofn white balls and one black ball, let W be the
number of white balls proceeding the black ball in the permutation. Then Pr[W k] 1/n
forO < k < n and E[W] (n 1)/2.

Proof. The black ball is equally likely to be at any position in a random permutation. The
lemma follows.

A critical notion in our analysis is that of "pruning information." By Proposition 2,
c’(v) c(v) < val(v) for a MAX-node v and fl’(v) c(v) > val(v) for a MIN-node v,
where ot’(v) and fl’(v) are computed before evaluation of v. To meet the pruning condition
ot’(v) >_ fl’(v), it must be the case that fl’(v) < val(v) for a MAX-node v and c’(v) >_
val(v) for a MIN-node v. We say v is evaluated with pruning information if, at the beginning
of evaluation of v, fl’(v) < val(v) for a MAX-node v and c’(v) >_ val(v) for a MIN-node
v; otherwise, v is evaluated with no pruning information. By Proposition 2, pruning may
occur at v only if v is evaluated with pruning information. The root is evaluated with no

pruning information. Clearly, pruning information may only help reduce the number of leaves
evaluated. The following proposition characterizes the notion of pruning information.

PROPOSITION 4. A nonleaf node v is evaluated with pruning information if and only if
some sibling u of v has been evaluated such that val(u) < val(v) if v is a MAX-node, or

val(u) > val(v) if v is a MIN-node.
Proof. Suppose that a nonleaf v is evaluated with pruning information. Let w be the

parent of v. Assume that v is a MAX-node. Then c(w) fl’(v) <_ val(v). By Proposition 2,
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c(w) min{val(u)lu is an evaluated sibling of v}. Some sibling u of v with val(u) < val(v)
must have been evaluated. ]

Let fn (respectively, gn) denote the maximum of expected number of leaves evaluated by
randomized shallow ot-fl search on subtree H of height n over all subtrees H of height n in
T (d, h) under the condition that the the root of H is evaluated with no pruning information
(respectively, with pruning information). By definition, R’(T(d, h)) fh and fn > gn for
0 < n < h with fo go 1. We prove the following recurrence relation.

PROPOSITION 5. For any n, < n < h,

(3) f < Hdf-i + (d- Hal)g,,-1,

(4) gn <-- HI "t- 1)fn-1-t-
2 Hl gn-1,

and H I(H + H2 +"" + Hd-1).where Hd= +
Proof. Let v be the root of a subtree of height n in T (d, h). We may assume that v is a

MAX-node. Let ul, u2 Ud be all d children of v arranged in the order such that val(u ) <

val(u2) < < val(ud) val(v). Suppose that v is evaluated with no pruning information.
Then all children of v are evaluated. By Proposition 4, the child ui, which is a MIN-node,
is evaluated with no pruning information only if no sibling u of ui with val(u) > val(ui)
has already been evaluated, i.e., none of ui+1, Ui+l Ud and no uj such that j < and
val(uj) val(ui) has been evaluated. Hence, if ui is evaluated with no pruning information,
then ui corresponds to a left-to-right maximum in a random permutation of [1, 2 d}.
Let R be the expected number of children of v evaluated with no pruning information. By
Lemma 1, R < Hd. The expected number of children of v evaluated with pruning information
is thus d R. We have the following recurrence relation, noting R < Hal, fn > gn and
(Hd n)g. <_ (Hal e)f.:

fn < Rfn-1 + (d- R)gn-

Hdf-I + (d Hd)g-I (Hd R)f-I + (Hal R)gn-1

<_ Uf._ + (d- Ua)g._,

which is (3).
To analyze gn, suppose that the MAX-node v is evaluated with pruning information.

Then fl’(v) < val(v). Let B {uil val(ui) >_ fl’(v)}, where ui is a child of v, which is a
nonempty set as Ud . B with val(ud) val(v) >_ fl’(v). By Proposition 2, ot’(v) c(v)
max{val(u) u is an evaluated child of v}. The pruning condition ’(v) > fl’(v) holds if and
only if some child of v in B is evaluated. Exactly one node in B is evaluated as the last
evaluated child of v. Let W be the number of evaluated children of v before a child of v in B
is evaluated. Viewing children of v in B as black balls and the other children of v as white
balls in Lemma 2, we have Pr[W k] < 1/d for0 _< k < d and E[W] <_ (d 1)/2.

The only evaluated child u in B, which is a MIN-node, is evaluated with no pruning
information as, prior to the evaluation of u, c’(u) c(v) max{val(ui) ui is an evaluated
child of v not in B} < fl’(v) < val(u). Among the W evaluated children of v not in B, let
R’ be the expected number of nodes evaluated with no pruning information. Like we have
argued previously, each of these evaluated nodes corresponds to a left-to-right maximum in a
random permutation of 1, 2 W}. By Lemma 1, R’ < Hk if W k, and by conditioning
on W,

d-1

R’<k=IHPr[W=k]<
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The expected number of children of v evaluated with pruning information is thus E[W]
R’. We have the following recurrence relation, noting E[W] < (d 1)/2, R’ < H}, fn > gn,

gn <-- (R’ + 1)fn-1 + (E[W] R’)gn-1
(H + 1)fn-1 + (E[W]- H)gn- (H Rt)fn_l -Jr- (O R’)g_

_< (H -t- 1)fn-1 +
2 H gn-1,

which is (4). [3

THEOREM 2. Let T (d, h) be any instance of a uniform game tree of degree d > 2 and
height h > 2. Let R’(T (d, h)) be the expected number of leaves evaluated by randomized
shallow ot-fl searchfor evaluating T (d, h). Then

R’(T(d, h)) O((Bd)h),

where, as afunction ofd,

d
Bd - + lnd + O(1).

d Hk, andProof Define

: d+l
-T- v. We rewrite the recurrence relations (3) and (4) in Proposition 5 as

fn < i.fn-1 .qt_ lZgn_l,

gn < Pfn-1 -’F- gn-1.

DefineF0= =f0, G0= =g0, andforl <n <h,

(5)

(6)
Fn )Fn-1 + lzG

Gn vFn_l + G-.
By a straightforward induction on n, we have for 0 < n < h,

(7) fn _< F,,.

By substituting (6) into (5), and noting lZGn-2 Fn-1 i.Fn-2 by (5), we obtain that for
l<_n<h,

(8) Fn () -- )Fn_ + (119 )Fn_2.

The solution to recurrence relation (8) (cf. [3, 7.3]) is

(9) Fn (R)((Bd)"),

where Ba is the maximum of the two roots of the characteristic equation X2 () + )X +
(/XV .) of recurrence relation (8).

To compute Ba, we calculate the following asymptotics. The harmonic number Ha
k=a 1 lnd + g + O(d-1), where y 5772 is the Euler’s constant. Since d.

(d/e)a//d and lnd! d lnd + O(1),

d-1 d-1

H 1E Hk Elnk + O(1) lnd! + O(1) lnd + O(1).
k=l
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Hence,

I. Ha lnd + O(1),

/z d 1. d lnd + O(1),
v H, + lnd + O(1),

d+l d
v=--lnd+O(1),

2 2
d

1. + -. + O(1),

dlnd
txv 1. + O(d),

2

(1. + )2 + 4(#v 1.) + 2dlnd + O(d),

dv/(1. +)2 + 4(#v 1.) + 21nd + O(1),

and finally

1. -+- -t- v/(1. + )2 + 4(/z v 1.) d
(10) Ba

2 + lnd + O(1).

The theorem follows from the fact that R’(T(d, h)) fh, (7), (9), and (10). [3

We now state the main result of this paper.
THEOREM 3. Let R(T (d, h)) be the expected number of leaves evaluated by randomized
search for evaluating a uniform tree T (d, h) of degree d and height h. Then for any

T(d,h),

R(T(d, h)) O((Bd)h)

such that

Ba l+o(ld)
/

BJ [d -t- /da + 14d + )/4 d/2 + O(1) is the optimal branchingfactor of
randomized algorithmsfor evaluating uniform game trees ofdegree d.

Proof The proof is immediate from Theorem 2 and Corollary 2.
We remark that by Theorem 3, randomized or-/3 search could be worse than an optimal

randomized algorithm by a factor of d(h/d) for evaluating uniform game trees of degree d
and height h with a total of dh leaves, as Bd/Bj + O(lnd/d) e(lnd/d) d

Finally, we show that the upper bound given in Theorem 2 on randomized shallow c-
search is tight. This is done by constructing an instance on which the upper bound is met.
This amounts to a construction of an instance that makes the inequalities associated with fn
and gn into equalities in the proof of Proposition 5. Let T* (d, h) be an instance of uniform
game tree of degree d and height h formed by the following top-down construction. Suppose
that we construct the subtree rooted at v of value val(v) that has d children u l, u2 Ud in
the left-to-right order. We set the values of u l, u2 Ud by the following rules.

3A more precise expression is Bd -} + lnd + 1/2 + g + O(d-1) where 1" is the Euler’s constant.
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(i) v is a MAX-node. If v is the root or the first child of its parent, set val(ul)
val(v) > val(u2) > > val(ud); otherwise, let w be the parent of v and set val(ul)

val(v) > val(w) > val(u2) >... > val(ua), where val(v) > val(w)is guaranteed by the
top-down construction.

(ii) v is a MIN-node. If v is the first child of its parent, set val(Ul) val(v)
< val(u2) < < val(ua); otherwise, let w be the parent of v and set val(u) val(v) <
val(w) < val(u2) < < val(ua) where val(v) < val(w) is guaranteed by the top-down
construction.

THEOREM 4. Let R’(T*(d, h)) be the expected number ofleaves evaluated by randomized
shallow ot- searchfor evaluating T*(d, h). Then R’(T*(d, h)) (R)((Ba)h).

Proof The construction of T* (d, h) gives precisely the tree structure required to make
the inequalities associated with fn and gn in the proof of Proposition 5 into equalities. The
recurrence relations of (3) and (4) can be stated with equalities, and consequently F,, fn in
Theorem 2. Thus R’(T*(d, h)) fn Fn (R)((Ba)) by Theorem 2. [

5. Conclusion. We have shown that the branching factor of randomized c-/} search is
asymptotically optimal for evaluating uniform game trees as the degree of tree increases. This
conclusion is reached through an indirect analysis by showing that the branching factor of
randomized shallow ot-/ search, a weaker version ofrandomized or-/3 search using only shallow
cutoffs, is asymptotically optimal as the degree of tree increases. It remains a challenging
problem to determine the branching factor of randomized or-C} search for evaluating uniform
trees of a fixed degree.

Acknowledgments. The author is grateful to a referee for suggesting improvements to
the proofs, and also thanks Miklos Santha and Stephane Boucheron for their comments.
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GREEDY PACKET SCHEDULING*

ISRAEL CIDONt, SHAY KUTTENt, YISHAY MANSOUR, AND DAVID PELEG

Abstract. Scheduling packets to be forwarded over a link is an important subtask of the routing process in both
parallel computing and in communication networks. This paper investigates the simple class of greedy scheduling
algorithms, namely, algorithms that always forward a packet if they can. It is first proved that for various "natural"
classes of routes, the time required to complete the transmission of a set of packets is bounded by the number of
packets, k, and the maximal route length, d, for any greedy algorithm (including the arbitrary scheduling policy).
Next, tight time bounds of d / k are proved for a specific greedy algorithm on the class of shortest paths in
n-vertex networks. Finally, it is shown that when the routes are arbitrary, the time achieved by various "natural"

greedy algorithms can be as bad as fl(dv + k), for any k, and even for d f2 (n).

Key words, routing, communication networks, parallel computing, shortest paths
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1. Introduction. The task of managing the delivery of packets in a distributed commu-
nication network is intricate and complex. Consequently, many routing strategies incorporate
design choices directed at simplifying the process. One prime example for this type of choice
is the decision to create a clear distinction between two subtasks, namely, route selection
and packet scheduling. The first subtask involves selecting for each packet the route it should
use from its source to its destination. This selection is done in advance, before the packet
actually leaves its source. The second subtask concerns the transmission stage itself, and in-
volves deciding on the schedule by which the different packets are to be forwarded over each
edge along their routes. At this stage, the packets are restricted to their predetermined routes,
and cannot deviate from them. This paper concentrates on routing strategies adopting this
separation, henceforth referred to asfixed-route strategies, and in particular on the scheduling
subtask.

A second type of design choice, aimed at simplifying the scheduling process considerably,
is to make scheduling decisions locally and per packet, rather than globally. The scheduling
policy is thus restricted to the selection of local rules for managing the queues on outgoing
links, namely, resolving the conflicts between the different packets that need to be advanced
on the same outgoing edge. Intuitively, a local algorithm has the property that the rules used
by a vertex in order to schedule awaiting packets rely only on information concerning these
packets (typically contained in the packets’ headers), such as the identity of the source and
destination, the distance traversed by the packet so far, the arrival time at the current vertex,
etc. In contrast, a global algorithm can base its decisions on additional global information on
the status of the network, such as the current distribution of packets in the network and the
routes of these packets.

Although the two design decisions discussed above may not generally lead to a globally
optimal algorithm, they are both widely used. In fact, one of the main distributed network
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strategies for packet routing is virtual circuit [CGKK], [Mar82], [BG87], which is based on
fixing a predetermined logical circuit from the given end user to the given destination, and
transmitting all packets between them on this circuit. Nonetheless, similar considerations
apply also for the second common routing strategy, known as datagram routing [MRR80].

Fixed-route strategies are employed in communication networks such as Systems Network
Architecture [Mar82], Advanced Peer to Peer Network [BGGJP85], and TYMNET [BG87].
In fact all the emerging integrated high-speed networks proposals such as the international
Broadband ISDN (ATM) [CCITT90] and the IBM plaNET Gigabit network [CGGG92], are
based on fixed routing strategies. As for the scheduling policy, most networks use a combi-
nation of first in, first out (FIFO), certain priority parameters, and flow control information,
to determine the next packet to be forwarded. All of these mechanisms are "approximately"
local (although flow control adds some global flavor). The main reasons for these choices
are based on their advantages from an engineering point of view, namely, their simplicity and
low complexity (compared to the global approach), which make them suitable for hardware
implementation.

Packet scheduling algorithms for fixed-route strategies were studied by Leighton, Maggs,
and Rao [LMR88]. Although motivated by routing problems in specific networks realizing
parallel machines, their paper studies the problem on networks of arbitrary topology. The first
result of [LMR88] is a proof that there exists a schedule that terminates in O(d + c) time,
where d is the maximal route length and c is the maximal congestion, i.e., the maximal number
of packets that traverse any edge. However, it seems that determining this schedule requires
a complex centralized computation, relying on global information. The paper provides also
some randomized distributed protocols for the problem. These protocols are simple, online,
and local (in the sense discussed above). The first applies to arbitrary sets of paths and requires
O (c +d log V I) time. The second protocol applies to the case when the paths are leveled with
levels. Informally, a set of paths is leveled if the vertices of the network can be partitioned

into levels in such a way that each edge of the paths connects two consecutive levels. The
protocol completes the routing in O (c + + log IV I) time. Both protocols of [LMR88] assume
all packets start at the same time.

In contrast with both types of algorithms considered in [LMR88], in this paper we consider
the complexity of deterministic distributed algorithms. In fact, we concentrate on a class of
very simple on-line scheduling algorithms, termed greedy algorithms. A greedy algorithm is
an algorithm satisfying the property that at each time unit, the set of packets that are forwarded
is maximal, i.e., if there are messages waiting to be forwarded on some link then one of these
messages is forwarded. Note that this also includes an algorithm that selects the message to
be forwarded next on each link arbitrarily from among the waiting messages (or alternatively,
allows an adversary to decide which packet will be sent next). The class of greedy policies
is very natural [Ko78], and in fact, all packet scheduling policies used in practical packet
switching networks of which we are aware fall in this class. It is interesting to note that the
efficient algorithm of [LMR88] is not greedy.

In the upcoming sections we present several results concerning the behavior of greedy
scheduling algorithms. We first look at some restricted path classes. To begin with, in 3 we
show that for a leveled set of paths 79, the time required for delivering packet pi by any greedy
algorithm is bounded by di + k 1, where di is the length of the route of packet Pi and k is
the total number of packets. Note that in practical networks k might be much larger than c,
hence the randomized algorithm of [LMR88] may perform better.

Our result for the leveled case implies the same result for the natural case of unique
subpaths. A route collection 79 obeys the unique subpaths property if for every pair of vertices
u and v, all the subpaths connecting them in any path of 79 are identical.
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In 4 we consider the class of shortest paths. For this class, we present a strategy that
guarantees a bound of di + k assuming all packets start at the same time. This strategy is
based on advancing the packet that has progressed the least so far. A different strategy, based
on fixed priorities, was independently proposed in [RVN90], and shown to yield the same
bound. In an earlier version of this paper [CKMP90] we conjectured that the same bound is
true for any greedy algorithm. This conjecture has recently been resolved in the affirmative
[MP91].

We then turn to general route classes. In contrast with the special cases discussed above,
we show in 5 that greedy algorithms might behave badly for an arbitrary set of paths. This is
true even when we consider natural greedy schedulers, like fixed priority, FIFO, or preferring
the packet that traversed the minimum (or maximum) distance so far. We show that in such a
case the time may be f2 (d,v/ + k). These negative results hold even for the case where both
k 3(IVI) and d 3(IVI). This strengthens the counter-examples given in [LMR88] for
the case of long routes and a large number of packets.

2. Model. We view the communication network as a directed graph, G (V, E), where
an edge (u, v) represents a bidirectional link connecting the processors u and v. We assume
synchronous communication, i.e., the system maintains a global clock, characterized by the
property that a packet sent at time is received by time + 1.

Next let us define formally the routing problem and its relevant parameters. The input to
the problem is a collection 79 of k packets Pi and k associated routes Pi, < < k. Packet Pi,

marked by an identifier I/, is originated at vertex Ai, its destination is Bi, and it is transmitted
along the route Pi. We deal with vertex-simple (or loop-free) routes. The length of the route

Pi is di, and we denote d(79) maxi{di}.
Two packets are said to collide at time if they are currently waiting at the same vertex to

be sent over the same link. The scheduling algorithm has to decide at each time which packet
to forward at time t. (Note that the paths are fixed, and hence the algorithm has no choice
with respect to the edges that a packet traverses.) Let r/a denote the time at which packet Pi
was sent from its originator Ai, and let ri

B denote the arrival time of Pi at its destination Bi.
Let T/denote the time elapsing from r/a until riB, i.e., T/ ri

B r; The schedule time of 79
is T(79) maxi {T/}.

Some of our results apply only to special path types. Below we characterize these route
classes.

A set ofpaths 79 is leveled ifthere exists an assignmentlevel V --+ IV I], such that
for each path p (v Vl), level(vj) level(vj_) + 1. A directed graph is leveled if there
exists an assignment level, such that for every directed edge (u, v), level(u) + level(v).
In a leveled directed graph, every set 79 of routes is leveled.

The path Pi is a shortest path if its length equals the distance between its endpoints Ai
and Bi. A set of paths 79 is shortest if every path Di E ’]’) is a shortest path.

A set of paths 79 has the unique subpaths property if for every pair of vertices u and v, all
the subpaths connecting them in any path of 79 are identical; that is, if both the routes Pi and

pj go through u and v, then the segments of the paths connecting u and v are identical.

3. Leveled routing. In this section we prove our first result, concerning greedy schedul-
ing on leveled paths.

THEOREM 3.1. Let 79 be a set ofk leveled paths. Thenfor any greedy algorithm usedfor
routing 79

1. every packet Pi arrives within Ti < di -k- k time units, and
2. the algorithm has schedule time T (79) < d (79) + k 1.
Proof. For each packet p and > 0, let level(p/, t) denote the number of the level where

Pi resides at time t. A level L is said to be occupied at time if there exists a packet Pi such
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that level(p/, t) L. The proof is based on considering, for any > 0, the set E(t) of levels
that are occupied at time t. We shall argue that at every time unit there is some progress, in
the sense that either the number of occupied levels grows, or the lowest occupied level (the
one whose number is the smallest) becomes unoccupied.

For uniformity of presentation, we adopt the convention that at any time > rff (the time
pi reaches its destination), level(p/, t) is incremented by one. This can be thought of as if the
packet continues progressing indefinitely along some path p extended from the destination
Bi and dedicated to it, and hence never collides afterwards. This does not restrict generality
in any way, since such an extension Pi of the packet’s route has no influence on the routes of
other packets, and the arrival time of the packet is still considered to be r/, the time it has
reached its original destination Bi.

Consider the collection E(t) of occupied levels at time t. We break this collection into
"blocks" of consecutive levels (separated by unoccupied levels). We define the following
parameters for each packet Pi:

B(pi, t) is the block of pi at time (i.e., the block containing level(p/, t)).
Suppose that B(pi, t) {L, L + H}. Then

min(pi, t) L.
max(p/, t) H.
width(p/, t) IB(pi, t)l max(p/, t) min(pi, t) (= H L).

Note that the number of occupied levels at any given time is bounded by the number of
packets, [(t)[ < k, and therefore the maximum block size satisfies

(1) width(p/, t) < k 1.

CLAIM 3.2. max(p/, + 1) max(p/, t) > for every > O.
Proof. Since the algorithm is greedy, we are guaranteed that if the levels L, L + 1, H

are occupied at time t, then the levels L + H + are occupied at time / 1. Also,
L < level(p/, t) < H implies L < level(p/, + 1) < H + 1, and therefore L + H+
B(pi, + 1). This implies that max(p/+ 1, t) > H + 1.

COROLLARY 3.3. Ti < max(p/, rin) max(p/, r/a). This corollary is complemented by
the following claim which bounds the increase in max(p/, t) from above.

CLAIM 3.4. max(p/, riB) max(p/, r/A) < di -]- k 1.
Proof. Consider a packet Pi whose origin Ai is at level LA level(p/, r/a) and whose

destination Bi is at level LB level(p/, rfl) LA -+- di. Initially, max(p/, r/a) > LA. On the
other hand, upon arrival at the destination, max(p/, "riB) min(pi, -r/e) .+. width(p/, -r/B) <
LB + width(p/, "riB). Hence by (1) we have that max(p/, "riB) max(p/, "r/a) _< L B + k

LA --di +k- 1.
Combining Corollary 3.3 and Claim 3.4, we get Ti _< di q- k 1. This completes the

proof of part of Theorem 3.1. Part 2 follows immediately from part 1. l-1

The natural class of paths with the unique subpaths property can be analyzed using the
above theorem.

COROLLARY 3.5. Let 79 be a set ofk paths satisfying the unique subpaths property. Then

for any greedy algorithm usedfor routing 79,
1. every packet Pi arrives within Ti < di + k time units, and
2. the algorithm has schedule time T (79) < d (79) + k 1.
Proof We prove that the delay suffered by any packet Pi is no greater than in an execution

on a leveled graph (with the same k and di). Consider subgraph Gi induced by the route of
a particular packet Pi, and consider the subpaths of this single route which are traversed by
other packets. Clearly, because of the unique subpath property each subpath is a consecutive
segment ofthe original route, therefore, G is leveled. Consider an execution of ofthe schedule
in the original graph (79) and observe the subgraph Gi. Let rj

a in Gi be the time at which packet
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pj arrived to Gi (or pi’s route) in the above execution. Note that the schedules of pi in
Gi and in 79 are identical. Thus, by part of Theorem 3.1 the delay suffered by pi in
the unique subpaths case is the same as the one in the leveled paths case we have con-
structed. [3

4. Shortest path routing. In this section we consider a scheduling algorithm for the case
in which each route/9 in the set 79 uses a shortest path from its origin to its destination. We
shall assume that all packets start at the same time, i.e., r/a 0 for < < k. For every
time 0 < < Ti, let di (t) denote the distance traversed by Pi by time (note that in particular,
di (Ti) di). If Pi and pj "collide" at time t, the algorithm resolves the collision based on the
distance traversed by the packets so far, breaking ties by packet identifiers. Thus the algorithm
will prefer Pi iff

di(t) < dj(t) or (di(t) dj(t.) and li < lj).

We refer to this algorithm as the Min Went algorithm. The rest of this section is devoted to
proving the following theorem.

THEOREM 4.1. If the set ofpaths 79 consists ofshortest paths and ri
A 0 for <__ < k

(i.e., all the packets start at the same time) then the Min Went scheduling algorithm guarantees
1. every packet Pi arrives at time Ti <_ di + k 1.
2. the schedule time is T (79) < d(79) + k 1.
We begin the proof by pointing out the following trivial fact regarding the relationship

between packets in consecutive collisions.
FACT 4.2. lf pi and pj collide twice (at times t and t2), then the relation between di(t)

and dj (t) is the same at both times.
DEFINITION 4.3. Given an execution of the algorithm the collision relation C is defined

as the collection ofall triples (Pi, Pj, t) such that at time packets Pi and pj collide (i.e., they
are at the same vertex, waiting for the same edge), and pi wins the collision resolution and
gets to use the edge (at time t).

Since only one packet can go on a specific edge at a time we can deduce the following
fact.

FACT 4.4. For every p, there is at most one triple (p’, p, t) in C.
Consider some packet p; without loss of generality we term it p0. If this packet is never

delayed, then To do and we are done. Hence suppose the packet was delayed along its route.
We now define a delay sequence for po. Let to be the last time that packet P0 was delayed.
(Note that such a time exists since the delays are finite; a bound of T(79) < k. d(79) on the
scheduling time of any greedy algorithm is trivial.) Namely, there is a triple (Pl, P0, to) in C,
and there is no such triple for Po in later times > to. (Recall that by Fact 4.4 there is only
one such Pl.) Let tl be the last time Pl was delayed before time to. Namely, there is a triple
(P2, Pl, tl) and no such triple for Pl in any time between tl and to. Continue the sequence in
this way until reaching a packet Pe that was not delayed prior to time te-1.

It is convenient to define also t_l To (the arrival time of P0) and te 0 (the start time
of Pe).

We get a sequence 79,9 of triples

79,S (Pl, Po, to), (P2, Pl, tl) (Pe, Pe-, te-1),

where To t_ > to > t > > te- > te rea O.
LEMMA 4.5. To < do q- e.
Proof. By definition of the relation C and the Min Went scheduling, we have the inequal-

ities

(Xj) dj+l(tj) < dj(tj) for j 0, 1.
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For j 0 let Oj denote the segment of the route pj traversed by pj between the
times tj (when it "lost" in the collision resolution) and tj_l (when it won), and let Aj IOjl
dj(tj_l) dj(tj). Substitute this definition in the inequalities (Xj) to get

(Yj) dj+l(tj+l) + Aj+l < dj(tj) for j 0 e 1.

We also have

(Y-l) do(to) + A0 d0(t-1) do.

Summing the inequalities (Yj) for j -1, 0,..., 1, and recalling that de(te) O,
we get

(2) A0 + A1 +... + Ae-1 + Ae < do

We also construct a chain of equalities for the times involved in these collisions. Since
packet pj (for 0 < j < g. 1) was delayed at time tj but never delayed since that time until
time tj-1, we have

(Zj) tj-1 --tj + + Aj forj --0 e- 1.

We also have

(Ze) re-1 de(te-1) Ae + te Ae
Combining the equalities (Zj) for j 0 e we get

(3) To =t-1 A0+AI +’"+ Ae-1 + Ae +.

Combining equations (2) and (3), we get that T/0 < dio + , and the lemma
follows.

In order to complete the proof of the theorem, it therefore remains to bound the length of
the sequence 7)S. This is done by proving the following claim.

LEMMA 4.6. The packets pj appearing in the triples ofthe sequence 7)S are all distinct.

Proof. The proof is by a contradiction. Assume that some packet occurs twice in the
sequence, for instance Pm Pr for rn > r. (See Fig. 1.) By the structure of the sequence,
every two consecutive packets are distinct, so necessarily m > r + 2. This means that the
sequence contains a subcycle

(Pr+l, Pr, tr), (Pr+Z, Pr+l, tr+l) (P,n-l, Pm-2, tm-2), (Pm, Pm-l, tm-1)
(Pr, Pm-1, tm-1),

where tr > tr+l > > tin-l, and m > r + 2.
We argue that among the inequalities (Xj), for r _< j < m 1, at least one of the

inequalities is strict. Otherwise, all the collision resolutions in the cycle were made on the
basis of packet identities, so/r Im < Im-1 < < Ir+l < /r, which is a contradiction. It
follows that among the corresponding inequalities (Yi), for r < j < m 2, plus (Xm-l), at
least one is strict. Combine these inequalities in a chain, to get

(4) dm(tm_l) nt- Am-1 q- -I- Ar+l < dr(tr).

Finally, let denote the segment of the route/o traversed by Pr between the times tm-1
(when it won) and tr (when it lost), and let z I1 dr(tr) dr(tm-1). We get that

Am-I -- + Ar+l < dr(tr) dr(tm-1) A,
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FIG. 1. Cycle in delay sequence.

or in other words, the segment 0 of Pr is not shortest; this is a contradiction to the assumption
that all the paths in 79 are shortest paths.

COROLLARY 4.7. The sequence DS is of length e < k 1.
Combining this corollary with Lemma 4.5 completes the proof of part of the theorem.

Part 2 follows immediately.

5. Greedy algorithms in the general case. The purpose of this section is to demonstrate
the fact that, unlike the case of leveled routes, for general route classes not every greedy
algorithm delivers the messages fast. We start by constructing a directed graph and a set of
paths, that will be used as building blocks for our main lower bound construction.

The construction is parameterized by two integers x and y. The constructed directed
graph Gx,y (see Fig. 2) is composed of a line of 2x + vertices, denoted by v0,

l)<l,out.> l)<x,+/-n>, V<x,out>. In addition, each "in" vertex (i.e., t)<i,+/-n>) is connected to
its corresponding "out:" vertex (i.e., v<i,out>) also via a "detour" path of y vertices (denoted
by Li). Intuitively, the line is the "main" route; the Li subgraphs are used to "side track"
packets and delay them, thus causing them to collide repeatedly.

GO

L L2 Lx

o
o
o

V
,in

0 0
0 o
o o

V V2, V VV
0 ,out V2,in out x,in x,out

FIG. 2. The graph Gx,y.

A more formal construction follows. Define the graph Gx,y (V, E) to be the union of
the subgraphs G, L L C.

The vertices of the subgraph GO are

V(G) {1 x} x {in, out} U {v0},
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and the edges are

E(G) {(l)<i,out>, v<i+l,+/-n> _< < x 1}
I,.J {(l)<i,5_n>, V<i,out>) _< < x}

{(vo,

The graph L is a straight line of y vertices and y edges, i.e.,

V(L) {11 ly} and E(L) {(li, li+l) < < y- 1}.

For < < x, the subgraph L is a copy of the graph L, with superscript i.
Finally, the edges in C connect the endpoints of each subgraph L to the corresponding

vertices v<i,in> and v<i,ut> on the path GO:

Let

C {(v<i,+/-n>, I) _< _< x} U {(1, v<i,ou>) _< _< x}.

=GUCU U Liax,y
l<i<x

The paths Dx,y are the following. All the paths start at vertex v0, and proceed through
v<i, in> and v<i,ou>, for x, ending at V<x,o>. There are two types of paths: a
"long" path, pl, consisting of x (y + 2) edges, and a "short" one, ps, consisting of 2x edges.
The "short" path ps travels directly through the graph G. The "long" path pl takes all the
"detours" Li, i.e., it travels from each "+/-n" vertex v<i,n> to the corresponding "our_" vertex

v<i,o>, via the path Li. Formally, ps E(G), and

pl U E(Li) U {(l)<i,ou>, V<i+l,+/-n> < < x 1} U {(v0, v<l,+/-n>)} U C.
l<i<x

Let us first illustrate the use of this construction by proving a weaker lower bound, and
then proceed to our main lower bound. The scheduling policy that we use for the queue
scheduling is a fixed priority. This lemma will later be used to prove our main lower bound.

LEMMA 5.1. For any x and y, there exist a graph Gx,y and a collection of y + paths
79x,y, such that there is a packet that traverses a path oflength O(x) and requires f2 (xy) time
under the fixed priority queueing policy.

Proof Given x and y, construct Gx,y as above. The set T’x,y consists of y + paths,
of which y are identical to the "long" path pl, and the remaining one is the "short" path ps.
The last packet has the lowest priority. Note that whenever the low priority packet reaches an
"out:" vertex it is delayed y times, once by each other packet. It is also delayed y times in
vertex v0. Therefore, the total delay of this packet is 2x + xy. rq

The above lemma shows that for some packet the delay may be f2 (xy), even though the
number of edges in its route is only 2x. This lower bound can be strengthened in two respects.
Note that in the above construction, some packets have routes of f2 (xy) edges, which is as
high as the lower bound. Also, the number of vertices in the constructed graph is large (i.e.,
f2 (xy)). In the setting of the next theorem, both the graph size and the route lengths are small
relative to the derived lower bound.

THEOREM 5.2. For every d and k there exist a graph {Td,k and a collection ofk paths 79
whose schedule time under thefixedpriority algorithm is T (79) f2 (dv/-), and V ({Td,k)
O(d).

Proof First we create a graph that achieves the delay bound, but has more vertices, and
then we show how to reduce the number of vertices. Consider the graph Gx,y defined in
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Lemma 5.1, with the parameters x d/ and y V. (We assume for simplicity that x
and y are integral; if x < 1 then k > dv/, in which case the claim is trivial.) We take
copies of Gx,y, denoted by Gix,y, and connect the ith copy to the (i / 1)st copy by identifying
the last vertex of Gid,k with the first vertex of Gi+ld,k (i.e., 1)i<x,out:> -" 1)0i+1)"

We partition the packets into v/ groups of decreasing priorities; each group is of

to v4 The paths of all the packets within thepackets. All packets go from v<l,in>
same group are identical. The ith group traverses in Gj, j - i, the shortest path from the first
vertex to the last vertex (i.e., ps). In G the packets traverse all the loops Lj (i.e., use pl).
Note that all the paths are of the same length, which is O (d).

Note that the packets in the th group delay the packets in groups j > by f2 (d) time
while traversing G (and a similar thing happens as they traverse G for 2, 3 1).
This means that the last packet reaches its destination after f2 (dx/) time.

The number of vertices in the construction so far is O(dV/-). In order to reduce the
number of vertices to O (d) we modify the way in which we combine the copies of Gx,y.
For every i, we collapse the subgraphs L in the graphs G Gv’ into a single copy,
namely, L of G See Fig. 3.

L L 2 L

Vl,in Vl,out V2,in V2,outVl,in Vl,ou V2,in V2,ou V,in Vx,ou
Vl,in Vl,out V2,in V2,out

G G2

FIG. 3. The graph d,k.

A similar, although somewhat more complicated proofcan be constructed for other greedy
algorithms, specifically the Min Went policy of 4, the analogous Max Went policy, or the
FIFO policy, namely, the algorithm that resolves a collision between two packets in vertex v

by sending the first to have arrived at v. Details can be found in [CKMP90].
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OPTIMAL FILE SHARING IN DISTRIBUTED NETWORKS*

MONI NAOR AND RON M. ROTH

Abstract. The following file distribution problem is considered: Given a network of processors represented by
an undirected graph G (V, E) and a file size k, an arbitrary file w of k bits is to be distributed among all nodes
of G. To this end, each node is assigned a memory device such that by accessing the memory of its own and of its

adjacent nodes, the node can reconstruct the contents of w. The objective is to minimize the total size of memory in
the network. This paper presents a file distribution scheme which realizes this objective for k >> log AG, where AG
stands for the maximum degree in G: For this range of k, the total memory size required by the suggested scheme
approaches an integer programming lower bound on that size. The scheme is also constructive in the sense that given
G and k, the memory size at each node in G, as well as the mapping of any file w into the node memory devices,
can be computed in time complexity which is polynomial in k and VI. Furthermore, each node can reconstruct the
contents of such a file w in O (k:) bit operations. Finally, it is shown that the requirement of k being much larger than
log AG is necessary in order to have total memory size close to the integer programming lower bound.

Key words, derandomization, distributed networks, file assignment, integer programming, linear codes, linear
programming, probabilistic algorithms, resource sharing, set cover

AMS subject classifications. 68P20, 68M 10, 68Q20, 68R99, 94B05

1. Introduction. Consider the following file distribution problem: A network of pro-
cessors is represented by an undirected graph G. An arbitrary file w of a prescribed size k
(measured, say, in bits) is to be distributed among all nodes of G. We are to assign memory
devices to the nodes of G such that by accessing the memory of its own and of its adjacent
nodes, each node can reconstruct the contents of w. Given G and k, the objective is to find a
static memory allocation to the nodes of G, independent of w, as to minimize the total size
of memory in the network. Although we do not restrict the file distribution or reconstruction
algorithms to be of any particular form, we aim at simple and efficient ones.

The problem of file allocation in a network, i.e., of storing a file in a network so that
every processor has "easy" access to the file, has been considered in many variants. (See [4]
for a survey.) The specific version of reconstruction from adjacent nodes only has received
attention in the form of file segmentation, where the task is to partition the file so that for
each node u in the network, the union of the file segments stored at nodes adjacent to u is the
complete file [4], [8], [13]. As we shall see, allowing more general reconstruction procedures
than simply taking the union of file segments at adjacent nodes can result in a considerable
savings of the total amount of memory required: Letting A denote the maximum degree of
any node in G, the memory requirement of the best segmentation scheme can be f2 (log A6)
times larger than the optimal requirement in the general scheme; this bound is tight.

We start by deriving linear and integer programming lower bounds on the total size of
memory required for any network G and file size k. We then present a simple scheme that
attains these bounds for sufficiently large values of k. In this scheme, however, the file size k
must be, in some cases, much larger than A log A in order to approach the abovementioned
lower bounds. We regard this as a great disadvantage for two reasons: Such a scheme may
turn out to be efficient only for large files and, even then, it requires addressing large units of
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stored data each time a node accesses the file. Thus we devote considerable attention to the
problem of finding a scheme that is close to the linear and integer programming bounds with
a file size that is as small as possible.

Our main result is that the critical file size above which the linear or integer programming
bounds can be approached is of the order of log A: We present a file distribution scheme
for any network G and file size k of a total memory size that is within a multiplicative factor
of + (G, k) from the linear programming bound, where (G, k) stands for a term which

approaches zero as k/log A increases. On the other hand, we present an inifinite sequence
of network file-size pairs {(GI, kl)}/_o such that kl >_ log A6, and yet any file distribution
scheme, when applied to a pair (Gl, kl), requires memory size which is + 6(Gt, kt) times
larger than the integer (or linear) lower bound, with liminft 6(Gt, kt) >_ -. This proves
that a file size of the order of log AG is indeed a critical point.

The rest of the paper is organized as follows. In 2 we provide the necessary background
and definitions. In 3 we describe the linear and integer programming lower bounds and prove
that the linear programming lower bound can be approached for large file sizes k. In 4 we
prove our main result, namely, we present a file distribution scheme that approaches the linear
programming bound as the ratio k/log AG increases. Finally, in 5 we exhibit the fact that a
file size of log A6 is a critical point, below which there exists infinite families of networks for
which the linear and integer programming lower bounds cannot be attained.

2. Background and definitions. Throughout this paper we assume the underlying net-
work to be presented by an undirected graph G (V, E), with a set of nodes V V and a
set of edges E E such that

(i) G does not have parallel edges.
(ii) Each node contains a self loop. This stands for the fact that each node can access

its own memory.
An undirected graph satisfying conditions (i) and (ii) will be referred to as a network

graph.
Two nodes u and v in a network graph G (V, E) are adjacent if there is an edge in G

connecting u and v. The adjacency matrix of a network graph G (V, E) is the VI x Vl
matrix A [au,o]u,osv, where au, when u and v are adjacent, and au,o 0 otherwise.
Note that by definition of a network graph, every node u 6 V is adjacent to itself and thus

au,u 1.
For every u 6 V, let 1-" (u) be the set of nodes that are adjacent to u in G. The degree of u is

denoted by A(u)
zx

IF(u)l, and the maximum degree in G is denoted by A maxuv A(u).
Two real vectors y [Yi ]i and z [zi]i are said to satisfy the relation y > z if Yi >_ zi

for all i. The scalar product y. z of these vectors is defined, as usual, by -,i YiZi. A real
vector y is called nonnegative if y > 0, where 0 denotes the all-zero vector. By the norm of a

nonnegative vector y we mean the L i-norm IlYll
zx
y 1, where 1 denotes the all-one vector.

Given a network graph G (V, E) and a positive integer k, afile distribution protocolfor
(G, k) is, intuitively, a procedure for allocating memory devices to the nodes of G and to map
an arbitrary file w of size k into these memory devices such that each node u can reconstruct
w by reading the memory contents at nodes adjacent to u.

More precisely, let F2 = GF(2), let G (V, E) be a network graph, and let k be a

positive integer. For u 6 V and a real vector z [zu],v denote by (Az)u the uth entry
of Az; this entry is equal to or’ zo. A file distribution protocol , for (G, k) is a list
(x; []uV; [7)]uV), consisting of the following:

1As we have not defined any order on the set of nodes V, the order of entries in vectors such as z can be fixed
arbitrarily. The same applies to rows and columns of the adjacency matrix Ac, or to subvectors such as [z,]oer(u).



60 MONI NAOR AND RON M. ROTH

Memory allocation, which is a nonnegative integer vector x [Xu].ev; the entry
denotes the size of memory (in bits) assigned to node u;

encoding mappings:

u:F -- F for every u e V;

these mappings define the coding rule of any file w of size k into the memory devices at the
nodes: the contents of the memory at node u is given by g.(w);

decoding (reconstruction) mappings:

79u F(aax)" F2 for every u 6 V.

The memory allocation, encoding mappings, and decoding mappings satisfy the requirement

(1) 7). ([go (w)]oru)) -= w, w F.
Equation (1) guarantees that each node u is able to reconstruct the value (contents) of any

file w of size k out of the memory contents go (w) at nodes v adjacent to u.
The memory size of a file distribution protocol X (x; [g.]ueV; [79.].v) for (G, k) is

defined as the norm Ilxll and is denoted IX I. That is, the memory size of a file distribution
protocol is the total number of bits assigned to the nodes. The minimum memory size of any
file distribution protocol for (G, k) is denoted by M(G, k).

Example 1. The file segmentation method mentioned in can be described as a file
distribution protocol for (G, k) with memory allocation x [x.].v and associated encoding
mappings g.:F -+ F" of the form

u [WlW2...Wk] [tOj(u;1)tOj(u;2)...tOj(u;x,)],

where0 < j(u;1) < j(u;2) < < j(u;xu) < k. Foranode u 6 V to be able to
reconstruct the original file w, the mappings go, v 6 1-’ (u), must be such that every entry wi
of w appears in at least one go(w). This implies that the set of nodes Si, which wi is mapped
to under the encoding mappings, must be a dominating set in G; that is, each node u 6 G
is adjacent to some node in Si. On the other hand, given a dominating set S in G, we can
construct a file segmentation protocol for (G, k) of memory size k ISI < k IVI (the case
S V corresponds to simply replicating the original file w into each node in G).

A file distribution scheme is a function (G, k) - X (G, k) which maps every network
graph G and positive integer k into a file distribution protocol X (G, k) for (G, k).

A file distribution scheme (G, k) (G, k) (x; [gu]uV; [D.].v) is constructive if
(a) the complexity of computing the memory allocation x is polynomial in k and IV I;
(b) for every w 6 F2, the complexity of computing the encoded values [g.(W)]ueV is

polynomial in the memory size Ilxll;
(c) for every u V and c F(2aax)" the complexity of reconstructing w 79, (c) out

of e is polynomial in the original file size k.
By computational complexity of a problem we mean the running time of a Turing machine

that solves this problem.
Remark 1. In the definition of memory size of file distribution protocols we chose not

to count the amount of memory required at each node u to store and run the routines which
implement the decoding mappings 79u (’). The reasoning for neglecting this auxiliary memory
is that, in practice, there are a number of files (each, say, of the same size k) that are to be
distributed in the network. The file distribution protocol can be implemented independently
for each such file, using the same program and the same working space to handle all these files.
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To this end, we might better think of k as the size of the smallest information unit (e.g., a word,
or a record) that is addressed at each access to any file. From a complexity point of view, we
would prefer k to be as small as possible. The motivation of this paper can be summarized as
finding a constructive file distribution scheme (G, k) -> X (G, k), which maintains a ratio of
memory size to file size virtually equal to liml M(G, l)/l for relatively small file sizes k.

Remark 2. One might think of a weaker definition for constructiveness by allowing
nonpolynomial precomputation of x (item (a)) and, possibly, of other data structures which
depend on G and k but not on w (e.g., calculating suitable representations for ’, and 79u);
such schemes may be justified by the assumption that these precomputation steps should be
done once for a given network graph G and a file size k. On the other hand, items (b) and
(c) in the constructiveness definition involve the complexity of the more frequent occasions
when the file is encoded and---even more so--reconstructed. In this paper, however, we aim
at finding file distribution schemes which are constructive in the way we have defined, i.e., in
the strong sense: satisfying all three requirements (a)-(c).

We end this section by introducing a few terms which will be used in describing the
mappings ’, and Du of the proposed file distribution schemes. Let be a finite alphabet of
q elements. An (n, K) code C over is a nonempty subset of n of size K; the parameter n
is called the length of C, and the members of C are referred to as codewords. The minimum
distance of an (n, K) code C over is the minimum integer d such that any two distinct
codewords in C differ in at least d coordinates.

Let C be an (n, K) code over and let S be a subset of (n) =a 1, 2 n }. We say that
C is separable with respect to S if every two distinct codewords in C differ in at least one
coordinate indexed by S. The next lemma follows directly from the definition of minimum
distance.

LEMMA 1. The minimum distance ofan (n, K) code C over do is the minimum integer d
for which C is separable with respect to every set S c_ (n ofsize n d + 1.

Let q be a power of a prime. An (n, K) code C over a field GF(q) is linear if C
is a linear subspace of n; in this case we have K qk, where k is the dimension of C. A
generator matrix B of a linear (n, qk) code C over is a k x n matrix B over whose rows
span the codewords of C.

For a k n matrix B (such as a generator matrix) and a set S _c (n), denote by (B)s the
k x SI matrix consisting of all columns of B indexed by S. The following lemma is easily
verified.

LEMMA 2. Let C be an (n, qk) linear code over a field do, let B be a generator matrix of
C, and let S be a subset of (n ). Then C is separable with respect to S ifand only if B s has
rank k.

3. Lower bounds and the statement of the main result. In this section we first derive
lower bounds on M(G, k), i.e., on the memory size of any file distribution protocol for (G, k).
Then we state our main result (Theorem 2), which establishes the existence of a constructive
file distribution scheme (G, k) )f(G, k) that attains these lower bounds whenever k >>
log Aa. As the proof of Theorem 2 is somewhat long, it is deferred to 4. Instead, we
present in this section a simple file distribution scheme which attains the lower bounds when
k f2(A log A).

3.1. Lower bounds. Let x [Xu]uV be a memory allocation of some file distribution
protocol for (G, k). Assigning x, bits to each node u V, each node must "see" at least k
memory bits at its adjacent nodes, or else (1) would not hold. Therefore, for every u V we
must have ,oru xo >_ k or, in vector notation,

Aax > k. 1.
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Let J (G, k) denote the minimum value attained by the following integer programming
problem:

IP(G, k)

J(G, k) min IlYlI,
ranging over all integer y such that

Auy<k. 1 and y> 0.

Also, let pu denote the minimum value attained by the following (rational) linear programming
problem:

(2) LP(G)
PG min Ilzll,

ranging over all rational z such that

AGz> 1 and z> 0.

The next theorem follows from the previous definitions, Example 1, and the fact that
J (G, 1) is the size of a (smallest) dominating set in G.

THEOREM 1. For every network graph G and positive integer k,

PG" k < J(G,k) < M(G, k) < k. J(G, 1) < k" IVl.

We call J (G, k) the integerprogramming bound, whereas PG" k is referred to as the linear
programming bound.

For k 1, Theorem becomes M(G, 1) J (G, 1). The problem of deciding whether a
network graph G has a dominating set of size < s is well known to be NP complete [6]. The
next corollary immediately follows.

COROLLARY 1. Given an instance of a network graph G and positive integers k and s,
the problem ofdeciding whether there exists a file distribution protocolfor (G, k) ofmemory
size < s (i.e., whether M(G, k) < s) is NP hard.

Note that we do not know whether the decision problem of Corollary is in NP (and
therefore, whether it is NP complete) since it is unclear how to verify (1) in polynomial time,
even when the encoding and decoding mappings are computable in polynomial time.

Remark 3. A result of Lovisz [11] states that J(G, 1) < PG log AG; on the other hand,
one can construct an infinite family of network graphs {Gt }t (such as the ones presented in

(see also [7]) In terms of file segmentation schemes5) for which J(G, 1) > PG, log2 AGt
(Example 1) this means that there always exists a file distribution protocol for (G, k) based on
segmentation whose memory size, k. J (G, 1), is within a multiplicative factor of log2 AG from
the linear programming bound PG k. Yet, on the other hand, there are families of network
graphs for which such a multiplicative gap is definitive (up to a constant 4), even when k tends
to infinity.

3.2. Statement of the main result. Corollary suggests that it is unlikely that there
exists an efficient algorithm for generating a file distribution scheme (G, k) -> X (G, k) with
Ix(G, k)l M(G, k). This directs our objective to finding a constructive file distribution
scheme (G, k) -> x(G, k) such that Ix(G, k)I/(PG k) is close to for values of k as small
as possible.

More specifically, we prove the following theorem.
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that
THEOREM 2. There exists a constructive file distribution scheme (G, k) w-> X (G, k) such

(3) Ix(a,k)l__l+O max
Pa k k

(The maximum in the right-hand side of (3) is determined according to whether k is smaller
or larger than log Aa. Also, by Theorem 1, the ratios Ix(G, k)I/M(G, k), M(G, k)/J(G, k),
and J(G, k)/(p k) all approach when k >> log Aa.)

In 4 we prove Theorem 2 by presenting an algorithm for generating a constructive file
distribution scheme (G, k) -> X (G, k) which satisfies (3); in particular, the computational
complexity of the encoding mappings in the resulting scheme (item (b) in the constructiveness
requirements) is O(k. IX (G, k)l), whereas applying the decoding mapping at each node (item
(c)) requires O (k2) bits operations. Returning to our discussion in Remark 1, the complexity
of these mappings suggests that the file size k should be as small as possible, still greater than
log Aa. This means that files distributed in the network should be segmented into records
of size k a log Aa for some (large) constant a, each record being encoded and decoded
independently. Information can be retrieved from the file by reading whole records of size
a log Aa bits each, requiring O(a2 log2 Aa) bit operations, whereby the ratio between the
memory size required in the network and the file size k is at most + O(1/4d) times that
ratio for k --+ oo.

Our file distribution algorithm is divided into two major steps.
Step 1. Find a memory allocation x [Xu]ueV for (G, k) by finding an approximate

solution to an integer programming problem; the resulting memory size IX (G, k)l Ilxll will
satisfy (3).

Step 2. Construct a set of k x Xu matrices Bu, u V, over F2; these matrices define the
encoding mappings F F by w wB,, u V. The choice of the matrices
Bu, in turn, is such that each k (A6x)u matrix [Bo]or,) is of rank k, thus yielding decoding
mappings Du F(2 aGx)u -- F, which satisfy (1).

3.3. File distribution scheme for large files. In this section we present a fairly simple
constructive file distribution scheme (G, k) v- X (G, k), for which

Ix(G,k)lpc.k =l+O(A’lg(A’k))"k

Note that this proves Theorem 2 whenever k (A log A).
Given a network graph G (V, E) and a positive integer k, we first compute a memory

allocation x [Xu]uV for (G, k) (Step above). Let z [z,],,v be an optimal solution to the
linear programming problem LP(G) in (2). Such a vector z can be found in time complexity
which is polynomial in IVI (e.g., by using Karmarkar’s algorithm [9]). Set h & [logz(A. k)q

and [k/hi, and define the integer vector y [yu]uV by

A
Yu min{/; L(/+ AG). zuJ}, uV.

Clearly, Ilyll PG (1 + AG); furthermore, since AGz > 1, we also have

(Ay)u >_ min{1; (1 + A6)(Aaz)u A6} > I, u 6 V,

A
i.e., AGy > 1. The memory allocation for (G, k) is defined by x h y, and it is easy
to verify that IIxlI/(PG k) + O((AG/k) log(AG, k)).
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We now turn to defining the encoding and decoding mappings (Step 2). To this end, we
first assign Aa colors to the nodes of G, with each node u assigned a set C. of Yu colors,
such that [..Joer(u) Co > l, u V. In other words, we multicolor the nodes of G in such a
way that each node "sees" at lease colors at its adjacent nodes.

Such a coloring can be obtained in the following greedy manner: Start with Cu <--- t3 for
every u V. Call a node u saturated if [..Joer(u) Col > l. (Hence, at the beginning all nodes
are unsaturated, whereas at the end all of them should become saturated.) Scan each node
u V once, and, at each visited node u, redefine the set Cu to have yu distinct colors not
c6ntained in sets Co already assigned to nodes v F(u’) for all unsaturated nodes u’ F(u).

To verify that such a procedure indeed yields an all-saturated network, we first show that
at each step there are enough colors to assign to the current node. Let or(u) denote the number
of unsaturated nodes u’ F(u) {u} when C. is being redefined. Recalling that Yo <

for every v V, it is easy to verify that the number of disqualified colors for C. is at most
r (u). (l 1) + (A(u) -a(u) 1).1 < Al -l < Al Yu. This leaves at least Yu qualified
colors to assign to node u. We now claim that each node becomes saturated at some point.
For if node u remained unsaturated all along, then the sets Co, v F (u), had to be disjoint;
but in that case we would have

rfu Co ICol= Yu =(AGY)u >l,
vF(u) vF(u)

contradicting the fact that u was unsaturated.

Let oct, oe2 ca.l be distinct elements in -& GF(2h), each ai corresponding to some
color j (note that [[ > Aa k > Aa l). Given a file w of k bits, we group the entries of
w into h tuples to form the coefficients of a polynomial w(t) of degree < [k/hi over

We now compute the values wj w(oj), < j <_ Aa l, and store at each node u V
the values wj, j Cu, requiring memory allocation of xu h yu bits. Since each u has
access to images wj of w(t) evaluated at distinct elements aj, each node can interpolate the
polynomial w(t) and hence reconstruct the file w.

The above encoding procedure can be described also in terms of linear codes (refer to
the end of 2). Such a characterization will turn out to be useful in 4 and 5. Let BRs be an

i-I <i <I < j < AGI.x (Aa/) matrix over GF(2h) defined by (BRs)i,j

For every node u V, let C. be the set of colors assigned to u and let Bu a= (Brs)cu; that
is, regarding Cu as a subset of 1, 2, Aa/}, B. consists of all columns of Brs indexed by
Cu. The mappings gu F --+ F", or rather, gu di)l IJpYu, are defined by g. w wBu,
u V, w Ct. The matrix Bs is known as a generator matrix of a (A6/, 2ht) generalized
Reed-Solomon code over [12, Chaps. 10-11]. Note that since all columns in Bs are

linearly independent, every x (Aay)u matrix [Bo]oer(u) has rank l, allowing each node u to

reconstruct w out of [wBo]oer(u).
We remark that Reed-Solomon codes have been extensively applied to some other recon-

struction problems in networks, such as Shamir’s secret sharing [18] (see also [10]
and [141).

The file distribution scheme described in this section is not satisfactory when the file size
k is, say, O(A), in which case the ratio x(G, k)/(pa k) might be bounded away from 1.
This will be rectified in our next construction, which is presented in 4.

4. Proof of the main result. In this section we present a file distribution scheme which
attains the memory size stated in Theorem 2. In 4.1 we present a randomized algorithm for
finding a memory allocation by scaling and perturbing a solution to the linear programming
problem LP(G) defined in (2). Having found a memory allocation x, we describe in 4.2
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a second randomized algorithm for obtaining the encoding and decoding mappings. Both
algorithms are then derandomized in 4.3 to obtain a deterministic procedure for computing
the file distribution scheme claimed in Theorem 2. In 4.4 we present an alternative proof of
the theorem using the Lovsz local lemma. In 4.5 we consider a variant of the cost measure
used in the rest of the paper: Instead of looking for a near-optimal solution with respect to the
total memory requirement of the system, we consider approximating the best solution such
that the maximum amount of memory required in any node is close to the minimum feasible.
This is done using the techniques of 4.4.

4.1. Step 1. Solving for a memory allocation. The goal of this section is to prove the
following theorem. (Hereafter, e stands for the base of natural logarithms.)

THEOREM 3. Given a network graph G and an integer m, let z [Zu]uV be a nonnegative
real vector satisfying A6z > 1. Then there is a nonnegative integer vector x satisfying
Ax > rn 1 such that

log mG lo GIlxll <l+c.max(4) IIr 711 m

for some absolute constant c.
In fact, we provide also an efficient algorithm to compute the nonnegative integer vector

x [Xu]ueV guaranteed by the theorem. The vector x will serve as the memory allocation of
the computed file distribution protocol for an instance (G, k), where we will need to take rn
slightly larger than k in order to construct the encoding and decoding mappings in 4.2.

Theorem 3 is proved via a "randomized rounding" argument (see [15] and [17])" We
first solve the corresponding linear programming problem LP(G) in (2) (say, by Karmarkar’s
algorithm [9]), and use the rational solution to define a probability measure on integer vectors
that are candidates for x. We then show that this probability space contains an integer vector
x, which satisfies the conditions of Theorem 3. Furthermore, such a vector can be found by
a polynomial-time (randomized) algorithm. Note that if we are interested in a weaker result,
where log IVI replaces log Aa in Theorem 2 (or in Theorem 3), then a slight modification of
Raghavan’s lattice approximation method can be applied 15]. However, to prove Theorem 3
as is, we need a so-called "local" technique. One possibility is to use the "method of alteration"
(see 19]), where a random integer vector selected from the above probability space is perturbed
in a few coordinates so as to satisfy the conditions of the theorem. Another option is to use the
Lovfisz local lemma. Both methods can be used to prove Theorem 3, and both can be made
constructive and deterministic: The method of alteration can be used by applying the method
of conditional probabilities (see Spencer 19, p. 31 and Raghavan 15]), and the local lemma
can be used with Beck’s method [2]. We show here the method of alteration, then present a
second existence proof using the local lemma in 4.4.

Given a nonnegative real vector z [Zu]ueV and a real number e > 0, define the vectors
s [Su]uV and p [Pu]uV by

(5) Su le.z,] and p, e z, Su, u 6 V;

note that 0 < p, < for every u 6 V. Let Y [Y,],ev be a random vector of independent
random variables Yu over {0, 1} such that

(6) Prob{Yu 1} Pu, u V,

and let X [Xu]ueV be a random vector defined by

(7) X s + Y.
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Fix a to be a real vector in the unit hypercube [0, 1]lVl such that a. z > 1. Since the
expectation vector E() is equal to p, we have

E(a. X) a.s+a.p= e.a.z > e.

In particular, if z is a rational vector satisfying A6z > 1, then

E(AX) > e. Az > e. 1.

Showing the existence of an instance of X which can serve as the desired memory allo-
cation x makes use of the following two propositions. The proofs of these propositions are
given in the Appendix, as similar statements can be found also in 15].

Throughout this section, L {/3, r/} stands for max{loge/3; V/r/ loge/3 }.
PROPOSITION 1. Given a nonnegative real vector z and an integer , let X [Xu]uV be

defined by (5)-(7), let a be a real vector in [0, ]lVI such that a z > 1, and let m be a positive
integer. There exists a constant cl such thatfor every > 1,

Prob{a.X<m}<-

whenever > m + C L{, m }.
PROPOSITION 2. Given a nonnegative real vector z and an integer g., let X [Xu]uv be

defined by (5)-(7) and let a be a real vector in [0, ]lvl. There exists a constant c2 such that

for every > 1.

Prob{a. X > E(a. X) + c2. L{/, E(a. X)}} <

Consider the following algorithm for computing a nonnegative integer vector x for an
instance (G, m).

ALGORITHM 1.
1. Set / /3 &2Aandg=m+cl.L{,m}.
2. Solve the linear programming problem LP(G) (defined by (2))for z.
3. Generate an instance ofthe random vector X [Su]u + [Yu]u as in (5)-(7).
4. The integer vector x [Xu]uV is given by

A{ su+l
Xu

su + Yu
if there exists v F(u) with (A6X)o < m,

otherwise.

Theorem 3 is a consequence of the following lemma.
LEMMA 3. The vector Ilxll obtained by Algorithm satisfies inequality (4) with probability
-(1//3o).
Proof Call a node v deficient if (A6X) < m for the generated vector X. First note that

xu is either Xu or Xu + and that

(8) Ax > m. 1;

in fact, for deficient nodes v we have (Ax)v > . (Az)v > >_ m.
Now by Proposition 1, for every node v 6 V,

Prob node v is deficient Prob {(AaX)o < m} <
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Hence, for each node u 6 V,

Prob {x. X. + 1} < A6. Prob node v is deficient <
AG

/G 2AG

Therefore, the expected number of nodes u for which Xu Xu + is at most (I VI/2Aa) and,
with probability at least g, there are no more than VI/Aa such nodes u. Observing that

(AGZ)u >Ilzll >_ G uV ZXGuEV

we thus obtain, with probability

(9) IWl
Ilxll IlXll + IlXll + Ilzll.

Recalling that E (llXll) e Ilzll, we apply Proposition 2 with a 1 to obtain

(10) Prob {llXll > e. Ilzll + c2" L(jG, e" Ilzll}} _<

Hence, by (8)-(10) we conclude that with probability > (1//a), the integer vector x
satisfies both

(11) Aax > m. 1

and

Ilxll (e + 1). Ilzll + ca. L{G, e. Ilzll}

(g + 1). Ilzll + c2. Ilzll. L{IG, el.

The last inequality implies

(12)
[ loge figIlxll < + + C2

and the lemma now follows by substituting

log
+ ce max

rn

and/a 2A in (12).
Note that for m k + O (log AG) we also have

Ilxll + O max(13)
Ilk zll k

(compare with the right-hand side of (3)). The vector x, computed for rn k + O(log Aa),
will serve, with a slight modification, as the memory allocation of X (G, k). In 4.3 we shall
apply the method of conditional probabilities to make Algorithm deterministic.
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4.2. Step 2. Defining the encoding mappings. Having found a memory allocation x, we
now provide a randomized algorithm for constructing the encoding and decoding mappings.
The construction makes use of the following lemma.

LEMMA 4 [12, p. 444]. Let S denote a random matrix, uniformly distributed over all
k m matrices over F2. Then

k-1

Prob {rank(S) k} H(1 2i-m) > 2k-m

i=0

Given an instance (G, k), let x [Xu]usV be the nonnegative integer vector obtained by
Algorithm for m k + 3 [log2 A] + 1. The following algorithm computes for each node
u a matrix Bu to be used for the encoding mappings.

ALGORITHM 2.
1. For each u V, assign at random a matrix Qu uniformly distributed over all k x Xu

matrices over F2.
2. For each u V, let Su [Qv]vr(u, and define the encoding matrix Bu by

(14) Bu--6 [ Qu if rank(Su)=k,

/ I if rank (Su) < k,

where I standsfor the k x k identity matrix.

Note that each Bu is a k x 3:u binary matrix with

(15) }u= [ x,, if rank(S.)=k,

/ k if rank (Su) < k.

The vector i [Cu]ueV will serve as the (final) memory allocation for x(G, k). As
we show later on in this section, the excess of I111 over Ilxll, if any, is small enough to let
(13) hold also with respect to the memory allocation i. This will establish the memory size

claimed in Theorem 2. The associated encoding mappings g. F2 -- F" are given by
gu w . wBu, u V, and the overall process of encoding w into [gu(W)]ueV requires
O(k. I111) multiplications and additions over F2.

Recalling the definitions in 2, note that for each node u, the k x IItll matrix B & [Bo]vev is
separable with respect to the set 1-’(u); that is, the rank of (B)r(u) [Bv]oer(,,) is k. Therefore,
each node u, knowing the values [gv(w)]ver(u) [wB.]ver’(.), is able to reconstruct the file w.
To this end, node u has to process only k fixed coordinates ofw(B)r(.), namely, k coordinates
which correspond to k linearly independent columns of (B)r.(u). Let such a set of coordinates
be indexed by the set Tu, u V. Assuming a "hard-wired" connection between node u and
the k entries of w(B)r(,) indexed by T,,, the decoding process at u sums up to multiplying
the vector w(B)T. F by the inverse of (B)T.. Hence, the mappings Du, u V, are given
by Du(C) (c)r. ((B)r.) -1 for every c F(Aa)". The decoding process at each node thus
requires O(k2) multiplications and additions over F2. Note that in those cases where we set

Bu in (14) to be the identity matrix, the decoding process is trivial, since the whole file is
written at node u.

We now turn to estimating the memory size . First note that for every node u, the
matrix Su is uniformly distributed over all k x (Aox)u matrices over F2. Recalling that, by
construction, (Ax)u > m k + 3 [log2 A] + 1, we have, by Lemma 4,

Prob {rank (Su) < k} < 2/-m <
2A3"G



OPTIMAL FILE SHARING IN DISTRIBUTED NETWORKS 169

Hence, the expected number of nodes for which u > x, in (15) is at most IVI/(2zX).
Therefore, with probability at least , there are no more than IV l/A3 nodes u whose memory
allocation x,, has been increased to ,, k. Since IVI/zX3 <_ Ilzll/zX, the total memory-size
increase in (15) is bounded from above by (k/ZX2)llzll. Hence, by (13),

log Ao lo oI111 < Ilxll / (k/zX)llzll + O max
IIk.zll IIk.zll k

whenever k O(A log Ao). Recall that the construction of 3.3 covers Theorem 2 for
larger values of k.

In 4.3 we apply the method of conditional probabilities (see 19, p. 31 and 15]) in order
to make the computation of the matrices Bu deterministic.

Remark 4. It is worthwhile comparing the file distribution scheme described in 4.1 and
4.2 with the scheme of 3.3, modified to employ Algorithm on (G, [k/h]), h [log2(Ao
k)], to solve for the memory allocation there. It can be verified that the resulting file distribution
scheme is slightly worse than the one obtained here: Every term log Ao in (3) should be
changed to log(A6 k) log A. In particular, this method has critical file size of log2 Ao.

4.3. A deterministic algorithm. We now show how to make Algorithms and 2 deter-
ministic using the method of conditional probabilities of Spencer 19, p. 31 and Raghavan
15], adapted to conditional expectation values. The idea of the method of conditional proba-

bilities is to search the probability space defined by the random choices. At each iteration the
probability space is bisected by setting one of the random variables. Throughout the search
we estimate the probability of success, conditional on the choices we have fixed so far. The
value of the next random variable is chosen as the one that maximizes the estimator function.

In derandomizing Algorithms and 2 we employ as an estimator the expected value of the
size of the allocation. At every step the conditional expectation for both possibilities for the
value of the next random variable are computed and the setting that is smaller (thus increasing
the probability of success) is chosen. Unlike Raghavan 15], we do not employ a" pessimistic
estimator," but rather a conditional expectation estimator which is fairly easy to compute.

We start with derandomizing the computation of the (initial) memory allocation x. Let
z [Zu]u [Su + Pu]u, X [Xu]u, and x [Xu]u be the vectors computed in the course
of Algorithm 1. Recall that for every u 6 V, the entry Xu is a random variable given by
X, Su + Yu, with Prob {Yu 1} p,,. Now,

E(llxll) E(IIXI]) / Prob {x, Xu / 1}
uEV

E(IIXII) / ZX Prob node u is deficient
uEV

We refer to/ as the expectation estimator for x, and we have

E(llxll) E(IIXII) + ZG. Prob {(A6X)u < m}
uEV

e. Ilzll + Z.
uV

Prob {
IVI
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Comparing the last inequality with (12), it would suffice ifwe found a memory allocation whose
size is at most/. Note that/ can be computed efficiently by calculating the expressions
Prob {Yvwi Xv < j} for subsets Wi of l-’(u) consisting of the first nodes in F(u) for

1, 2 A(u) II-’(u)l, and for ’uw s, < j < m. Such a computation can be carried
out efficiently by dynamic programming.

Let Y1 denote the first entry of X s and define the conditional expectation
estimators by

b E(l[Xll[Yl =b) + AG" y { vrfu)Xv < m[Yl =b]’ b-0, 1.

Indeed, we have E(llxlllY1 b) _< ,; furthermore, the two conditional expectation estima-
tors 0 and 1 have as a convex combination and, therefore, one of them must be bounded
from above by . We set the entry Y1 to the bit y b for which b is the smallest. Note
that, like , the conditional expectation estimators can be efficiently computed.

Having determined the first entry in Y, we now reiterate this process with the second
entry, Y2, now involving the conditional expectation estimators ’y,0 and Ey,l. Continuing
this way with subsequent entries of, we end up with a nondecreasing sequence of conditional
expectation estimators

(e + g). Ilzll yl > yl,y2 "" -yl,y2 ylv,

> E(llxllly yl, Y2 y2 Ylvl Ylvl),

thus determining the whole vector Y, and therefore the vectors X and x, the latter having
memory size < (e + 1/2). Ilzll.

We now turn to making the computation of the encoding mappings deterministic. Recall
that Algorithm 2 first assigns a random k Xu matrix Qu to each node u. We may regard this
assignment as an Ilxll-step procedure, where at the nth step a random column of F2 is added
to a node v with less than xo already-assigned columns. Denote by Qu;,, the (partial) matrix
at node u 6 V after the nth step. The assignment of the random matrices Qu to the nodes of
the network can thus be described as a random process {Un tllxll where U,, {Q,,;,,}uv is a/n=l,

random column configuration denoting the contents of each node after adding the nth column
to the network graph. We shall use the notation U0 for the initial column configuration where
no columns have been assigned yet to any node.

Let Su denote the random matrix [Qo]oru) (as in Algorithm 2) and let R be the number
of nodes u for which rank (S,) < k. Recall that Algorithm 2 was based on the inequality

E(R) = E(RIU0) <
IVl

IVI for the number of nodeswhich then allowed us to give a probabilistic estimate of 2E(R) <
u that required the replacement of Q, by lk. Instead, we compute here a sequence of column
configurations Un {Qu;n }uV, n 1, 2 Ilxll, such that

(16) E(RIUn Un) < E(RIUn- Un-);

in particular, we will have

IVlE(RlUttxtt Uttxtt) <
2A
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i.e., the number of nodes u for which Bu is set to Ik in (14) is guaranteed to be less than
IVI/(2ZXG).

In order to attain the inequality chain (16) we proceed as follows: Let U0 be the empty
column configuration and assume, by induction, that the column configuration U,,_ has been
determined for some n > 1. Let v be a node which has been assigned less than xo columns
in U,,-1. We now determine the column which will be added to v to obtain Un. This is done
in a manner similar to the process described before derandomizing Algorithm 1" Set the first
entry, bl, of the added column to be 0, assume the other entries to be random bits, and compute
the expected value, E0, of R conditioned on Un- Un- and on b 0. Now repeat the
process with b being set to 1, resulting in a conditional expected value E1 of R. Since the
two conditional expected values E0 and E average to E(RIUn- Un-), one of them must
be at most that average. The first entry b in the column added to v is set to the bit b for which
E, is the smallest. This process is now iterated for the second bit b2 of the column added
to v, resulting in two conditional expected values E,.0 and Et,,, of R, the smaller of which
determines b2. Continuing this way, we obtain a sequence of conditional expected values
of R,

E(RIU,,_ U,,_I) > Eb, >_. Et,., >... > Et,,,t,:

thus determining the entire column added to v. Note that, indeed,

E(RIUn Un) Ebl,b2 bk < E(RIUn-1 Un-1),

in accordance with (16).
It remains to show how to compute the conditional expected values of R which are used

to determine the column configurations U. It is easy to verify that for any event .A,

E(RI4) Prob rank (Su) < kI.A}.(17)
uEV

Hence, the computation of the conditional expected values of R boils down to the following
problem:

Let S denote a k rn random matrix over F2, whosefirst columns, as well as thefirst
entries in its (l + 1)st column, are preset, and the rest of its entries are independent random

ofbeing zero. What is the probability ofS having rank k?bits with probability
Let H denote the k matrix consisting of the first (preset) columns of such a random

matrix S. Denote by T the matrix consisting of the first + columns of $ and by W the matrix
consisting of the last rn columns of S. Also let the random variable p denote the rank
of T. Clearly, p may take only two values, namely, rank (H) or rank (H) + 1. We now show
that

k-r-1

(18) Prob rank (S) < kip r} 1 H (1 2i+l+l-m) < 2k+l+l-m-r.
i=0

Indeed, without loss of generality assume that the first r rows of T are linearly independent.
We assume that the entries ofW are chosen randomly row by row. Having selected the first r
rows of W, we thus obtain the first r rows in S which, in turn, are linearly independent. Next
we select the (r + 1)st row in W. Clearly, there are 2m-l-1 choices for such a row, out of which
one row will result in an (r + 1)st row in S which is spanned by the first r rows in S. Hence,
given that the first r rows in W have been set, the probability that the first r + 1 rows in S
will be linearly independent is 2t+l-m. Conditioning upon the linear independence of the
first r + 1 rows in S, we now select the (r + 2)nd row in W. In this case there are two choices
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of this row that yield an (r / 2)nd row in S which is spanned by the first r + rows in S.
Hence, the probability of the first r / 2 rows in S to be linearly independent (given the linear
independence of the first r + rows) is 2/+2-m. In general, assuming linear independence
of the first r + rows in S, there are 2 choices for the (r + + 1)st row ofW that yield a row
in S belonging to the linear span of the first r + rows in S. The conditional probability for
the first r + + rows in S to be linearly independent thus becomes 2i+/+l-m. Equation
(18) is obtained by reiterating the process for all rows of W.

To complete the computation of the probability of S having rank k, we need to calcu-
late the probability of p being r rank (H). Let Ht denote the first rows of H with

rt rank (Ht) and let c denote the first (preset) entries of the (l + 1)st column of S (or of
T). We now show that

2r-rt-k+t if rank ([Ht" el) rt,
(19) Prob {p r rank (H)}

0 if rank ([Ht" c]) rt + 1.

We first perform elementary operations on the columns of H so that (i) the first rt columns in Ht
are linearly independent whereas the remaining rt columns in Ht are zero, and (ii) the first
r columns in H are linearly independent whereas the remaining r columns in H are zero.
Now if c is not in the linear span of the columns of Ht, then p rank (T) rank (H) + 1.
Otherwise, there are 2r-r’ ways to select the last k entries of the (l + 1)st column of T
to have that column spanned by the columns of H: Each such choice corresponds to one
linear combination of the last r rt nonzero columns of H. Therefore, conditioning upon
rank ([H/; el) rt, the probability of having rank (T) rank (H) equals 2r-r’-k+t.

Equations (18) and (19) can be now applied to Su to compute the right-hand side of (17),
where A stands for the event of having n columns in Un set to Un-, and bits of the
currently added nth column set to b, b2 bt.

4.4. Proofusing the Lovisz local lemma. In this section we present an alternative proof
for the existence of a memory allocation x satisfying (3) and of k Xu binary matrices Bu for
the encoding mappings gu w w- wBu, u V. The techniques used will turn out to be useful
in 4.5. To this end, we make use of the following lemma.

LEMMA 5 (the Lovisz local lemma [5], [19]). Let t, t2 tn be events in an ar-

bitrary probability space. Suppose that each event 4i is mutually independent of a set of
all, but at most 6, events tj and that Prob {4i} < p for all < < n. If ep3 < 1, then
Prob Ain= .Ai > 0.

In most applications of the lemma (as well as in its use in the sequel), the .Ai’s stand for
"bad" events; hence, if the probability of each bad event is at most p, and if the bad events
are not terribly dependent of one another (in the sense stated in the lemma), there is a strictly
positive probability that none of the bad events will occur. However, this probability might
be exponentially small. Recently, Beck [2] has proposed a constructive technique that can be
used in most applications of the lemma for finding an element of Ain__l e4 (see also [1 ]). We
shall be mainly concentrating on an existence proof, as the construction will then follow by a
technique similar to the one in [2].

We start by using the local lemma to present an alternative proof of Theorem 3. Given a
network graph G (V, E) and an integer m, we construct a directed graph H (V, E/4)
which satisfies the following four properties:

(i) There is an edge u -- v in H whenever u is adjacent to v in G;
(ii) there are no parallel edges in H;
(iii) each node in H has the same in-degree A/4 O (Aa);
(iv) each node in H has an out-degree which is bounded from above by A/= O(Aa).
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LEMMA 6. A directed graph H satisfying (i)-(iv) always exists.

Proof When A > lVI we take H as the complete graph (i.e., the adjacency matrix

An is the all-one matrix and An An IVI < 2A). Otherwise, we construct H out of G
as follows" Make every self loop in G a directed self loop in H, and change all other edges in
G into two antiparallel edges in H. Finally, adjoin extra edges (not parallel to existing ones)
to have in-degree A n A and out-degree < An 2A at each node in H. To realize this
last step, we scan the nodes of H and add incoming edges to nodes whose in-degree is less
than A6--one node at a time. Let u be such a node and let F (u) be the set of nodes in H with
no outgoing edges that terminate at u. We show that at least one of the nodes in 1-’(u) has an
out-degree less than 2A, thus allowing us to adjoin a new incoming edge to u from that node.
The proof then continues inductively. Now, since the in-degree of each node in H at each stage
is at most A, the total number of edges outgoing from nodes in F (u) is bounded from above
by A6. (IVI- 1). On the other hand, F(u) contains at least IVI-/XG / nodes. Hence, there
exists at least one node in F(u) whose out-degree is at most (A6. (IVI- 1))/(I VI- AG 4- 1);
this number, in turn, is less than 2Aa whenever Aa < lVI.

ProofofTheorem 3 using the local lemma. Let z be a solution to the linear programming
problem LP(G) of (2). By property (i), z satisfies the inequality A/-/z > 1. Redefine/3a to
be 8eA2 (and g accordingly to be rn + Cl L{/a, m}), and let X be obtained by (5)-(7). By
Proposition we have

(20) Prob (A6X)u < rn <

and by property (ii) and Proposition 2 we have

(21) Prob {(AnX)u > . (Anz)u + c2. L{/36, . (A/-/z),}} <

for each node u 6 V.
For every u 6 V define the event 4u as

(22)

(AoX)u < m

or

(A/4X)u > g" (Anz)u + C2" L{/36, g" (A/4z)u}

By (20) and (21) it follows that Prob {.Au} < 2/fl < 1/(4eA). For every node u in H,
denote by Fout (u) the set of terminal nodes of the edges outgoing from u in H. Then, for every
node u, the event 4,, is mutually independent of all events 4v such that Four(U) Fout(v) 13.
Hence, by properties (iii) and (iv), each .A, depends on at most An(An 1) + _< 4A
events A,, and, therefore, by Lemma 5 there exists a nonnegative integer vector x satisfying
both

(23) (Aax)u > rn

and

(24) (A6x)u < g" (Al-lZ)u + C2" L{6, g. (Ahz)u}

(25) ( lOge fiGIlxll < 4- c2 4-
lie zll

for all u 6 V.
We now show that Ilxll satisfies the inequality
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By (24) and the fact that each node in H has in-degree AH we have

Ilxll-- -(AHX)u
uEV

f. _, c2 _L{c;,e’(AHz)u}< (AHz)u + -n u,VAll uV

e. Ilzll + c2 nn lOge fiG q- H
Now, by the Cauchy-Schwarz inequality,

E v/(A/z)u < Ix/" /E(Al-lz)u v/IVI" A/_/. Ilzl]
uv yuv

and therefore

Ilxll e. Ilzll + c2 nn lge fiG -k- V-HH" /llzll" e. log fiG

Inequality (25) is now obtained by bounding IV I/A/-/from above by Ilzll. Finally, Theorem 3
is a consequence of both (23) and (25). [3

We now turn to defining the encoding and decoding mappings for a given instange (G, k).
To this end, we shall make use of the following lemma.

LEMMA 7. Let S1, 82 St be subsets of (n - 1, 2 n }, each -i of size > s,
and no subset intersects more than 8 subsets. Let q be a power of a prime and let k be a

nonnegative integer satisfying

e 8 q-S-I < q-k.

Then there exists an (n, qk) linear code over do GF(q), which is separable with respect to

each -i"
Proof. We construct inductively n matrices Bt, < < k, each generating a linear

code which is separable with respect to every Si; that is, each (Bt)si has rank l. Start with
an all-one n matrix B1. As the induction step, assume that a matrix Bt_l, with the above
property, has already been constructed for some < k. We are now to append at/th row to

Bl-1.
Given such a matrix B_, a row vector in do is "good" with respect to Si if, when

appended to Bl-1, it yields a matrix Bt such that (B)s, has rank l; otherwise, a row vector is
"bad" with respect to that $i. Now, for each i, the row span of (BI_ s, consists of qt- vectors
in dolSil; this means that the probability of a randomly selected row, being bad with respect
to Si, is q-ISil/l-1 < q-s-l+k < 1/(e. 6). Similarly, if Si [")t.j , then the probability
of a randomly selected row, being bad with respect to both Si and Sj, is q-lS, l-Ijl/2(l-l).

Therefore, when $i ["1Sj 0, the events "the row vector is bad with respect to Si" and "the
row vector is bad with respect to Sj" are independent; thus, by Lemma 5 we are guaranteed
to have a row vector in don which is good with respect to every Si. This vector can now be
appended to Bt_ to obtain a generator matrix Bt with (Bt)si having rank for all i. [3

Let x be the integer vector guaranteed by Theorem 3 form k+2 [log2 Aa + 1. Partition

the set (llxll) into IVl (disjoint) subsets Qu with IQul Xu and let S, 6__ I..Joer’(, Qo, u 6 V.
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We have Il (AGx)u > m k + 2[log2 A6] + and, therefore, e. A 2-Is.l- < 2-k.
Furthermore, each Su intersects at most (A 1)2 + sets So; hence, by Lemma 7 there
exists a linear (llxll, 2) code over F2 which is separable with respect to each Su. For each

u 6 V let B, (B) 2u; i.e., Bu is the k x Xu matrix consisting of all columns of B indexed by
Q,. We now use this to define the encoding and decoding mappings as in 4.2.

4.5. Variations on the memory cost measure. The techniques used in 4.4 can be
adapted to obtain file distribution schemes (G, k) -> X (G, k) which are close to optimal with
respect to other variants of the memory cost measure. For instance, consider the problem
where for every instance (G, k), we are looking for a file distribution protocol X (G, k) whose
memory allocation x satisfies the following criteria:

(i) The largest component Xmax of X is the smallest possible.
(ii) Among all file distribution protocols that satisfy (i), we take one whose memory

size IIxll is the smallest.
This variant of our original problem might suit cases where, say, each node in the network
graph (as opposed to some "network manager") needs to pay for its own memory. Since the
respective decision problem is NP complete, we need to look for approximations to the optimal
solution.

Given a network graph G (V, E) and an integer k, we proceed as follows. Let Amin be

minuv A(u). It is clear that [k!Amin] is a lower bound on the largest component of x. Set
ot [k/Amin] / k and consider the following linear program:

(26) LP(G; or)

RG;u min Ilzll,

ranging over all rational z [Zu]uV such that

AGZ > 1 and 0 < Zu < ot for every u V.

Next, we set fig 12eA, rn k + 2[log2 AG] -k- 1, and g. rn + c L{G, m}. Now let
X [Xu],,v be obtained by (5)-(7) and redefine the events A, in (22) as

(AGX)u < m

or

Xu > g. Zu + c2" L {flG, e Zu

or

(AHX)u > , (AHZ)u -1- 2 L{G, e (AHZ)u}

By (20) and (21) we have Prob {Au} _< 3/a < 1/(4eA). Following along the lines of 4.4,
the Lovfisz local lemma now guarantees a file distribution protocol with memory allocation x
whose maximal component Xmax and size Ilxll satisfy both

Xma + 0 max
a.k k

and

log AG lo GIlxll + O max
PG;u k k

Both Xmax and Ilxll approach their optimal values as k becomes larger than log A.
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5. The integer programming bound is not tight. In 4 we presented an algorithm for
finding a constructive file distribution scheme (G, k) - X (G, k) such that the ratio between
the memory size Ix(G, k)l and Pa k approaches as the ratio k! log Aa tends to infinity. In
this section we present a family of network graphs {Gt}t=l for which a file size of logA is,
indeed, a critical point: There exists a sequence of file sizes kl > log2 A, 1, 2 for
which the ratios M(GI, kl)/J(Gl, kl) (and, therefore, M(Gt, kl)/(PG" kl)) are bounded away
from 1.

For integers m and l, m > l, define the network graphs Gm,l (Vm,l, Em,l) as follows:
Let Um be a set of m elements (say, Um (m/) and let ]/)m,l consist of all subsets of Um of
size I. Set Vm,t =Um /Vm,t and draw an edge between two nodes u, v Vm,l in any of the
following cases: (i) both u and v are in Um (i.e., Um is a clique); (ii) u Um, v "m,l, and
u 6 v; (iii) u v (self loops).

First, we verify that PGm,t rn / I. Let z [z.].vm, be a nonnegative real vector satisfying
Aam,z > 1 and Ilzll tOam,l Without loss of generality, we can assume that zv 0 for every
v 6 Vm,t; otherwise, "remove" the quantity zv from such a node v and add it to the value z.
at some node u 6 F(v) {v} _c Urn. This change results in a new nonnegative vector with
the same norm as z and which satisfies Ac.,.,l > 1.

Now, rename the nodes of Um to have Um (m) and zi < z2 < < Zm. For the node
(1) /m,l we have

Zu (A ,.,, z) (l/ 1,
u---1

and, therefore, Zu > zt > 1/l for every node u > in Urn. Hence,

PGm,l Ilzll-

_
Zu + z. +

u=l u=/+l

m-1 m

Setting z [Zu].eVm, to

Zu { 1/lo if u6Um,

otherwise,

we obtain the equality Pam,l rn/I. Furthermore,

(27) J (Gm,l, r 1) PG=,t r. r m

for every positive integer r. A similar analysis for a similar set-covering problem appears also
in [7].

In the forthcoming discussion we will be concentrating on two types of network graphs
Gm,l, namely the following:

Gl G21,l, in which case p, 2 and

((211-1)) <2l;log2Aa =log2 21+
-1

HI G2,l, in which case p/ 21/1 and

log2AH--log2 214- _<12, I>2.
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The proof of the next proposition makes use of the following known lemma.
LEMMA 8 (the sphere-packing or the Hamming bound [12, Chap. 1]). Let be an al-

phabet ofq elements. There exists an (n, K) code of minimum distance 2t + over only
if

PROPOSITION 3. For anyfixed positive integer r,

M(Gt, r .l) M(Gt, r .l)
lim lim > 1+--.
l---*cx PGI r t--, J (Gt, r l) 2r

Proof Set k rl for some positive integer r and let x be the memory allocation of a
file distribution protocol X for (GI, k) of memory size I:1 Ilxll M(Gt, k). We assume
that xv 0 for every v )/)2l,l and that the nodes of U2t (2/) are renamed to have

x < x2 < < X2l. Letting h 6= Xl+2, we obtain

(28)

21

M(G, k)= Ilxll Xu / XZ/l / Xu
u=l u=/+2

> r.l +r +(l- 1)h,

where the inequality follows from Vu=1Xu (AGtX)ltl > k rl which, in turn, implies the
inequalities Xl+ > Xl >_ r.

]/+2For a file w F let Cw denote the encoded memory contents [,fu (W)Ju__ as determined
by the file distribution protocol X. We now regard the set

c tCw
zx 2has an (l + 2, 2k) code over an alphabet of q elements. The code C must be separable

with respect to any subset of (l + 2) of size l, or else there would be nodes in FV21,1 that could
not reconstruct the file w. Hence, by Lemma 1, the minimum distance of C is at least 3, which
readily implies by Lemma 8 the inequality

2’ (1 + (1 + 2)(q 1)) < ql+2.

Substituting k rl and q 2h, and noting that 2h > 2h-l, we obtain,

(l + 2). 2rl+h-1 <_ 2+zh,

or

Hence, for fixed r and for sufficiently large we must have h > r + 1. Combining this lower
bound on h with (28) yields the inequality

M(GI, r. l) r(l + 1) + (r + 1)(/- 1) 1
lim > lim -t
lo J(GI, r l) l---cx 2rl 2r

which, with (27), concludes the proof.
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COROLLARY 2. For kl 21 > loga Ao,,

M(Gl, kt) M(Gt, kt) 5
lim lim >-
lo Po kt l--+cxa J (Gt, kt) 4

Corollary 2 exhibits the fact that a file size of log Ac is a critical point in the following
strong sense: For k 21 > log2 Ao,, the size of any memory allocation for (Gt, kt) must be
bounded away from Po kt, not because of a gap between J(Gt, kt) and Pot k, but rather
because of a gap between M(GI, kl) and J(GI, kl).

We point out that, as a counterpart of Proposition 3, we also have

M(G1, r .l) 2
lim < -t--,
l-cxa J (Gt, r 1) r

the proof of which is based on the following result.
LEMMA 9 (the Gilbert-Varshamov bound [3, pp. 321-322]). Let be an alphabet ofq

elements and let n, K, and d be positive integers satisfying

(K- 1). (q 1)i < qn.
i=0

Then there exists an (n, K) code ofminimum distance d over do.
Set n 21, K 2rl, d + 1, h + r + 2, and q 2h; these values satisfy the equality

K 2n qd-1 qn and, therefore, by Lemmas and 9 there exists a (2/, 2rt) code C over F2h
which is separable with respect to any subset of (21) of size 1. Assign the coordinates (over

F2h) of C to the nodes u U2t of GI and map the files w e F into distinct codewords of C.
This protocol allows every node in Gt to reconstruct any such file w, requiring a total memory
size of 2(r + 2)/(compared to J (Gt, r l) 2rl).

Remark 5. It can be readily verified that J(Gm,l, k) >_ m + k for every m, l, and k,
and, in particular, J(GI, 1) > + > Po log2 Act. Hence, any file distribution protocol

log2 Ao times larger than the linearfor (GI, k) based on segmentation will be at least
programming bound Pot k, even when k tends to infinity (see Example and Remark 3).

For file sizes k which are smaller than log Ao, one can find examples where the ratio
between M(G, k) and J(G, k) is even larger than stated in Proposition 3. We demonstrate
this for the network graphs HI G2,I in the next proposition, making use of the following
lemma.

LEMMA 10 (the Plotkin bound [3, p. 315]). Let C be an (n, K) code ofminimum distance
d over an alphabet ofq elements. Then

-<1--- 1--
q n

PROPOSITION 4.

M(Hl, k)
2(H, k)

ifllk and k > 12,

12/k ifllk and < k < 12,

k ifk<l,

where fl(k) gl(k) standsfor lim/ fl(k)/gt(k) uniformly on k.
In particular, when k l, the ratio M(Ht, k)/J(Hl, k) is approximately which, in turn,

is at least v/log2 A/_/.
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Proof We distinguish between the three ranges of k stated in the proposition.
Case 1. k rl for some integer r > 1. By (27) we have J(HI, k) Pt4 k r 21. In

fact, we also have M(HI, k) J(HI, k)" Since r > l, we can construct a (2l, 2rl) generalized
Reed-Solomon code Crs over GF(2r), which is separable with respect to any subset of (21/
of size [12, Chaps. 10-11] (compare with 3.3). Assign the coordinates, over GF(2r), of
CRS to the nodes u E U2t of HI and map the files w E F2 into distinct codewords of CRs. By
the separability of CRs every node in Ht can readily reconstruct any file w 6 F2.

Case 2. k r for some strictly positive integer r < I. Let x be the memory allocation
of a file distribution protocol for (Ht, k) of memory size Ilxll M(H, k). Again, we assume
that xo 0 for v "V,)2t,l and that the nodes in U2t are renamed to have x < X2 "< X2t.

Defining n [21/1] and h )- xn+, we obtain

21

( )(29) M(Ht, k)= Ilxll Xu (2/- n)h > h. 2t.
u=n+l

21

(compare with (28)).
To bound h from below, we regard the set

zx 2has an (n, 2k) code over an alphabet of q elements. Since C is separable with respect to

any subset of (n) of size l, its minimum distance must be, by Lemma 1, at least n + 1.
This, in turn, implies by Lemma 10 the inequality

( ’-’)(,) ,-,
(30)

2h
_< 1-

n
1- - -<

n 2k"

Since 2 > 2 >_ n, we thus have

12
2h n 21

or

h >l-21og21.

Combining the last inequality with (29) yields

(31) M(Ht, k) > 2 (1 2 log2 I) (1 ) 21
21

=1. .(1-o(1)),

where o(1) stands for an expression, independent of k, which tends to zero as goes to infinity.
Recalling that J (HI, k) r 2t, we thus obtain

12M(HI, k)
> (1 o(1)) (1 o(1)).(32)

J (Ht, k) r

The bounds (31) and (32) are definitive up to a multiplying factor of o(1)" An upper
bound M(HI, k) < 2 is obtained by assigning the coordinates of a (2t, 2rl) generalized
Reed-Solomon code over GF(2t) to the nodes u 6 U2, of HI; such a code is separable with

respect to any subset of (2t) of size r and, therefore, with respect to any subset of size 1.



180 MONI NAOR AND RON M. ROTH

Case 3. k < I. Let n and h be defined as in Case 2. Noting that (29) and (30) still apply,
we have

1-1
2h- n-t- <2max 7;-

h _> min{/- [21og21]; k} > (1-
Combining the last inequality with (29) yields

[2 log2 l] ) k.

(33) M(HI, k) > k 2 (1 o(1)).

Turning to J(Hl, k), for k < we have J(Ht, k) > 21 + k (and by Remark 5 we have,
in fact, equality): it is easy to verify that the integer vector y [Yu]uV2. which is defined by

/ if/ E U2I and u _> l- k + 1,
Yu / 0 otherwise,

satisfies the inequality AHoy > k. 1. Hence, by (33) we obtain

(34)
M(Ht, k)

> k (1 o(1)).
J(Hl, k)

Again, the bounds (33) and (34) are definitive as we can simply replicate the file w into
each node u U2t of H1, requiring a memory size of k 2

Appendix. The proofs of Propositions and 2 make use of the following lemma.
LEMMA 11. Let a [au]ueV and p [P,],ev be real vectors in [0, 1] IVI and let Y

[Y,]ueV be a vector of independent random variables over {0, 1} with Prob {Y, 1} Pu.
Then we have thefollowing results:

(a) for every 6 [0, 1) and r < a.p,

Prob {a.Y< (1-8)r} <

(b) for every > 0 and r > a p,

Prob {a.Y > (1 +,)r, < ( e
(1 + 8)+

Proof. Lemma 11 is proved in [15] and [16]. Part (b) of the lemma appears as is in [15]
and for the sake of completeness we include the proof of part (a) here.

For a real random variable Z and constants ), > 0 and b, we have

Prob {Z < b} < E(er(b-Z)),
an inequality known as the Chernoff bound. Letting Z a Y and b (1 3)r, we obtain,
for every ?’ _> 0,

Prob{a.Y<(1-8)r}

er’(1-a)r H E (e-a"r") e(l-’)r H (1- Pu -t- pue-r’a").
uV uV
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Substituting e- yields, for every 6 (0, ],

(35) Prob {a Y < (1 -3)r} < ct(t),

where

or(t) -(1-a)r H(1 pu(1 ta")) < -(l-a)r H exp{-pu(1 ta")}
uV uV

Now, for au [0, 1] and 6 (0, 1] we have a" >_ a, (1 t) >_ O. Therefore,

ct(t) < -(1-)r

which, for ; becomes

c(1 3) <
(1 )1-

Part (a) is now obtained by substituting in (35).
ProofofProposition 1. Let r denote the difference m and let

(36)
Ar=e-e.a.z+a.p.

Note that a. z > implies r > a. p and that a. p < e a. z implies r < . Also, let Y be the
random variable as in (7). Then,

Prob {a. X < m} Prob {a. Y + a. s < r}

Prob {a. Y < . a. z + a.p- r}

Prob {a. Y < r r},

which readily proves the proposition for r > r. Hence, we assume from now on that 0 < r < r.
Apply Lemma l(a) with r as in (36) and with 3 r/r (note that, indeed, r < a. p).

Defining cr r r(> 0), we thus obtain,

( e- )r ( )Prob {a. Y < r r} < _S (1-a) + e-r.
(1

it suffices to require thatTherefore, to have Prob {a. X < m} _< ?

(r)(37) r cr log + >_ log ft.

Case 1. r _< 2r. It is easy to verify that loge(1 + t) _< (t2/6) whenever 0 _< _< 2.
Hence, (37) is implied by

r r2 )r > log fl
o" 6or 2
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which, in turn, is satisfied if r > v/6o- log ft. Recalling that o- r r < e r m,
inequality (37) is thus implied by

(38) r > v/6m loge/3.

Case 2. r > 2o’. In this range,

(r) ((r)(a/r))o’’log 14--- =r.log 14--- <r.logex/.

Hence, inequality (37) is satisfied if

log
(39) r >

log x/"

The existence of the constant cl is now implied by (38) and (39) (setting cl 2.5 will
do).

Proof of Proposition 2. Let Y be the random variable as in (7) and let r be a positive
number. Then

Prob {a. X > E(a. X) + r} Prob {a. Y > a.p + r}.

Now the proposition holds trivially when a. p 0, since, in this case, Prob {a. Y 0} 1.
Therefore, we assume from now on that a. p > 0.

Apply Lemma l(b) with r a. p and 3 r/(a. p); we obtain

Prob {a. Y > a.p + r} < ((1 + 3)-l+a)e) r.

it suffices to require thatTherefore, to have Prob {a. X > E(a. X) + r} < ?
(40) r. ((1 4- 3) log (1 4- 3) 3) _> log ft.

3 Noting that (1 4- t) loge(1 4- t) > 4- (t2/4) for 0 < <Casel. r/(a.p)=3 < ,
inequality (40) is satisfied whenever

32-r r2
> log fl4 4(a. p)

which, with E(a. X) > a. p, is implied by

(41) r > 2v/E (a. X). log ft.

Case 2. r/(a. p) 3 > . Noting that -> (1 4- -1) loge(1 + t) is monotonously
increasing for > 0, we have

r. ((1 4- 3) loge(1 4- 3) 3) r. ((1 + 3-1) loge(1 4- 3) 1)

i.e., inequality (40) is satisfied if

>- ((5 5)) r
> r. gloge > ;

(42) r > 2 log ft.

The existence of the constant 6"2 (such as 6’2 2) is now implied by (41) and (42).
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AN OPTIMAL ALGORITHM FOR COMPUTING
VISIBILITY IN THE PLANE*

PAUL J. HEFFERNAN AND JOSEPH S. B. MITCHELL

Abstract. The authors give an algorithm to compute the visibility polygon from a point among a set of h
pairwise-disjoint polygonal obstacles with a total of n vertices. The algorithm uses O(n) space and runs in optimal
time (R)(n + h log h), improving the previous upper bound of O(n logn). A direct consequence of the algorithm is
an O (n + h log h) time algorithm for computing the convex hull of h disjoint simple polygons.

Key words, visibility, hidden line elimination, lower envelopes, computational geometry
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1. Introduction. Let 73 be a planar polygonal domain with h holes and n vertices: 79 is
a connected closed subset of the plane whose boundary consists of a set of n line segments.
If h 0, then 73 is simply connected and is called a simple polygon. If h > 0, then 73 is

multiply connected, and its holes form a set 79 P1, P2 Ph of pairwise-disjoint simple
polygons in the plane. The visibility polygon with respect to a point s 6 73 is the locus of
all points q 6 79 such that - C 73. The problem of computing the visibility polygon with
respect to a given point s is known as the "hidden line removal" problem and is fundamental
in computational geometry.

Our Result. We provide an algorithm to compute a visibility polygon in optimal time
(R)(n + h log h) and space O(n).

Relation to Previous Work. Algorithms to compute the visibility polygon have been
known for some time; a clear summary of the many known visibility algorithms is given in
Chapter 8 of O’Rourke’s book [O’R]. For the case of a simple polygon P, optimal O(n)
algorithms have been given by [EA], [Le2], and [JS], who correct a minor error in [EA] and
[Le2] while simplifying the algorithm of [Le2]. For the case of a polygon P with holes,
straightforward O(n log n)-time algorithms can be based on plane (rotational) sweep about
s (as in [Le 1] and [SO]) or based on divide-and-conquer (as in [AM]). In fact, by using the
linear-time algorithms for simple polygons to compute the visible portion of the boundary of
each hole, and then merging these "profiles," one can obtain a simple O(n log h) algorithm
for computing the visibility polygon (see [AM] [AAGHI], and [As]).

There is an f2 (n + h log h) lower bound (from sorting) for computing a visibility poly-
gon [O’R], [SO]. Optimal algorithms that achieve this time bound were known for the special
case in which the holes Pi are convex [AM], [As] or star-shaped [AM]. The question of
whether or not an algorithm exists for the general case whose running time is linear in n has
been a fundamental open problem. No algorithm was previously known with running time
O(n + f(h)) for any function f (h).

We resolve the open question by providing a few different methods, culminating in an
optimal algorithm. We outline our approach below. We let r(n) denote the time required
to triangulate a simple polygon. By Chazelle’s recent breakthrough [Ch], we know that
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r (n) O (n), and that there are several fast deterministic and randomized algorithms giving
bounds of O(n log log n) [KKT], [TV] or O(n log* n) [CTV], [Se].

(1) We give a very simple O(n + h2) algorithm that does not require triangulation.
(2) The algorithm of (1) can be transformed into a dynamic insertion procedure with

time complexity O(r(n) + h2 log tT). Here, t7 < n is the number of sides of the most
complex hole.

(3) We give an O(r (n) + h log2 h) algorithm that is relatively simple but relies on trian-
gulation.

(4) We give an O(r(n) + h log(fi + h)) algorithm for the special case in which all of the
holes are stabbed by a line.

(5) We give an O(r(n) + h log h + h log log h log2 tT) algorithm based on applying the
result (4) to O(log h) classes of obstacles, and then merging the resulting set of
visibility polygons.

(6) Finally, we show how the algorithm of (5) can be modified to yield an optimal time
bound of (R)(n + h log h) for the general problem.

(7) A direct consequence of our algorithm is an O(n + h log h) time algorithm for
computing the convex hull of h disjoint simple polygons.

Concurrent with our work, [BG] have given an O(r (n) + h+) algorithm for "merging"
the h holes (thereby permitting linear-time visibility computation). Most recently, [BC] have
tightened the bound of [BG] to O(r(n) + h logl+ h).

The remainder of this paper is organized as follows. In the next section we reduce the
problem ofcomputing a visibility polygon in a polygonal domain to an equivalent problem that
we find easier to work with" computing the visibility profile of disjoint polygons. Section 3
establishes notation and basic properties. In 4, we give our O(n + h2) algorithm. In 5
we describe lid queries, a type of planar point location that is used in all of our subsequent
algorithms. We give the dynamic insertion algorithm in 6, the O (n + h log2 h) algorithm in

7, and the optimal (R)(n + h log h) algorithm in 8. Section 9 is the conclusion.

2. Reduction to the visibility profile problem. Computing the visibility polygon is
known to be equivalent to an alternate problem, that of computing the visibility profile from
below of a collection of polygons, the so-called "lower envelope." Formally, the visibility
profile of a collection of polygons can be described as a function y f(x) defined over
the domain IR, where f(x) is the minimum y coordinate of a point of the polygons with x
coordinate x (f(x) if no such point exists). For ease of exposition, we concentrate on
the problem of computing visibility profiles. We justify this choice by giving a reduction of
the visibility polygon problem to the visibility profile problem. Since the visibility polygon
of the outer boundary of 79 can be computed in O (n) time, and it can be merged with that of
the holes in O (n) time, we restrict our attention to the holes.

The basic idea of the reduction is to center a polar coordinate system, (0, r), at s, and map
the holes into an orthogonal coordinate system, (x, y), where, for a point p of a polygonal
hole, y(p) r(p) and x(p) O(p) + 2rrk (for some integer k). A line of sight in the
polar system, a ray with terminus s, corresponds to a vertical line directed upward in the
orthogonal system. If a hole does not intersect the ray 0 0, then we let the integer k equal
0 for all points on the hole. The situation becomes more complicated when a hole intersects
0 0; we will need to cut such a hole into two pieces. If P is such a hole, let and be
the points of P fq {(0, r)lO 0} with minimum and maximum r coordinates, respectively.
For a point p 6 P, we define a value x*(p) to be the amount of winding (not taken mod 2rr)
on Pcw(t, p), the clockwise subchain from to p (note that x*(p) O(p) + 2zrk, for some
k). Lemma 2.1 (below) tells us that if we set x(p) x*(p) for points p Pcw(t, t’), and
x(p) x*(p) +2zr for p Pcw(t’, t), then the visibility profile of P in the orthogonal system
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over the x range [0, 2r corresponds to the visible portion of P around s. We have replaced P
with two polygonal chains; these chains can be made into polygons if we "double" each vertex.
While we have not mapped segments into straight-line segments, we have preserved the basic
properties necessary to compute visibility. The visibility polygon problem in the polar system
has now been reduced to computing the visibility profile from below and outputting the portion
over the x range [0, 2rr].

LEMMA 2.1. On subchain Pcw(t, t’), only points p with x*(p) [0, 2zr) can be visible

from s in the polar system, and on Pcw(t’, t), only points p with x*(p) (-2n’, 0] can be
visible.

Proof. That no point p Pcw(t, t’) with x*(p) > 2zr can be visible follows from
the simplicity of Pcw(t, t’) and the fact that is visible. To complete the proof, it suffices
to show that no point p Pcw(t’, t) with x*(p) > 0 can be visible. Consider that the
sets {p 6 Pcw(t, t’)lx*(p) > 0} and {p 6 Pcw(t’, t)lx*(p) > 0} consist of collections of
polygonal chains, with endpoints on the ray 0 0. Furthermore, any chain from Pcw(t’, t)
must have its endpoints nested inside those of a chain from Pcw(t, t’), and therefore cannot
see s. l-1

3. Notation and basic properties. Let x(p) and y(p) denote the x and y coordinates of
a point p in the plane, and that P,t(p) and p,(p) represent the rays with root p in the direction
straight down and straight up, respectively. If a value x represents an x coordinate, then let
x- and x+ denote the x coordinate values infinitesimally left and right of x, respectively.

We address the problem of computing the visibility profile from below of a collection
of disjoint polygons, 7:’ P1 Ph }. A polygon Pi contains two vertices, li and ri, of a
minimum and maximum x coordinate, respectively. Since we assume that the observer is at
y -cx, the chain obtained by traversing Pi clockwise from li to ri is completely blocked
from the view of the observer by the counterclockwise chain of Pi from li to ri. We therefore
use only this lower chain of Pi when computing the visibility profile. In fact, in the remainder
of this paper, we assume that P1 Ph are polygonal chains joining their left endpoints (li)
to their right endpoints (ri).

For any set S

_
7 {P1 Ph }, we let V P (S) denote the visibility profile of the

chains in S, and we let V P (S; x) denote the point of VP (S) with x coordinate x. We slightly
abuse notation and write V P(i, j) and V P(i j" x) instead of V P({ Pi Pj }) and
V P({ Pi Pj }; x). If x [X(/min), X(rmax)], where X(/min) minims x(li) and X(rmax)
maxims x(ri), then V P(S; x) is the point (x,

We can think of the profile V P (S) as a piecewise-continuous function over . The points
x of discontinuity of V P (S) are of two types:

x is ajump if V P (S) coincides with the same chain Pi at both x- and x+;
x is a leap if V P (S) coincides with distinct chains Pi and Pj (i 7 j) at x- and x+.

A maximal connected subdomain of [X(/min), X(rmax)] that does not contain a leap in its
interior is called a piece (the corresponding section of VP (S) over this domain is also called
a piece). Since a piece of VP (S) corresponds to a section of a specific chain Pi, we say that

Pi appears in V P (S) with this piece. These definitions are illustrated in Fig. 1.
A special type of piece is a "piece at infinity"; that is, a maximal x interval over which

no member of S appears. Pieces at infinity sometimes create special cases for our algorithms,
but ones that can be handled easily.

While we have thought of VP (S) as a function in order to define jumps and leaps, our
algorithms will store a visibility profile V P (S) as a polygonal chain. A vertical edge of the
chain VP(S) corresponds to a jump or leap. We call the vertical edge of a jump of a profile
V P(i) a lid, since its interior is disjoint from Pi. We will usually represent a lid by ab, where
y(a) < y(b); therefore, ifab is a lid of VP(i), then VP(i; x(a)) a.
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r3

x1 x4 x6
piece

X2 X3

FIG. 1. Definition ofjumps, leaps, and pieces.

A leap x between chains Pi and Pj can occur in one of two manners. The leap x may
be caused by the left or right endpoint of one of the two chains, or it may occur where one

profile intersects a lid of the other. These cases are illustrated in Fig. 1" Coordinates X and x3
correspond to leaps at a left endpoint, x5 and x6 correspond to leaps at a right endpoint, and

x2 and x4 correspond to leaps at lids.
We will often use the expression "p is below q" to indicate that y(p) < y(q). Similar

use is made of the terms "above," "left," and "right." We say that profile V P(S) is below
profile VP(S’) atx coordinate x if y(VP(S; x-)) < y(VP(S’; x-)) orif y(VP(S; x+)) <

y(VP (S’; x +)). It is possible for one but not both of these conditions to hold if one of the
profiles has a jump, leap, or endpoint at x.

We will assume without loss of generality that all chains P1 Ph lie completely above
the x axis so that the point p (x, 0) is below VP(i; x) for any x and any profile VP(i).

LEMMA 3.1. Ifx(li) < x(lj), then Pj appears at most once in VP(i, j), that is, at most

one piece of V P(i, j) is contributed by V P(j).
Proof Suppose that V P(j) contributes two pieces to V P(i, j). Let p and q be points of

V P (j) on each of the two pieces, with p on the left piece and q on the right piece. Let r be
a point of VP(i) that lies on a piece between the two pieces contributed by VP(j), so that
x(p) < x(r) < x(q). Refer to Fig. 2.

Now consider the closed Jordan curve given by starting at point (x(p), 0), going up to

p, following chain Pj to q, going down to (x(q), 0), and then returning to (x(p), 0) along
the x axis. Since point r is on the profile V P(i, j), it must lie in the bounded component
defined by this Jordan curve. On the other hand, the leftmost point li must lie in the unbounded
component defined by the closed curve, since li is to the left of lj. This implies that Pi must
cross the Jordan curve, which is a contradiction, since p and q are on the profile, and Pi and
Pj do not cross. S

LEMMA 3.2. lfx(rj) < x(ri), then Pj appears at most once in V P(i, j).
Proof. Similar to Lemma 3.1. 71

We can now give a full characterization of V P(i, j), for chains Pi and Pj whose x
coordinate domains overlap. Assume without loss of generality that x (li) < x(lj). Refer to

Fig. 3.
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FIG. 2. ProofofLemma 1.

(a). (b).

(1) (2)

FIG. 3. Structure of V P(i, j).

(1) If x(ri) < x(rj), then clearly Pi and Pj each appear at least once in V P(i, j), and by
the previous two lemmas, each appears at most once. The profile V P(i, j) therefore
consists of a piece from VP(i) lying left of a piece from VP(j).

(2) If x(rj) < x(ri), there are two possibilities:
(a) Profile V P(j) may lie completely above V P(i), in which case V P(i, j) is the

single piece V P (i).
(b) If Pj appears once in V P (i, j), then Pi must appear exactly twice, since pieces

alternate, and the left- and rightmost pieces are from Pi.
We now state a combinatorial lemma of fundamental importance:
LEMMA 3.3. The profile V P S) has 0 (I S]) pieces.

Proof Consider the (ordered) sequence cr of indices of chains Pi that contribute pieces
to VP (S). There are SI different indices, and by the definition of pieces, no index can
appear twice consecutively in or. By Lemma 3.1 (or Lemma 3.2), it is not possible to have a
subsequence of the form j j This implies that cr is a Davenport-
Schinzel sequence of order 2, so its maximum length is given by L2(]SI) 2]SI 1. (See
[Sh] for background on the theory of Davenport-Schinzel sequences.) [3

4. An O(n / h2) algorithm. We describe now a simple O(n + h2)-time algorithm for
computing the visibility profile of a collection of disjoint polygons. Not only is the algorithm
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relatively easy to implement, but it resolves the previously open theoretical question ofwhether
or not an algorithm linear in n exists. And, even with the other results of this paper and the
recent contributions of [BG] and [BC], it remains the only known algorithm linear in n that
does not require linear-time triangulation.

Assume that we have indexed the chains 79 P Ph so that their left endpoints
l lh are sorted by decreasing x-coordinate. The algorithm simply considers the profiles
one-by-one according to this order: step consists of adding VP(i) to VP(1 1) to
obtain VP(1 i). The time to update the profile when we insert V P(i) is linear in h and
the size of Pi, implying the claimed overall time bound.

The algorithm maintains a so,ted list of the leaps, x xx, of the current profile
VP(1 1). Each leap xk in the list stores a pointer to the point VP(1
1;xk). To add VP(i) to the profile, we traverse VP(i) to place pointers on the points
VP(i; x) VP(i; xK). Now for each leap x, we determine whether VP(i) is below
VP (1 1) at this x coordinate. (Recall that this means comparing VP (i; x-) to
VP(1 1; x-) and VP(i; x-) to VP(1 1" x+).) If VP(i) is below, we
have identified a piece of VP(i) in VP(1 i); we simultaneously traverse VP(i) and
VP (1 1) to the left, maintaining our pointers at the same approximate x coordinate,
until we reach the x coordinate xt, where V P (i) is no longer below V P ); xt is the
left endpoint of this piece of V P (i), and consequently is a leap in V P (1 i). Similarly, we
simultaneously traverse V P(i) and V P(1 1) to the right to obtain the right endpoint,
xr. The portion of V P (1 1) between xt and xr is replaced by the corresponding
portion of V P(i), and the leaps at xt and Xr are incorporated into the list, along with pointers
to VP (1 i; xt) and VP (1 i; Xr). Of course, the interval [x, Xr may contain leaps
of VP (1 1) other than xk, but this poses no difficulty to the algorithm. The special
case of x(ri) < min{x(/) x(li-1)} is handled without problem. The following lemma
establishes that the new profile obtained in this manner is in fact V P (1 i), and that the
updated list of leaps is the list for V P (1 i).

LEMMA4.1. Assumex(ri) > min{x(/) x(li_)}. EachpieceofVP(i)in VP(1
i) must cover a leap of V P(1 1), that is, for each piece contributed by V P(i), there
exists a leap x of VP such that V P i; x) VP ).

Proof Suppose we have a piece [xt, Xr] of VP(i) in VP(1 i) that lies between
consecutive leaps x and xk+ of V P(1 1). Since [xk, xk+] is a single piece of
VP (1 1), the points V P (1 1; x-) and VP (1 1; x-+ lie 9n the
same profile VP(j). We have that VP(j) lies below VP(i) at x- and xk-+l, and that VP(i)
lies below VP(j) at x+, where xk < Xl < x+. But this contradicts Lemma 3.1, since
x(li) < x(lj), by our ordering of the polygonal chains. [3

We now analyze the time complexity of the algorithm. The initial indexing of the
polygonal chains requires time O(h log h), to sort the left endpoints of the chains. Adding
V P (i) to V P (1 1) requires that we traverse V P (i) twice--once to place point-
ers to VP(i; x) VP(i; xK), and once during the simultaneous traversals of VP(i) and
VP (1 1). The time spent in all steps except the traversing of VP (1 1) is
O(IPil / h), implying a total of O(n / h2) over all steps. The simultaneous traversals of the
updating step require that we traverse sections of VP (1 1), which consists of profiles
that have already been processed. However, the portions we traverse are deleted from the
current profile V P (1 i) and are never traversed again. Thus, the entire algorithm runs in
time O(n + h2).

5. Lid queries. The algorithms that follow all make use of a logarithmic-time query
that we call a lid query. A lid query is based on planar point location, a familiar notion in
computational geometry. Basically, given a chain Pi and a point in the plane p, a lid query of
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p on Pi asks where p is with respect to Pi. The result of such a query will give us important
information about VP({Pi, c}) for any chain c containing p such that c N Pi 0. We now
describe lid queries in detail.

Consider a lid ab of V P(i), the visibility profile of chain Pi. The lid ab and the subchain
of Pi between a and b form a simple polygon, which we call a pocket, such that all points in
the interior of the pocket are nonvisible from below. If a point p in the pocket lies on a chain
c that does not intersect Pi, then c can be below V P(i) only if it crosses ab. Since ab is on
V P(i), crossing ab is also a sufficient condition for c to be below V P(i) somewhere. We
now state formally the information that we want from a lid query.

DEFINITION 5.1 (lid query). For a point p not on Pi, exactly one ofthefollowing is true:

1. p is below V P(i),
2. p is in a pocket of VP ),
3. p lies in the region above the simple, infinite chain c Pu (li U Pi Pu (ri ).

If(l) is true, a lid query of p on Pi returns VP(i; x(p)). (In Fig. 4,for example, a query on

Pl returns VP(i; x(pl)).) If2 is true, the lid query returns the lid ab that defines the pocket
(e.g., a query on P2 in the figure returns lid a2b2). If 3 is true (as it is for P3 in the figure),
then the rays pu (li and Pu (ri together have the property that we desire in the lids, so the lid
query returns them.

a2
P3

FIG. 4. Examples oflid queries.

Lid queries will be used often in our algorithm to determine quickly if and where a chain
c containing a point p lies below the current profile V P (S). Often, we will try to add a chain
c to V P (S) to form V P (S tO {c}), knowing only that c contains a certain point p and that c
and S are disjoint. We formalize this notion by defining the lid property.

DEFINITION 5.2 (lid property). An x coordinate x has the lid property for point p and
profile V P(S) if for any chain c that contains p and is disjoint from S, V P({c}) is below
VP(S) somewhere only if VP({c}) is below. VP(S) at x.

When a lid query of a point p on a chain Pi returns a lid ab, the x coordinate x(a) satisfies
the lid property for p and V P (i). Our algorithm will produce, through the use of lid queries,
x coordinates that satisfy the lid property for the current profile V P (S); typically, these will
be the x coordinates of either leaps or jumps of VP (S).
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Lid queries are basically planar point location. We first obtain the vertical visibility map
of Pi (in O (n) time for all chains, by [Ch]). Then Pi can be preprocessed to return the trapezoid
of the map containing a query point in logarithmic time (by [Ki] or [EGSt], for example); this
is sufficient to answer the query for case 1. For cases 2 and 3, we need to do some more
work. Consider the dual graph of the trapezoidal decomposition, with the edge corresponding
to the decomposition ray Pu (ri) deleted. This graph is a tree, and the trapezoids that comprise
any given pocket correspond to a subtree. Each lid of VP (i) corresponds to an edge in the
tree that separates the subtree of the adjacent pocket from the rest of the tree. For each lid
(including Pu (li)), we begin at the corresponding edge in the dual graph, and traverse through
the subtree of the pocket, assigning to each node a pointer to the lid. Therefore, if the planar
point location query encounters a trapezoid with a pointer to a lid, the lid query returns that
lid. We see that the chains P Ph can be preprocessed in O(n) total time to handle lid
queries in time O (log ), where t7 is the number of vertices on the largest of P1 Ph.

At this point we mention that our algorithms require a careful representation of a current
profile V P(S). We said earlier that VP (S) is stored as a polygonal chain. It is important
that this be done by adding pointers (along with necessary added vertices b at the top of
leaps) to the original profiles VP(i), Pi S. Therefore, to traverse a section of VP(S),
we begin by traversing a section of the appropriate profile V P(i), and, upon encountering
a leap at x coordinate x, leap to the new appropriate profile V P (j) by means of a pointer
from VP(i; x) to VP(j; x). We take care to mention the necessity of this representation of
VP (S), because our procedures will sometimes ask for a point V P (S; x) by performing a lid
query of p (x, 0) on the appropriate profile VP(i). Since the lid query preprocessing is
done on each original chain Pi, and we cannot afford to do preprocessing on an intermediate,
composite profile like V P (S), it is imperative that we can use a lid query on an individual
chain Pi to find a point VP (S; x).

6. A dynamic insertion algorithm. Through the use of lid queries, we can transform
the O(n + h2) algorithm described in an earlier section into a dynamic insertion algorithm.
That algorithm was not on-line, because it was necessary to order the chains in decreasing x
coordinate order of their left endpoints. This ordering led to Lemma 4.1, which stated that
when adding VP(i) to VP(1 1), each piece of VP(i) in VP(1 i) must cover
a leap of VP (1 1). This meant that to construct VP (1 i), it was sufficient to
compare VP (i) and VP (1 1) only at the leaps of V P (1 1).

In the dynamic insertion version of the problem, we are given the chains in arbitrary
order, and must compute the visibility profile of each intermediate collection of chains. Since
the chains are not received in any particular order, it is possible that VP(i) contributes a

piece to VP (1 i) that covers no leap of V P (1 1). Such a piece is contained by
a piece of V P(1 1). Therefore, the dynamic algorithm consists of checking, for
each piece of VP(1 1), whether or not VP(i) appears somewhere below it. This
check can be made with the help of a lid query, as follows.

Suppose we have a piece of V P(1 1) that is contributed by VP (j) and has left
and right endpoints and r. We first compare VP(i) to VP(j) at the endpoints of the piece;
that is, we check if VP(i; x(1)) is below or VP(i; x(r)) is below r. If VP(i) is below at
neither endpoint, then we use a lid query of the point V P(i; x(1)) on chain Pj. Recall that the
lid ab returned by the query has the lid property, meaning that V P(i) must be below V P(j)
at x(a) if it is below anywhere. If the lid ab returned by the query has x(1) < x(a) < x(r),
then we compare VP(i;x(a))with ab. Ifx(a) [x(1),x(r)], then VP(i)cannot be below
VP(j) anywhere in the interval [x(1),x(r)], since it is not below at the endpoints of the
interval, and VP(i, j) has at most three pieces (Lemma 3.1). In this manner, we find a point
of V P(i) that is below V P(j) over the interval [x(/), x(r)], if one exists; we can traverse
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V P(i) and V P(j) simultaneously to the left and to the right in order to update the profile
over this interval.

We now analyze the time required to add a new chain to the current profile. The new
chain Pi must be preprocessed for lid queries, in case it is queried in future steps. We must
also traverse VP(i) to find VP(i; x) for every leap x of VP(1 1). There are O(h)
pieces of VP (1 1), and we may have to perform a lid query for each one. Our total
time is

o(Ieil + ki-1 + h logtT),

where ki- is the number of vertices of VP (1 1) deleted from V P (1 i), and
is the size of the largest chain. Over h chains with n total vertices, with no chain having more
than h vertices, the algorithm requires O(n + h2 log .7) time. This procedure is slightly more
expensive than the O(n + h2) algorithm on which it is based, since, when we compare the
new profile VP (i) to a particular piece of V P (1 1), we must perform a lid query of
O (log tT) time, rather than a simple constant time check.

THEOREM 6.1. There exists an on-line insertion algorithmfor constructing the visibility
profile of h chains with n vertices and Yt vertices on the largest chain, with time complexity
O(n + h2 log tT). The insertion ofan individual chain P can be performed in time O(IPI
k + h log ), where k is the size ofthe change.

Our result compares favorably with the naive solution to this problem: one could perform
on-line updates by simultaneously traversing V P(i) and V P(1 1) between x(li) and
x(ri), but this approach requires O(hn) time in the worst case. A slightly more sophisticated
approach is to follow the algorithm that is outlined above, but, when the case of V P(i) being
above VP(j) at both endpoints of a piece occurs, to use a simultaneous traversal instead
of a lid query to update the piece. However, this approach, too, can experience worst-case
performance of O (nh).

7. An O (n + h log2 h) algorithm. Using the notion of a lid query, we will describe our
first o(h2) algorithm. This algorithm adds the chains one at a time to the current profile,
basically by performing binary search on the profile. The algorithm is simple in all respects
except the use of lid queries, and it introduces some ideas that will be used in the more
sophisticated optimal algorithm.

We begin by indexing the chains 79 P1 Ph} so that their endpoints l lh are
sorted by increasing x coordinate. (This is in contrast to the O (n + h2) algorithm, in which we
wanted decreasing order.) By Lemma 3.1, a chain Pi can appear at most once in V P (1 i).
In trying to add VP (i) to VP (1 1), we will search for this solitary appearance.

The algorithm maintains the pieces of the current profile, V P (1 1), in a search
tree. To add V P(i), we perform a search. A search step at a node of the tree consists
of comparing VP(i) to the piece of VP(1 1) at that node; suppose this piece is
contributed by VP(j), and has endpoints and r. If VP(i; x(l)) is below l, then we have
found the solitary piece of VP(i) in VP(1 1), and we can construct VP(1 i)
by simultaneously traversing VP(i) and VP(1 1) to the left and to the right. If
VP(i; x(l)) is above l, we must determine if VP(i)’s contribution to VP(1 i) lies left
or right of I. At this point, we perform a lid query of V P(i; x(1)) on Pj. If the query returns
a lid ab, we do the following: (1) if x(a) < x(1), we continue our search on the left branch
of the node, (2) if x(r) < x(a), we continue on the right branch, (3) if x(l) < x(a) < x(r),
we simply check if VP(i) is below a or crosses ab. Ifthe lid query tells us that VP(i; x(1))
lies in the region above c Pu (l.i) U Pj U Pu (rj), we take the right branch, since we know that

Pi does not extend as far left as pu(lj). The fact that V P(i) contributes at most one piece to



VISIBILITY IN THE PLANE 193

V P(i, j) guarantees that the above search procedure will find a point of V P(i) that is below
VP (1 1), if one exists.

The procedure requires that at each step, we locate the point of V P(i) with a given x
coordinate. We must exhibit some care in doing this, since a naive traversing scheme could
result in some sections being covered many times, and therefore must be avoided. Instead of
traversing V P(i), we compute a point V P(i, x) by performing a lid query of (x, 0) on Pi.

To analyze the complexity ofthe rest ofthe procedure, we note that, since V P (1 1)
has O(h) pieces, the search consists of O(log h) steps. The search tree can be maintained
in logarithmic time per insertion and deletion. Each search step requires a constant number
of lid queries, which has time complexity O (log iT), where is the size of the largest chain
of 79. Therefore the search to add VP(i) requires time O(logh log). Of course, once we
find a visible point of V P(i), we must delete some of V P(1 1) in order to form
VP (1 i), but this is O (n) over all steps since no portion is deleted more than once.

By the above, the algorithm runs in time O(n + h log h log t). We can rewrite this as
O(n+h log2 h) bythe following argument. Ifh o(n! log2 n), then the entire time complexity
becomes O(n). If h f2(n/log2 n), then logh f2(logn), so logt7 O(logh).

8. An optimal algorithm. We turn our attention now to a different algorithm, one which
attains the optimal (R) (n + h log h) time bound. We will describe first an algorithm that runs in
time O(n + h log h + h log log h log2 ), and will then modify it to perform in optimal time.

We begin by sorting the x coordinates of the endpoints of P1 Ph, thereby obtaining
a list x X2h. If 79 P Ph }, define Sl to be the chains of 79 stabbed by the vertical
line x Xh. Define $2 to be the chains of 79 \ S stabbed by x XLh/2 or x XL3h/J.
Continuing in this way, we obtain a partitioning of 79 into a class of subsets S Srog2h1.
Below, we will show that the visibility profile of a set S’ of h’ polygonal chains stabbed
by a vertical line can be computed in time O(n’ + h’ log h’), where n’ is the total number
of vertices in S’, and ’ is the number of vertices on the largest chain in S’. Therefore
V P(S) V P (Srog .hl can be computed in time O (n + h log ), where is the size of the
largest chain in 79 {P Ph }. We will also show how to merge V P (S’) with V P
in O(/ log ) time, for two subsets S’ and $" of {S Sfogehl}, with max{ilSi S’} <

min{jlSj ,5’"}, where is the total number of polygonal chains in the sets comprising S’ and
S". This allows one to compute V P(79) by recursively computing V P(S1 U... Soog2h)/2)
and VP(Sroogh/eq+l t3 Sroghq) and then merging them. Each step of the recursion
requires time O(h log9 h), and the recursion has depth O (log log h), giving a total algorithm
run-time of O(n + h log h + h log log h loge ).

8.1. The profile for a set of stabbed polygons. We describe here the procedure for
computing the visibility profile of a collection of polygonal chains P Ph, all of which
are stabbed by a vertical line , which we take, without loss of generality, to be the y axis.
We will describe a procedure for computing the portion of VP (1 h) lying to the left of
; the portion lying to the right can be computed by a symmetric procedure. In this section,
the notation V P (S) denotes only the portion of the visibility profile of S lying to the left of ,
unless otherwise stated. We assume that, as a preprocessing step, we have computed VP (i)
and preprocessed Pz for lid queries for each chain Pi. For convenience, we will suppose that
each chain Pi is oriented from its left endpoint li to its right endpoint ri; we will refer to points
as preceding or succeeding each other on Pi. For a chain Pi, let its bottom point, denoted bi, be
the point of P f3 with the least y coordinate; assume that we have sorted the bottom points by
the y coordinate, and indexed the chains P Ph SO that the corresponding bottom points
bl bh are listed by increasing y coordinate. Note that no point of Pi succeeding bi can
lie on V P(i), so it is sufficient to replace Pi by the subchain from li to bi. Our procedure will
inductively compute V P (1 k) by merging V P (1 k 1) with VP (k). If the chains
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P1 Ph contain a total of n vertices, and no chain contains more than t7 vertices, then the
procedure runs in time O (n / h log + h log h).

The profile V P(1 k 1) consists of m pieces, which we denote, in left-to-right
order, as zrl Zrm. The function r maps a piece to its chain, so that VP(cr(j)) contributes
the piece zrj. Let (j) and r (j) represent the left and right endpoints of the piece rrj; therefore
zrj covers the x interval [x(l(j)), x(r(j))].

The basic step is adding V P (k) to V P (1 k 1). We will take advantage of the fact
that VP (k) can contribute at most one piece to V P (1 k).

LEMMA 8.1. The chain VP (k) contributes at most one piece to V P (1 k) (which is
the portion of the profile lying left of the vertical stabber).

Proof If k the claim is trivial. For k > 2, it suffices to show that V P (k) contributes
at most one piece to the portion of VP (j, k) lying left of , for all j < k. Because VP (j; 0)
is below V P (k; 0), this is true by the proof of Lemma 3.3, which states that V P (j, k) has at
most three pieces. [3

Since V P(k) can contribute at most one piece, it suffices to find a single x coordinate

xk with the lid property for a point q V P(k) and profile V P(1 k 1). The profile
V P (1 k 1) consists of O (h) pieces (by Lemma 3.3, since k < h). A natural
approach would be to perform a binary search on the pieces of VP (1 k 1), asking at
each step whether the desired value Xk lies left or right of the given piece. We must be able to
determine efficiently whether xk lies left or right. To do this, we must construct some structure
on top of the input chains. We begin by defining, for a point q 6 VP (i), a top point.

DEFINITION 8.2. Consider a point q Pi on VP(i). Define the top point ofq, t(q), as
the first point of Pi f3 g. encountered when traversing Pi forwardsfrom starting point q.

As a preprocessing step, we assign to each vertex v of a profile V P (i) a pointer to (v).
This preprocessing can be done in linear time by traversing V P (i) and Pi for each i.

We now develop a theory of tunnels for a chain Pi (refer to Fig. 5). Given Pi, we can
construct a closed, simple curve by traversing Pi from li to bi, going from bi straight down
to the origin, along the x axis, and then straight up to li. Denote by Ri the bounded region
formed by this curve, and define R to be the connected component of gi (3 {(x, y)lx < 0}
that contains point li (on its boundary). We call a connected component of Ri \ R a tunnel,
and the common boundary of R with a tunnel is the opening of that tunnel; an opening is
necessarily an interval of the y-axis. No point in the interior of a tunnel is visible from below,
in the sense that a point in a tunnel of Pi is above VP(i; x(p)).

The intersection points of Pi with the y axis divide the y axis into a list of intervals, which
we denote Ii, and can compute in linear time using Jordan sorting [HMRT]. For each interval
that lies inside Ri, assign a pointer to the opening of the tunnel that contains it. For each
interval outside Ri, assign a pointer to the "outside opening", namely, the interval from the
highest point of Pi N to infinity. In Fig. 5, the pointers are shown as dotted lines. When we
speak of the opening of a point p (0, y(p)) q Pi with respect to the chain Pi, we mean the
opening assigned to the interval of li containing p. We now give the lemma that forms the
basis of the binary search approach.

LEMMA 8.3. Let Y’f be a piece of VP (1 k 1), and let b be the bottom point of
P. If the opening ofb with respect to Pa(i) lies above (below) t(l(i)), then VP(k) cannot

appear in VP(1 k) to the right (left) ofx(l(i)) unless it appears at x(l(i)).
Proof Construct a closed, simple curve c by tracing Per(i) from l(i) to t(l(i)), going

straight down to the origin, along the x axis, and straight up to l(i). Let B denote the bounded
region of the plane formed by c.

Suppose the opening ofb with respect to Poi is below t(l(i)) (as in Fig. 6(a)). This means
that p is inside Rr(i), and therefore in a tunnel (perhaps on the opening of-the tunnel). The
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FIe,. 5. Examples oftunnels, and pointers to openings.

chain P, must have a point on the opening of the tunnel in order to be visible in V P(tr (i), k),
so assume we have such a point p. If Pk has a visible point of V P(cr(i), k) lying left of l(i),
then it must leave the bounded region B. In order to leave B, starting at p and not intersecting
Po(i), the chain P, must enter a tunnel with opening below t(l(i)), or cross pd(l(i)). The
portion of P in a tunnel is not visible, and P can exit a tunnel only through its opening,
thereby re-entering B. If P crosses pd(l(i)), then V P(k) is below V P(cr(i)) at x(l(i)).

Suppose the opening is above t(l(i)). If b is outside of Ro(i), then Pk can be visible in
V P(tr(i), k) to the right of x(l(i)) only by crossing Pd(l(i)). If b is inside Rr(i) (as in Fig.
6(b)), then it is in a tunnel, and P can be visible only if it has point p on the opening of the
tunnel. We assume P has a point p on this opening. To be visible in V P(cr(i), k) to the
right of x(l(i)), P must enter the bounded region B. To enter B from starting point p, Pk
must enter a tunnel with opening above t(l(i)), or cross pd(l(i)). While in such a tunnel, P
is not visible, and it can exitthe tunnel only through the opening above t(l(i)). If P crosses
pd(l(i)), then V P(k) is below V P(r(i)) at x(l(i)).

We now describe the binary search on the pieces of VP (1 k 1) that finds x. At
a step of the search, we have a piece zri, and we determine the opening of b with respect to

Pi; if it lies above (below) t(l(i)), we look for xk to the left (right) of the piece. We compute
the opening ofb with respect to Pi by maintaining, for j h, the list of intervals lj.
We maintain a pointer to this list, initialized to the lowest interval, and updated after a query
of b to the interval containing b. When given a new point b, to query, we simply traverse
through the list, starting from the pointer. In the example in Fig. 7, b’ has an opening with
respect to P below that of b, even though b’ is above b; this is why each interval of lj stores a
pointer to its opening. Since b bh and the intervals of lj each are ordered by increasing
y coordinate, a single forwards traversal through lj for j h allows us to perform all
of these queries.

The binary search ends by isolating one piece 71" with the property that V P(k) cannot
appear left of x(l(i)) or right of x(l(i + 1)) x(r(i)) without appearing in the interval
[x(l(i)), x(r(i))]. We look for a value xk in this interval with the lid property, by performing a
lid query ofb, on Pi. Since b, is above br(i), the query will return a lid ab. Ifthe x coordinate
of this lid, x(a), lies in the interval [x(l(i)), x(r(i))], then we set xk +-- x(a), and if x(a) <
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FIG. 6. ProofofLemma 7.

FIG. 7. Binary search steps on a chain.
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x(l(i)) or x(a) > x(r(i)), then we set xk +-- x(l(i)) or xk +-- x(r(i)), respectively. We then
compare V P(k; x) and V P(1 k- 1" x), and construct V P(1 k) by simultaneously
traversing V P (k) and VP (1 k 1). We now give the full algorithm.

Algorithm
Add PI" We already have VP (1), which consists of a single piece.
Add P, for k > 2"

We are given VP(1,..., k 1), with the pieces of VP (1 k 1) in a search tree.
Perform the search described previously, using the lists lj and the pointers to the these lists.
There are two cases, which affect the way in which we construct VP (1 k):

Case 1: We find that the opening of bk with respect to P) is above t(/(1)). We simply
set xk - x(/(1)).

We now ask whether P is visible at x. This consists of asking whether VP (k; x-) is
below VP (1 k 1; x-), which is equivalent to asking whether P extends as far left
as xk

If P is not visible at x, we set V P (1 k) V P (1 k 1).
If Pt is visible at xk, we compute VP (k; x), and we traverse to the right from VP (k; x)

and V P(1 k 1; xk) simultaneously, in order to construct the piece contributed by
VP (k)--this gives us VP (1 k). We update the search tree of pieces of VP (1 k).

Case 2: The search returns the piece rri.

Here we take advantage of lid queries. We query the point b to determine the lid ab of
V P(cr(i)) that Pk must cross in order to be visible in V P(cr(i), k). Note that since bt is above
br(i), the lid query will return a lid.

Subcase (a)" x(a) (x(l(i)),x(r(i))).
Set x +-- x(a).

Subcase (b): x(a) > x(r(i)).
Set x +-- x(r(i)).

Subcase (c): x(a) < x(l(i)).
Set x x(l(i)).

We ask whether P is visible at xk. This requires computing VP (1 k 1; x), which we
already know from the lid query if x (x(l(i)), x(r(i))). If Xk is x(l(i)) or x(r(i)), we can
obtain VP(1 k 1; xk) with an additional query of Per(i) from the point (xt, 0). We are
willing to spend nk time to compute V P(k" xt), where n is the number of vertices of P, so
it suffices to find V P(k; xk) by simply traversing V P(k).

If V P (k) is not visible at x, then we set V P (1 k) -- VP (1 k 1).
If V P (k) is visible at xt, then we construct the piece contributed by VP (k), by traversing

simultaneously from VP(k; x) and VP(1 k 1; xk), both left and right--this gives
V P (1 k). We update the search tree of pieces of V P (1 k).
End Algorithm

We now show that the value x produced by a step of the algorithm has the lid property.
LEMMA 8.4. If VP(k) appears in VP(1 k), then it appears in VP(1 k) at x.
Proof The claim follows directly from Lemma 8.3 for Case of the algorithm.
For Case 2, it follows from Lemma 8.3 that if V P (k) appears in VP (1 k), then it

appears in the interval [x(l(i)), x(r(i))].
Suppose the query returns a lid ab such that x(a) (x(l(i)), x(r(i))). Then VP(k) is

somewhere below VP(cr(i)) only if P crosses ab. Thus, VP(k) appears in VP(1 k)
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only if V P(k) is below V P(1 k 1) at x(a), implying that xk x(a) satisfies the lid
property.

Suppose the query returns a lid ab such that x(a) > x(r(i)). We know that if V P(k)
appears in V P(cr(i), k), then it appears at x(a). Since y(bo(il) < y(bk), V P(k) can contribute
at most one piece to the portion of V P(r(i), k) lying left of the y axis. Therefore, if V P(k) is
below V P(cr(i)) at x(a) and at a value x [x(l(i)), x(r(i))], then it is below at x x(r(i)),
which implies that xk satisfies the lid property. A similar argument handles the case where
x(a) < x(l(i)). [q

The entire procedure for computing VP (1 h) requires time O (n + h log t7 + h log h),
where n is the total number of vertices on P Ph and is the number of vertices on the
largest chain. We established earlier that all preprocessing can be performed in O (n) time.
The bottom points are sorted by y coordinate in O(h log h) time.

The basic step of the procedure consists of merging VP (k) with ’P (1 k 1). We
perform a binary search on the list of pieces of VP (1 k 1). The cost of each search
step is a constant plus the number of intervals of the list loi that are traversed. The constant
cost is charged to the search step, and the cost of each interval is charged to the interval itself,
since no interval is traversed more than once. Since V P(1 k 1) has O(h) pieces, all
steps of all searches require O (n + h log h) time.

To merge VP (k) with V P(1 k 1), we perform a constant number of lid queries,
each in time O(log iT), for a total of O(h log tT) over all steps. Each step also traverses some
portion of VP(k), in time linear in the size of VP(k), for a total of O(n) time. Also, step
k traverses the portion of V P (1 k 1) that is deleted from V P (1 k); all of these
deletions require O (n) time. This establishes the time bound of O (n + h log + h log h) on
the procedure.

8.2. Merging. We describe the merging of the visibility profiles of two subsets S’ and
S" of S {S SFoghl}, where max{ilSi 6 S’} < min{jlSj 6 S"}. We have a family of
vertical lines such that every chain in ,.3’ is stabbed by at least one of the lines, but no chain of
S" is stabbed by a line. Since the vertical lines separate the elements ofS", we can individually
consider the interval between each pair of consecutive lines. Therefore, we consider a vertical
strip bordered by the lines 7rt and Zrr. All chains of S’ that appear in V P (S’) in the strip are
stabbed by either rrt or 7rr, and no chain of S" appearing in V P (S") is stabbed by either line.

Inductively, we assume that we have, for V P (S’) (V P (S")) over the strip, a sorted list of
all leaps, and for each leap x of V P (S’) (V P (S")), a pointer to V P (S’; x) (VP (S"; x)). We
merge the lists to form a single sorted list x x: of all leaps in V P (S’) and V P (S"). For a
leap xk from VP (S’) (V P (S")), we must compute a pointer to V P (S"; xk) (V P (S’; x)). We
do this through lid queries, as follows. We can assume that in forming the listx xx, every
leap x, from V P(S’) knows which profile from S" contributes V P(S"; Xk). (This consists of
knowing the leaps from V P (S/’) that are nearest to x, to the left and right.) Since we know
the profile V P (j) that contributes V P (S"; xk), we can compute VP (j; x,) VP (S"; xk)
by querying the point (xi, 0) on Pj. Since (x,, 0) lies below VP (j) (by our assumption that
chains lie above the x axis), the query returns V P (j; x,).

We define a subpiece of VP (S’) or V P (S") as the portion of the profile between two
consecutive leaps in the merged list x xx. Note that a subpiece is a subset of some
piece. A trivial special case occurs if one of the subpieces is at infinity. We will concentrate
on the nontrivial situation, where the two subpieces are contributed by two profiles, V P(i)
and V P(j). The following lemma motivates the merge procedure.

LEMMA 8.5. Suppose we have a subpiece over the interval [x, x+] such that V P(i)
and V P (j) contribute this subpiece to V P(S’) and V P(S"), respectively. Then VP (S’) is
below V P(S") somewhere in [xk, xk+] only if V P(i) is below V P(j) at x or Xk+l.
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Proof. We know that V P (j), as an element of VP (S"), does not intersect 7g nor
whereas V P(i), as an element of V P(S’), does intersect at least one of the two. This implies
that either x (li) < x (lj) or x (ri) > x (rj), which, by Lemma 3.1 or Lemma 3.2, means
that VP(j) appears at most once in VP(i, j). This means it is impossible for VP(j) to be
below V P(i) at both xk and Xk+l when V P(i) is below V P(j) somewhere in between x, and

Xk+ [-]

Now we combine the two profiles over the subpiece [x, X+l]. If V P(j) is below V P(i)
at both x and Xk+l, then the entire subpiece is contributed by V P(j). Below we describe a
procedure for the case when VP(i) is below at one ofxk and x+, and VP(j) is below at the
other. We then show how this procedure can be modified to handle the case where V P(i) is
below at both x and xk+l.

If VP(i) is below at one of x and Xk+, and VP(j) is below at the other, then our
task consists of finding the unique leap in V P(i, j) between x and Xk+l, without traversing
portions that are part of VP (S’ t3 S"). A nai’ve scheme could take time linear in the size of the
portions of V P (S’) and V P ($") between x and x+1, but our approach requires only polylog
time. Assume that the vertices of each original profile have been numbered in left-to-right
order, and placed in a data structure so that if we are given a pointer to a vertex of the profile,
we can in constant time return the numbering of the vertex. Our procedure maintains two
pointers to VP(i), denoted p and p, which are initialized to VP(i; x,) and VP(i; xk+l),
and pointers p/ and pJ to V P (j), initialized to V P (j; xk) and VP (j; x+). The pointers
pi and p/will be maintained at the same x-coordinate, as will p and pr Initially we know

that there is exactly one leap of V P(i, j) between x(p) x(pl) and x(p) x(pr); the

procedure maintains this property while moving x (p) x (p{) and x (p) x (prj) closer
together, eventu.ally.sandwiching the leap. The procedure alternates steps on the pointer pairs
(p, p) and (p{, prJ). We describe a step on the pair (p, p)"

1. Query the numbering of the vertices of V P(i) nearest p and p, and assign these
numberings to p and p.

2. Find q, the vertex of V P(i) whose numbering is halfway between the numberings
of p and p.

3. Compute VP (j; x (q)).
4. Compare the y coordinates of VP(j; x(q)) and q VP(i; x(q)); this tells us

whether the leap is left or right of x(q); accordingly, update either p and p/or p
and pr

Upon completion of this step on the pair (p, p), perform a symmetric step on (p{, PJr ),
and continue to alternate the steps. Eventua.lly the total number of vertices on VP (i) between
pi and Pr and on VP (j) between Pl and pr is less than a small, preset constant, so in constant
time we find the leap and complete this subpiece of VP (,9’ t2 $").

A slight modification of the above procedure handles the case where V P(i) is below
VP(j) at both xk and x+. Query VP(j; xk) on VP(i), to find a lid ab which VP(j) must
cross in order to contribute a piece to VP(i, j). If x(a) q [xk, xk+l], then VP(j) is not
below VP(i) anywhere in the interval [xk, xt+l]. If x(a) [xk, X+l], then perform a lid
query on the point (x(a), 0) to compute VP(j; x(a)). If VP(i) is below VP(j) at x(a), then
the subpiece between xt and x+ is contributed totally by V P(i); otherwise, we break the
subpiece [x, x+l] into two subpieces, [x, x(a)] and Ix(a), xk+], and process each subpiece
with the above procedure.

Consider the total time of merging VP (S’) and VP (S"). Let represent the total number
of chains in S’ and S", and the number of vertices on the largest chain in the set S’ t.J S".
Creating the combined sorted lists of leaps xl xK for all strips takes time O(), because
we already have the sorted lists of leaps for S’ and $" separately. Computing V P (i; x) and
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VP (j; xk) for every leap xk requires time O( log ), since it consists of performing one lid
query per leap. We then process each of the O(h) subpieces separately, perhaps breaking
some subpieces into two subpieces with the help of a single lid quer.y, processing a subpiece
consists of alternating steps on the pairs of pointers (p, p) and (p{, p]). Each step consists
of one lid query plus some constant time work, and is therefore O (log ). Because every two
steps eliminate at least half of the vertices of VP (i) between p and p and of VP (j) between

p{ and pJ, the number of steps is O (log ). Therefore each subpiece requires O (log2 ) time,
for a total of O (/ log2 ) time to merge VP (S’) and V P (,S").

8.3. Putting it together: An optimal algorithm. The 8.1 and 8.2 describe how to
compute VP (7’) for 7 P1 P,} in time O(n + h log h + h log log h log2 t), where n
is the total number of vertices in 79, and t is the number of vertices on the largest chain of 79.
A modification allows this algorithm to compute V P(7z’) in optimal (R)(n + h log h) time. The
modification consists of breaking 79 into two groups, the "large" chains and the "small" ones,
computing the visibility profile of each group separately, and then merging the profiles with a
final linear-time merge.

The first observation to be made is that if h O (n/log n), then the algorithm’s com-
plexity is O(n). Motivated by this observation, we break 7 into two groups as follows" all
chains in 7 with more than log n vertices are placed in the "large" group, and the rest in the
"small" group. The large group can have no more than n/log n members, so the algorithm
can compute the visibility profile of this group in O (n) time.

Assume that the small group has h g2 (n / log n) members. (Ifnot, the algorithm is O (n)
on this group.) No chain of the small group has more than log n vertices, implying that <

log n. The complexity ofthe algorithm is therefore O (n/h log h/h log log h log2 (log3 n))
O(n + h logh + h log log h (log log n)2). Since h (n/log n), we have that loglogn
O(log log h), which gives a complexity of O(n + h log h + h(log log h)3) O(n + h log h).
Therefore, the visibility profiles of both the small group and the large group can be computed
in O(n + h log h), which gives V P(T;’) in the same time bound.

9. Conclusion. In this paper, we have given a number of algorithms for computing vis-
ibility polygons in a polygonal domain, which culminated in a time-optimal (R)(n / h log h)
result. Another result was a simple O(n + hZ)-time algorithm, which is notable as the only
known algorithm whose time-complexity is linear in n that does not require linear-time trian-

gulation. We also gave a procedure that allows dynamic insertion of the polygonal holes.
Our visibility profile results immediately give new bounds on computing convex hulls of

disjoint simple polygons, since the lower hull of a set of obstacles can be extracted in linear
(O (n)) time from the lower envelope of the obstacles.

Several open problems present themselves:
Can one develop a dynamic algorithm that allows both insertion and deletion of the
holes?
Does there exist an O(n + f(n))-time algorithm that does not require linear-time
triangulation, where f(h) o(h2)?
Can we extend our results to the case of (weak) visibility from a line segment?
What can be done in the case that the h polygons are not necessarily disjoint, but
have up to k intersection points?
How quickly can one compute the visibility profile of h simple chains that are not
assumed to be pairwise-disjoint? If, for example, there are k crossing points in the
arrangement of chains, can we compute the visibility profile (lower envelope) in time
O(n + k + h log h), or something close to this? (This problem is suggested to us by
Reuven Bar Yehuda.)
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A RANDOMIZED MAXIMUM-FLOW ALGORITHM*
JOSEPH CHERIYAN AND TORBEN HAGERUP$

Abstract. A randomized algorithm for computing a maximum flow is presented. For an n-vertex m-edge
network, the running time is O(nm + n2(logn)2) with probability at least 2-’/7. The algorithm is always
correct, and in the worst case runs in O(nm log n) time. The only use of randomization is to randomly permute the
adjacency lists of the network vertices at the start of the execution.

The analysis introduces the notion of premature target relabeling (PTR) events and shows that each PTR event
contributes O (log n) amortized time to the overall running time. The number ofPTR events is always O (nm)" however,
it is shown that when the adjacency lists are randomly permuted, then this quantity is O(n3/Zm I/2 nt_ n log n) with

high probability.

Key words, maximum flow, randomized algorithm, random permutations, scaling, dynamic tree, Fibonacci heap
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1. Introduction. A network is a graph together with one or more functions from the
edges to the real numbers. Problems on networks arise often in theory and in practice. One of
the central problems in this area is that of finding a maximumflow in a network. The input to
the problem consists of a graph with two distinguished vertices, the source and the sink, and
a nonnegative function on the edges called the capacity. Let n and m denote the number of
vertices and edges, respectively, and let U denote the maximum capacity of any edge.

The first algorithm for the problem was presented by Ford and Fulkerson [FF57], [FF62].
Their algorithm does not run in polynomial time; moreover, when the capacities are irrational,
it may not even terminate. More than a decade later, Edmonds and Karp [EK72] proposed a
modification of the algorithm of [FF57] that runs in polynomial time. Independently, Dinic
[DT0] gave a faster polynomial-time algorithm.

The running times of the Dinic and Edmonds-Karp algorithms can be bounded by
functions that depend only on n and m, but not on the actual edge capacities. This behavior
is considered to be attractive and has been studied in the more general setting of combinato-
rial optimization. The input to a combinatorial optimization problem consists of a discrete
structure (e.g., the graph in the maximum-flow problem), together with numeric parame-
ters (e.g., the edge capacities in the maximum-flow problem). For an instance of the prob-
lem, let p denote the size of (a reasonable encoding of) the discrete structure, and let denote
the maximum size of any numeric parameter (e.g., if the numeric parameters are integers with
absolute values bounded by U, then one can take + [-log(U + 1)]; see Gr6tschel, Lovfisz,
and Schrijver [GLS88]). An algorithm is said to be strongly polynomial if its running time in
the arithmetic model (i.e., the total number of arithmetic operations, comparisons, and data
transfers executed) is polynomial in p, and the maximum size of any number computed by
the algorithm is polynomial in p. The maximum-flow algorithms in [D70] and [EK72] are
strongly polynomial.
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The publication of [D70] and [EK72] led to further research on maximum-flow algorithms.
Karzanov [K74] introduced the notion of a preflow, a generalization of a flow, and gave an
algorithm that computes a maximum flow in O(n3) time by manipulating a preflow. Other
improvements in the time complexity followed, and this line of research culminated in [ST83],
where Sleator and Tarjan introduced a new data structure for dynamic trees and showed that by
using this data structure, a maximum flow can be computed in O (nm log n) time. For graphs
with O(nZ/(logn)) edges, this running time was the fastest then known. For networks
with integer capacities, Gabow [Ga85] subsequently reported a simple algorithm based on
the scaling technique with a running time of O(nm log U); under the so-called similarity
assumption, i.e., U n), this algorithm is as fast as the one in [ST83].

A new approach for computing maximum flows was presented by Goldberg and Tarjan
[GT88] based on earlier work by Goldberg [G85] [GT88] introduced a generic algorithm
for computing a maximum flow that works by manipulating a preflow, and gave a specific
algorithm that uses the dynamic trees data structure and runs in time O(nm log(nZ/m)). This
improves on the algorithm in [ST83] for relatively dense graphs with m n2-(1). Cheriyan
and Maheshwari [CM89] investigated several specific instances of the generic algorithm and
showed that one of them runs in ((n2/-) time. For the special case of integer capacities,
Ahuja and Orlin [AO89] devised an algorithm based on the scaling technique, called the excess
scaling algorithm, that runs in O(nm + n2 log U) time. Ahuja, Orlin, and Tarjan [AOT89]
obtained several fast algorithms for this case by combining the dynamic trees data structure
with the excess scaling algorithm.

At a somewhat general level, several aspects of the present paper were influenced by
recent research on the minimum-costflow problem. Edmonds and Karp [EK72], introducing
the scaling technique, gave a polynomial minimum-cost flow algorithm for the special case
of integer capacities. The algorithm, however, is not strongly polynomial. Edmonds and
Karp left open the challenging question of whether a strongly polynomial algorithm exists.
Although this question attracted research interest, no significant progress was reported for
over a decade, until Tardos [T85] answered the question in the affirmative. There followed a
number of other strongly polynomial algorithms" Fujishige [F86], Galil and Tardos [GaT88],
Goldberg and Tarjan [GT89], [GT90], and Orlin [088]. An idea common to these papers was
the use of the scaling method for designing efficient strongly polynomial algorithms, and the
most efficient realization of this idea was given in [O88], where the Edmonds-Karp capacity-
scaling algorithm was "adapted" to real-valued capacities in order to achieve the fastest strongly
polynomial running time known. The design of our algorithm was also motivated by this idea.

The focus of our work is on using randomization to improve on the Sleator-Tarjan time
bound of O (nm log n) for finding a maximum flow. We show that by suitably incorporating
the dynamic trees data structure into the excess scaling algorithm and randomly permuting
the adjacency lists of the network vertices at the start of the execution, we can compute a
maximum flow in O(nm / nZ(log n)2) time with high probability, and in O(nm log n) time
in the worst case.

The running time analysis introduces the notion of premature target relabeling (PTR)
events and shows that each PTR event contributes O(logn) amortized time to the overall
running time. The number of PTR events is always O (nm); however, it is shown that when
the adjacency lists are randomly permuted, then this quantity is O(n/)ml/2 / n2 log n) with
high probability.

Section 3 discusses a variant of the excess scaling algorithm, and in 4 an efficient strongly
polynomial algorithm is designed, based on the algorithm in 3. The running time is analyzed
in 5-8. The critical component of the running time is identified in 5, and it is shown that the
algorithm is strongly polynomial. Section 6 introduces PTR events and gives a probabilistic
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bound on the number of these events, assuming that the adjacency lists are permuted randomly.
The analysis is completed in 7 and 8, first using simple arguments that lead to a somewhat
loose time bound, and then using a more refined argument that gives the tightest bound known
on the running time. Some conclusions are presented in 9.

2. Preliminaries. We use the traditional model for the study of problems on networks.
Capacities and flow values are represented by real numbers, and all other quantities are repre-
sented by integers. For n-vertex input networks, we allow integers of absolute value no, and
we charge constant time for each arithmetic operation (i.e., addition, subtraction, comparison,
or division by 2) on real numbers or integers, and for each data transfer. Further, we charge
constant time for generating one random integer.

Aflow network consists of a directed graph G (V, E), assumed to be symmetric (i.e.,
(v, w) E == (w, v) E), and a function cap E -- IR+ U {0}, the capacity, together
with two distinguished vertices, the source, s, and the sink, t. Let n ]VI and m
and let U denote the maximum capacity of any edge. We assume that m > n > 3 and that
U >0. Forv6 V, letI’(v)={w6 V’(v,w) 6E}--{u 6 V" (u,v) 6 E }, and for every
(v, w) 6 V x V, let tail(v, w) v and head(v, w) w.

A preflow in G is a function f E IR with the following properties:
(1) f(w, v) -f(v, w) for all (v, w) 6 E (antisymmetry constraint);
(2) f(v,w) <_ cap(v, w) for all (v, w) 6 E (capacity constraint);
(3) -,vv)f(u, v) > 0 for all v V {s} (nonnegativity constraint).
A preflow f in G is aflow if ,ev(v) f(u, v) 0 for all v V {s, t} (flow conservation

constraint). The value of f is }-,ev(t)f(u, t), and a maximum flow in G is a flow in G of
maximum value.

For a fixed preflow f under consideration and for every vertex v 6 V, theflow excess of
v, e(v), is defined as Y-uer() f (u, v), i.e., the net flow into v. A vertex v is called active if
v6 V-{s,t}ande(v) >0.

An edge (v, w) 6 E is residual (with respect to f) if f (v, w) < cap(v, w). The residual
capacity of an edge (v, w), rescap(v, w), is defined to be cap(v, w) f(v, w).

A labeling of G is a function d V -- N0 {0, 1,2 }. The labeling is valid for G
and a preflow f in G exactly if d(t) O, d(s) n, and d(v) < d(w) + for each residual

edge (v, w). We call a residual edge (v, w) eligible if d(v) d(w) + 1.
We now describe a generic algorithm that uses a preflow f in G and a labeling d of G.

The basic procedure for manipulating f is as follows"

procedure push((v, w) "edge; c" real);
precondition: v is active, (v, w) is eligible and 0 < c < min{e(v), rescap(v, w)}.

f (v, w)"= f(v, w) + c; f (w, v)"- f(w, v) -c;
e(v) e(v) c; e(w) e(w) + c"

By a push over (v, w) of value c we mean an execution of push with parameters (v, w)
and c. v and w are called the tail vertex and the head vertex of the push, respectively. The push
is called saturating if f(v, w) cap(v, w) afterwards; otherwise it is called nonsaturating.
For a vertex v, a push out of v is a push over any edge of the form (v, w), and a push into v
is a push over any edge of the form (u, v).

The basic procedure for manipulating the labeling d is as follows:

procedure relabel(v "vertex);
precondition: v is active, and no edge (v, w) emanating from v is eligible.

d(v) d(v) + 1;

An execution of relabel(v) is called a relabeling of v.
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The generic algorithm starts by setting the flow on each edge that leaves the source equal
to its capacity and the flow on each edge that is not incident with the source equal to zero. It
also fixes some initial valid labeling. The algorithm then repeatedly executes push and relabel
operations in any order. When no push or relabel operation has its precondition satisfied,
i.e., when there are no more active vertices, the algorithm terminates. A formal description
follows.

procedure generic initialize;
for all (v, w) E E do f(v, w)"-0;
for all v E V do e(v) "= 0;
for all (s, v) E do
begin

f (s, v) "= cap(s, v);
f(v, s) "= -f(s, v);
e(v) "= cap(s, v);

end;
for all v V {s} do d(v) 0;
d(s) "= n;

The generic maximum-flow algorithm"
generic initialize;
while there is an active vertex do

execute some push or relabel operation whose precondition is satisfied.

There are some minor differences between the algorithm above and the generic maximum-
flow algorithm of Goldberg and Tarjan [GT88]: the push(v, w) operation of [GT88] always
sends c min{e(v), rescap(v, w)} units of flow, and the relabel(v) operation of [GT88] sets
d(v) to min{d(w) + w 6 [’(v) and rescap(v, w) > 0}. Despite these differences, our
algorithm shares the essential properties of the generic algorithm of Goldberg and Tarjan. In
particular, the proofs given in [GT88] of the next two lemmas and of Theorem 2.4 carry over
without modification.

LEMMA 2.1 [GT88]. ?)r all v V, 0 < d(v) <_ 2n- throughout the execution. In
particular, the total number of relabeling operations is <_ n(2n 1) < 2n2.

LEMMA 2.2 [GT88]. The total number (),(saturating pushes is O(nm).
Our analysis uses the notion of an undirected edge {v, w}, i.e., a pair of directed edges

(v, w) and (w, v). Define the capacity of an undirected edge {v, w} to be ucap(v, w)
cap(v, w) + cap(w, v). For all v E V, let deg(v) denote the number of undirected edges
incident with v.

Each vertex v 6 V has an adjacency list, which consists of all edges (v, w) 6 E. For
each v V, the first eligible edge (if any) in v’s adjacency list is called its current edge and is
denoted by ce(v) (ce(v) nil, ifthere are no eligible edges (v, w)). We study implementations
of the generic maximum-flow algorithm that maintain, for each vertex v, a pointer to ce(v).
Lemma 2.3, whose proof is similar to those of Lemma 4.1 and Theorem 4.2 in [GT88], shows
that this contributes O (nm) time to the total running time.

LEMMA 2.3. Maintaining current edgesfor all vertices over the whole execution can be
done in 0 (nm) time.

Proof. Maintain for each vertex v 6 V a pointer z into the adjacency list of v. At each
relabeling of v, initialize z to point to ce(v). Whenever the edge pointed to by z becomes
ineligible, step z through v’s adjacency list, starting from its previous position, until it either
points to an eligible edge or reaches the end of the list. The fact that z always points to ce(v),
or to the end of v’s adjacency list if ce(v) nil, follows from the observation that once an
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edge (v, w) becomes ineligible, it remains so until the next relabeling of v. For each relabeling
of v, the total time spent in maintaining z. is O(deg(v)). Summing over all relabelings of all
vertices gives a total time of O(yv(2n 1) deg(v)) O(nm). [3

THEOREM 2.4 [GT88]. Suppose that the algorithm terminates. Then, at termination, the
preflow f is a maximumflow.

3. The excess sealing algorithm. In this section we consider networks with integer
capacities. We give a variant of the excess scaling algorithm of Ahuja and Orlin [AO89] and
show that although this algorithm is not strongly polynomial, the number of pushes executed
by it is O(nZm). In the next section, we make appropriate modifications to the algorithm to
obtain a strongly polynomial algorithm.

The excess scaling algorithm that we are about to present is an instance of the generic
algorithm of 2, and except for the minor differences noted there, it is also an instance of
the generic maximum-flow algorithm of Goldberg and Tarjan [GT88]. The implementation
of the generic algorithm in [GT88, p. 929] repeatedly selects an active vertex and applies
a push/relabel step to it. Rather than selecting an arbitrary active vertex, it turns out to be
advantageous to select an active vertex with relatively large flow excess. The excess scaling
algorithm maintains a parameter A; initially A 2 [lgUJ, and A 0 at termination. The
execution of the algorithm is partitioned into phases such that A stays fixed during each phase
and decreases by a factor of 2 between consecutive phases. We use "A" to denote both this
parameter and its value at some step of the execution; the context will resolve any ambiguity.
By a A-phase, where A R, we mean a phase in which the value of the parameter equals A.

Consider a particular phase. At the start of the phase the algorithm satisfies the invariant
thate(v) < 2A, forall v V-{s, t}. The algorithm selectsan active vertex vonlyife(v) > A.
Furthermore, among all such vertices it selects one with minimum d(v). Another invariant for
the A-phase is that every pushhas value < 2A. It follows that for all v V-{s, t}, e(v) < 3A
always (cf. Fact 3.4).

To satisfy the 2A bound on the value of every push, the value of every push out of a vertex
v 6 V {s, t} is computed using a modification Y(v) of e(v) defined as follows"

If e(v) < 2A, then (v) e(v), otherwise (v) A.

This achieves two things: First, the amount of flow sent is always < 2A, as claimed above.
Second, if at some point e(v) > 2A, then the algorithm attempts to make e(v) equal to zero
during the same phase by selecting v twice. (This would not be achieved, for example, by
letting (v) min{e(v), 2A}.)

procedure 6(v vertex) real;
return (if e(v) < 2A then e(v) else A);

procedure select: vertex;
precondition" Sv V- {s, t}’e(v)> A.

Return any vertex v V {s, t} with e(v) > A and
d(v) min{d(u) u 6 V {s, t} and e(u) > A};

The excess sealing algorithm"
generic initialize;
A :: 2lgUj"

whileA > ldo
begin

while v 6 V {s, t} e(v) >_ A do
begin

v select;
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while ce(v) nil and rescap(ce(v)) <_ Y(v) do
push (ce(v), rescap(ce(v))); (. a saturating push .)

if ce(v) nil and Y(v) > 0 then
relabel(v)

else
if e (v) > A then

push (ce(v), Y(v)); (. a nonsaturating push .)
end;
A :-- LA/2J;

end.

To prove the correctness of the algorithm and to analyze its running time, we need the
following facts. These facts are also used in subsequent sections.

Fact 3.1. For every vertex w E V {s, t}, e(w) does not increase while e(w)

_
A.

Proof. Any vertex v selected while e(w)

_
A has d(v)

_
d(w), by definition. Since

pushes are executed out of selected vertices only, it follows that the head vertex u of each push
has d(u) < d(w). In other words, no flow is sent into w while e(w) > A.

Fact 3.2. The value of every push is _< 2A.

Proof This follows from the definition of . El
Fact 3.3. The value of every nonsaturating push is > A.
Fact 3.4. For every v E V {s, }, e(v) < 2A at the start of each phase, e(v) < A at the

end of each phase, and e(v) < 3A always.
Proof Consider any v 6 V {s, t}. After initialization, e(v) <_ 2A clearly holds. At

the termination of each phase, e(v) < A, and hence e(v) < 2A at the start of the next phase.
Facts 3.1 and 3.2 together imply that e(v) < 3A always. E]

THEOREM 3.5 [AO89]. The excess scaling algorithm is partially correct.

Proof The following claim shows that the termination condition for the generic algorithm
is satisfied; the correctness then follows from Theorem 2.4.

Claim. When the last phase (with A 1) terminates, there are no active vertices.
To see this, use induction on the number of steps executed to show that the preflow f, and

hence also the flow excess e, has integer values throughout. Therefore, when the last phase
terminates, e(v) 0 for all v V {s, t} (Fact 3.4). El

The next two results are not used later; however, they are of interest since the first one
shows that the number of push steps can be bounded independently of U, while the second
one uses this to give a new bound on the running time.

LEMMA 3.6. The algorithm executes O(n2 min{m, log U}) nonsaturating pushes.
Proof. Ahuja and Orlin [AO89] gave an O(n2 log U) bound on the number of nonsatu-

rating pushes for their algorithm. Since the algorithmm here is a variant of the one in [AO89],
a variant of their analysis applies here and gives the same O (n2 log U) bound. We show the
bound of O(nZm) using a potential argument. First, for each v V, let

0, ife(v) O,
(v)-- 1, if0<e(v) <2A,

2, ife(v) > 2A.

Intuitively, (v) is the number of times that v can be selected before e(v) drops to zero (cf.
the definition of ). Now take

(v) .(v).
vV-{s,t}
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A nonsaturating push over an edge (v, w) always lowers q(v) by and never increases 4(w)
by more than (Fact 3.2). Since d(v) d(w) + 1, it follows that every nonsaturating push
decreases by at least 1. By Lemma 2.1, a saturating push increases by at most 2n,
and a relabeling clearly increases by at most 2. Furthermore, only saturating pushes and
relabelings can increase ; in particular, note that going from one phase to the next leaves
unchanged. 0 initially and > 0 always, so the total decrease in (due to nonsaturating
pushes) is bounded by the total increase in (due to saturating pushes and relabelings). Since
there are O(nm) saturating pushes (Lemma 2.2) and O(n2) relabelings (Lemma 2.1), the
number of nonsaturating pushes is O(n nm + n2) O(nZm). [

THEOREM 3.7. The excess scaling algorithm runs in time O(nm + n logU+
n2 min{m, log U}).

Proof. The initialization can be done in time O(m). Each relabel or push step takes time
O(1). When the select procedure is implemented using appropriate data structures [AO89],
[GTT90], it contributes an overall running time proportional to the number of pushes plus
O(n) per phase. The number of phases is /log U + 1. The theorem now follows from
Lemmas 2.1-2.3 and 3.6.

The next fact is very useful and has a straightforward proof. In the context ofthe minimum-
cost flow problem, analogous results are crucial for designing and analyzing efficient strongly
polynomial algorithms (cf. Lemma 4 of [F86] and Lemma 6 of [088]). The proof technique
used here resembles that of Lemma 6 in [088].

Fact 3.8. For every fixed A-phase and every (v, w) 6 E, the increase of f (v, w) during
the phase and all subsequent phases is at most 20n2 A.

Proof. Focus first on the A-phase and consider the potential

Z e(u) .d(u).
uEV-{s,t}

Whenever f(v, w) increases by c (due to a push over (v, w) with value c), decreases by
at least c. The total increase of f(v, w) during the phase is therefore bounded by the total
decrease of . > 0 always, and at the start of the phase _< 4nZA (by Lemma 2.1 and
Fact 3.4). No push operation increases , and a relabel operation increases by at most
3A (by Fact 3.4). Consequently, the total increase of is at most 6nZA (by Lemma 2.1). It
follows that the total decrease of is at most 10n2 A. Therefore, the total increase of f (v, w)
during the phase is at most 10n2 A.

The result now follows by summing over the remaining phases and using the fact that A
decreases by a factor of 2 between consecutive phases. 1

We call (v, w) aforward huge edge if rescap(v, w) > 20n2 A. By Fact 3.8, a forward huge
edge will never again be saturated. An undirected edge {v, w} is called huge if ucap(v, w) >
40nzA. If {v, w} is huge, clearly one of the directed edges (v, w) or (w, v), say, (v, w), is
a forward huge edge. If the reverse edge (w, v) is not also a forward huge edge, we call it a
reverse huge edge. Notice that an (undirected) huge edge continues to be huge until the end
of the execution. We denote the total number of saturating pushes over (reverse) huge edges
by huge sat pushes.

4. The strongly polynomial algorithm. The excess scaling algorithm has two bottle-
necks that make it inefficient in comparison with previously known fast strongly polynomial
algorithms. The first bottleneck is the large amount of time spent in executing nonsaturating
pushes. The standard way of avoiding this bottleneck is to store for each vertex v the current

edge ce(v) together with rescap(ce(v)) in a suitable data structure that supports the operation
of sending flow over a path of stored current edges. Such data structures make it possible
to send flow over a path of current edges in a running time that is substantially less than
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make heap:
is empty(h):
insert(i, h):
find max(h):
delete max(h):
delete(i, h
increase key(c, i, h):

proportional to 1. The most efficient data structure known for this purpose is the dynamic trees

data structure of Sleator and Tarjan [ST83].
From the point of view of achieving a running time of O (nm), this data structure has one

drawback. When used in the straightforward way, it contributes a running time of O(log n) per
saturating push, i.e., of O (nm log n) overall, since the number of saturating pushes is O (nm).
In the context of the generic algorithm of Goldberg and Tarjan, a more efficient way of using
the data structure is to insert an edge only if at least one nonsaturating push will be executed
over the edge. In other words, the current edge of a vertex v is inserted into the data structure
only when a push is to be applied to v while rescap(ce(v)) > Y(v), i.e., if the push operation
will not saturate v’s current edge.

We do not know whether this simple heuristic alone decreases the number of dynamic
trees operations sufficiently. However, we obtain a remarkable decrease by combining it with
another heuristic:

At the start of the execution, randomly permute
the adjacency list of each vertex.

The effectiveness of this heuristic comes from its interaction with scaling. As the execution
progresses and the parameter A decreases, many edges eventually become huge. Roughly
speaking, in a situation where there are many forward huge edges, the sum over all vertices
v of the number of times v changes its current edge is significantly less than nm, unless the
adjacency lists are maliciously ordered. A quantitative analysis of the efficiency of randomly
permuting the adjacency lists needs the notion of PTR events, and we present such an analysis
in 6 after developing the necessary machinery.

The second bottleneck of the excess scaling algorithm is that there are [_log UJ + phases,
each of which incurs a running time overhead of O (n) for initializing data structures. This
bottleneck is easy to avoid. Rather than using the standard scaling method of decreasing the
parameter A by a factor of 2 between phases, we use "tight scaling" and decrease A as much
as possible between phases, i.e., at the end of each phase A is set to the minimum of A/2 and
max{e(v) v E V-{s, t}}. Weuseaheapdatastructureto store all the vertices v V-{s, t},
with the key e(v) used to maintain the heap order. Tight scaling with a running time overhead
of O (log n) per phase is easy to implement in this way.

A heap is a data structure that maintains a set of items, each with a real-valued key, under
the following operations [FT87]:

Return a new empty heap.
If the heap h has no items, then return true; otherwise return false.
Insert a new item with predefined key into the heap h.
Return an item of maximum key in the heap h.
Delete an item of maximum key from the heap h and return it.
Delete the item from the heap h.
Increase the key of the item in the heap h by adting the nonnegative
real number c.

The two last operations assume that the position of in h is known. The Fibonacci heaps data
structure [FT87] supports a sequence of k delete or delete max operations and other heap
operations, starting with no heaps, in time O (1 + k log 1).

The actual implementation of the strongly polynomial algorithm uses two heaps, rather
than one, in order to execute the select step efficiently. The d_heap contains all vertices
v V {s, t} with e(v) > A. The heap order is maintained according to the key -d(v).
The d_heap is needed for efficiently selecting a vertex v with minimum d(v) among those
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with e(v) > A. The e_heap is a Fibonacci heap containing all vertices v V {s, t} with
e(v) < A. The heap order is maintained according to the key e(v). The e_heap is needed for
efficient updating of A. A Fibonacci heap is used because only O (1) amortized time can be
allowed per increase key operation.

The dynamic trees data structure of Sleator and Tarjan [ST83], [ST85], [T83] maintains
a set of vertex-disjoint rooted trees in which each tree edge has an associated real value and
is considered to be directed toward the root, i.e., from child to parent. We shall need the
following dynamic trees operations:

find root(v)"
find value(v)"

find min(v)"

add value(v, c)"

link(v, w, c)"

cut(v)"

Find and return the root of the tree containing the vertex v.
Find and return the value of the edge from the vertex v to its parent. This

operation assumes that v is not a tree root.
Return the nonroot ancestor w of v with minimum find value(w). In the
case of ties, the ancestor furthest from v is returned. This operation assumes
that v is not a tree root.
Add the real number c to the value of every edge on the path from the vertex
v to find root(v).
Combine the trees containing the vertices v and w by making w the parent
of v and giving the value c to the new edge from v to w. This operation
assumes that v and w are in different trees and that v is a tree root.
Break the tree containing the vertex v into two trees by deleting the edge
from v to its parent. This operation assumes that v is not a tree root.

A sequence of k dynamic trees operations, starting with a collection of n single-vertex trees,
can be executed in O (k log n) time.

We use the dynamic trees data structure to maintain a spanning forest F ofG that contains a
subset of the current edges, where the value associated with an edge in F is its residual capacity.
The algorithm represents the preflow f in one of two different ways: For (v, w) 6 E, if
(v, w) ’ F and (w, v) ’ F, then f(v, w) is stored explicitly (using an array f E -+

Otherwise, if (v, w) 6 F, then f(v, w) is given implicitly by cap(v, w) rescap(v, w) and
f(w, v) is given by -f(v, w). Whenever a tree edge (v, w) is cut, we must find its associated
value (i.e., rescap(v, w)) and then update the current values of f(v, w) and f(w, v). Also,
when the algorithm terminates, f(v, w) and f(w, v) must be computed for all (v, w) 6 F.
The procedures Link and Cut given below execute a link and a cut and incorporate these
conventions for representing f.
procedure Link(v :vertex);

(. Insert the edge ce(v) into F .)
Let w head(ce(v));
link(v, w, rescap(v, w));

procedure Cut(v :vertex);
(. Cut the tree edge ce(v) F and restore f values .)

Let w head(ce(v));
f(v, w) := cap(v, w) find value(v); f (w, v) := -f(v, w);
cut(v).

The heart of the algorithm is the procedure macropush. The algorithm repeatedly selects
a vertex v 6 V {s, t} with e(v) > A that has minimum label d(v) among the vertices with
flow excess > A, after which the macropush procedure is applied to v.

If v is a nonroot vertex in F, i.e., v =/= find root(v), then macropush uses the dynamic
trees data structure to send flow from v, over a path of current edges, tofind root(v). If one or
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more edges become saturated, then all saturated edges in F are deleted using cut operations.
The algorithm may execute more than one nonsaturating push while sending flow over a path
in F.

Now suppose that v is a root in F. Then macropush executes zero or more saturating
pushes over edges emanating from v, without inserting these edges into the dynamic trees
data structure. After this, provided that the remaining flow excess of v is at least A/2 and
that there is an eligible edge emanating from v, macropush executes a sequence consisting of
a Link(v) operation and a nonsaturating push over ce(v). The reason for executing a Link(v)
only if e(v) > A/2 is to ensure that only edges with sufficiently large capacities relative to A
are ever inserted into the dynamic trees data structure (cf. Fact 5.2).

In the following outline of the algorithm, the operations on heaps are not mentioned
explicitly. The procedure Y(v) is repeated from the previous section, and the procedures
relabel and select are more elaborate versions of identically named procedures in previous
sections.

procedure (v "vertex)" real;
return (if e(v) <_ 2A then e(v) else A);

procedure relabel(v "vertex);
for all u 6 V with ce(u) (u, v) do

if (u, v) 6 F then Cut(u);
d(v) := d(v) + 1;

procedure select: vertex;

(, Return an active vertex v with e(v) > A and minimum d(v) among the vertices having
flow excess > A, or decrease A and then select v as before, or return with A 0 ,)
if’v V- {s, t} e(v) < A then

A min{A/2, max{e(v) v , V {s, t}}};
if A > 0 then

let v be any active vertex with e(v) >_ A and
d(v) min{d(u) u 6 V {s, t} and e(u) >_ A}

else
let v t; (, dummy value ,)

return (v)"

procedure macropush(v "vertex)"
(, Send fl0w from v until v is relabeled or until e(v) decreases to < A/2 due to saturating
pushes out of v or until flow is sent from v over a path in F ,)
if v --find root(v) then

begin
while ce(v) :/: nil and rescap(ce(v)) < Y(v) do

push(ce(v), rescap(ce(v)));
if ce(v) nil and Y(v) > 0 then

begin relabel(v); return; end
else

(, a saturating push ,)

if Y(v) < A/2 then return
else

Link(v); (, insert ce(v) with rescap(ce(v)) > Y(v) > A/2 ,)
end;
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(, Send as much flow as possible from v tofind root(v), and then cut the
tree edges in F that get saturated ,)
c "= rain{find valuend min(v)), Y(v)};
change value(v, -c);
e(v) e(v) c; end root(v)) := e(find root(v)) + c;
while v : find root(v) and find value(find min(v)) 0 do Cut(find min(v));

The strongly polynomial algorithm:
generic initialize;
initialize the d_heap, the e_heap and the dynamic trees data structure;
for each v 6 V, randomly permute the adjacency list of v;
A x;

loop
v select;
if A 0 then stop; (, f is a maximum flow ,)
macropush(v

forever.

THEOREM 4.1. The strongly polynomial algorithm is partially correct.

5. Preliminaries for the analysis. After presenting some elementary facts about the
strongly polynomial algorithm, we give a lemma that identifies the critical component of its
running time.

The algorithm is easily seen to satisfy Facts 3.1, 3.2, 3.4, and 3.8.
Fact 5.1. Between consecutive phases, A decreases by a factor of 2 or more.
Fact 5.2. When a link operation is executed on an edge (v, w), then rescap(v, w) >_ A/2.
Fact 5.3. For all v 6 V, any increase of e(v) while v find root(v) is caused by saturating

pushes into v.

Proof Any flow sent into v by a nonsaturating push is sent further all the way to

find root(v)" hence a nonsaturating push causes e(v) to increase only if
v -find root(v).

Fact 5.4. For all v 6 V, if an execution of macropush(v) starting with v find root(v)
does not execute any cut, then either e(v) 0 or e(v) > A when the procedure terminates.

Proof Clearly the total amount of flow sent from v by the procedure is c Y(v). The
claim now follows from the definition of (v). [3

By a select step we mean one iteration of the main loop (loop... forever) of the algorithm.
A vertex v is said to be processed by a select step if the call of the select procedure in that
iteration returns v. Let selects denote the total number ofselect steps over the whole execution,
i.e., the number of iterations of the main loop of the algorithm.

LEMMA 5.5. The running time ofthe strongly polynomial algorithm is O (nm + selects
|ogn).

Proof The total time for operations on the d_heap is O(selects. log n), because there are
O(selects) operations on the d_heap. Next, consider operations on the e_heap and observe
that we need not insert the vertex processed by a select step into the e_heap (if it belongs there)
until the end of the select step. A saturating push over an edge (v, w) therefore causes one
increase key operation, and if e(w) becomes > A, then w must be deleted from the e_heap and
inserted into the d_heap. The number of e_heap delete operations at most equals the number
of d_heap insert operations, which is O (selects). The number of increase key operations is
bounded by selects plus the number of saturating pushes, which is O(nm). The total time
needed for operations on the e_heap is therefore O(nm + selects. log n).



214 JOSEPH CHERIYAN AND TORBEN HAGERUP

Consider the remaining running time, excluding the time for heap operations. The ini-
tialization can be done in O(m) time; in particular, note that random permutations can be
computed in linear time (see, e.g., [$77]). Each iteration of the main loop runs in time
O(log n), plus O(log n) times the number of cut operations executed, plus the time for exe-
cuting saturating pushes over edges not in the dynamic trees data structure, plus the time for
maintaining current edges. The total number of cut operations executed is < selects, because
there is a distinct link operation corresponding to each cut, and the number of link operations
is clearly _< selects, since each iteration of the main loop executes at most one link. The
overall time for maintaining the current edges is O (nm), and the overall time for saturating
pushes that are not associated with cut operations is O (nm). Thus, the total running time is
0 (nm + selects. log n). [5]

LEMMA 5.6. selects 0 (nm), and the worst-case running time ofthe strongly polyno-
mial algorithm is 0 (nm log n).

Proof It is easily seen that the total number of cut and link operations is O(nm). It
follows that the number of iterations of the main loop that execute either a cut or a link or a
relabel or a saturating push is O(nm + n2) O(nm).

To handle the remaining select steps, call each such step a neat select step and note that
each neat select step moves flow from a nonroot in F to a root. Define as the sum over all
nonroot vertices v of q(v), where b is the function of the proof of Lemma 3.6, i.e.,

0, ire(v) O,
qS(v)-- 1, if0<e(v) <_2A,

2, ife(v) > 2A.

By the previous observation, each neat select step decreases by at least 1. On the other hand,
only saturating pushes and link operations can increase , and each such operation increases

by at most 2. Since 0 initially, the number of neat select steps is O(nm), and the same
bound applies to the total number of select steps.

The bound on the running time now follows from the previous lemma.
The crucial part of the analysis is to show that for sufficiently dense graphs, randomly

permuting the adjacency lists causes tselects to become significantly less than ()(nm) with
high probability. In the next section we analyze the efficiency of randomly permuting the
adjacency lists, and based on this in 7 we give a simple analysis of selects.

6. PTR events. A premature target relabeling event (PTR event) is defined to be the
relabeling of the head w of a current edge (v, w). In other words, a PTR event may be
identified with a triple (v, w, k), where 0 _< k _< 2n 2 and (v, w) E E is the current edge
of v E V when the vertex w, which currently has d(w) k, gets relabeled. By definition,
every cut executed by the relabel procedure corresponds to a PTR event; however, there may
be other PTR events besides these, since the dynamic trees data structure may not contain all
current edges. Denote by ptr the total number of PTR events.

The significance of PTR events is that a vertex changes its current edge if and only if
either a saturating push occurs over the edge or a PTR event occurs on the edge. Since no
forward huge edge is ever saturated (see 3), a vertex whose current edge is a forward huge
edge changes its current edge exactly when a PTR event occurs on the edge.

LEMMA 6.1. Over the whole execution, huge sat pushes <_ m / ptr.
Proof. Between two consecutive saturating pushes over a reverse huge edge (w, v), there

must be a push over the forward huge edge (v, w). When the push over (v, w) is executed,
then (v, w) 6 F. Consequently, between this step and the next saturating push over (w, v), a
cut on (v, w) must be executed. Hence huge sat pushes is at most m plus the number of cuts
on forward huge edges, which is _< m / ptr.



A RANDOMIZED MAXIMUM-FLOW ALGORITHM 215

It is easy to bound ptr by O(nm). However, for sufficiently dense graphs a much tighter
bound can be obtained by making use of the fact that each vertex randomly and. independently
permutes its adjacency list at the start of the execution. Before delving into the analysis, we
introduce some notation whose usefulness will become evident below.

For every finite set A, let Perm(A) be the set of all permutations of A, i.e., of all bijec-
tions from {1 IAI} to A. Given finite sets A and B and permutations # E Perm(A) and
cr E Perm(B), let ,k(#, or), called the coascent of # and or, be the length of a longest (not
necessarily contiguous) common subsequence of the sequences #(1) #(IA and
or(l) cr(IBI). Given permutations # #I of subsets of a finite set A, let
A(# #/) maxcPerma) -Ji= L(#i, or)" note that this quantity does not depend on
A. We call A (# #/) the external coascent of # #.

Example. This example is meant to familiarize the reader with the definitions of ,k and
A. For the duration of the example, we identify a permutation # of a set B with the string
#(1)... #(IBI) and use as our universe the set A {a, b, c, d, e, f} of six symbols.

Let # bead and cr fbadec. Then )(#, or) 3, since the sequence bad occurs in
both # and o-, whereas the only longer subsequence bead occurring in # does not occur in cr.

Now take # fade, #2 bead and #3 dec. Then A(#, #2, #3) 10, since with
cr fbadec we have }-i3= ,k(#i, or) 10, whereas it is not difficult to see that there is no

permutation or’ of A with= )(#i, or’) 11.
Identify V with the set {1 n} and let # 6 Perm(F(v)), for all v 6 V. We shall say

that the strongly polynomial algorithm is executed with the adjacency lists ordered according to

#1 #,, if the following holds after the initialization" For all u 6 V and all v, w 6 F (u), the
edge (u, v) precedes (u, w) in u’s adjacency list if and only if#2 (v) < #- (w). Furthermore,
for O"0 CrZn_2 E Perm(V), let us say that an execution of the algorithm relabels according
to or0 cr2,,-2 if the following holds for all k with 0 < k < 2n 2 and all v, w V" If d(v)
is set to k + at some point of the execution and d(w) is set to k / at some later point, then

cr- (v) < cr- (w). Except for the fact that some vertices may not be relabeled k + times,
ok simply orders the vertices in V by the time of their (k / 1)st relabeling.

Consider now an execution of the algorithm with the adjacency lists ordered accord-
ing to # #,, that relabels according to or0 cr2,,_2. Fix v 6 V and k with 0 _<
k _< 2n 2 and suppose that for some vertices w w 6 V, the execution incurs PTR
events (v, wl,k) (v, wl, k), in that order. Then, clearly #;-(w) < < #- (w) and

cr[ (w) < < cr (wl), i.e., the sequences #(1) #(IF(v)l) and crk(l) a(n)
have a (not necessarily contiguous) common subsequence of length l, namely w wl. It
follows that for all v 6 V and all k with 0 < k _< 2n 2, the total number of PTR events of
the form (v, w, k), where w E V, is bounded by )(#, cry). Summing over all v 6 V for fixed
k with 0 < k < 2n 2, we see that the total number of PTR events of the form (v, w, k),
where v, w 6 V, is bounded by

)(#, ) _< A(# #,,).

A final summation over all values of k yields the next lemma.
LEMMA 6.2. For all v V, let # Perm(F(v)). If the strongly polynomial al-

gorithm is executed with the adjacency lists ordered according to # #,,, then ptr
< 2n A(# #,,).

LEMMA 6.3. Let A be a finite set with [A[ N, let A AN be subsets of A and
take M Y’i’= [Ai[. Suppose that #i is drawn randomly from the uniform distribution
over Perm(Ai), .for N, and that # #U are independent. Then for all r >

v/NM / N log N, A(# #U) O(r) with probability at least 2-r.
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Proof Recall that A(# /ZN) maxcr6Perm(A)1/(O’), where 7t(r) Y-i X(#i, r).
We will show the probability that 7t (or) is large to be very small for each fixed cr E Perm(A).
Multiplying that probability by the number of choices for r, i.e., by N !, we obtain an upper
bound on the probability that A(/zl #N) is large.

Hence, let cr E Perm(A) be arbitrary but fixed. For N, let Ai k(pi, or) and
take S p(cr) ’i=l Ai, the quantity of interest. For N, denote IAil by ai.
Assume N > 2.

For arbitrary integers a and k with 0 < k _< a < N, the number of permutations/z of

an arbitrary subset of A of cardinality a with X(#, r) > k is at most ()2(a k)!. To see
this, note that if,k (#, or) > k, then the elements of a (not necessarily contiguous) subsequence
of #(1) #(a) of length k appear in the same order in the sequence r(1) r(N).
The elements of the subsequence can be chosen in () ways, and the positions in which they
appear in #(1) #(a) can also be chosen in () ways, while the remainder of the sequence
/z(1) #(a) can be chosen in (a k)! ways. It follows that for N and for all
integers k with <_ k <_ ai,

Pr(Ai > k) <
(i)2(ai k)’

< ai < (e2ai )
:

ai! (k!)2

It can be seen that Ai is unlikely to exceed by very much. By applying the Cauchy-
Schwarz inequality ]u vl _< lul Ivl to the vectors u (1 1) and v (-a-q- -),
we obtain

Hence S ,.U=l Ai is unlikely to exceedNby very much. We now establish a precise
bound.

First observe that for arbitrary x 6 IR,

Pr(S > x) e-Xe Pr(es > eX) _< e-"E(eS).

Second, since #1 PN and hence also eA’ eAN are independent,

E (es) E e a E eA’ H E(eA’).
i=1 i=1

We next bound the quantities E (eAg ). Let 6 N and let bi > 0 be an arbitrary integer.
Then

oo bi oo

E(eA’)--Z ePr(Ai-k) < ekPr(Ai-k)-t- ekPr(Ai >k)
k=0 k=0 k--bi -t-

hi

-< eb’ Z Pr(Ai k) +
k=O

ek e2ai ebi e3ai
V- -< V-

k--hi q-

e3ai for k > bi q- i.e. take bi ]v/2e3aiJ. ThenChoose bi to make <

E(eA’) < e‘ -t- Z 2- eb; + 2-’’ -< 2e
k--hi q-
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Putting together everything yields

N N

Pr(S > x) <_ e--XE(es) e H E(eA’) -< e- H(2e)
i=1 i=1

e 2Ne yU._,_, ,/Z; < 2Ne

Recalling that rr can be chosen in N! ways, we find

Pr(A(# #N) >_ x) < N! 2N ev@M-x

< e2N log N+v/e3v/-M-x

Given any r > v/NM + N log N, now choose

x 2N log N + ,/e3/NM + r O(r)

and observe that

Pr(A(#I #N) >_ X) _< 2-r. V1

LEMMA 6.4. For every ot > 1, ptr O(ot (n3/2ml/2 q- n2 logn)) with probability at

least 2-(v/h-N+n logn).

Proof. Combine Lemmas 6.2 and 6.3 lq

7. A simple analysis ofoperations on nonhuge edges and of the overall running time.
In order to complete the analysis of the running time, i.e., to bound tIselects, we have to show
good bounds for the total number of operations on nonhuge edges. In this section we derive
somewhat loose bounds by using a simple argument, and in the next section we give better
bounds by using a more refined argument.

Let/ be a real number with 2 </3 n (l) (we fix 2 + to get the main result).
Define the status of an undirected edge {v, w} as follows"

{v, w} issaidtobesmallifucap(v, w) < A/fl, mediumif A/fl < ucap(v, w) <_ 40nZA,
and (as defined in 3) huge ifucap(v, w) > 40n2 A. Note that the status of an edge may change
during the execution, but at most twice.

A push is called small, medium, or huge, respectively, if it is executed over a small edge,
a medium edge, or a huge edge. We denote the number of medium saturating pushes by
med sat pushes.

There is an obvious bound of O(nm) of med sat pushes. However, for sufficiently
dense graphs med sat pushes can be shown to be significantly less than proportional to nm.
Intuitively, the reason for the relatively small number of saturating pushes over medium edges
is that an edge is medium for only O (log n) phases, i.e., medium edges are "short-lived."

In order to bound the number of medium saturating pushes, we partition these into three
classes, (a), (b), and (c). To define the partition, consider a medium saturating push over an
edge (v, w). If either d(v) or d(w) has the same value at the time of the push as at a "phase
boundary," i.e., at the beginning or at the end of a phase, then the push is a class (a) push.
Otherwise, if the number of medium (undirected) edges incident with w at the time of the push
is < deg(w)//, it is a class (b) push. If neither of these cases applies, the push is a class (c)
push. Note that if a push of class (b) or (c) is executed over an edge (v, w) during a particular
period of eligibility of (v, w), then that period of eligibility of (v, w) lies entirely within one
phase.
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LEMMA 7.1. Over the whole execution, the number of class (a) and class (b) medium
saturating pushes is 0 (nm/I + m log n).

Proof. The number of class (.a) pushes is O (m log n) because each edge is medium for
only O (log n) phases, and between two successive saturating pushes over an edge both its tail
vertex and its head vertex have to be relabeled.

The number of class (b) pushes is O(nm/i). To see this, note that between two con-
secutive relabelings of a vertex w there are _< deg(w)// medium saturating pushes of class
(b) into w. Summing over all w E V and all relabelings of w gives O(_,,cv(2n 1)
deg(w)//4) O(nm/). [

The medium saturating pushes of class (c) are more difficult to handle, and we need a few
more results before we can tally them.

Define the throughput of a saturating push over an edge (v, w) while d(v) k to be equal
to rescap(v, w) when d(v) is set to k. In other words, the throughput is the total amount of
flow sent over (v, w) during a maximal period of eligibility of (v, w). Note that the value of
the saturating push may be less than its throughput.

LEMMA 7.2. Over the whole execution, the number of nonsmall saturating pushes with
throughput < A/1 is <_ m / flptr.

Proof Consider a nonsmall saturating push over an edge (v, w) while d(v) k. Since
ucap(v, w) > A//, it follows that when d(v) is set to k, then rescap(w, v) > 0; also,
obviously, rescap(v, w) > 0. Assume that either (v, w) or (w, v) has been used as a current
edge before this use of (v, w) as a current edge. It can then be seen that the previous use of
(v, w) or (w, v) as a current edge was terminated by a PTR event. The lemma follows.

The medium saturating pushes of class (c) that have throughput < A//4 are easily taken
care of by the previous lemma, so we now turn our attention to the remaining class (c) pushes.
Recall that all the pushes contributing to the throughput of a class (c) push are executed in the
same phase.

Consider a vertex w that is the head vertex of a medium saturating push of class (c). By,
the definition of class (c), a fraction of more than 1// of the undirected edges incident with
w are medium. The next lemma enables us to focus on such vertices and to give a sufficiently
good bound on the number of class (c) saturating pushes with throughput > A// into these
vertices. The lemma is a generalization of Lemma 6 of [AO89], whose proof, with a minor
modification, shows that the number of pushes with value > A in any phase is O (n2).

LEMMA 7.3. For every subset V’ of V and in everyfixed A-phase, the number ofpushes
with value > A into the vertices of V’ (i.e., pushes over edges of the form (v, w), where
w V’) is O(IV’I. n / D), where D denotes the number ofrelabel operations executed in
the phase.

Since our main objective at this point is to provide intuition, we prove the lemma only
for the special case when all the edge capacities are integers; the proof trivially extends to the
case of rational edge capacities. A direct but less intuitive proof of the general case of the
lemma is given in the next section (Lemma 8.3).

Suppose that all the edge capacities are integers, and also assume that the algorithm uses
integer division, i.e., the occurrence of A/2 in the procedure select is replaced by A/2/. (Note
that the test (7(v) < A/2 in the procedure macropush can be carried out without division.)
Induction on the number of steps executed shows the preflow f, and hence also the flow excess
e, to have integer values throughout the execution, and it can be seen that this modification does
not affect our analysis of the algorithm. Furthermore, each unit of flow remains an indivisible
entity throughout the execution. Call each unit of flow a flow atom. Related notions of flow
atoms were previously used to analyze maximum-flow algorithms by, for example, Shiloach
and Vishkin [SV82], Goldberg [G85], Cheriyan and Maheshwari [CM89], and Tun:el [T90].
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Proof. (Lemma 7.3, integer edge capacities). The lemma is a straightforward conse-
quence of a property of the so-called moving sequence of a flow atom. Consider a flow atom
q and define d(q) to be d(v), where v is the vertex at which q is currently located. Focus on
the movement of q during the phase under consideration and note that each change of d(q)
is caused by either a push operation or a relabel operation applied to the vertex at which q is
currently located.

The moving sequence of q, ms(q), is a string over the alphabet {(u, i) u 6 V’ and
0 _< < 2n 1} t2 {’} defined as follows: At the start of the phase, ms(q) is empty. If q
is pushed into a vertex u V’ (i.e., q is sent over an edge whose head vertex u is in V’),
(u, d(u)) is appended to ms(q), and if the vertex currently holding q undergoes a relabeling,
then an ]" is appended to ms(q). Let Ires(q)It denote the number of ? symbols in a moving
sequence ms(q), and let ]ms(q)l+ denote the number of remaining symbols in ms(q), i.e., the
number of symbols of the form (u, i). Finally let n’

The main property of moving sequences is

]ms(q)l+ <_ n’ / Ims(q)l,.

To show this relation, assume that ms(q) contains at least one non-’l" symbol, and let (u, i)
be the first of these. Consider the prefix of ms(q) up to and including the last symbol in
ms(q) with a first component of u and denote this prefix by ms’(q). It is easy to show that
Ims’(q)[, < + Ims’(q)l,. To see this, note that each ]" symbol corresponds to an increase of
d(q) by one, while each non-? symbol corresponds to a decrease of d(q) by one. Furthermore,
by comparing the first non-’l" symbol (u, i) in ms’ (q) with the symbol (u, j at the end ofms’ (q)
and noting that d(u) is nondecreasing throughout the execution, we may conclude that j > i.

Consequently, the number of non-j’ symbols in ms’(q) is at most one more than the number
of ]" symbols.

Now delete ms’(q) from ms(q). If the remaining string contains any non-]" symbols, let
(v, l) be the first of these and consider the prefix ms"(q) consisting of all symbols up to and
including the last symbol with a first component of v. Using the same argument, it can be
seen that Ims"(q)l+ <_ + Ims"(q)l.

Repeating this argument a total of at most n’ times shows that

Ims(q)l+ < n’ + Ims(q)].

Let Q denote the set of all flow atoms that are located at active vertices at the start of the
phase (i.e., flow atoms located at s or at the start of the phase are not in Q). Fact 3.4 clearly
implies that QI < 2n A. To count the number of pushes with value >_ A into the vertices of
V’, notice that each of these operations pushes >_ A flow atoms into some vertex u 6 V’ and
causes a symbol with a first component of u to be appended to the moving sequence of each
of these flow atoms. Hence, the number of such pushes is

< (l/A) Z Ims(q)l,
qEQ

< (l/A) -(n’ / Ims(q)l,)
qEQ

< (1/A)((2n A. n’) + Z Ims(q)l,)
qQ

< 2nn’ + (1/A)(3A D) 2nn’ + 3D.

The last inequality follows because there are D relabel operations, and the total number of
symbols appended by a single relabeling is at most 3A (Fact 3.4).
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We actually use a more technical but straightforward generalization ofthe previous lemma.
COROLLARY 7.4. For every subset V’ of V and in every fixed A-phase, the number of

class (c) medium saturating pushes with throughput > A/t over edges of the form (v, w),
where w E V’, is O(I(IV’I n + D)), where D denotes the number of relabel operations
executed in the phase.

We need a technical definition. A A-phase is said to hit a vertex v if the number ofmedium
(undirected) edges incident with v in the phase is > deg(v)//. Notice that each phase hits the
head vertex of every class (c) medium saturating push executed in the phase. The following
interpretation may be useful below: associate each undirected edge {v, w} with the interval
[ucap(v, w)/(40n2), [3. ucap(v, to)] on the x axis, and view "the phase" as a vertical line
sweeping the x axis from cxz to 0; the current value of A gives the current location of the
sweep line, and an edge is medium exactly if its associated interval is currently intersected by
the sweep line.

Fact 7.5. For all v E V, the number of distinct phases that hit v is O (/ log n). Therefore
the sum over all phases of the number of vertices hit by the phase is O (n/3 log n).

Proof Let the phases that hit v have parameters /1, /2 and for 1,2 let
Mi(v) denote the set of medium (undirected) edges incident with v in the Ai-phase. The
number of Ai- phases (i > 2) that hit v such that Ml(v) C Mi(v) =/= 91 is O(log n), because in
each such phase the parameter Ai is in the interval [A/(40n2), 40n2A].

If v is hit by yet another phase (besides the O(log n) phases enumerated above) with
parameter, say, Aj(j > 2), then Ml(V) Cl Mj(v) , and both [MI(V)[ and IMi(v)l are >
deg(v)//. Continuing the argument, it follows that v is hit by O(/ log n) phases. [3

LEMMA 7.6. Over the whole execution, the number ofclass (c) medium saturating pushes
is O(n2fl2 log n + ptr).

Proof. By Lemma 7.2, the number of medium saturating pushes with throughput < A//
is O(m + ptr).

Consider a fixed A-phase and focus on the class (c) medium saturating pushes with
throughput > A// in that phase. Let V’ denote the set of vertices hit by the phase, and
let D denote the number of relabel operations in the phase. By applying Corollary 7.4, we
can see that the number of class (c) medium saturating pushes with throughput >_ A// is

O(J(IV’I n 4- D)).
Finally, by summing over all phases and using Fact 7.5 and the fact that the total number

of relabelings is O(n2), we find that the total number of class (c) medium saturating pushes
with throughput >_ A//3 is O(n2fl2 logn). [3

We are now ready to bound selects and thereby complete the simple analysis of the
running time.

LEMMA 7.7. selects O(nm/[4 + nZfl2 log n 4- ptr).
Proof. Every cut operation is associated with either a PTR event or a nonsmall saturating

push, since no small edge is ever inserted into the dynamic trees data structure (Fact 5.2).
Hence the number of cut operations is bounded by timed sat pushes 4- huge sat pushes
4- ptr. The number of link operations clearly exceeds the number of cut operations by at
most n because the forest F never contains more than n edges, and the number of
relabel operations is O (n2). Therefore the number of select steps that execute either a cut or
a link or a relabel is O (n2 4- med sat pushes 4- tlhuge sat pushes 4- ptr).

The remaining select steps can be partitioned into two classes: those that execute one or
more saturating pushes, and those that do not execute any saturating push.

The number of select steps that execute a saturating push and do not execute any cut,
link, or relabel is O(nm/[:J + med sat pushes + huge sat pushes), because if a select step
executes only small saturating pushes, then it executes at least//2 saturating pushes, since
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the flow excess of the processed vertex decreases from > A to < A/2 and each small push
has value < A//.

Now consider the select steps that do not execute any cut, link, relabel, or saturating push,
and call each such step a neat select step. (The argument here is similar to that in the proof
of Lemma 5.6.) The vertex processed by a neat select step is a nonroot in F throughout that
step. Consider a fixed vertex v and focus on the part of the execution between two consecutive
nonneat select steps that process v, or after the last such select step. Suppose that v is processed
by one or more neat select steps in this part of the execution. When the first of these neat
select steps is executed, then A < e(v) < 3A; hence it follows by Fact 5.4 that e(v) decreases
to zero after at most two neat select steps that process v, and over the whole execution, this
gives a number of neat select steps that is at most twice the number of nonneat select steps.
Before yet another neat select step that processes v, e(v) has to increase from zero to _> A.
Further, by Fact 5.3, any increase of e(v) is caused by saturating pushes into v. Consider
these saturating pushes and their associated edges (u, v), where u 6 V. If each of these edges
(u, v) has ucap(u, v) < A//3 when v is processed by the neat select step, then clearly there
are _>/ saturating pushes into v, and over the whole execution this case gives O(nm/) neat
select steps. Otherwise, either there is at least one nonsmall saturating push into v or the status
of one of these edges changes (from small to medium or huge) between the earliest of these
saturating pushes and the neat select step that processes v. Over the whole execution, the
former case gives O (med satpushes / huge satpushes) neat select steps, and the latter case
gives O (m) neat select steps, because the total number of status changes of edges is < 2m.

Therefore, the total number of neat select steps is at most twice the total number ofnonneat
select steps, plus O(m + nm/i + med sat pushes + huge sat pushes). Hence

selects O(nm/ + n2 + med sat pushes + huge sat pushes + ptr)

O(nm/l + nzfl 2 log n + ptr).

For the second equation, we use the bound on med sat pushes given by Lemmas 7.1 and 7.6
and the bound on huge sat pushes given by Lemma 6.1. 3

LEMMA 7.8. For every ot > 1, the strongly polynomial maximum-flow algorithm runs in
time 0( (nm +n4/3m2/3 (log n)4/3 +n2 (log n)2)) with probability at least -2-(m+n log n).

Proof By taking/3 2 + (m/(n log n))1/3 and using the previous lemma and the bound
on ptr given in Lemma 6.4, we see that selects O(n4/3mZ/3(logn)l/3 -+- c (n3/Zm 1/2 -+-
n2 logn)) with probability at least 2-"(nv/h-+n lgn). The bound on the running time now
follows from Lemma 5.5. [3

For m f2 (n(log n)4) the running time is O(nm), with high probability.

8. A strengthened analysis of operations on medium edges and ofthe overall running
time. An examination of the analysis in the previous section shows that the bottleneck in
bounding selects is the contribution due to med sat pushes, since our bound for med sat

pushes is O(n4/3m/3(log n) 1/3 + ptr), whereas the bound for both huge satpushes and ptr
is O(n3/Zml/2 -+- n2 logn). In this section, a tighter analysis of the contribution of med sat

pushes to selects is developed.
Recall that the medium saturating pushes are partitioned into three classes, (a), (b), and (c),

and that the number ofpushes in these classes are O(m log n), O(nm/), and O(n2fl2 log n +
ptr), respectively, for any/ with 2 < / n1. The bottleneck term in the bound for
med sat pushes is due to the class (c) pushes.

In order to bound the contribution of the class (c) pushes to selects, we partition this
class into two subclasses. A push over an edge (v, w) is called terminal if at the time of the
push
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]{u u

where V’ denotes the set of vertices hit by the current A-phase, i.e., if at the time of the
push there are fewer than fi "hit vertices" with labels equal to d(w). Otherwise the push is
nonterminal.

LEMMA 8.1. Over the whole execution, the number of terminal pushes of class (c) is
O (nZ fi ).

Proof Fix v E V and k 6 2n and recall that if there are any class (c) pushes
out of v at all while d(v) k, then all pushes out of v while d(v) k occur in the same
phase, i.e., the set V’ does not change between the first and the last of these pushes. Since an
edge out of v can become eligible only during a relabeling of v, while at the time of a terminal
push out of v there are fewer than eligible edges of the form (v, w), where w V’, it is now
clear that the number of terminal class (c) pushes out of v while d(v) k is bounded by
Summing over all v 6 V and all k 6 {1 2n 1} yields a total of O (n2/) terminal class
(c) pushes.

The next lemma is the key instrument for bounding the contribution of the nonterminal
class (c) pushes to selects.

LEMMA 8.2. The sum over all A-phases ofthe ratio ofthe total value ofall nonterminal
pushes in the A-phase to A/2 is 0 (n2 log n).

To see the relevance of this lemma, notice that it directly gives an O(n2 log n) bound
on the number of nonterminal pushes with value > A/2. To prove Lemma 8.2, we need a
stronger version of Lemma 7.3. The following lemma may be used to bound the total value
of nonterminal pushes in any A-phase by taking V’ (in the lemma) to be the set of vertices hit
by the phase and taking

LEMMA 8.3. Let V be a number > 1. For every subset V’ of V and in everyfixed A-phase,
the total value ofpushes into vertices w such that when the push is executed

]{u u

is O(([V’] n/v + D)A), where D denotes the number of relabel operations executed in the
phase.

Proof. Let h ]V’] and V’ {v vh} and for all v 6 V, define the fooling height
of v as

d’(v) max
i >d(v it, >d(vl,)

I{k o 0 k < d(v) and I{J i.i k}l > V}l.

Intuitively, d’(v) counts the maximum number of "dense virtual distance levels" between v
and t, where a vertex v.i V’ is allowed to occupy any one virtual distance level numbered at
least d(v.i), and where a dense virtual distance level is one that contains at least :V vertices in
g I"

d’ has the following properties"
(1) ’v V "0 < d’(v) < h/y;
(2) Vv, w V d(v) > d(w) == d’(v) > d’(w)"
(3) Vv, w V (d(v) > d(w) and I{u V’ d(u) d(w)}[ > V) d’(v) > d’(w)"
(4) a relabeling of a vertex v 6 V increases d’(v) by at most and does not increase

d’(w) for any w e V\{v}.
Define the potential function

Z e(v) .d’(v).
vEV-{s,t}
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At the start of the A-phase, < 2n A. h/?’ (by property (1) and Fact 3.4), and > 0 always.
does not increase due to push operations (by property (2)), and a relabeling increases by

at most 3A (by property (4) and Fact 3.4). It follows that the total increase in during the
A-phase is at most 3A D. Consequently, the total decrease in during the A-phase is at

most 2nA h/),’ + 3A D. Finally note that each push satisfying the condition of the lemma
and of value c causes to decrease by at least c (by property (3)).

Proof (Lemma 8.2). Consider a fixed A-phase. Let V’ denote the set of vertices hit by
the phase, let D denote the number of relabelings executed in the phase, and take
Now apply Lemma 8.3, noting that every nonterminal push satisfies the condition of the
lemma. Hence, the ratio of the total value of all nonterminal pushes in the phase to A/2 is

o(Iv’l n// + D).
The lemma now follows by summing over all phases, using Fact 7.5 to bound the sum

over all phases of the number of vertices hit by the phase and noting that the total number of
relabel operations is O(n2).

The proof of the next lemma follows the same outline as that of Lemma 7.7.
LEMMA 8.4. selects- O(nm/[3 + nZfl + n2 log n + ptr).
Proof. First we give an improved bound on the number of select steps that execute either a

cut or a link or a relabel, by giving an improved bound on the number of cut operations. Notice
that the throughput of any saturating push associated with a cut operation is > A/2, because
whenever an edge (v, w) is inserted into F (the procedure macropush), then rescap(v, w) >

A/2 (by Fact 5.2). We claim that the number of medium saturating pushes with throughput
> A/2 is O(nm/fl + n2fl + n2 log n). To see this, focus on the nonterminal class (c) pushes
with throughput >_ A/2, since the total number of class (a), class (b), and terminal class (c)
pushes is O(nm/fl + m logn + nZfl), by Lemmas 7.1 and 8.1. By applying Lemma 8.2 it can
be seen that the number of nonterminal class (c) pushes with throughput > A/2 is O(n2 log n).
The claim follows. Consequently, the number of cut operations is O(nm/fl + nZfl -- n2 log n+
huge satpushes +ptr) O(nm/fl + nfl + n2 logn + ptr), and the number of select steps
that execute either a cut or a link or a relabel is also O(nm/fl + nZfl + n2 log n + ptr).

The remaining select steps are partitioned into two classes: those that execute one or more

saturating pushes, and those that do .not execute any saturating push. (The argument here is a
refined version of that used in the proof of Lemma 7.7.)

The number of select steps that execute a saturating push and do not execute any cut,

link, or relabel is O(nm/ + nZfl -+- n2 log n + huge sat pushes). To see this, first focus on
such a select step that executes a nonterminal class (c) push. Notice that all of the saturating
pushes executed by the select step are nonterminal and that the total value of these pushes is

>_ A/2. Now, by applying Lemma 8.2, we see that over the whole execution, this case gives
O (n2 log n) select steps. Over the whole execution, the number of select steps that execute
either a class (a), a class (b), or a terminal class (c) push is O(nm/fl + m log n + nzfl), and
the number of select steps under consideration that execute only small saturating pushes is

O(nm/fl), because any such step executes at least/3/2 saturating pushes, since the flow excess
of the processed vertex decreases from >_ A to < A/2 and since each small push has value
< /.

Now consider the select steps that do not execute any cut, link, relabel, or saturating push,
and call each such step a neat select step. As noted before, the vertex v processed by a neat

select step is a nonroot in F throughout that step. Consider a fixed vertex v and focus on the

part of the execution between two consecutive nonneat select steps that process v, or after the
last such select step. Suppose that v is processed by one or more neat select steps in this part
of the execution. When the first of these neat select steps is executed, then
Hence, it follows by Fact 5.4 that e(v) decreases to zero after at most two neat select steps that
.process v, and over the whole execution, this gives a number of neat select steps that is at most
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twice the number of nonneat select steps. Before yet another neat select step that processes
v, e(v) has to increase from zero to > A. Furthermore, by Fact 5.3, any increase of e(v) must
be caused by saturating pushes into v. Consider these saturating pushes and their associated
edges (u, v), where u 6 V. If each of these edges (u, v) has ucap(u, v) < A//3 when v is
processed by the neat select step, then clearly there are >/ saturating pushes into v, and over
the whole execution this case gives O(nm/i) neat select steps. Otherwise, either the status
of one of these edges changes (from small to medium or huge) between the earliest of these
saturating pushes and the neat select step that processes v, or there is at least one nonsmall
saturating push into v. Over the whole execution, the former case gives O(m) neat select
steps, because the total number of status changes of edges is < 2m. If there is an increase of
e(v) from zero to > A due to a nonsmall saturating push and zero or more small saturating
pushes, followed by a neat select step that processes v, then we have two mutually exclusive
cases. Either the increase of e(v) is due to one or more nonterminal class (c) pushes whose
values sum to > A/2 together with zero or more small saturating pushes, or the increase of
e(v) is due to one or more of the following together with zero or more small saturating pushes"
one or more nonterminal class (c) pushes whose values sum to < A/2 together with >_ //2
small saturating pushes, a class (a) push, a class (b) push, a terminal class (c) push, or a huge
saturating push. Over the whole execution, the first case gives O (n2 log n) neat select steps
(by Lemma 8.2), and the second case gives O(nm/fl + m logn + nZfl -+- huge sat pushes)
neat select steps. Therefore the total number of neat select steps is at most twice the total
number of nonneat select steps plus O(nm/i + nZfl + n2 log n + huge sat pushes).

Finally, the number of select steps, selects, is O (nm/[3 + nzfl -k- n2 log n + ptr), using
the bound on huge sat pushes given by Lemma 6.1. [3

THEOREM 8.5. For every ot > 1, a maximumflow can be computed in time O (ot (nm +
nZ(log n)2)) with probability at least 2-(nv/-n-+n lg n).

Proof By taking/ 2 + ,,/--/n and using the previous lemma and the bound on ptr
given in Lemma 6.4, we see that selects 0( (n3/Zml/2 + n2 logn)) with probability at
least 2-’/--+n logn). The bound on the running time follows from Lemma 5.5. [3

Notice that for m f2 (n(log n)2) the running time is O(nm), with high probability.
Remark. If, as in [CH89], a new random permutation #v of I(v) is computed at each

relabeling of v, then the failure probability of Theorem 8.5 can be reduced even further to
2-(n3/2m /2+n log n).

9. Conclusion. We have shown that by using randomization on nonsparse graphs (i.e.,
rn f2 (n(logn)2)) we can compute a maximum flow in O(nm) time with high probability.
The crucial new idea in our analysis is the notion of PTR events.

The preliminary version of this work [CH89] stimulated new research that has resulted in
further advances on computing maximum flows. The original analysis is slightly loose, giving
an O(nm -+- n3/Zml/Z(logn)3/2 + nZ(logn)2) running time and an O(n3/ernl/Z(logn) /2 -+-
n2 log n) bound on selects, both with high probability. Tarjan [T89] improved the analysis to
obtain a running time of O(nm + nZ(log n)2), with high probability. The improved analysis
presented in 8, which differs from the analysis of [T89], was discovered subsequently and
reported briefly in [CHM90].

Alon [A90] presented a simple way of derandomizing the strongly polynomial algorithm
without affecting the running time for sufficiently dense graphs (i.e., m f2 (n5/3 log n)): at
initialization, the adjacency lists of the network vertices are permuted according to "pseudo-
random permutations" (i.e., a set { n} of permutations of V with A( n) << n2)
that are generated deterministically in O(n2) time. The running time of the resulting de-
terministic algorithm is O(nm / n/3 log n). Recently, faster deterministic algorithms were
described in [KRT93] and [PW93].
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Another paper based on the present one is [CHM90], which shows that a maximum flow
can be computed in O (n3/log n) time on a uniform-cost RAM, and that the number of oper-
ations executed on flow variables can be improved from O(nm) for the strongly polynomial
algorithm here to o(ng/3(log n)4/3).

One avenue for further research suggested by this work is to investigate whether random-
ization is useful for solving related problems on networks such as the minimum-cost flow
problem and the maximum-weight matching problem.
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SPARSE APPROXIMATE SOLUTIONS TO LINEAR SYSTEMS*

B. K. NATARAJAN

Abstract. The following problem is considered: given a matrix A in Rm’’, (m rows and n columns), a vector

b in Rm, and 6 > 0, compute a vector x satisfying IIAx bl[2 <_ 6 if such exists, such that x has the fewest number
of non-zero entries over all such vectors. It is shown that the problem is NP-hard, but that the well-known greedy
heuristic is good in that it computes a solution with at most [18 Opt(6/Z)llA+ I1 ln(llbl12/6)] non-zero entries, where

Opt(6/2) is the optimum number of nonzero entries at error 6/2, A is the matrix obtained by normalizing each column
of A with respect to the L2 norm, and A+ is its pseudo-inverse.

Key words, sparse solutions, linear systems

AMS subject classification. 68Q25

1. Introduction. The problem of computing a sparse approximate solution to a linear
system is a fundamental problem in matrix computation. For matrices over the reals, the
problem (variant thereof) has been studied under the name "subset selection" in statistical
modeling by Golub and Van Loan (1983). For binary matrices, the problem has been studied
as "minimum weight solution" in error corrective coding by Gallager (1968). The related
"sparse null-space" problem is of interest in nonlinear optimization; see Coleman and Pothen
(1986). Also, the "minimum set cover" problem can be viewed as computing a sparse solution
to Ax >_ b, where all the entries are binary and the inequality is entry-wise; see Garey and
Johnson (1979), Johnson (1974).

Our specific motivation for studying the problem is as follows. A widely used technique
for the interpolation of irregularly spaced samples in higher dimensions is that of radial basis
interpolation; see Hardy (1988). In brief, assign each of the given sample points a coefficient.
The value of the interpolant at a new point is the weighted sum of these coefficients, where
the weights are the distances of the respective samples from the new point. The coefficients
themselves are the solution to the linear system of equations obtained by evaluating the in-
terpolant at the each of the given points and equating them to the respective sample values;
Michelli (1986) has shown that the linear system is always nonsingular.

In solving the above linear system, two issues are of interest. (1) The cost of evaluating
the interpolant at a general point grows with the number of nonzero coefficients in the solution.
Hence, it is desirable to have as few nonzeros as possible, while tolerating some error in the
interpolation. (2) By the principle of Occam’s Razor, the interpolant with the fewest nonzero
coefficients is most likely to approximate the underlying function that generated the samples.
Indeed, in the presence of noise in the data, it is desirable to pick a sparse but approximate
interpolant. Recently, learning theoretic justifications of Occam’s Razor in this setting have
been established; see Natarajan (1993).

In light of the above, we are interested in obtaining a sparse approximate solution to
the linear system specifying the coefficients of the interpolant. Similar arguments can also
be made with respect to other interpolation methods, such as polynomial or trigonometric
interpolation.

Previously, it was known that the problem is NP-hard if the solution is required to be
over the integers; see Garey and Johnson (1979). For matrices over the re.als, the heuristic of
Golub, Klema, and Stewart (1976) is well known, as discussed in Golub and Van Loan (1983).
In this paper, we show that the problem remains NP-hard over the reals. We then show that the
obvious and well-known greedy heuristic (Golub and Van Loan (1983)) is provably good in that

*Received by the editors November 2, 1992; accepted for publication October 29, 1993.
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304.
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the number of nonzeros reported is at most 18 Opt(e/2)IIA+ 1122 In(lib 12/), where Opt(e/2) is
the optimum number of nonzero entries at error e/2, A is the matrix obtained by normalizing
each column of A with respect to the L2 norm, and A+ is its pseudo-inverse. The algorithm
is essentially a marriage between the greedy set cover algorithm of Johnson (1974) and the
QR algorithm for least squares solutions of linear systems of Golub and Van Loan (1983). It
is important to note that minimizing the number of zeros is competitive with the stability of
the algorithm, i.e., the norm of the computed solution. The heuristic of Golub, Klema, and
Stewart (1976) offers stability, but not provably good sparseness, while our algorithm does
the converse. An open problem is to obtain an algorithm that allows an explicit tradeoff.

The algorithm consumes O(mn) time per entry reported. Since the entries of the solution
are reported in order of their "significance," the proposed algorithm is a good candidate for the
progressive solution of dense linear systems. Computational experiments on using the greedy
algorithm for radial basis interpolation are discussed in Carlson and Natarajan (1994).

2. Hardness. Let SAS refer to the sparse approximate solution problem stated below.
Problem. Given a matrix A in Rmn, (m rows and n columns), a vector b in Rm, and

> 0, compute a vector x satisfying IlAx bll2 <_ if such exists, such that x has the fewest
number of nonzero entries over all such vectors.

We first establish that SAS is NP-hard on the machine model of the infinite precision
RAM; see Preparata and Shamos (1985), for instance.

THEOREM 1. SAS is NP-hard.

Proof. The proof is by reduction from the problem of "exact cover by 3 sets," as in the
proofof hardness for the problem of"minimum weight solutions to linear systems." See Garey
and Johnson (1979), pp. 221 and 246).

Exact Cover by 3-sets.
Instance. A set S, and a collection C of 3-element subsets of S.
Question. Does C contain an exact cover for S, i.e., a sub-collection ( of C such that

every element of S occurs exactly once in
Let us use X3C to refer to the problem of exact cover by 3-sets, and show how to transform

an instance of X3C to an instance of SAS. Given is an instance of X3C: S {s, s2 Sm },
and C Cl, c2 cn. Without loss of generality we can assume that m is a multiple of
3, since otherwise there is trivially no exact cover. Let b be the vector (1, 1, 1) of m
ones. The matrix A will have n column vectors, one for each set in C. Specifically, for each
set c 6 C, the corresponding column vector will have entries (Zl, z2 Zm) where zi if

si 6 c and Zoi 0 otherwise. Pick .
We show that the constructed instance of SAS has a solution with m/3 or fewer entries

if and only if the given instance of X3C has a solution. If the X3C instance has a solution,
then consider the vector x (x, x2 x), where xi if the ith set in C is included in
the solution of the X3C instance, and xi 0 otherwise. Then, Ax b exactly and hence the
SAS instance has a solution with exactly m/3 nonzero entries. Conversely, assume the SAS
instance has a solution x with at most m/3 nonzero entries.

Since each column ofSince IIAx bl12 _< , each entry of Ax must be between
A has only three nonzero entries, x must have at least m/3 entries. Thus x has exactly m/3
entries. Now consider the subcollection ’, consisting of those sets ci such that the ith entry
in x is nonzero. It is clear that is an exact cover for S.

3. The algorithm. The algorithm we consider is a merging of the greedy set cover algo-
rithm of Johnson (1974) and the QR algorithm for the least-squares problem of Golub and Van
Loan (1983). In essence, it is a QR algorithm where the column pivot is chosen greedily with
respect to the right-hand side b of the linear system. Such a modification is well known; see
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Golub and Van Loan (1983, p. 168, Exercise 6.4.8). In the interest of simplicity, we will not
present the algorithm as a modification of the QR algorithm, but will present it as a two-phase
algorithm with a subset selection phase, followed by an explicit solution phase.

In words, Algorithm Greedy below takes as input A, b, and e. The algorithm first normal-
izes each column ai of A. Then, at each iteration of the selection phase, the algorithm greedily
picks that column of A that is closest in angle to the vector b. Then, b and the column vectors
of A are projected onto the subspace orthogonal to the chosen column. This procedure is
repeated until Ilbl12 _< . In the solution phase, the algorithm solves the linear system problem
Bx b() b(r) where B is the matrix consisting of those columns of A that were chosen in
the selection phase, b() is b at the start of the selection of phase, and b(r) is b at the end of the
selection of phase.

Algorithm Greedy
input:
matrix A, column vector b, e > 0.
Subset Selection Phase:
Normalize each column of A to obtain A.
r <-- 0; r
A() -- A; b() <--- b;
while lib (r) 112 > e do

if A(r>rb(r) 0 then
no solution exists;

else
choose k 1,2 n} r such that column ar) of A(r)
is closest to b (r), i.e., lar)r b(r) is maximum;
project b(r) onto the subspace orthogonal to ar), i.e.,
b(r+ 1) <___ b(r) (ar)Tb(r)) ar)
r <--rU{k};
for j {1,2 n} r do

_.ja!r) onto the subspace orthogonal to ar) i.e.project

a.(r+ 1) _(r) ( tj )<---- aj ar)T-(r)’ ar)"

(r+l)
normalize a: i.e.,
_(r+l) .(/r+l)/i@r+l)-j -j / 112;

end
end
r <--r-f-l;

end
Solution Phase:
Solve Bx b() b(r) where B is the matrix
of columns of A with indices in r.

end

THEOREM 2. The number ofvectors selected by Algorithm Greedy, and hence the number

ofnonzero entries in the computed solution, is at most

(1) II 80pt(/2) IIA+ I. In (’l"-----Z) 1,
where Opt(/2) denotes the fewest number of nonzero entries over all solutions that satisfy
IIAx bl12 < /2.
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Our proof of Theorem 2 is a simplified and generalized variant of that of the greedy set
cover algorithm given by Johnson (1974). For each value of r, at the start of the corresponding
iteration of the algorithm, let u (r) be a vector with the minimum number of nonzero entries
such that IlA(r)u (r) b(r)]12 _< /2. Also, we define N(r) as the number of nonzero entries in
u (r) and q(r) A(r)u(r). Let be the number of iterations the algorithm runs in the selection
phase. It is clear that the number of nonzero entries produced by the solution phase of the
algorithm is at most t. Define

N(r) llu(r)l[
(2) p 4 max

O<r<t lib(r)

Our proof proceeds in a sequence of lemmas. In the first lemma, we bound in terms of p.
Lemmas 2 and 3 estimate the right-hand side of the above definition of p. Combining the
three lemmas, we will obtain Theorem 2.

For z e R, let z denote the smallest integer greater than or equal to z.
LEMMA 1. The number of iterations of the algorithm is at most

Proof. Since U (r) only has N(r) nonzero entries, we will show that at least one of the
columns of A (r) must be correspondingly close to b(r). Specifically, we establish a lower
bound on [[A(r)Tb(r)[]c. Now,

(4) b(r) U "-
i=l

where e/2 stands for the generic error vector of L2 norm at most e/2. Hence

(5) b(r)Tb(r)

(6)

(r)b(r)Tar) b(r)T6U + /2.
i--1

<__ (mnax[ar)Tb(r)l) (r) /2.
k i=1

i=1
ui I"-Ilb(r)[12

Now,

(7)

(8)

b(r)Tb(r) --IIbr) ll22,
mnax ar)Tb(r) [In(r) Tb(r) ,
i=1

and

(9) Ilb(r) ll2 .
Also, since U (r) has N(r) nonzero entries,

(r) u(r) < %/rN(r)ilu(r)(10) lug Ill 112.
i=1

Hence, we can write (6) as

(11) [[b(r)[[ _< [[A(r)rb(r)llcx/U(r)llu(r)[[ 2 -+-1/2[[b(r)[[.
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Rearranging, we get

(12) IlA(r)Tb(r)[[o lib(r) 2
2

2/N(r) llu(r)ll2

Using the above lower bound on A(r)Tb(r)I1 we now estimate the rate at which b(r) diminishes
at each iteration of the algorithm. Now,

(13) b(r+l) b(r) (ar)Tb(r)) (r)
ct

(r)T (r)where ar) is the column chosen by the algorithm at the rth iteration. Since lak b is a

maximum, [ar)Tb(r)[ [[A(r)Tb(r) and we can rewrite the above as

(14) b(r+l) b(r) sign (ar)rb(r)) llA(r)rb(r)llar)

where sign() is the function that returns the sign of its argument. Since b(r+l) is orthogonal
to ar)

(15) IIb(r+)ll --IIb(r)l122- IlA(r)rb(r)]l.
Rearranging, we get

(16) Ilb(r+) 2
2 (1 o iib<r) I1.IIb<r3ll22

Substituting (12) in (16), we get

(17) Ilb(r+l)ll22 _< (1- b(r) 1122 ) b(r) 2

4N(r) llu(r) ll 112.

Using (2) in (17), we get

(18) IIb(r+)ll < (1- l/p)llb(r)ll 2
2"

Hence,

(19) lib (’) I1 (1 11p)’ lib() I1..
The algorithm halts when lib (’) 1122 2. For this to happen, it suffices that satisfy

(20) (1 11p)’ lib() I1 _< 72.

Rearranging and taking logarithms, we get

(21) tin(I-I/p) <In b()Il
Incorporating in (21) the following inequality, obtained from a Taylor expansion of the natural
logarithm function,

-1
(22) ln(1 l/p) <

P
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we get that it suffices if

(23) >_ p In (II b()ll) 2pln (1111____)2

This completes the proof of the lemma. [3

We will now establish an upper bound on p, by first bounding Ilu (r) 112 and then incorpo-
rating a bound on N(r).

LEMMA 2. ForO <_ r < t, Ilu (r) 12 < 3/2llA+ll21lb(r) ll2.
Proof. Let cr {i ur) =/= 0} be the set of indices of the nonzero entries in u (r), and let

r {kl, k2 kr} be the indices of the first r columns picked by the algorithm. For matrix
A and set of indices/z, we use/z(A) to denote the set of column vectors {ai E #}.

We first show that r(A()) [,,J r(A ()) is a linearly independent set. Assume the contrary,
i.e., some linear combination of vectors from o-(A()) [,.,J r(A()) sum to zero. Not all of
the vectors in this combination can be from r(A()), since r(A()) is a linearly independent
set by the definition of the algorithm. So it must be that at least one of the vectors in this
combination is from or(A()). It follows that this vector from o-(A()) can be expressed as
a linear combination of vectors from a(A()) [,_J r(A()). Since cr(A (r)) is the projection of
o-(A() on the subspace orthogonal to r (A(), the above supposition implies that some vector
in r(A(r)) can be expressed as a linear combination of vectors in o’(A(r)). But this contradicts
the assumption that u (r) has a minimum number of nonzero entries. Hence r(A()) [,_J r(A())
must be linearly independent.

We can now establish a bound on Ilu (r) 112. By definition,

(r)ar)(24) q (r) Z u

For Etr, we can write

(r-l) vr)
(25) ar)-- ai

(r-l)(r) is a vector in the span of r(A(r-l)). Using this recurrence, we can express awhere v

in terms of ar-2) and so on down to a{). Since r(A (r)) is orthogonal to r (A(r-1)), it follows

(r--1)ll2 Using this,(r-l) and hence liver) + v}r-1) ll [Iu}r) II -It-IIuithat vr) is orthogonal to v
we can combine the recurrences (25) to obtain a single expression of the form

(26) ar) a) vi

v/ 2lit)/112

where 1) is a vector in the span of r (A()).
Substituting (26) in (24), we get

(r)(27) q(r) Z ui

Noting that l) is a vector in the span of r(A()) and hence can be expressed as a linear
combination of the columns of r (A()), we can rewrite (27) as

(r)
U aO) + Z (ia)(28) q(r) Z. /1 Ilvi 1122 ier
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for some i in R. Let Z be the matrix with columns o’(A()) [,_J r(A()), and Z+ its pseudo-
inverse. Also, let w Z+q(r). As established above, the columns of Z are linearly indepen-
dent, and hence the entries of w are uniquely determined as in (28) above. Specifically, for
iEo-,

(29) //)i

]]vi ]122

(r)and for/ E r, wi- 3i. Since 1-Ilvi]l < 1, we have that fori 6 er, ]u < Iwil. For
(r) 0, and hence lu) < Iwil. We therefore haver, //)i --i, /,t

(30) IlU(r) ll2 5 Ilwll2 5 IIZ+ll211q(r)ll2.

Noting that q(r) b(r) + 72, and that since r < t, lib (r) 112 > , we can simplify the above as

(31) IlU(r) l[2 IIZ/II211 b(r) + 2112 3/211Z/l1211b(r)l12.

Since the columns of Z are a linearly independent subset of the columns of A) A, the
smallest nonzero singular value of Z is greater than or equal to the smallest nonzero singular
value of A; see Golub and Van Loan (1983, p. 286). Recall that A+ is the pseudo-inverse of
A. Since Z+ 112 and [IA+ 112 are the reciprocals of the smallest nonzero singular values of Z
and A, respectively, Z+ 112 --< IIA+ 112, and the proof of the lemma is complete. [3

LEMMA 3. The number ofentries in the sparse solution is nonincreasing as the algorithm
iterates, i.e., N+) < N) < N(m.

(r)Proof As before let cr {i ui - 0} be the set of indices of the nonzero entries in
u (), By definition, Irl N(r). Suppose that the algorithm selects a vector from r at the
rth iteration. Then surely u (r+) has one fewer nonzero entry than u (r), namely the entry
corresponding to the selected vector. If the vector selected by the algorithm is not from o-,
then a remains the set of nonzero entries of U (r+l). In either case N(r+) < N(r) and the
lemma follows.

Noting that N() Opt(/2) we can use Lemma 3 to rewrite (2) as

2N() Ilu(r) 2(32) p < 4 max 2O<r<t lib(r) 2

Using Lemma 2 to substitute for Ilu (r) 112 in (32) gives us

2(33) p _< 9 max N()IIA(+)II 2.
O<r<t

Substituting (33) in the statement ofLemma l, we get that the number of zeros in the computed
solution is at most

(34) [l 80pt(/2),,A+ 1,2 In ( lib"2)].
This concludes the proof of Theorem 1.
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A HEURISTIC SCHEDULING OF INDEPENDENT TASKS WITH BOTTLENECK
RESOURCE CONSTRAINTS*

QINGZHOU WANG AND ERNST L. LEISSt

Abstract. In this paper, the problem of scheduling independent tasks with bottleneck resource constraints is

investigated. There is a set of independent tasks 7- T Tn and a set of resources 7 R Rm }. The
available amount of resource Ri, for j m, is (normalized to) 1. Each task Ti’s execution requires at least

)(i,j) < units of resource Ri E T, and with these minimal resources, the execution time of Ti is ri. If there is a

resource R[(i so that Ti can use units ( >_ )(i,(j))) and reduce the execution time to ,!i)) ri, we say that Ti
can achieve linear speed-up with respect to R(i). It is assumed that for each Ti, there is one, and only one, resource

R(i) that is T/’s bottleneck resource: T/can use units of R(i,[:l(i)) and achieve linear speed-up, where is between

)(i,[4(i)) and A(i,[d(i)) < 1. The problem is to find a feasible schedule for all the tasks in 7- that has a shortest overall
makespan.

This problem is a combination of two previously studied problems--scheduling tasks with resource constraints
[SIAM J. Comput., 4 (1975), pp. 187-200.] scheduling parallel tasks [SIAM J. Comput., 21 (1992), pp. 281-294]. A
variant of this problem was studied in [J. Combin. Theory, 21 (1976), pp. 257-298]. Because the problem is NP-hard,
we propose the ECT (earliest completion time) algorithm as a heuristic solution and show that the performance ratio
of the ECT makespan MECT to the optimal makespan MOPT is bounded by 21 + m + 1, where is the number of
the bottleneck resources in 7. When 0, this is exactly the performance bound shown by Garey and Graham in

ISLAM J. Comput., 4 (1975), pp. 187-200].

Key words, bottleneck resource, heuristic, and independent task scheduling

AMS subject classifications. 68Q20, 68Q25

1. Introduction. In the problem of scheduling independent tasks with resource con-
straints, we have a set 7 of m resources, R1 Rm, and a set 7" of n independent tasks,
T Tn. For each resource Ri, the total amount available is always (normalized to) 1. For
each task T/, there is a minimum resource requirement for its execution--T/requires ,k;,j) <
units of resource Ri, J m. With these minimal resources, task T/can be completed
in ri time units. For each T/, there is one, and only one, bottleneck resource R/3(i). In other
words, the function

" {1 n} {1 m},

maps a task index to a resource index. A resource is said to be a bottleneck resource for T if
T/can use up to A(i,/(i)) < units of resource R[3(i) and achieve a linear speed-up; if T/uses
units of resource R[(i), where )(i,[3(i)) A(i,/(i)), and (i,j) units of all other resources

Rj(j =/= (i)), the required time to complete T/will be shortened to ()i,<i))/)zi. If a task Ti
rises Ai,(i)) units of its bottleneck resource during the execution, we call itfully parallelized.

If a resource Rj is a bottleneck resource of some task, we simply call it a bottleneck
resource. Not all resources need to be bottleneck resources, so the number of bottleneck
resources is denoted by l, with 0 < _< m.

An execution schedule of n tasks in 7" is calledfeasible, if at any time during the schedule,
the usage of each individual resource Ri, J m does not exceed the available amount,
1. Among all the feasible schedules, it is desirable to use the optimal schedule, i.e., that which
completes all the tasks in the shortest possible time. The time to complete all the tasks is called
makespan; the optimal (shortest possible) makespan is denoted by Mor,+. Finding the optimal
schedule is NP-hard [3]. Therefore, we investigate heuristic algorithms that take polynomial
time to implement but produce only suboptimal schedules. If S is a heuristic scheduling

*Received by the editors January 25, 1993" accepted for publication (in revised form) November 9, 1993.
Department of Computer Science, University of Houston, Houston, Texas 77204-3475.
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algorithm, we use Ms to denote its makespan. The closeness of how a heuristic algorithm S
approximates the optimal scheduling is expressed by its performance bound: sup{Ms/MoPT}.

In this paper, we investigate the performance of using the earliest completion time (ECT)
algorithm [4] to schedule independent tasks with bottleneck constraints. We will show that in
general the performance bound of the ECT algorithm is

(1.2) MEET } 3m + 1.sup
MopT

This can be refined to 21 + m + if there are only bottleneck resources. In discussing the
independent task scheduling with no bottleneck resources (i.e., 0), Garey and Graham
[1] use a scheduling algorithm that is a special case of ECT and whose performance bound
is m + 1. Furthermore, in a variant of this problem, where each task is assumed to always
have unit execution time, Garey et al. [2] develop scheduling algorithms based on the first fit
(FF) and the first fit decreasing (FFD) bin packing techniques. The FF and FFD scheduling

respectively.algorithms have asymptotic performance bounds of m + 0 and m + ,
The discussion in this paper will be as follows. The ECT algorithm and its graphical

representation in the multiresource context will be presented first. Following the graphical
representation, we will introduce the notion of covering intervals, which is based on those of
wide and narrow tasks that were first defined in [4]. Then, we analyze the resource usage and
derive our performance bound.

2. The ECT algorithm. The algorithm in the top half of Fig. is a LIST algorithm in
its simplest form, and without loss of generality, we can assume that the task index reflects
the execution order according to the LIST scheduling. Because each task has its minimum
resource requirements, the time tu is the time when there are sufficient resources to execute
at least one waiting task. Immediately starting the next task Ti, however, does not mean that
we can give T/its earliest completion time. For each task T/ready to be executed,

input task set 7-
while 7- 0 do

tN -- time when there are sufficient resources for at least one 7)
invoke Earliest_Completion(tN, 7))
T+--T-{T/}

end while

procedure Earliest_Completion(tN, T/
for E [)(i,#(i)), A(i,#(i))]{

define t() the earliest time >_ tN there are units of R#(i)
’(i,[4(i))define {() t() + ri

i - min{{-(min{/’() })};
schedule T/with i units of R#(i) at time (i)"

FIG. 1. The ECTAlgorithm for tasks with bottleneck resources.

we further process it through the Earliest_Completion procedure as shown in the second half
of Fig. 1. If more bottleneck resource R#(i) is becoming available soon, we are willing to

delay the starting time of T/to achieve its earliest completion.
LEMMA 2.1. The T0function defined in the Earliest_Completion procedure only assumes

no more than n values.

Proof Let us assume that T/, T/k are the running tasks at time tN, and T/, completes
before T/,+,. If T/t releases t units of R#(i) at its completion time, we can write the total
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amount of R/4(i) released by T/ and the tasks before it with the notation l Y ’j. For all
6 (set, t+], t() will equal the completion time of T/,.
When all T/,’s have completed, y ’j and R/4(i) is completely free. Since all T/,’s

only form a subset of T, i.e., k + _< n, we have actually shown that () assumes no more than
n values in [)(i,/4(i)), 1], SO it can assume no more than n values in [)(i,/4(i)), A(i,/4(i))]. [-I

LEMMA 2.2. The value min{/() ’v’ 6 [X(i./4i), Ai,/4i))]} in the statement (f) in Fig.
can be calculated in no more than n steps.

Proof In the previous lemma, we have shown that () assumes no more than n values
in the interval (t, t+]. By the definition of {, within each such interval, {0 is a strictly
descending function that attains the minimal value at t+. Therefore the calculation of min
value in () in Fig. can be done in no more than n steps.

LEMMA 2.3. In the statement (f) in Fig. 1, {-(min{{() V 6 [)(i,/4(i)), A(i,/4(/))]}) may
not be a unique value, yet it will never assume more than n values.

Proof As shown in the proof of Lemma 2.2, ’() is strictly descending in the interval
(t, t+]. Since there are no more than k + such intervals, the inverse function in (f) in Fig.
has no more than k + < n values.

There are four time events associated with the scheduling of a task Ti"
(i) preparation time, as(Ti)
(ii) execution time, bs(Ti)
(iii) completion time, cs(Ti) --/(i); and
(iv) full parallelization time, fs(Ti) min{t (Ai,/4(i))), cs(Ti) }.

The following relationships should always hold:

(2.1) as(Ti) < bs(Ti) < fs(Ti) < cs(Ti) and cs(Ti)- bs(Ti)-
).(i,/4(i))

Ti

where i is the actual number of units of R/4(i) used by T/.

3. The graphical representation. Each resource can be represented by a strip of height
1; before it is used by the tasks, the strip is white from time 0 to cx. Without loss of generality,
let us consider the graphic representation of a single resource Rj. Rj is a strip of height with
the following coloring patterns:

(i) Rj is the bottleneck resource of T/, so in [as(Ti), bs(T)), T/’ s preparation introduces
grey color (Fig. 2(a));

(ii) otherwise, Rj is colored black, completely or partially, representing the amount of
resource being used (Fig. 2(b)).

.,: :’.:

black [--’i white
(b)

FIG. 2. Two coloring patterns ofa resource strip.

LEMMA 3.1. When it is colored in the first pattern, the strip Rj within the interval
as(Ti), bs(Ti)) is completely colored black or grey.

Proof This is really a direct result of the ECT scheduling. If there were any white space
(free resource), it would have been consumed during the preparation of task T/, and thus
become grey. [
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4. Wide and narrow tasks. Similar to [4], we put each task into one of two categories,

1.(i) T/ 6 Tw, the set of wide tasks, if A(i,/(i)) >_ 2,
(ii) otherwise, T/ 6 TN, the set of narrow tasks.

We further define the covering interval [X (Ti), Z(T/)) associated with each task Ti:

X(Ti) as(Ti), Z(Ti) cs(Ti), if T/ 2Yw;
(4.1) X T as T Z Ti fs Ti if T 2KN.

If we eliminate from T the task T, that satisfies

(4.2) i < i’, such that Z (Tt,) < Z (Ti),

we will have a subsequence of tasks

(4.3) tr’ {r, r,,, }.

The tasks in 7-’ satisfy the following condition:

(4.4) z(,) <... < Z(T,,) <... < Z(T,,,).

This leads to a set of covering intervals that do not overlap:

(4.5) r (T), Z(7))
irk- 1, Y(T/)- X(T,),

otherwise, Y(T/,) max{X(E.,), Z(E,_,)}.

Associated with each such covering interval, there is a unique resource Rt(i) that is the
bottleneck resource of Tg. The next lemma estimates the resource usage of R(i) in the
interval Y (Ti ), Z (T,. )).

LEMMA 4.1. Within the interval.[y(Ti), Z(Ti)), the usage of the resource R(i) is at

least 2(Z(Tii) Y(Ti)).
Proof. Let us consider the usage of Rl(i) by all tasks T/ 6 T, with < ik. We distinguish

the following two cases separately:
(i) the task T/ is a wide task;
(ii) the task T/ is a narrow task.

In the first case, we can directly use the analysis of wide tasks in [4, Lem. 6] after
normalizing the unit of available resource to 1. It follows that the strip Rl(i) in the interval is

at least half colored black.
In the second case, T/ is a narrow task, and the right end of the interval is Z(Ti)

fs(Ti,) < (Ai,,[3(i,))), which is no later than the time when task T/, could be fully parallelized
If a narrow task cannot be fully parallelized, no more than half of the resource can be unused.
Lemma 3.1 and Fig. 2(a) can help us to illustrate the argument. We can also conclude in the
second case that the usage of Rt(i,) is no less than (z(T/,) Y(Ti,)). I

In analyzing the usage of resources, there is a fundamental difference between the LIST
scheduling of sequential tasks and the ECT scheduling of parallel tasks.

(i) In sequential task scheduling, for every task, the amount of resource it uses is always
fixed, independent of the scheduling.

(ii) In ECT scheduling, the amount of bottleneck resource used by a task is always fixed

as shown in the linear speed-up. The usage of nonbottleneck resource Rj by T/can vary from
(i,j)TJi to ,(i,j) (k,13(i))/A(i,[3(i)) 75i, where the later is the minimal amount. The actual usage
is scheduling dependent.
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Because of this dependency, we must show how much R[(ik) has been used by T/, other than
T/k, as a nonbottleneck resource.

LEMMA 4.2. If Ti, < ik, uses R[(ik) as a nonbottleneck resource, its usage within

[Y(T/k), Z(T/k)) is minimal, not exceeding )(i,[3(ik)) )(i,[4(i))/A(i,fl(i)) 75i.

Proof We are considering any T/ 6 7-, where/3 (i) -/3 (ik) and < i,. However, we can
immediately eliminate any wide task T/, because Z(T/) equals its completion time, and this
occurs before Y(T/k).

For a narrow task, because ofthe inequality of Z(T/) min cs (T/), (A (i, (i)) _< Y T/k ),
whether T, 6 7-’ or T/ 6 7- 7-’ we know that at time Y (T/.k), Ti either has completed or could
have been fully parallelized on its own bottleneck resource. Therefore, its usage of R[3(ik) is
no greater than )(i,[4(ik)) )i,J(i))/Ai,[3(i)) 75i, the minimal required amount. q

The following proposition reveals the relationship between the total length of
U[Y T/k ), Z (T/k )) and MOPT.

PROPOSITION 4.1. /f there are bottleneck resources, <_ < m, the combined length of
all nonoverlapping intervals, -(Z(Tik) Y(Tik)) will not exceed 21 MOPT.

Pro@ After constructing the intervals (4.5), each interval is uniquely associated with
a resource R[(ik), which is at least half utilized by those tasks T starting before T/k and T
itself (at least half colored black if it is considered as a strip). We have further shown that if a
task T/uses R(k) as a nonbottleneck resource, its usage will not exceed the minimal amount.
Therefore, the total length of intervals (4.5) associated with a single bottleneck resource
will be no greater than 2MoPT. Since there are only bottleneck resources, the proposition
follows. F1

5. The overall analysis. After analyzing the intervals (4.5), we cannot claim that the
complete makespan [0, MECT) is covered by these intervals. Therefore, we must investigate
the intervals of

[0, MECT) U[Y(Tik), Z(Tik)) U[f/, gi).
k=l i=1

At this point, we need a graph theory based result explained in ]. There, the optimal makespan
is normalized to when compared with the suboptimal makespan to derive the performance
bound. Without loss of generality, we also assume MoPT 1. By using the same notation
rj(t) to represent the utilization of resource Ri at time t, the following lemma, first appearing
in [1 ], also holds for our ECT algorithm.

LEMMA 5.1. If to, t U= [j, gi), and tl to > 1,

m"x{rj (to) + rj (tl) > mopy
j=l

will hold.

Proof The ECT selection criteria is the same as that of the LIST algorithm, i.e, selecting
any task that the available resources will satisfy. Since tl to _< MopT 1, there is at least
one task T/that starts between (to, t ]. If the statement is not true, the task Ti should have been
scheduled by the ECT algorithm at to or sooner. This is the same lemma as shown in ], and
the argument is also the same. V1

Now we can apply the theorem based on graph theory from and reach the conclusion
that

(5.2) Z(g ) <_ m + (m + l)lt/lOpT.
i=1
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Again, we encounter the fundamental difference between the LIST scheduling of sequential
tasks and the ECT scheduling of parallel task, i.e., the usage of nonbottleneck resource is
dependent on the ECT scheduling.

LEMMA 5.2. Ifin [f gi ), a task Tk uses a nonbottleneck resource Rj, the total amount used
will not exceed )(k,j) (k,[3(k))/A(k,[3(k)) 75k. In other words, despite the difference mentioned
earlier, the usage ofnonbottleneck resources in U[, gi is always minimal.

Proof Based on the definition of intervals (4.5), only some narrow task could have part
of their execution extended into intervals of U[fi, gj). By the definition of Z (T/k), such tasks
extending into t0[f/, gi) have passed the point of achieving full parallelization when entering
U[fi, gi). Using the same argument of Lemma 4.2, we can show the usage of nonbottleneck
resources in [jS, gi) is also minimal.

We have recognized the difference between the conventional LIST scheduling and the
ECT scheduling. Despite this difference, in [3’i, gi), the usage of nonbottleneck resources
is always kept minimal as long as the ECT scheduling criterion is observed. This leads to the
adaptation of the following proposition from the LIST scheduling analysis to our analysis.

PROPOSITION 5.1. The total length of t213, gi will not exceed m + (m + 1)Mopv,
i.e., the inequality of (5.2) will hold.

Proof The proof in [1] relies on two results, namely, Lemma 5.1 and the same resource
usage in the proposed scheme as that in the optimal scheme. After getting the total usages in
both the optimal and the proposed schemes, it can be shown that the total usage < m in the
optimal case implies that the total usage in the proposed case will not exceed m.

We have already proved our Lemma 5.1. As for the total usage, the usage of bottleneck
resources does not change between the optimal schedule and the ECT schedule. The usage
of nonbottleneck resources is minimal within to[f/, gi)" it could be even less than the usage
in the optimal schedule within these intervals. We can conclude that within [j, gi) the total
usage will not exceed m, so the proposition follows.

Combining Propositions 4.1 and 5.2, we can have the following theorem.
THEOREM 5.1. The performance bound of the ECT algorithm for scheduling tasks with

bottleneck resources satisfies the following inequality:

(5.3)
MEeT < 21 + m + 1,
MOPT

where is the number ofbottleneck resources.

I. Conelusiom In this paper, we have discussed the earliest completion time scheduling
of tasks requiring multiple resources and among which one is a bottleneck resource. There
are two special cases of this problem that have been studied previously.

(i) There is no bottleneck resource, 0. Garey and Graham [1] have shown that
m + is a tight performance bound that is achieved by our algorithm.

(ii) There is only one resource, m 1, and it is also the bottleneck resource, i.e., 1.
In [4], we have shown that the ECT performance bound is at least 2.5. There is a gap of 1.5
between the performance bound 2.5 and the performance bound of 21 + m + 4 shown in
the present paper This gap is wider than the gap ( ) shown in [4], for the current analysis
is relaxed to accommodate the requirement of multiple resources. As pointed out in ], the
constant term in 21 + m + is needed only in some special instances, and this term accounts
for the gap difference.
In the analysis of the FFD algorithm for scheduling tasks with unit execution time [2], it was
shown that its asymptotic performance bound lies between m
In other words, the performance bound of this scheduling algorithms is dominated by the m
term. In the ECT algorithm, the term 21 can assume a wide range of values between 0 and 2m
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depending on the number of bottleneck resources involved. It will be interesting to see how l,
the number of bottleneck resources, can further influence the analysis and the tightness of the
performance bound.
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Abstraeto Let p be a set of algebraic expressions constructed with radicals and arithmetic operations, and which
generate the splitting field F of some polynomial. Let N/(p) be the minimum total number of root-takings and
exponentiations used in any straightline program for computing the functions in p by taking roots, exponentials,
logarithms, and performing arithmetic operations. In this paper it is proved that N (p) v(G), where v(G) is the
minimum length of any cyclic Jordan-H61der tower for the Galois group G of F. This generalizes a result of Ja’Ja’
[Proceedings ofthe 22nd IEEE Symposium on Foundations of Computer Science, 1981, pp. 95-100], and shows that
the inclusion of certain new primitives, such as taking exponentials and logarithms, does not improve the cost of
computing such expressions as compared with programs that use only root-takings.

Key words, algebraic expressions, complexity, differential algebra, exponentials, Galois group, Jordan-H61der
tower, logarithms
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1. Introduction. The question of how efficiently one can evaluate expressions such as
(El<i<.j<nV/(Xi Xj)2 -- (Yi y.j)2)/(), the mean distance among n points in the plane, was
raised in Shamos and Yuval [9]. A systematic study of this question was given in Pippenger
[7], [8]. Let p be a family of algebraic expressions constructed from indeterminates using
radicals and arithmetic operations. Define the cost of a program to be the number of root-
takings used, with arithmetic operations given for free. Let F be the extension field generated
by the members of p over the field of rational functions with complex coefficients. It was
shown [7], [8] that, when the members of p are rational functions of the roots of rational
functions, the minimum cost is equal to the number of the torsion orders for the Galois group
of F (an Abelian group in this case). An extension was given in Ja’Ja’ [2], who showed
that the minimum cost is equal to the minimum length of any cyclic Jordan-H61der tower for
the Galois group of F, provided that F is a finite Galois extension over the field of rational
functions. It is known [2], [8] that the former result is a special case of the latter.

These results can be used to determine the minimum cost for computing p in many
cases. For example, for the mean distance problem, the Galois group can be shown [7] to be
isomorphic to (Z2)(), which clearly has () torsion orders.

As taking a root y/J can be simulated by taking the logarithm log y followed by an
exponentiation exp((log y)/d), a natural question is whether the availability of the logarithm
and exponential operations can substantially reduce the cost of evaluating algebraic expres-
sions. In particular, can one evaluate the expression <i<n/t using o(n) exponentiations
and logarithm-takings? (Clearly, the expression can be evaluated with n root-takings.) The
possible use of logarithms and exponentials, as well as other primitives, was mentioned in [9],
but was not studied in later papers [2], [7], [8].
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In this paper, we show that under the same assumption as in [2] (i.e., F being a finite
Galois extension), the availability of taking logarithms and exponentials does not reduce the
cost. In particular, we prove that n or more operations are needed to evaluate N <i <n ’2, with
arithmetic operations given for free. In the next section, we give a precise statement of the
main result (Theorem 1), after introducing the needed notation and background. The result is
then proved in 3; some additional concepts and results from differential algebra (see [3]-[5])
are used in the proof.

We remark that the complexity question under other cost measures, in which the cost of
taking a dth root may depend on d, was discussed in [2], [7], [8]. We will not pursue it here.
We also would like to mention a related recent paper by Grigoriev and Karpinski ], in which
another complexity question involving root-takings was studied.

2. The main result. We use the standard terminology in algebra (as in Lang [6]). In
what follows, let Z+ be the set of all positive integers.

An oe-program A is a sequence of instructions of the form z - ll, ,2 - 12 Zm +-
Im, where li are of the form (ri (x, x2 xn, z zi-)) /Ji with ri being any ratio-
nal function in Xl xn, zl zi- with complex coefficients and di E Z+. We call
m the cost of A. For _< < m, let gi(xl, x2 Xn) be the functions defined induc-
tively by gi (x x2 xn) (ri (x l, x2 x, g (Xl x) gi- (xl x))) l/Ji.
We always assume that the ri have been chosen so that the denominators of these func-
tions do not vanish identically. Informally, gi (x l, x2 Xn) are the values assumed by the
variables ,i for input (x, x2 x). Let EA denote the set of all functions of the form
r (x l, x2, x, g (Xl xn) gm (x x)) where r is any rational function with
complex coefficients whose denominator does not vanish identically when the substitution is
made.

We note that each element of EA defines a function algebraic over the field F0
C(xl, ..., x) of rational functions in n variables with coefficients in the complex numbers C.

A solvable algebraic expression is any element of EA for any oe-program A. Let p
(f, f2 ) be a finite set of solvable algebraic expressions. We say that p is computed by
A, if each j E EA. Let N(p) be the minimum cost of any oe-program computing p. Clearly,
N (p) is finite. For any such p, we can form the field F0(p), which is the algebraic extension
ofF formed by adjoining the functions corresponding to the elements fl f, of p.

Following [2], p is said to be normal, if F(p) is a finite Galois extension of F. In other
words, p is normal if p generates the splitting field of some polynomial over F.

For any solvable group G, a cyclic Jordan-HOlder tower is a normal tower of groups

G Go " G1 t> t> Gm-I t> Gm 1,

where Gi-I/Gi is cyclic for each _< _< m. Let v(G) be the length m of the shortest cyclic
Jordan-HOlder tower for G.

The next result is from Ja’Ja’ [2], which we state as a lemma.
LEMMA (See [2]). Ifp is normal, then N(p) v(G), where G is the Galois groupfor

Fo(p) over Fo.
A -program B is asequenceofinstructionsofthe formz +-- I1, z2 I2 Zm - Im,

where li are of the form a]/di exp(ai), or log(a/), where ai ri(xl X2, Xn, Zl, Zi- 1)
with ri being any rational function in x x, z zi-1 with complex coefficients and
di Z+. We again always assume that the ri have been chosen so that the denominators of
these functions do not vanish identically. Let r (B) be the number of instructions that either
take roots or exponentials. Let gi (x l, x2 Xn) be the functions associated with variables
zi, defined exactly as in the case for oe-programs. Let E denote the set of all functions of the
form r (x X2 Xn, g (Xl Xn) gm (Xl Xn)) where r is any rational function
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with complex coefficients whose denominators do not vanish identically when the substitution
is made.

Let p (f, f2, "’, f,.) be a finite set of solvable algebraic expression. We say that p is
computed by B if each element Z of p equals a function in LB. Let N (p) be the minimum
r (B) of any/3-program B computing p.

Our main result is the following theorem.
THEOREM 1. lfp is normal, then N(p) v(G), where G is the Galois groupfor F0(p)

over F0.
COROLLARY 1. Ifp is normal, then N(p) N, (p).
COROLLARY 2. Let p f }, where f E1 <i <nt. Then N[ (p) n.

Remark. It is an interesting open question whether N(p) is equal to N(p) when p is
not required to be normal.

3. Proof of Theorem 1. Before proving the theorem, we introduce some terms in differ-
ential algebra (see [3]-[5]). A differential field is a field k together with a set A {6i}
of mappings i k --+ k, called derivations, such that each i satisfies the conditions
i(a + b) i(a) + i(b), i(ab) 6i(a)b + ai(b), and i(j(a)) j(i(a)) for all
6i, 3j 6 A, a, b 6 k. For example, F0 can be considered a differential field when we use
the derivations A {3 3n} where 3i(f) Of/Oxi. In this paper we are concerned
only with differential fields that come from fields of differentiable functions a and that are
extensions of this differential field. These extensions will be gotten by adjoining elements
that can be interpreted as functions on some suitable region in complex n-space Cn. We will
use K0 to denote the differential field obtained from the field F0 equipped with these standard
derivations A. Note that if K is a differential field containing K0 and if a 6 K, then the field
obtained by adjoining exp(a) to K gives a differential field. The element exp(a) will satisfy the
differential equations 6i(exp(a)) 6i(a) exp(a) for n. Similarly, the adjoining
of log(a) gives a differential field and the element log(a) satisfies 3i(log(a)) 6i(a)/a for

n. We also note that if p (f f.) is a set of solvable algebraic expressions
(or, more generally, any set of algebraic functions), the derivations A can be extended uniquely
to derivations on F0(p) ([5, Lem. 1, p. 90]).

The classical Galois theory for field theory can be extended to a differential Galois theory
for differential fields (See [4] and [5] for definitions and discussions of these concepts; [3]
contains an excellent exposition of the theory in the case of only one derivation and the
essential results extend, mutatis mutandi, to the case of several derivations). This Galois
theory can be used to study the structure ofthe solutions of a system ofpartial linear differential
equations, provided that the equations generate a differential ideal of finite linear dimension
or, equivalently (see [5, Chap. IV.5]), the solution space is a finite-dimensional vector space
(i.e., the system is holonomic). This is the case for the equations defining exponentials
and logarithms (see [4] and [5]). To avoid possible confusion, we will reserve the term
Galois group for the classical Galois group, and use the term differential Galois group when
differential fields are being discussed. It should be noted, however, that if k is an algebraic
extension of k0, a differential field of characteristic zero, then since all derivations on k0 can
be extended uniquely to derivations on k, we can identify the Galois group of k over k0 with
the differential Galois group of k over k0 (with respect to these derivations). To see this note
that any differential automorphism is by definition a usual automorphism. Conversely, for any
automorphism cr of k and k0 and any derivation 3 of k that leaves k0 invariant, we have that
cr- o 3 ocr is a derivation of k agreeing with 6 on k0. Uniqueness implies that they must
be equal on all of k and so cr must be a differential automorphism. This remark allows us to
apply results concerning differential Galois theory to the Galois theory of algebraic extensions
of differential fields.



COMPUTING ALGEBRAIC FUNCTIONS 245

To prove Theorem l, we first show that if F0(p) is contained in a certain tower of differ-
ential fields, then there is a tower of algebraic extension fields of no greater length containing
F0(p). This result (Lemma 2) is at the heart of the proof for Theorem 1.

Let K0 C K C K2 C Km be a tower of differential fields, where each Ki is
obtained from Ki- by adjoining an element ui; ui is either exp(ai) or log(a/) with ai G Ki-l.
Let I be the set of _< < m such that ui is exp(ai). We recall from differential Galois theory
that in this case each Ki is a Picard-Vessiot extension of Ki-1. Furthermore, it is known (see
[4, 4], or [5, Chap. VI.6]; [3, Lem. 3.9 and 3.10] contains similar results for the case of one
derivation) that, if E I, the differential Galois group of Ki over Ki-1 is an algebraic subgroup
of C*, the multiplicative group of nonzero complex numbers, and if ’ I, then the differential
Galois group of Ki over Ki_ is an algebraic subgroup of C+, the additive group of complex
numbers. Finally, we note that the proper algebraic subgroups of C* are precisely the finite
cyclic groups and the only proper algebraic subgroup of C is the trivial group. This can be
seen by noting that a proper Zariski closed subset of either of these two groups must be finite
and that in the first case, we will have a finite multiplicative subgroup of a field and in the
second case we will have a finite subgroup of a torsion free group.

LEMMA 2. If F0 (p) C Km then v (G) <_ II I.
Proof LetFi F0(p) N Kifor _< < m. ThenFm F0(p). Note thatF0

F0(p) f3 K0. Let Hi be the differential Galois group of Ki over Ki-1. We claim that the
following statement is true for _< < m.

FACT 1. Fi is a Galois extension of Fi-1.
To prove this fact, let Ei be the subfield of elements of Ki algebraic over Ki-1. Ei is a

differential field and is left invariant by all elements of Hi. Therefore the differential Galois
group of Ki over Ei is a normal subgroup of Hi and so Ei is a Galois extension of Ki-. Note
that Fi Ei Cq F0(p). Let p(x) be a polynomial with coefficients in Fi-. If p(x) 0 has
a root in Fi, it must split in both Ei and F0(p) (since F0(p) is a fortiori normal over Fi-1).
Therefore p(x) 0 splits in Fi and so Fi is a Galois extension of Fi-1.

Now let Ji be the Galois group of Fi over Fi-. We claim that the following statement is
true.

FACT 2. For <_ <_ m, Ji is the trivial group if I, and a cyclic group if I.
To prove this fact, consider the field Ki_ Fi. This is a subfield of Ki. Since Hi is an

abelian group, all of its subgroups are normal, so Ki_. Fi is a normal extension of Ki- whose
differential Galois group Li is the quotient of Hi by a closed subgroup of Hi. Furthermore,
since Ki-1. Fi is a finite extension of Ki-, Li is finite and thus coincides with the Galois group
of this extension. If ’ I, then Hi is either C or the trivial group. The only finite quotient
of either of these groups by a closed subgroup is trivial. If 6 I, then Hi is either C* or a
finite cyclic group. The only possible finite quotients of these groups by closed subgroups are
cyclic. To finish the proof of Fact 2, we note that Ki_ C3 Fi Fi-1 and so the Galois group Ji
of Fi over Fi_ is isomorphic to Li (see [6, Cor., p. 400] or [5, Chap. VII, Th. 1.12]; [3, Lem.
5.10] gives a related result but deals only with the case of one derivation).

We can now finish the proof of Lemma 2. Let G denote the group of automorphisms of
F0(p) leaving Fi fixed. By Facts and 2, we conclude from the Galois theory that the series
G Go, GI, G2 Gm forms a cyclic Jordan-H61der tower, with Gi-l/Gi being
isomorphic to Ji. Deleting all ’ I, we have a tower of length III. Hence v(G) < III. q

We now turn to the proof of Theorem 1. Observe that N/(p) < N(p), which is not
greater than v(G) by Lemma 1. Thus, we only need to prove that N(p) >_ v(G).

Let B be any/-program for computing p. Without loss of generality, we may assume
that no root-taking operations are used in B, as we can replace any instruction z +- r/ by
two instructions y -- (log r)/d, z - exp(y) without changing the value of r(B). Let the
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instructions be z +-- I, Z2 "<-- 12,..., Zm +-- lm. Let gi(xl, x2 Xn) be the functions
associated with variables zi.

For < < m, let Ki be the differential field obtained by adjoining gi to Ki-1. By
definition, the functions of EB correspond to elements of Km and Fo(p) C Km. By Lemma 2,
this implies v(G) < r(B). This proves v(G) < N(p and completes the proof of Theorem 1.
Corollary follows immediately from the theorem and Lemma 1.

To prove Corollary 2, we note that p is normal and the Galois group G of F0(p) over F0
is isomorphic to Z2n. From the results in [2], [8] (see [8, Lem. 3.2, p. 399]), v(G) is equal to
the number of torsion orders of G, which is clearly n. Corollary 2 follows from the theorem
immediately.
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ALGORITHMS FOR ENUMERATING ALL SPANNING TREES OF UNDIRECTED
AND WEIGHTED GRAPHS*

SANJIV KAPOOR AND H. RAMESH

Abstract. In this paper, we present algorithms for enumeration of spanning trees in undirected graphs, with and
without weights.

The algorithms use a search tree technique to construct a computation tree. The computation tree can be used to

output all spanning trees by outputting only relative changes between spanning trees rather than the entire spanning
trees themselves. Both the construction of the computation tree and the listing of the trees is shown to require
O(N + V + E) operations for the case of undirected graphs without weights. The basic algorithm is based on

swapping edges in a fundamental cycle. For the case of weighted graphs (undirected), we show that the nodes of
the computation tree of spanning trees can be sorted in increasing order of weight, in O(N log V + VE) time. The
spanning trees themselves can be listed in O(NV) time. Here N, V, and E refer, respectively, to the number of
spanning trees, vertices, and edges of the graph.

Key words, spanning tree, undirected graph, weighted graph, enumeration

AMS subject classifications. 68Q25, 68R10

1. Introduction. Spanning tree enumeration in undirected graphs is an important issue
in many problems encountered in network and circuit analysis. Applications are given in
[Ma72]. Weighted spanning tree enumeration in order would find application in a subroutine
of a generate-and-test procedure for connecting together a set of points with the minimum
amount of wire, where the connection satisfies some additional constraint, e.g., a minimum
distance to be maintained between two wires.

Spanning tree enumeration has a long history (see references). Previous techniques em-
ployed for solving the problem include depth-first search [GM78], [TR75], selective genera-
tion and testing [Ch68], and edge exchanging [Ga77]. Of these, Gabow and Myers’ algorithm
[GM78] seems to be the fastest with a time complexity of O (N V) on a graph with V vertices,
E edges, and N spanning trees. Their algorithm requires O (N V) time for generating the trees
themselves and not merely for outputting them. Their algorithm is optimal, up to a constant
factor, if all spanning trees of the graph need to be explicitly output. For many practical ap-
plications, the spanning trees need not be explicitly output and only a computation tree which
gives relative changes between spanning trees is required. We note that from this computation
tree, the spanning trees can be listed explicitly in O(NV) operations, if required.

In this paper, we enumerate spanning trees by listing differences between them. Each
node of the computation tree that describes this procedure represents a spanning tree of the
graph. The spanning trees represented by a node and its parent in the computation tree differ in
exactly one pair of edges, i.e., the spanning tree at any node is obtained by exchanging an edge
in the spanning tree at its parent for an edge not present in that spanning tree. This exchange
is obtained from the fundamental cycles of the graph. An edge external to a spanning tree
can be exchanged with any edge in its fundamental cycle to give a spanning tree which differs
from the original spanning tree in exactly one pair of edges. By repeating this for all external
edges, all spanning trees which differ from the original spanning tree in one pair of edges
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abstract of this work appeared in the proceedings of the Workshop on Algorithms and Data Structures 91, Ottawa,
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can be obtained. The computation tree is generated by repeatedly applying this procedure.
Repetition of the same spanning tree is avoided by following a search tree inclusion-exclusion
strategy. The algorithm presented here outputs, for each node of the computation tree, the
difference between the spanning trees associated with that node and its predecessor in a pre-
order scan of the computation tree. This is done by traversing the computation tree in a

depth-first manner. We describe two algorithms, each requiring O(N + V + E) time. The
first requires O(V2E) space and the second requires O(VE) space. The first algorithm has a
more general methodology and may be more useful in certain applications. It is used in the
weighted case in this paper.

An O (N log V+ VE) algorithm for sorting the nodes ofthe computation tree in increasing
order of weight is also presented here and is based on the fact that there are a bounded
number of exchanges that change one spanning tree into another. To output the spanning
trees in sorted order, however, requires O(NV) operations. The scheme presented betters the
O(N log N) time heapsort used by Gabow [Ga77], which results in a total time complexity
of O (NE + N log N).

In a companion paper [KR92], we use similar techniques to enumerate all spanning trees
of a directed graph in O (N V) time, improving upon the previous best known bound of O (NE)
time [GM78].

Section 2 describes the generation of spanning trees in undirected and unweighted graphs
and 3 describes a way of ordering the spanning trees in the computation tree for weighted
graphs. Each of the sections contains a description of the algorithms and proofs of their
correctness and complexity.

2. Undirected spanning tree enumeration. Let G be an undirected graph with V ver-
tices, E edges, and N spanning trees. E(G) refers to the set of edges of the graph G.

2.1. Algorithm outline. In this section, we present an outline of the algorithm for gen-
erating all spanning trees of an undirected graph.

The algorithm starts off with a spanning tree T, and generates all other spanning trees
from T by replacing edges in T by edges outside T. For undirected graphs, an edge in a
fundamental cycle of the graph can be replaced by its corresponding nontree edge to result in a
new spanning tree. Thus, a number of spanning trees can be generated from a single spanning
tree by exchanging edges in a fundamental cycle with the corresponding nontree edge. This
computation can be represented by a computation tree with spanning tree T at its root nd the
spanning trees resulting from these exchanges at its sons. To generate other spanning trees,
these sons are expanded recursively in the same manner as the root. Thus each node in the
computation tree is associated with a spanning tree of G.

We need to ensure that each spanning tree is generated exactly once. This is done by
a search tree-type computation tree which uses the inclusion/exclusion principle. To aid the
construction of the computation tree, at every node in the computation tree two sets with the
following classification are maintained. For a node x in the computation tree, the set INx
consists of edges which are always included in all spanning trees at x and its descendants in the
computation tree. The set OU Tx contains edges which are not included in any spanning tree
at x or at its descendants in the computation tree. We let S denote the spanning tree generated
at x and Gx denote the current graph obtained by contracting edges in INx and removing
edges in OUT. Note that G may be a multigraph. We define CYCLE to be the set of
fundamental cycles of nontree edges (with respect to Sx) which are in G. We now formally
define the computation tree C(G) with respect to the graph G. C(G) has a spanning tree of G
associated with every node. The computation tree starts with an arbitrary spanning tree at the
root. Let A be a node in the computation tree and let SA be the spanning tree associated with
A. Let f be an edge not in OUTA or SA and let cf (el, e2 ek) be the fundamental cycle
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in GA formed by f with respect to SA. Then A has as its sons Bi, < _< k + 1. (See Fig. 1;
each edge is labeled with the pair of edges exchanged.) For <_ < k, Bi corresponds to the
spanning tree obtained by the exchange (ei, f). Note that ei is not already in INA because
edges in INA are contracted in GA. Bk+l corresponds to a node in the computation tree such
that no descendant of the node has f in the spanning trees generated. Note that the tree at

Bk+ is the same as the one at its parent.

f) (ek,

el

e2

f e3

ek

FIG. 1. C(G).

The IN and OUT sets are formally defined as follows.

INB/
OUTB/
INB+
OUTBk+,
SB.j
E(GB.j)

CYCLEB.

SBk+
E(G+,)

INA to {e, e2 ej-l} U {f}, for < j _< k
OUTA t2 {ej}, for _< j < k
INA
OUTA to {/}

:Sa--{ej}tO{f},forl <j <k
E GA ej with edges el, e2 ej_ f contracted,

forl <j <k
CYCLEA corn c.t. with edges e, e2 ej_ contracted

in each resultant cycle, for _< j _< k
{Here the corn operation combines (see Fig. 3) all cycles
in CYCLEA which contain edge ej with cf and leaves the
other cycles intact}

SA
E(GA) -{f}

CYCLEB+ CYCLEA {cf}

The IN and OUT sets for the root x of the computation tree are both empty. Sx is any
spanning tree, Gx is the original graph G, and CYCLE is the set of fundamental cycles in G
with respect to S. Before we show how to generate the computation tree, we show that C(G)
suffices to generate all the spanning trees of G.

LEMMA 2.1. The computation tree has at its internal nodes and leaves all the spanning
trees of G.

Proof. The proof follows from induction and the inclusion/exclusion principle. The in-
clusion/exclusion is implemented in the computation tree as follows: Let A be the root node
of the computation tree. The subtrees rooted at B1 through B together form the computation
tree of the spanning trees, which have the edge f in them. Bk+ is the root of the computation
tree which computes all spanning trees not containing the edge f. Within the set of spanning
trees which contain f, the subtree rooted at B1 generates spanning trees without el, whereas
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B2 Bk generate subtrees with el. A similar inclusion/exclusion process is repeated at
each of the nodes B2 B/, i.e., the computation subtree rooted at Bj corresponds to the
set of spanning trees which contain the edges el ej_! but not ej. Moreover, the com-
putation subtree corresponding to the inclusion of el ek and f need not be included in
the computation tree since this choice of edges forms a cycle and will not lead to any spanning
tree. 1

In order to analyze the algorithms, it is convenient to define a compressed form C’(G)
of C(G). Having generated node A with spanning tree SA, we find the fundamental cycle
corresponding to some nontree edge f E GA and then the sons B B+l according to
the above description are generated. However, note that the sons of Bk+l will be obtained by
using another nontree edge relative to SA in a graph where f is absent. This is repeated along
the entire rightmost branch of the computation tree. Since all these computations are with
respect to SA alone, we can obtain a compressed version of the computation tree called C’(G)
by considering all the fundamental cycles at node A and applying the inclusion/exclusion

principle over the nontree edges. Figure 2 illustrates the compression. The compressed
computation tree C’(G) has the advantage that each node in the tree corresponds to a unique
spanning tree. Since the compression does not eliminate nodes with distinct spanning trees in
C(G), C’(G) generates all spanning trees of G. Each node of C(G) is associated with exactly
one node of C’(G) and we refer to both nodes by the same name.

A

bl

/
ai+ ai+2 br

ak+2 br+l

al a2 ai ai+l ai+2 aj ak+l ak+2

FIG. 2. C’(G).

To achieve the construction of C(G) in linear time, we outline schemes for finding the
fundamental cycles and generating the sons of a node. An important issue in generating C(G)
is the computation of the set of fundamental cycles at each node of C (G). Note that the current
tree T has been obtained by replacing an edge e in the previous tree T’ by a nontree edge
f. This affects all the fundamental cycles containing the edge e. Each fundamental cycle
containing edge e must now be combined with the fundamental cycle of f, i.e., a new cycle
is obtained by removing edges common to both cycles (see Fig. 3).

In Algorithm 1, at each node A in C(G), an arbitrary nontree edge f in GA is chosen
for exchanging. After each exchange is performed, each of the fundamental cycles affected
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f

FIG. 3. Cycle Combination

by that exchange is combined with the fundamental cycle of f. This is done by scanning the
affected cycles and changing them in time proportional to the sum ofthe lengths ofthe resulting
cycles. Each fundamental cycle generates a number of spanning trees equal to the number
of tree edges in it by exchanging with the corresponding nontree edge. This ensures that the
computation tree is generated in linear time. This approach requires O(V2 E) space and the
data structure for maintaining the fundamental cycles is slightly elaborate. Furthermore, this
involves repeated scanning of an edge which occurs in more than one cycle.

To reduce space and to simplify and speed up the data structures, we describe Algorithm
2. In this algorithm, the tree SA is always a depth-first search tree (d.f.s tree) of GA at each
node A of C(G). This is ensured in the following manner. We start at the root of C(G) with
the d.f.s tree of G. Further, at each node A of C(G), the nontree edges in GA are considered
for exchanges in a particular order. The order is given by the increasing post-order number
of the upper (i.e., closer to the root) endpoints of the nontree edges. Note that since SA is a
d.f.s tree of GA, all the nontree edges are back edges with respect to SA. Clearly, finding the
fundamental cycle of a nontree edge f is now straightforward: it simply involves marching up
SA from the lower endpoint of f to its upper endpoint. As we shall describe later, combinirlg
fundamental cycles now becomes a matter of simply changing the endpoints of some edges.
The total space used in this scheme is O(VE).

We remark that while Algorithm 2 is more efficient, Algorithm is more general. In
particular, it can be used as the base scheme in generating the spanning trees of a weighted
graph in order (4) while Algorithm 2 fails in that application because of its depth-first restric-
tion.

2.2. Algorithm 1 description. The main algorithm, Main, has as input a graph G. It
generates a spanning tree T of G corresponding to the root of the computation tree and
computes the fundamental cycles with respect to T. Main also initializes the data structures,
which will be described shortly.

ALGO Main(G);
Find a spanning tree, T, of G;
Initialize data structures;
Gen(T);

End Main.

The heart of the algorithm is the generation scheme Gen, which generates the sons of a
node in the computation tree and recursively generates the subtrees rooted at them. The entire
computation tree is thus generated in an pre-order traversal of the tree. The following is an
outline of the scheme.
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Gen picks an edge f from F, the data structure which stores all nontree multiedges in the
current graph. It then determines the fundamental cycle cf (e ek) of f with respect
to T, the current spanning tree. Note that el ek are only the tree edges in cf, with the
actual fundamental cycle formed by these edges along with the edge f.

Each edge in cf in chosen for exchange with f in turn. When a tree edge ei is chosen
for exchange, it is removed from the current graph (i.e., put in the OUT set). As a result, all
fundamental cycles containing this edge are now modified, i.e., they now have to be combined
with cf. Note that by this point, the edges el ei-1 are already added to the IN set and thus
are already contracted in the graph and in cf. Furthermore, the edge f must be contracted
in the current graph as it is added to the IN set. These changes are made by procedure
Prepare-for-son.

After the computation subtree rooted at the node corresponding to the exchange (ei, f)
is constructed recursively, the edge ei must now be contracted in the current graph (i.e., added
to the IN set). This is done in the procedure Prepare-for-sons’-sibling-branch.

Finally, the last branch of C(G) involves removal of the edge f from the current graph;
this is done in procedure Prepare-for-final-son. Note that before returning from Gen, the
state of the data structures is restored to that at the time its invocation.

The output of Gen is derived from the variable CHANGES. CHANGES accumu-
lates the exchanges used to derive the current spanning tree from the previous spanning tree

generated. CHANGES is initialized to q by Main and reset whenever a spanning tree is
output. It is modified whenever an edge of C(G) is traversed in the downward direction and
this modification is reversed while backtracking upwards along this edge.

ALGO Gen(T);
mf +- A multiedge in F;
f +-- An edge in mf;
F +-F-mf;
cf +-- the fundamental cycle of f w.r.t T in G;

]* cf +-- (el, e2 e/) in the order they occur in the cycle */

Fori= ltokdo
T’ +- T + f -ei
CHANGES -- CHANGES + {(ei, f)};
Output CHANGES;

/*These are the difference from the last tree generated; */

CHANGES +- dp;
Prepare-for-son(el);
If F - q then Gen(T);
CHANGES -- CHANGES + {(f, ei)};
If < k then Prepare-for-sons’-sibling-branch(ei);

End For
Restore all changes made to the graph and the data
structures in the above For loop;
Restore multiedge mf- f to F;
Prepare-for-final-son( );
If F b then Gen(T’)
Restore changes made to the graph and the data
structures in Prepare-for-final-son;
Restore edge f to multiedge mf in F;

End Gen.
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Next, we describe the subprocedures used by Gen. Their description and performance is
linked to the data structures used. Clearly, the following data structures suffice.

1. The list F of nontree multiedges.
2. A data structure AG to maintain the current graph, which supports the operations of

contracting and deleting edges. As described later, we store only nontree edges in
AG. The tree edges are stored in the following cycle data structure.

3. A data structure C that stores all fundamental cycles ofthe current graph, which allows
for determining the fundamental cycle of a particular nontree edge, determining all
fundamental cycles which contain a particular tree edge, and combining all cycles
containing a particular tree edge with a given cycle.

We describe the subprocedures used by Gen in terms of the operations performed upon
the data structures mentioned above. Each operation will be described in detail later.

PROCEDURE Prepare-for-son(e/);
If then contract nontree edge f in AG;
Combine all cycles in C which contain tree edge
ei with cycle in C corresponding to edge f;

End Prepare-for-son.

PROCEDURE Prepare-for-sons’-sibling-branch(ei);
Contract ei in all cycles in C containing ei;

Modify AG in order to reflect the contraction of ei;

End Prepare-for-sons -sibling-branch.

PROCEDURE Prepare-for-final-son;
Delete nontree edge f from AG;
Modify C to reflect the deletion of nontree edge f;

End Prepare-for-final-son.

Data structures. Next, we give a high level description of these data structures and the
operations performed upon them by the subprocedures. As we will show later, the time spent
in each of these operations can be amortized to nodes of C’(G) and C(G) in a manner such
that each node gets charged a constant amount.

The graph data structure. The graph (which is a multigraph, in general) is maintained
as an adjacency list structure AG of multiedges in the usual manner with just the following
difference: edges that are not in the current spanning tree are maintained. Note that edges
constituting a multiedge are clubbed together in this structure. The edges in the current
spanning tree are maintained as part of the data structure storing the fundamental cycles.

Operations on the graph. Contraction and deletion of edges in AG is done as follows.
Deleting a nontree edge from AG is straightforward and takes constant time, given a pointer
to that edge. Next, consider the contraction of edges. Note that only tree edges are contracted
in the algorithm. Contraction of a tree edge involves merging the adjacency lists of the two
endpoints of the edge and takes time proportional to the number of multiedges in the two
adjacency lists. While this merger is performed, one of the multiedges may become a self-
loop; this multiedge is removed. This ensures that each nontree edge in AG has a fundamental
cycle with at least one tree edge at all times.

LEMMA 2.2. Data structure AG.allows deletion and contraction of nontree edges in
constant time and contraction ofa tree edge in time proportional to the number ofmultiedges
incident upon the two endpoints ofthat edge.

The data structure F. The list F is maintained in the obvious way as a list of lists,
with each list storing a nontree multiedge. These multiedges are linked to the correspond-
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ing multiedges in AG, so changes in AG can be reflected in F in the same time
bounds.

The cycle data structure. The data structure C for storing fundamental cycles is as
follows. The tree edges in each fundamental cycle are stored in a circular doubly linked list in
the order in which they appear. This list is accessible by the corresponding nontree multiedge.
Note that all edges which constitute a multiedge share the same fundamental cycle. For each
tree edge e which is not in the IN set, to find all fundamental cycles containing e, we maintain
a list of fundamental cycles containing e. Furthermore, given a tree edge e which is not in
the IN set, we need to be able to delete e from all cycles containing e in time proportional to
the number of these cycles. Therefore, for each tree edge e, the list containing fundamental
cycles also stores pointers to the location of e in each of the cycles.

Operations on the cycles. Consider deletion of nontree edge f first. If f is not part of a
multiedge then its fundamental cycle must be removed from C and C must then be modified
appropriately. This is easily accomplished in time proportional to the size of this fundamental
cycle. If f is part of a multiedge, then no changes need be made to C. Next, consider
contractions of tree edges. When a tree edge ei is contracted, the change must be reflected in
each of the cycles containing ei. This takes time proportional to the number of such cycles.

It remains to describe the operation of combining cycles. Consider the generation of son

Bi of A. All fundamental cycles containing ei in the current graph must be combined with cf,
the fundamental cycle of f with respect to SA with the edges el ei-| contracted.

The cycle eOlnbination algorithm. We show how to combine cycles c and cf in time
proportional to the size of the resulting cycle. Note that the resulting cycle does not have any
tree edges common to both c and cf. Therefore, the main aim of the combining operation
is to combine c and cf while avoiding the chain of edges common to both c and cf. This
is done as follows. Let al and a2 be the endpoints of the nontree edge g associated with
fundamental cycle c. Let a3 and a4 be the endpoints of the nontree edge f associated with
fundamental cycle cf. We show how to determine the endpoints of the chain D of tree edges,
which constitutes the portion common to c and cf in time proportional to [c[ + [cf[ [D[.
Clearly, by knowing these two endpoints, the resulting cycle can easily be obtained in same
time bound. Thus the time required to combine two cycles is proportional to the size of the
resulting cycle.

We traverse c and cf by using four pointers pl P4, two per cycle, with Pi pointing to

ai initially. There are a number of rounds; in each round, each pointer traverses one edge of
the cycle moving towards the other end of the cycle. Pointer pi stops moving when either it
reaches an edge which has been traversed previously (by some pointer) or it meets another
pointer pj. The latter conditions holds when either pi and pj point to the same vertex or they
cross each other while traversing an edge. The procedure stops when all four pointers have
stopped moving. The number of rounds is at most max{Icl, Ic,. I} [D[ because as long as the
above procedure continues, at least one of the four pointers must be outside D.

We show that the endpoints of D can be inferred from the final positions of the four
pointers. Clearly, some two pointers must meet each other during the above procedure. There
are three cases to consider depending upon which pointers meet. (See Fig. 4; pointers are
shown in their final positions in each case.) First, suppose that the pointers which traverse
c meet each other. Then the pointers which traverse cf must be finally located at the two
endpoints of D. The case where the two pointers which traverse cf meet can be handled
similarly. Second, suppose a pointer which traverses c meets a pointer which traverses cf, but
the remaining two pointers do not meet. These two remaining pointers must be finally located
at the endpoints of D. Third, suppose each pointer which traverses c meets at least one pointer
which traverses cf. Then, it can easily be verified that each pointer which traverses c meets
exactly one of the pointers traversing cf. In this case, two of the pointers, one which traverses
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c and one which traverses cf, must be finally located at one endpoint of D while the other two
pointers must be located at the other endpoint.

P3

Pl, P2 cf

Case Case 2 Case 3

FIG. 4. Three cases in the cycle combination algorithm.

It follows that the cycle combination can be achieved in time proportional to the number
of edges in the resulting cycle.

LEMMA 2.3. The data structure C allowsfor thefollowing items.
1. Deletion ofnontree edge f in time proportional to the size of itsfundamental cycle.
2. Contraction oftree edge ei in time proportional to the number ofcycle it is contained

in.
3. Combining two cycles in time proportional to the size of the resulting cycle.

This ends the description of the data structures.

2.2.1. Analysis. We start with the analysis of the time complexity of Algorithm 1. First,
we show that the total output size of the algorithm is O(N).

LEMMA 2.4. The number of exchanges output by Gen is at most 2N.

Proof Consider internal node x of C(G). For each son y of x, except the last, one
exchange is added to CHANGES when y is generated and its opposite exchange ((e, f) is
the exchange opposite to (f, e)) is added to CHANGES after the sub-tree rooted at y has
been generated. Therefore, the number of exchanges added to CHANGES is at most 2N.
Furthermore, every time CHANGES is output, it is reset to q5 immediately. The lemma
follows. 1

The following lemma is the key one in obtaining the final complexity.
LEMMA 2.5. The work done at each node A ofC(G) is O(]s(A)] / Ig(A)] + r(A)), where

s(A) is the set of sons of A in C(G), g(A) is the set of sons in Cf(G) of nodes in s(A), and
r(A) is the number ofexchanges output at node A.

Proof The work done to output exchanges at A is at most O(r(A)). We consider the other
operations performed at node A and show how to amortize the time spent in these operations
to nodes in s (A) and g (A)

Clearly, the operations performed in Gen (excluding those performed in the subproce-
dures) take time proportional to the number of sons of A. We look at the operations performed
next in the subprocedures.

First, consider Prepare-for-son(el). Through Lemma 2.2, contracting f takes constant
time. According to Lemma 2.3, the time to combine all cycles containing ei with the fun-
damental cycle for f takes time proportional to the sum sizes of the resulting cycles. Each
resulting cycle leads to a number of sons of Bi in C’(G) equal to its size. Thus the time spent
in combining cycles can be charged to the sons of node Bi in C’ (G). Consequently, each node
in g(A) gets charged once for cycle combinations over all calls to Prepare-for-son.

Next, consider Prepare-for-sons’-sibling-branch(ei). First, consider contraction of the
edge ei in C. By Lemma 2.3, contracting ei in C takes time proportional to the number
of cycles it is contained in. Consider each of these cycles following the contraction of ei.
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At most one of these, cj, say, will not contain a tree edge, as edges corresponding to a
multiedge are clubbed together and self-loops are removed as they are formed. Therefore,
each of these cycles except cj and c’ the fundamental cycle of 3" with respect to SA with
the edges e ei-1, ei contracted, will lead to at least one son of Bi+l in C’(G). Next,
consider the contraction of edge ei in AG. By Lemma 2.2, this takes time proportional to
the number of multiedges incident upon the two endpoints of ei. Consider the set M of these
multiedges, excluding the one multiedge which is converted to a self-loop upon contraction,
if any. Following the contraction, we see that each multiedge g 6 M with tree edges other
than the one contracted has a fundamental cycle containing at least one tree edge. (Recall that
self-loops are removed as they are formed.) Therefore, every edge in each such multiedge g,
with the possible exception of the multiedge having the same endpoints as f, gives rise to at
least one son of Bi+l in C’(G). Thus, the time spent in Prepare-for-sons’-sibling-branch(ei)
can be charged to the sons of node Bi+! in C’(G). Therefore, each node in g(A) gets charged
at most twice over all calls to Prepare-for-sons’-sibling-branch.

Finally, consider Prepare-for-final-son. By Lemma 2.2, deletion of f from AG takes
constant time. By Lemma 2.3, deletion of f from C takes time proportional to the size of
its fundamental cycle, which, in turn, equals the number of sons of A in C(G). The lemma
follows.

Next, we obtain the time complexity of Gen and Main.
THEOREM 2.6. All spanning trees can be correctly generated in O(N + V + E) time by

Main.

Proof. First, note that Gen correctly computes the spanning trees at sons of a node
A of the computation tree. This follows from the fact that the cycles and the graph are
correctly updated after the inclusion of edges into the IN and OUT sets. The correctness of
the updates is evident from the operations on the data structures discussed in detail before.
Also note that Gen correctly maintains CHANGE S which stores the difference between the
current tree being output and the last spanning tree generated. Thus Gen correctly generates
the computation tree and outputs the tree differences.

We next compute the time complexity. The preprocessing steps in Main before calling
Gen is called require O(V / E) time, in addition to the time required for setting up the cycle
data structure. The latter can be charged to the sons of the root node of C’ (G). We show next
that the time taken by the call to Gen in Main is O(N).

The total time for outputting exchanges over all invocations of Gen is O (N) by Lemma 2.4.
Next, consider the time spent in a particular invocation of Gen, minus the time for outputting
exchanges in that invocation. Let this invocation correspond to the creation ofthe sons ofnode x
in C (G). By Lemma 2.5, the time taken by this invocation of Gen is at most O (Is (x)I + Ig(x)I).
Summing over all nodes of C(G), it follows that the time taken by the call to Gen in Main is
O(N). The lemma follows.

Next, we analyze the space complexity.
THEOREM 2.7. The space required by the spanning tree enumeration algorithm, Main,

is o(VZE).
Proof At each node of C(G), changes to the data structures need to be stored to enable

restoration later. These changes take O (VE) space and this dominates the space requirement.
The space taken to store changes when the last son of any node in C(G) is generated is O(1).
(Only a nontree edge is deleted.) On any root-to-leaf path in C(G), the number of nodes
which are not the rightmost sons of their respective parents (note that this number is bounded
by the height of C’(G)) is at most V. This is because any two spanningtrees can differ in at
most V pairs of edges. The theorem now follows from the fact that Gen generates C(G)
in a depth-first manner.
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2.3. Algorithm 2 description. We describe a second algorithm based on the use of
depth-first search to construct C (G).

As before, we generate the computation tree, C (G) recursively: The details are as follows.
At the root of the computation tree the spanning tree is constructed by a depth-first scan of
the graph. In fact, we maintain the following invariant: At each node A of the computation
tree, SA is a d.f.s spanning tree of GA. Consequently, all nontree edges in GA are back edges
with respect to SA. This property makes the task of determining and combining fundamental
cycles much easier. In particular, it is no longer necessary to maintain all the fundamental
cycles in a separate data structure. Only the spanning tree SA itself needs to be stored, with
the edges in INn contracted. Given SA, the fundamental cycle corresponding to a particular
nontree edge f 6 GA can now be found by marching along SA from the endpoint farther from
the root to the endpoint closer to the root. This is instrumental in reducing the space bound to
O(VE). The combination of cycles is also simplified, as we will describe below.

Moreover, in order to ensure efficiency we must ensure that all useless tree edges are not
to be considered in the replacement process. Useless edges are those edges that do not give
rise to an exchange and hence to a spanning tree. These are the edges that do not occur in any
cycles; i.e., they are the bridges of the graph. We describe their removal below.

For convenience, let up and down denote the directions towards and away from the root,
respectively. For each nontree edge, its upper endpoint is the one closer to the root.

2.3.1. Maintaining the d.f.s, invariant. We show how to maintain the invariant regard-
ing the d.f.s nature of each spanning tree. Suppose node A of C(G) has been generated and
SA is a d.f.s tree of GA. Assume that the vertices of SA are numbered by a post-order traversal
of SA. At node A, we select the nontree edge f, whose upper endpoint has the least post-order
number among all the nontree edges in GA. Edge f is used as the replacement edge. Further-
more, the tree edges in the fundamental cycle of f with respect to SA are replaced in order,
starting from the edge farthest from the root and proceeding upwards. Let el e be these
tree edges in that order, and let ei (xi-1, xi). We claim that for each of the sons B1 B
of A, the spanning trees at these nodes are d.f.s trees of GA. This is shown in Lemma 2.8.
Before we prove this lemma, we describe the various operations that take place when these
sons are generated. This is helpful in describing the proof of Lemma 2.8.

Let T be the data structure storing the spanning trees. T is implemented in the usual
manner as a set of parent pointers and child pointers. Before any of the sons of A have been
generated, T stores SA. Consider the generation of son Bi of A. The edges e ei-1, f are
all in the IN set and therefore, must be contracted in T. As a result of this contraction, the sons
of x0 xi-1 in T now become sons ofx. Furthermore, all nontree edges in GA which have
one of x0 xi- as their lower endpoints must have their lower endpoint changed to x.
Since edges el el-2, f would already have been contracted before son Bi-1 is generated,
only the sons of xi- need to be made sons ofx, and only the lower endpoints of those nontree
edges which currently have lower endpoint xi-1 need be set to x when son Bi is generated
(see Fig. 5). Note that with this, we have effectively achieved the task of cycle combination.

LEMMA 2.8. For each son Bi, < < k -+- of A, all nontree edges in Gi are back
edges with respect to Sni, assuming that all nontree edges in GA are back edges with respect
to SA.

Proof. For B+, the lemma is easily seen to be true. Consider son Bi, < <_ k.
Consider any nontree edge g in Gni. Note that g 6 GA. The upper endpoint of g in SA must
be either x or an ancestor of x in SA. From the previous paragraph, when Sn is obtained
from SA, the lower endpoint of g either remains unchanged or is changed to x. Furthermore,
any descendant of x in SA remains a descendant of x is Sn Thus all nontree edges in Gs;
are back edges with respect to S. The lemma follows.
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Dark edges are in the IN set.

FIG. 5. Generation of Bi.

2.3.2. Detecting and removing bridge edges in T. Now we show how bridge edges in
T are detected and removed as they are formed. This is initially accomplished by dividing the
graph into its biconnected components and generating the spanning trees for each component
separately. The spanning trees for the entire graph can be obtained easily from the spanning
trees of its biconnected components.

Next, we show how bridges are detected at node A of C(G) when its sons Bl Bk+l
are being generated, assuming that at A, T has no bridge edges. The following observations
are key. Clearly, the only edges in T which can be converted to bridge edges are the edges
el ek. This can happen when either one of the ei’s is deleted or when f is deleted. The
condition that characterizes the situation when ei becomes a bridge edge is as follows. Let
j > be the smallest number such that X/has either a branch (i.e., at least two sons) or
an incident nontree edge. (Note that x.i would be the lower endpoint of such a nontree edge.)
If j > i, then ei is a bridge edge and so are the edges ei+l ej. But ej+l ek remain
nonbridge edges.

The bridge detection procedure which results from the above observations is as follows.
First, consider the deletion of edge ei. By this point, edges e ei- are already contracted.
Among the edges ei+l e, those edges which are converted to bridge edges by this deletion
are ascertained by traversing these edges in the above sequence until a vertex xj, j > i, is found
such that x has either a branch (i.e., at least two sons before the deletion of ei) or a an incident
nontree edge. The edges traversed are converted to bridge edges by the deletion of ei. These
edges are removed from T by simply removing the vertex x_ from T. Furthermore, note that
when the edges ei+ e are deleted subsequently, bridge removal can be accomplished in
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each case by the deletion of xj_ from T. Later, when ej+l is deleted, bridge detection will
be done by traversing the edges ej+2 ek in that order. Next, consider the deletion of edge
f. Bridge detection is done by traversing the edges el ek until a vertex xj, j > O, is
found such that xj has either a branch or an incident nontree edge. Bridge removal involves
removing xj from T.

LEMMA 2.9. The total time taken for bridge detection over deletions of all ofe e
is O(k). The time takenfor bridge detection when f is deleted is also O(k).

2.3.3. Data structures. Next, we describe details of the data structures used as well as
the operations on them along with the time complexity of executing them. Later, we will show
that a result similar to Lemma 2.5 holds for this algorithm too.

Storing tree edges. The data structure T stores the current spanning tree in the form of
a parent pointer and a list of child pointers for each node, with only edges not currently in the
IN set present. Determining the fundamental cycle of a particular nontree edge and deletion
of a tree edge are trivial.

Consider edge contraction next. When edge ei (xi-1, xi) is contracted, the sons of
xi are made sons of x. This takes time proportional to the number of sons of xi. In order
to account for this time, we use the invariant that each edge in T is a nonbridge edge in the
current graph, i.e., it occurs in at least one fundamental cycle.

LEMMA 2.10. Data structure T allowsfor
1. Determining the fundamental cycle of a nontree edge in time proportional to the

length of the cycle.
2. Contracting tree edge ei in time proportional to the number ofsons ofvertex xi in T.

Storing nontree edges. Recall that nontree edges have to be ordered by their upper
endpoints. Furthermore, given a vertex v, we need to be able to determine all those nontree
edges which have a lower endpoint v. These edges are required during the contraction of
edges.

The following lemma is important for maintaining nontree edges in the requisite order.
It shows that this order is independent of the particular node of C(G) that is considered.
Therefore, we can initially order nontree edges in an order given by a post-order traversal of
the spanning tree at the root of C(G); this order will hold throughout the algorithm.

LEMMA 2.1 1. Suppose for edges ea, eh E G ni, the upper endpoint of ea appears before
the upper endpoint of eh in the post-order ordering of vertices in Sni,

< <_ k + 1. Then
the upper endpoint of ea appears before the upper endpoint ofe in the post-order ordering
ofvertices in SA.

Proof. This is clearly true for k + 1. So suppose < k + 1. Edge f (x0, x) has
the least upper endpoint in the post-order ordering of all vertices in SA. When Bi is generated,
only the portion of SA consisting of descendants ofx is modified to give Sn No descendants
of xk can have a greater post-order number than x. The lemma follows. 71

As before, the data structure for storing nontree edges actually stores multiedges. This
data structure has two components, REP-LIST and ADJ-LIST. Modifications to one of them
can be reflected in the other without any extra time overlead by keeping pointers between the
corresponding multiedges in the two structures.

REP-LIST is simply a list of nontree multiedges eligible for replacement, with the mul-
tiedges appearing in the requisite order. At each node A of C(G), an edge f from the first
multiedge in this list is picked for replacement and this edge is deleted from this list to gener-
ate the last son of A; selecting the replacement edge and deleting an edge thus takes constant
time.

For each vertex v, ADJ-LIST stores a list of nontree multiedges which have v for their
lower endpoint. Clearly, for vertex xi, the lower endpoints of all edges which currently have
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lower endpoint X can be changed to xk by merging the multiedge list for X with that for xk.
Any self-loop formed is removed. (Note that since edges are organized into multiedges, at
most one self-loop is formed per merger.) This can be done in time proportional to the number
of multiedges in the two lists.

LEMMA 2.12. Data structures REP-LIST and ADJ-LIST can be maintained such that
1. The replacement edge can be selected and deleted in constant time.
2. The lower endpoints of all nontree edges with lower endpoint xi can be transferred

to x in time proportional to the number ofnontree multiedges incident upon the two
vertices.

3. The ordering ofnontree edges remains unchanged.

2.3.4. Algorithm 2 pseudoeode. For detail and clarity, we present the pseudocode of
Algorithm 2. The main procedure Main2 sets up the initial data structures and then uses Gen2
to generate all spanning trees of G. The basic framework of Main2 and Gen2 is similar to
that of Main and Gen but with one notable difference. Main2 splits G into its biconnected
components and generates all spanning trees of G by using Gen2 to generate all spanning
trees of each biconnected component. Gen2 uses the procedures Combine-Cycles, Remove-
Bridges l, and Remove-Bridges2. The first of these makes the changes required when edge
edge ei-! is contraction and edge ei is deleted in order to generate son Bi of A. The last
two perform the detection and removal of bridges from the graph resulting from deletion of
edges e e and the deletion of edge f, respectively. A stack STACK is used to store
changes made to data structures before recursing so as to undo these changes after the recursion
completes.

ALGO Main2(G)
Determine biconnected components of G (G1, G2 G);
T/ +-- D.F.S tree of Gi, <_ < k;
For eachi, <_i <kdo

Compute REP-LIST and ADJ-LIST;
Use Gen2 to output all spanning trees of G in the
lexicographic ordering of the biconnected components.

End Main2.

ALGO Gen2(T)
If REP-LIST-- cp then return;

f (u, v) <-- First edge in REP-LIST;
/* u represents the lower endpoint of the
back edge in the DFS tree */

Cf <-- (Xl bl, X2 Xk+l U);
/*the sequence of vertices in the fundamental cycle
of f w.r.t T from bottom upwards */

REP-LIST <--- REP-LIST f;
LAST -- The first ancestor of x whose

father either has a branch or a back edge;
/* Useful for bridge elimination, LAST is local to Gen2 */

Fori: ltokdo
e (Xi, Xi+I);
LAST -- Remove-bridgesl (LAST, xi);
T +--T-ef;
IN +-- IN + {f} ;/* Update the IN set*/
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OUT +- OUT + {e};/* Update the OUT set*/

CHANGES +-- CHANGES +{ (e, f) };
Output CHANGES;

/*Output differences from the last tree generated */

CHANGES <--
If < k Combine-cycles(i, x,, f);
Gen2(T);
Restore LAST to T;
CHANGES-- CHANGES +{ (f, e)};
IN +-- IN -{/};
OUT - OUT {e};
T <-- T f + e;/* restoring T */

IN +- IN + {e};/* adding edge removed to OUT set */

inlist +-- inlist U e;
End For;
IN IN inlist;
OUT <-- OUT + {f};
Restore-changes;

/* Undo all changes made by all calls to COMBINE-CYCLES
in the above for loop using STACK to retrieve changes */

ADJ-LIST[x - ADJ-LIST[x f;
/* Prepares for last recursion associated with cf */

LAST +-- Remove-bridges2( );
Gen2(T);
Restore vertex LAST to T;
Restore f to the front of REP-LIST and to ADJ-LIST [x 1];
OUT - OUT -{f};

End Gen2.

Procedure Combine-cycles(i, xk, f);
For each son y of X make father(y) +- xk;

Store the changes made above on STACK;
For each sublist, l, of multiple back edges in ADJ-LIST(xi) do

If edges in have upper endpoint v then
Remove from REP-LIST and ADJ LIST[xi];

/*Edges in are now loops and hence removed */

Store the changes made above on STACK;
else

Transfer to ADJ-LIST(v);
Store the changes made above on STACK;

End Combine-cycle;

Procedure Remove-bridgesl(LA ST, X );
If X father of vertex LAST in T then

LAST +- The first (i.e., closest to xi) ancestor of xi in cf
whose father has a back edge or a branch;

/* LAST is x if no such vertex exists */

Remove vertex LAST from T;
Return(LAST);

End Remove-bridgesl.
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Procedure Remove-bridges2( );
If ADJ LI ST[xl] is empty and x has no son in T then

LAST +-The first (i.e., closest to Xl) ancestor of Xl in cf
whose father has a back edge or a branch;

else
LAST +-

Remove vertex LAST from T;
Return(LA ST);

End Remove-bridges2.

2.3.5. Time and space complexity. Lemma 2.4 holds for this algorithm too. Next, we
show that Lemma 2.5 holds too.

LEMMA 2.13. The work done at each node A of C(G) is O([s(A)[ + Ig(A)l + r(A)),
where s(A) is the set ofsons ofA in C(G), g(A) is the set ofsons in C’(G) ofnodes in s(A),
and r(A) is the number ofexchanges output at node A.

Proof The work done to output exchanges at A is O(r(A)) We consider the other
operations performed at node A and show how to amortize the time spent in these operations
to nodes in s (A) and g (A).

Clearly, the operations performed in Gen2 (excluding those performed in the subproce-
dures) take time proportional to the number of sons of A. We look at the operations performed
in the subprocedures next.

First, consider all invocations of procedure Remove-Bridgesl and Remove-Bridges2. By
Lemma 2.9, the time spent in these procedures is proportional to the number of sons of A in
C(G).

Second, consider the call to Combine-Cycle(i, xk, f). The two major operations done in
this procedure are changing the parent pointers of sons of xi to xk and changing the lower
endpoints of some nontree edges from xi to x. We consider each of these in turn.

First, consider the operation of changing the parent pointers of the sons of xi. By Lemma
2.10, this takes time proportional to the number of sons of xi in T. Since bridges are removed
from T as they are formed, for each son y of xi in T (note that xi- is not in T currently as the
edge (xi-1, xi) is in the IN set), there exists at least one nontree edge f’ such that the edge
(xi, y) belongs to the fundamental cycle of f. The exchange of f’ for (xi, y) leads to a son
of Bi/ in C’(G) to which the time for changing the parent pointer of y can be charged. Thus,
over all calls to Combine-Cycle, each node in g(A) gets charged at most once for changing
parent pointers.

Second, consider the operation of changing the lower endpoints of some nontree edges
from xi to x. By Lemma 2.12, this takes time proportional to the number ofnontree multiedges
incident upon xi and x. At most one of the multiedges incident upon xi, i.e., the multiedge
with upper endpoint x, is converted to a self-loop in the above process. All other multiedges
which are incident upon any ofthe two vertices have a fundamental cycle containing at least one
tree edge; each such fundamental cycle leads to at least one son of Bi/ in C (G). Therefore,
the time spent in modifying lower endpoints in Combine-Cycle(i, xk, f) can be charged to the
grandsons of A through Bi/ in C(G). Thus, over all calls to Combine-Cycle, each node in
g(A) gets charged at most once for changing lower endpoints.

The lemma follows.
THEOREM 2.14. Algorithm 2 generates all spanning trees of T is O(N / V / E) time

correctly.
Proof First we consider correctness. From the discussions in the previous sections, it

is easy to see that Gen generates the computation tree such that SA is a d.f.s, tree of GA.

Thus the cycle and exchange generation process is correct. Note that Gen maintains GA as a
biconnected graph. Since Main calls Gen for each biconnected component all spanning trees
can be generated by taking all possible combinations in the individual components.
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Next we consider the time complexity. Without loss of generality assume that G is
biconnected. If this is not the case, then for the th biconnected component of G having Ni
spanning trees, V/ vertices and Ei edges, the time taken will be O(N1 + V1 + E) and the
time to put the computation trees of the various components together in the obvious manner
will be O(FIiNi + I2,i(Vi + Ei)) O(N + V + E).

From Lemma 2.13, each node of C(G) and C’(G) is charged a constant amount for work
done over all nodes of C(G) and by Lemma 2.4, the total work done to output exchanges
is O(N). Main takes O(V + E) time to construct the initial data structures. The theorem
follows.

THEOREM 2.15. Algorithm 2 takes O(VE) space.
Proof The space required for REP-LIST and ADJ-LIST and T is O(V + E). Stack

space for storing changes to be undone after returning from a recursive call is shown to be
O(VE + V2) as follows. The parent vertex of any vertex is changed at most O(V) times along
any path of C (G). The lower endpoint for any nontree edge is changed at most V times along
any path in C(G). An edge is deleted at most once along any path in C(G). Consequently
storing changes to ADJ-LIST, REP-LIST and T require O(VE) space. So the total space is
O(VE). [3

3. Generating the eornputation tree in increasing weight order. Next, assuming that
the edges of G are weighted, we present an algorithm to generate the nodes of C(G) in
increasing order of weight.

The algorithm follows a branch and bound strategy on the computation tree. The root
of the computation tree is now associated with the minimum spanning tree (MST) of the
graph. The sons of the root are obtained as before by exchanging nontree edges with tree
edges. The exchanges are made according to an order that ensures that the tree resulting
from the exchange is the minimum spanning tree of the updated graph at the correspond-
ing son. To ensure this, the nontree edges are considered for replacement in increasing
order of weight. This is repeated at descendant nodes of the computation tree. The en-
tire computation tree is generated in a branch and bound fashion. To ensure efficiency, we
characterize each spanning tree generated by the exchange pair that generates it in the com-
putation tree. The final algorithm is as follows: The generation algorithm first generates
the tree at the root and the sons at the root are input to a queue indexed by the exchange
pair. The actual sorted order is generated by selecting the minimum tree from among all
queues. This is done by maintaining a priority queue containing the first element of each
queue.

The algorithm that we describe is similar to Gen, but instead of traversing the nodes of
the computation tree in a depth-first fashion, a branch and bound strategy is used where the
node corresponding to the spanning tree that is to be output next is expanded.

ALGO Genwt
Find min spanning tree, MST;
Repeat

Generate sons of node corresponding to MST
by considering nontree edges in increasing weight order;
Put each spanning tree generated into the
queue indexed by the exchange using which it was
obtained from its parent;
Pick minimum weighted spanning trees, MST, from
priority queue;

Until all queues are empty.
END Genwt
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3.1. Correctness and complexity.
LEMMA 3.1. For node A in the computation tree, SA is the Minimum Spanning Tree

of Ga.
Proof The proof is by induction on the level of the tree. At the root, the claim is true by

construction. Assume that the claim is true for a node A. The sons of the node are generated
by considering nontree edges in increasing order of weight. Let the ordered set of nontree
edges at A be fl, f2 fro. Let nontree edge j be used to generate sons B B of A
by exchanging with tree edges el e. Then edges f, f2 J-l are absent from each
of G,,, G,2 G,k. Thus j is the smallest edge that is present in each of these graphs, but
not in SA. For each j from to k, since ej is absent from G;, it follows that S(G,j) is the
MST of G. V]

LEMMA 3.2. The number ofexchanges is at most (V 1)(E V + 1).
Proof The first entry in the exchange pair has V values since the only edges allowed

are those in the spanning tree associated with the root. This is true because the second entry in
the exchange associated with any node is also in the IN set of that node and its descendants.
The second entry in the exchange pair cannot be an edge in the spanning tree associated with
the root, because first entry in the exchange associated with any node is in the OUT set of
that node. The result follows. V]

The next lemma follows from the branch and bound generation of the computation tree.
LEMMA 3.3. The spanning trees enter the queuefor each ofthe exchanges in sorted order.
Thus we have the following theorem.
THEOREM 3.4. Algorithm Genwt correctly sorts the nodes of the computation tree in

O (N log V + VE) time.

Proof The correctness follows from Lemmas 3.1, 3.2 and 3.3. The time may be divided
into generation of nodes in the computation tree and processing of the queues. Generation
of the nodes in the computation tree requires O(N + V + E) time. Processing the queues
requires O(Nlog VE) steps since there are at most O(VE) queues. An initial sorting of
nontree edges may require O (E log E) steps resulting in the required time bound. q

THEOREM 3.5. Genwt requires 0 (N + VE) space.
Proof The proof follows from the space requirements of the computation tree and the

queues.
Output complexity. The output of the algorithm can be the computation tree itself in

which the nodes are numbered according to the order in which they are sorted. Pointers to
these nodes are maintained from a list whose indices give the index of the spanning tree. The
space complexity is O(N) words, where each word has O(log N) bits. The trees can also
be explicitly listed out in O(NV) time. Note that the output time thus exceeds the time for
sorting.

4. Conclusions. This paper presents a methodology for enumerating subgraphs of a
given graph and illustrates this with the spanning tree problem. A companion paper [KKR94]
describes enumeration of directed graphs. Efficient enumeration ofcycles may also be possible
using a similar scheme.

5. Acknowledgments. We thank E C. E Bhatt, N. C. Kalra, S. N. Maheshwari, and S.
Arun-Kumar for comments and pointers to references.

REFERENCES

[Ch68]

[Ga77]

J. E CIGAR, Generation of trees, 2 trees and storage ofmasterforests, IEEE Trans. Circuit Theory, CT-15
(1968), pp. 128-138.

H. N. GABOW, Two algorithms for generating weighted spanning trees in order, SIAM J. Comput., 6
(1977), pp. 139-150.



ALGORrI’HMS FOR ENUMERATING SPANNING TREES 265

[GM78] H.N. GABOW AND E. W. MYERS, Finding all spanning trees ofdirected and undirected graphs, SIAM J.
Comput., 7 (1978).

[Ja89] A. JAMES, A study of algorithms to enumerate all stable matchings and spanning trees, M. Tech. thesis,
Department of Mathematics, 1989, Indian In,stitute of Technology, Delhi, India.

[Jay81] R. JAYAKUMAR, Analysis and study of a spanning tree enumeration algorithm, Combinatorics and graph
theory, Lecture Notes in Math., 885 Springer-Verlag, New York, 1981, pp. 284-289.

[JTS84] R. JAYARAMAN, M. THULASIRAMAI, AND M. N. S. SWAMY, Complexity of computation ofa spanning tree

enumeration algorithm, IEEE Trans. Circuits Systems, CAS-31 (1984), pp. 853-860.
[KJ89] N.C. KALRA AND S. S. JAMUAR, Microprocessor based Char’s tree enumeration algorithm, JIETE, 35

(1989).
[KKR94] S. KAPOOR, V. KUMAR, AND H. RAMESH, Faster enumeration of all spanning trees of a directed graph,

1994, manuscript.
[KR92] S. KAPOOR AND H. RAMESH, An algorithm for enumerating all spanning trees ofa directed graph, SIAM

J. Comput., submitted.
[Ma72] W. MAYEDA, Graph Theory, John Wiley, New York, 1972, pp. 252-364.
[Mi65] G.J. MINTY, A simple algorithmfor listing all trees ofa graph, IEEE Trans. Circuit Theory, CT- 12 (1965),

pp. 120-125.
[Ra90] H. RAMESH, An algorithmfor enumerating all spanning trees ofan undirected weighted graph in increasing

order ofweight, manuscript.
[TR75] R.E. TARJAN AND R. C. READ, Bounds on backtrack algorithms for listing cycles, paths and spanning

trees, Networks, 5 (1975), pp. 237-252.



SIAM J. COMPUT.
Vol. 24, No. 2, pp. 266-278, April 1995

() 1995 Society for Industrial and Applied Mathematics
OO6

PERMUTING IN PLACE*

FAITH E. FICHt, J. IAN MUNROt, AriD PATRICIO V. POBLETE

Abstract. This paper addresses the fundamental problem of permuting the elements of an array of n elements
according to some given permutation. It aims to perform the permutation quickly by using only a polylogarithmic
number of bits of extra storage. The main result is an algorithm whose worst case running time is O (n log n) and
uses O (log n) additional log n-bit words of memory. A simpler method is presented for the case in which both the

permutation and its inverse can be computed at (amortised) unit cost. This algorithm requires O(n log n) time and
O (1) words in the worst case. These results are extended to the situation in which a power of the permutation must

be applied. A linear time, O (1) word method is presented for the special case in which the data values are all distinct
and are either initially in sorted order or will be when permuted.

Key words, permutation, reordering, space, in place

AMS subject classifications. 68P05, 68P 10

1. Introduction. Given an array A[1..n] and a permutation :r n} -- n},
we wish to rearrange the elements of the array in place according to the permutation. More
precisely, the rearrangement consists of performing the equivalent of the n simultaneous
assignments

A[rr(i)] -- A[i] for/ 6 {1 n}.

Thus if the array A originally contains the sequence of values a, a2 an, then, afterwards,
it contains the sequence a-,(), ar-(2) ar-(n).

"In place" means that the algorithm performs the rearrangement by repeatedly interchang-
ing pairs of elements. Hence, the set of values in the array and the number of times each occurs
always remain the same. In particular, this definition precludes moving the elements into an
auxiliary array and then putting each element, one at a time, into its correct location in the
original array. It also means that the array cannot be padded with blanks (see, for example,
[7]) to make it a more convenient size to work with.

The problem of rearranging data arises in a variety of situations. Some examples are trans-

posing a rectangular matrix [12, Ex. 1.3.3-12], [7], rotating a bit map image, and exchanging
two sections of an array [2, p. 134].

In sorting a list with very large records, it might be more efficient to manipulate pointers
to the records rather than the records themselves and, afterwards, put each record into its
appropriate location [13, p. 74]. Another way to sort [13, p. 76] is to first compare every pair
of keys, then, for each record, count the number of other records that should precede it and
rearrange the records accordingly.

In certain circumstances, searching is not most efficient when the elements of the array
are in sorted order. If a large number of searches are going to be performed, it could be
advantageous to rearrange a sorted array first. For example, one can simplify the index
computation in a binary search by organizing the elements into a data structure that implicitly
represents a complete binary search tree (via a breadth first, left to right, enumeration of its
nodes) 1, Ex. 12-6, pp. 136, 183-184], 13, Ex. 6.2.1-24, pp. 422, 670], 12, p. 401 ]. Like a
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heap, an element in location < n/2 has its left and right children in locations 2i and 2i / l,
respectively. When the data is stored on a disk with each block capable ofholding b elements or
in a virtual memory in which each page can contain b elements 13, pp. 472-473], the number
of reads can be minimized by arranging the elements using a similar implicit representation
of a complete (b + 1)-ary search tree [12, p. 401]. These three different arrangements are
illustrated in Fig. 1. In the third case, b 3.

FIG. 1. Three arrangements ofa list oflength 15.

We are interested in the amount of time and additional space needed to rearrange the
elements of the array according to the input permutation. Previously known algorithms for
this problem used either quadratic time or a linear amount of additional space in the worst
case. In this paper, we present a concise algorithm that takes time O(n log n) and uses only
O (log2 n) bits of additional storage. We have a simpler method for the case in which both the
permutation and its inverse are given; it takes the same amount of time and uses only O(log n)
bits. Furthermore, we show how to use the fact that a permutation is known to rearrange the
array either to or from sorted order to obtain an algorithm that takes time O(n) and uses only
O (log n) bits of additional storage.

Throughout the paper, we assume that the permutation Jr is given by means of an oracle.
This models the situation where the value of Jr(i) is computed from (e.g., transposing a
rectangular array) or the permutation cannot be changed (e.g., because it is being used by
other processes). If the permutation is given by an array and its entries can be used to record
information as the algorithm proceeds (perhaps destroying the permutation in the process),
data rearrangement can be done efficiently by using O (n) time and O (log n) additional bits
of storage [13, Ex. 5.2-10, pp. 80, 595]. This is also the case when the permutation is given
as a product of disjoint cycles.

2. Cycle leader algorithms. The cycle structure of the permutation can be exploited to
obtain efficient algorithms for rearranging data. Permutations are composed of one or more
disjoint cycles, as illustrated in Fig. 2. The arrows follow the direction Jr(i), indicating
the direction in which the data should flow.

2 3 4 5 6 7 8 9 10
Jr(i) 3 9 4 2 6 8 7 5 10

2 5 6 ’9 10

FIG. 2. A graphical representation ofa permutation.
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A basic operation is ROTATE (see Fig. 3) which, starting from some designated location
in a cycle, moves the values from one location of the cycle to the next. We call this designated
location the cycle leader. For example, the cycle leader could be the smallest location in the
cycle. Once the cycle leader has been identified, ROTATE can be performed by proceeding
through the cycle, starting with its cycle leader and exchanging the value located at the cycle
leader with the values in the successive locations of the cycle. Each of these other values is
involved in exactly one exchange (that takes it to its correct final location). Thus the time
taken by such an algorithm is proportional to n, the length of the array, plus the amount of
time it takes to find all the cycle leaders.

procedure ROTATE(leader)
+- re(leader)

while/ leader do
interchange the values in A[leader] and A[i]
+- re(i)

FIG. 3. Rotating the values in a cycle.

If the permutation re is given as a product of disjoint cycles, identifying a leader for each
cycle is very straightforward: merely take the first element in each cycle. The problem is
more interesting when re is given as a mapping from the elements n. One way to find
all the cycle leaders in this case is to consider the locations n one at at time and, for
each, determine whether it is a cycle leader.

If an additional, initially empty, bit vector of length n is available, it is easy to determine
whether a location is the smallest element in its cycle in constant time. Specifically, when the
value in an array location is moved, the bit corresponding to that location is set to 1. Since the
locations are considered from smallest to largest, a location under consideration will have its
corresponding bit equal to 0 exactly when it is a cycle leader [12, Ex. 1.3.3-12(b), pp. 180,
517-518]. Similarly, if re is given as an array whose elements can be modified, the same effect
can be achieved by setting rr(i) to when the value in array location is moved.

Determining whether or not a location is the smallest element in its cycle can also be
accomplished by using only a constant number of pointers into the array (each log2 n bits
long). Specifically, starting at the given location, proceed along the cycle until either the
entire cycle has been traversed or a smaller location is encountered. In the first case, the
given location is a cycle leader; otherwise it is not. The total amount of time to consider
all n locations is O(n2). The worst case is achieved when re (1 2 3... n). For random
permutations, an average of O(n logn) steps are performed [11], [13, p. 595].

These two ideas can be combined into the algorithm illustrated in Fig. 4.
THEOREM 2.1. In the worst case, permuting an array of length n, given the permutation,

can be done in O(nZ/b) time and b + O(logn) bits of auxiliary space (consisting of a bit
vector of length b plus a constant number ofpointers) for b < n.

The array A is conceptually divided into [n/bq regions. Each region has size b, except for
the last region, which might be smaller. The bit vector V is used to keep track ofwhich locations
in the region are encountered as the region is processed. If the location under consideration
for being a cycle leader has a corresponding bit with value 0, its cycle is traversed until a
smaller location is encountered. If no smaller location is encountered, then the location is a
cycle leader and the cycle is rotated. Furthermore, if the location under consideration has a
corresponding bit with value 1, then the location was previously encountered as part of a cycle
containing some smaller location in the region and, hence, it is not a cycle leader. Theorem 2.1
follows from these observations.
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for k +-- to In do
s +- (k 1)b
if k <_ Ln/bJ then +- b

else +- n bLn/bJ
for -- to do

g[i] -- 0
fori +-- ltoldo

if V[i] 0 then Vii] +--
j <-- Jr(s + i)
whilej >s+ido

ifj <s+lthenV[j-s] <--
j +-- Jr(j)

if j s + then ROTATE(s + i)

FG. 4. Rearranging an array using a bit vector V oflength b.

If both Jr and Jr- are available, then it is possible to get a more efficient algorithm.
Determining whether or not a given location is the smallest element in its cycle can be done
by starting at the location and proceeding alternatively forwards and backwards along the
cycle until either the entire cycle has been traversed or a smaller location is encountered. (See
Fig. 5.)

for/ 6 {1 n} do
j +- Jr(i)
if j # then k - Jr (i)

whilei <jandi <kdo
if j k then ROTATE(i)

exit
j <-- Jr(j)
if j k then ROTATE(i)

exit
k +- Jr-l (k)

FIG. 5. Rearranging an array using a permutation and its inverse.

THEOREM 2.2. In the worst case, permuting an array of length n, given the permutation
and its inverse, can be done in O(n log n) time and O(log n) additional bits ofstorage.

The analysis is similar to the bidirectional distributed algorithm for finding the smallest
element in a ring of processors [8]. Specifically, the algorithm cannot determine whether is
a cycle leader after proceeding steps forwards and steps backwards along the cycle starting
from i, only if the elements following and the elements preceding in its cycle are all
larger than t. Furthermore, this will be the case for at most /t of the choices for i.

It is interesting to compare this algorithm to the O(n2) time O(logn) space algorithm
mentioned above. Their expected behaviour on a random permutation is identical. However,
the algorithm in Fig. 5 eliminates the bad cases.

It is not necessary that the cycle leader be the smallest (or largest) location in the cycle.
One approach is to apply a hash function to the elements of the permutation and take as cycle
leader the location in the cycle that hashes to the smallest value. Starting at a given location, the
algorithm proceeds along the cycle until either the entire cycle has been traversed or another
location that hashes to a smaller value is encountered. If the hash function is randomly chosen
from among a set of 5-wise independent hash functions, then this results in a randomized
algorithm using O(log n) space and expected time O(n log n) for every input permutation [9].

It was not clear to us whether or not it was possible to have a deterministic algorithm that
used n log() n time and log(t) n space without having the inverse permutation available.
However, using a rather different approach, we were able to devise such an algorithm.
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THEOREM 2.3. In the worst case, permuting an array of length n, given the permutation,
can be done in 0 (n log n) time and 0 (log2 n) additional bits ofstorage.

First, consider the following characterization of the minimum locations in the cycles of
the permutation Jr. Let E {1 n} and Jrl Jr. For r > 1, we inductively define
Er C_ Er_ to be the set of local minima encountered following the permutation Jrr-, that
is, Er {i E Er_ Jrr-ll(i) > < Jrr-l(i)}. We also define Jrr Er --+ Er to be
the permutation that maps each element of Er to the next element of Er that is encountered
following the permutation Jrr-1. In other words, if Er, then Jrr(i) Jrrm_l (i), where m
min{m > 0 Jrrm_l(i) 6 Er}, and Jrr(i) Jr(i), where M min{M > 0 Jr4(i) 6 Er}.
We call Er the set of order r elbows.

For example, if Jr (1 5 3 610 4 29 87 11), as illustrated in Fig. 6, then
El ={1,2,3,4,5,6,7,8,9,10,11}, Jr =(1536104298711),
E2 l, 2, 3, 7}, 7/"2 (1 3 27),
E3 {1,2}, Jr3 (! 2),
E4 }, and Jr4 (1).

11

10

9
8 7

Jr2

7/"

5 4

3

FIG. 6. A cycle and its elbows.

No more than half the elements in any cycle are local minima. Thus IErl < IEr-I I/2.
The minimum element of a cycle of Jr is always in Er if the cycle contains more than one
element of Er-l. Hence the minimum element in a cycle is the unique elbow of maximum
order in its cycle.

Computing the sets of elbows El, E2 and the corresponding permutations Jr, 7/"2

can be done either in a top-down fashion, analogous to recursive descent parsing, or bottom-
up, analogous to shift-reduce parsing. We explore both approaches in the two algorithms that
follow.

The unidirectional nature of our oracle means that given 6 Er, it is easy to compute
Jrr(i) but difficult to compute Jrr- (i). Thus determining whether is a local minimum of Jrr
(i.e., whether or not Er+l) is difficult starting from i, but easy starting from i’s predecessor
in Jrr. For example, in Fig. 6, starting from 5 we can recognize that its successor, 3, is a local
minimum in Jr. In turn, starting from 3 we can recognize that 2, its successor in Jr2, is a local
minimum in Jr2.
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For each cycle, the algorithm in Fig. 7 chooses the leader to be the unique element in
the cycle such that Jr,,._ Jr (i) 6 E,,., where s is the maximum order of any element in the
cycle. In other words, an element can be rejected as soon as it is seen not to be the element of
maximum order. Dolev, Klawe, and Rodeh [4] and Peterson [14] independently discovered
the usefulness of this choice of cycle leader for electing a leader in a unidirectional ring of
processors using O (n log n) messages.

The procedure call NEXT(r) is used to compute successive elements of Jrr. It does this
recursively, using successive elements of Jrr-1.

For each 6 n}, the main program tests whether or not Jr (i) 6 E2 by comparing
Jrl (i) with and Jrljr (i); if so, it next tests whether ornot JrZjrl (i) G E3 by comparing JrZjrl (i)
with Jr (i) and Jr2jrZjrl (i), etc. One test is performed each iteration of the inner for loop.
Eventually, a value of r is found such that Jrr-I... Jrl (i) 6 Er but Jrrjrr-1... Jr (i) Er+.
There are three possible ways this can occur. One is when Jrrjrr-1-.- Jr (i) Jrr-I Jr (i).
Then, since Jrr is a permutation, this implies that the cycle of Jrr that contains Jrr- Jr (i)
is trivial and thus Jrr- Jrl (i) is the minimum element in the cycle of Jr that contains it. In
this case, is a cycle leader. The other possible situations are when either Jrr-1-.-Jr (i) <
Jrrjrr-I Jrl (i) or Jrrjrr- Jr (i) > Jrrjrrjrr-1 ..-Jrl (i). In both these cases, the algorithm
detects that Jrrjr-.-. Jr (i) is not the minimum element in its cycle and thus that is not a
cycle leader.

Using O(log2 n) space, very little information about each permutation can be stored. We
show that, essentially, only the most recently detected elbow of each order need be stored.
The algorithm in Fig. 7 stores this information in the array elbow. For r > 1, elbow[r] is
used to store an element of Er. Immediately prior to a call to NEXT(r), the elements satisfy
the condition

7rr-I 7rl
elbow[r] elbow[r- 1] -+ ...--+ elbow[O]

and immediately afterwards, they satisfy the condition

7rr_
elbow[r] - elbow[r- 1] --+ ...-+ elbow[O].

The procedure NEXT(r) computes Jrr (elbow[r]). This leaves elbow[r] unchanged and places
the result in elbow[r 1] (and, of course, updates the earlier elements in the array).

If r > 1, NEXT(r) recursively computes successive elements along Jrr_l, starting from
elbow[r], until a local minimum is detected. Since elbow[r] Er, elbow[r] < Jr-I (elbow[r]).
Initially, elbow[r elbow[r] and elbow[r 2] Jrr- (elbow[r]); thus elbow[r <
elbow[r 2]. The first while loop in NEXT(r) advances elbow[r 1] (and elbow[r
2] elbow[O], recursively) as long as Jrr- is strictly increasing. The cycle of Jrr- con-
taining elbow[r] is not trivial; thus, when the first while loop terminates, elbow[r 1] >
elbow[r-2] Jr_ (elbow[r- ]). The second while loop continues advancing elbow[r-
(and elbow[r 2] elbow[O], recursively) as long as Jrr-1 is strictly decreasing. At the
end of the second while loop, elbow[r < elbow[r 2] Jrr-1 (elbow[r ]). Hence
elbow[r- is the next local minimum ofjrr_l. In other words, elbow[r- Jr,(elbow[r]).

Suppose i’ Jrrjr-l...jrl(i) G Er Er+. At the beginning of the rth iteration
of the inner for loop of the main program, elbow[r] Jrr-...jrl(i) Jr-(i’) Er.
When the computation detects that i’ ’ E+, either elbow[r] Jr;-(i’) and
elbow[r- 1] i’ or elbow[r] i’ and elbow[r- 1] Jrr(i’). Furthermore, elbow[O]

Jrl Jrr- (elbow[r ]). It is easy to prove by induction on r that if j 6 E and M is the
smallest positive integer such that Jr Jrr-1 (j) Jr m (j), then Jr L (j)

_
Er for < L < M.

Thus, starting from i’ and proceeding along Jr, the element Jr Jrr-ljrr(i’) will be reached
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procedure NEXT(r)
ifr then elbow[O] -- 7r(elbow[1])

else while elbow[r 1] < elbow[r 2] do
elbow[r- 1] +-elbow[r- 2]
NEXT(r- 1)

while elbow[r- 1] > elbow[r- 2] do
elbow[r- 1] -elbow[r- 2]
NEXT(r 1)

return

fori 6{1 n}do
elbow[O] -- elbow[l] +--
forr +- 1,2 do

{loop invariant: elbow[r] 7rr_ 7rzZrl(i) G Er}
NEXT(r)
if elbow[r] > elbow[r- 1]
then elbow[r] +-- elbow[r 1]

NEXT(r)
if elbow[r] > elbow[r- 1] then exit
elbow[r + 1] +-- elbow[r]

else if elbow[r] elbow[r 1] then ROTATE(i)
exit

FIG. 7. A recursive algorithm that rearranges an array using O(n log n) time and O(log n) space.

2(i,). Similarly, starting from i’ and proceeding backwards along 7r, the elementbefore
-1 Zrr-_lrr-i (i’) will be reached before 7rr-2(i’). Therefore, testing whether or not--Tr

is a cycle leader involves proceeding along 7r in a subsegment of the region between 7rr-2(i ’)
and 7rr

2 (i’).
Considering all i’ E,. Er+, the permutation 7r is evaluated less than 4n times. (In

fact, 7r is evaluated at most 4 times at each element.) Since Er is empty for r > log2 n, the
algorithm proceeds a total of O(n log n) steps along

Each call of NEXT(I) proceeds one step along 7r. Each call of NEXT(r), for r > 1,
involves at least two recursive calls to NEXT(r 1). The total amount of work performed by
this call (excluding the work performed by the recursive calls) is proportional to the number
of recursive calls it makes. For each i, every iteration of the inner for loop performs a constant
amount of work (excluding the work performed by the subroutines it calls) and, except for
possibly the last iteration, involves two calls to NEXT. Thus the total amount ofwork performed
by the entire algorithm is proportional to the total number of steps the algorithm proceeds along
7r plus O (n) steps to rotate all the cycles.

When zr consists of a single cycle with the elements {0 n 1} ordered lexico-
graphically with respect to the reverse of their (log n)-bit binary representations (for example,
:r (0 4 2 6 5 3 7)), the algorithm actually uses f2(n logn) steps. Hence the running time
of the algorithm is in (R)(n log n).

The algorithm uses (R)(log n) variables, each capable of holding one element in n}.
With care in implementation, only O (log n) bits are needed for representing the program stack.
Thus a total of (R)(log2 n) bits of additional space are used by this algorithm.

An iterative, bottom-up version of the algorithm in Fig. 7 is given in Fig. 8. As elbow[O]
is advanced along the cycle of 7r containing i, elbow[r], for r > 1, records the most recent
element of E that has been detected. Each time a local minimum along rr_l is detected,
elbow[r] is advanced to that location. The variable state[r] encodes information about the
portion of the cycle of 7r that is being examined.

The first time an element of E is detected, state[r] is set to GOT_ONE and elbow[r]
7/’r-1 1 (i). When the next element of Er (along zrr) is detected, the algorithm can determine
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for/ 6 {1 n} do
elbow[1 +-
state[ +- GOT__ONE
repeat

r+-I
elbow[O] +- :r(elbow[1])
while state[r] =DOWN and elbow[r] < elbow[r 1] do

state[r] +-UP
elbow[r] +- elbow[r- 1]
r+-r+l

case state[r]

GOT_ONE: if elbow[r] > elbow[r- l]
then state[r] +- GOT_TWO

elbow[r] +- elbow[r- 1]
else if elbow[r] elbow[r 1] then ROTATE(i)

exit

GOT_TWO: if elbow[r] > elbow[r 1] then exit
state[r + l] +- GOT__ONE
elbow[r + 1] +- elbow[r]
state[r] +- UP
elbow[r] +- elbow[r- 1]

UP: if elbow[r] > elbow[r- l] then state[r] +- DOWN
elbow[r] +- elbow[r- 1]

DOWN: elbow[r] +- elbow[r- 1]

FI. 8. An iterative algorithm that rearranges an array using O(n log n) time and O(log n) space.

whether i’s cycle contains only one element in E. If so, is the leader of its cycle. Otherwise
the algorithm sets state[r] to GOT__TWO and tries to determine whether ornot 7rTr_ :r (i)
is a local minimum of 7r (and hence an element of Er+,).

If state[r] UP, then elbow[r] is known to be larger than r’ (elbow[r]), which is its
predecessor along 7r. Similarly, if state[r] DOWN, then elbow[r] is known to be smaller
than 7r- (elbow[r]), which is its predecessor along 7r. This information is sufficient to detect
successive local minima along 7r. Figure 9 illustrates the states that occur as the algorithm
proceeds along a cycle.

I GOT_TWO
GOT ONE UP DOWN UP

FI6. 9. The states occurring in the iterative algorithm.
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procedure ROTATE BACKWARDS(leader)
j +- leader
+- re(leader)

while leader do
interchange the values in A[j] and A[i]
j+-i
+- zr(i)

FIG. 10. Rotating the values backwards in a cycle.

procedure EXCHANGE(i, j, m)
repeat m times

interchange the values in A[j] and A[i]
+- re(i)

j +- re(j)

procedure ROTATE(q, leader, cyclelength)
irun +- q mod cyclelength
jrun +- cyclelength irun
+- leader

j +- leader
repeat irun times

j +- re[j]
while irun # jrun do

ifirun < jrun
then temp --EXCHANGE(i, j, irun)

+- temp
jrun +- jrun irun

else emp -EXCHANGE(i, j, jrun)
j +- temp
irun <-- irun jrun

EXCHANGE(i, j, irun)

Fie. 11. Rotating the values q steps in a cycle.

A small but natural twist on our problem is that we are given rr, but required to move
the elements according to re-. The cycle leader technique of Theorem 2.3 is still applicable.
It is only necessary to replace ROTATE by the procedure ROTATE BACKWARDS given in
Fig. 10.

Clearly this step requires time linear in the size of the cycle, and O(log n) bits of memory.
The problem is easily generalized to being given re (and perhaps re-l) and asked to apply
rrq, where q may depend on the (length of the) cycle. Either one of the cycle leader methods
is applicable. We need only define a modified procedure ROTATE(q, leader, cyclelength).
This is essentially the same problem as transposing an array. The following is a translation
into our terms of the method discussed in [2, p. 134]. Suppose that the m elements along re

starting at location are distinct from the m elements along re starting at location j. Then the
procedure EXCHANGE(i, j, m) exchanges these two sequences of elements. Both and j are
advanced m locations along the cycle as a result of an execution of the procedure EXCHANGE
in Fig. 11.

We see that, including calls to re, the ROTATE algorithm requires time proportional to the
length of the cycle in question; hence we can strengthen Theorems 2.2 and 2.3.

COROLLARY 2.4. In the worst case, permuting an array of length n according to the per-
mutation req, given re and its inverse, can be done in O(n log n) time and O(log n) additional
bits ofstorage.
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COROLLARY 2.5. In the worst case, permuting an array of length n according to the
permutation req, given the permutation re, can be done in O(n log n) time and O(log2 n)
additional bits ofstorage.

3. Permuting data in and out of order. In many situations, it is known that the array
elements satisfy a fixed total order, i.e., when the data values are taken in a particular order,
they form a sorted sequence. Suppose the array A has been rearranged according to the
permutation re and let r be a permutation such that

A[cr -l(1)] < A[a -(2)] < < a[a -(n)].

Then element A[i] has the cr(i)th smallest value, for n. In particular, if or(i) >
or(re(i)) then A[i] > A[re(i)]. For example, if the permutation re rearranges the array A into
sorted order, then a is the identity permutation and if A was sorted before the rearrangement,
then a re- 1.

Consider the rearrangement algorithm in Fig. 12. In particular, if the permutation re
rearranges the array A into sorted order, then the algorithm is simply looking for places where
the permutation wants to move an element to a lower numbered location and the element is
smaller than the element that is currently there.

for/ E {1 n}do
if (or(i) > a(re(i))) and (A[i] < A[re(i)])

then ROTATE(i)

FIG. 12. Rearranging an array ofdistinct elements that satisfy a fixed total order.

Notice that after the cycle containing location has been rotated, or(i) > r (re(i)) implies
A[i] > A[re(i)]. Thus each nontrivial cycle is rotated at most once.

Now suppose that no two consecutive elements along any nontrivial cycle have the same
value, i.e., -7/: re(i) implies A[i] A[re(i)] for all E n}. This condition is certainly
true if the elements of the array A are distinct. We claim that before a given nontrivial
cycle of the permutation re has been rotated, there is a location in that cycle such that
or(i) > or(re(i)) and A[i] < A[re(i)]. This implies that the cycle will be rotated at least once.
Let be any location in the cycle that satisfies a(i) > or(re(i)) < o-(re2(i)). (This will be
the case, for example, when re(i) is the location containing the smallest value in the cycle.)
The cycle leader will be the first such location encountered. After the cycle has been rotated,
A[re(i)] _< A[re2(i)], since r(re(i)) < cr(re2(i)). Also, the values in locations re(i) and re2(i)
were initially in locations and re(i), respectively. Hence, before the rotation, A[i] <_ A[re(i)].
However, A[i] A[re(i)], so A[i] < A[re(i)], as required.

It is not necessary to rotate a cycle if all the elements it contains have the same value.
However, there are other situations where a nontrivial cycle contains consecutive elements
with the same value and the algorithm in Fig. 12 does not rotate the cycle. The example in
Fig. 13 is constructed using two distinct values, o and/, where c < ft. It assumes the array
is to be rearranged into sorted order. Except for the two middle elements, the array is already
sorted, but since these two elements can be arbitrarily far apart in the cycle, no local test (such
as the one in the algorithm in Fig. 12) can succeed in detecting them.

Notice that a cycle containing runs of equal-valued elements has the same effect as the
cycle taking the beginning of each run to the beginning of the next run. Since no consecutive
elements of this latter cycle have the same value, the technique used by the algorithm in
Fig. 12 can be applied to identify a cycle leader.

If the functions re and are can be evaluated in constant time (which is the case when re

rearranges the array either into or out of sorted order), then the algorithm in Fig. 14 runs in
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FIG. 13. An example with runs of equal-valued elements.

linear time. This is because the algorithm goes through the while loop at most once for each
run of equal-valued elements in a cycle. In fact, the linear time bound holds also under a
weaker assumption.

fori 6 {1 n}do
if a[i] a[re(i)] then

j +-- re(i)
while a[j] a[re(j)] do j +- re(j)
if (r(re(i)) > r(re(j))) and (a[re(i)] < a[re(j)]) then ROTATE(i)

FIG. 14. Rearranging any array ofelements that satisfy afixed total order.

THEOREM 3.1. Suppose that after the array A ispermuted according to the permutation re,
it satisfies A[o--l(1)] < A[o--l(2)] < < A[o--l(n)]. Ifall the elements re(l) re(n),
rre (1) cr re (n) can be computed in time 0 (n), then A can be permuted according to re by
using O(n) time and O(log n) additional bits ofstorage, in the worst case.

The proof follows from the observation that, for each element i, re(i) and rre(i) are
computed only a constant number of times during the course of the algorithm in Fig. 14. The
running time of this algorithm is clearly dominated by the time spent performing these function
evaluations.

The application that sparked our interest in the problem of rearranging data was building
a data structure implicitly representing a complete binary search tree, given a sorted array of
appropriate length n. Here the median is the root and is placed in location 1. Its children, the
first and third quartiles, are in locations 2 and 3, respectively. In general, the left and right
children of the element in location j are in locations 2j and 2j + (like a heap). Bentley

anticipates the result shown here in crediting Mahaney and Munro with a linear algorithm
for this special case. In this case, the permutation re satisfies the property that if x 10 is the
log2 n]-bit binary representation of i, then 0 lx is the [log2 nq-bit binary representation of
7r(i).

When n 2h + r, where _< r < 2h, the sorted array can be rearranged to implicitly
represent a binary search tree which is complete except for its last level and such that the nodes
in the last level are as far left as possible. One method is to apply two permutations to the
array. The first permutation re’ moves the r values 1,3, 5 2r that belong in the last
level of the tree to their correct locations at the end of the array, while keeping the other values
in sorted order. Specifically,

2h+(i-1)/2 if is odd and <2r,
re’(i) i/2 if is even and < 2r,

i- r if > 2r.

The second permutation then rearranges the first 2h elements of the array into the implicit
representation of a complete binary search tree, as above. Another method is to combine these
two permutations into one, defining re as follows.
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if is odd and <2r
then 7r(i) 2h + (i 1)/2
else re(i) is the number represented by 0 lx,

i/2, if is even and < 2r,where x 10 is the h-bit binary representation of r, if > 2r.
For most instruction sets, computing re once could take as much as O (log n) steps in the

worst case. However, using only left and right shifts of distance one and single bit assignments
and tests, O(n) operations suffice to evaluate re(i) for all E n}. As mentioned above,
this is sufficient to obtain a linear time algorithm.

4. Conclusions. Since most permutations fix very few of their elements, any algorithm
must take f2 (n) time on average and, hence, in the worst case. Also, f2 (log n) additional bits
of storage are needed to provide pointers to array elements that are being interchanged.

The open question that remains is whether there are better algorithms for rearranging
an array given an arbitrary permutation re (and also possibly re-l). Specifically, are there
algorithms that use a small amount of additional space (e.g., O(log n) or log1) n) and only
linear time? If not, are there deterministic algorithms that, given only re, run in O (n log n)
time but use only O(log n) bits of additional storage?

When b n/ log log n, the algorithm in Fig. 4 uses O (n log log n) time and O (n/ log log n)
bits of additional storage. However, it is not even known whether there is an algorithm that
uses o(n log n) time and O(n-) space for some constant > 0.

All of the algorithms presented in this paper are cycle leader algorithms. They proceed by
identifying exactly one element in each cycle and rotating the cycle starting from that element.
Performing all the rotations requires only linear time and two pointers. This leaves the problem
of finding a leader for each cycle, or equivalently, finding the minimum element in each cycle.
Cook and McKenzie [3] have shown that these problems and, more generally, computing the
disjoint cycle representation of a permutation are NC 1-complete for deterministic logspace.

A previous version of the algorithm in Fig. 7 was interesting from the point of view that
it did not operate by determining cycle leaders. Instead, it performed sweeps up and down the
array, at each point deciding whether or not to interchange that element with another element
and, if so, which one. It would be interesting to know if any algorithm for permuting an array
can be transformed into a cycle leader algorithm. This would allow us to restrict attention to
cycle leader algorithms when searching for new algorithms or trying to prove better tradeoffs.

The algorithms in Figs. 5, 7, and 8 and the O(n2) time, O(log n) space algorithm discussed
before Fig. 4 can all be viewed as instances of a restricted type of cycle leader algorithm.
Specifically, they separately test each element E n} to see if it is a cycle leader by
comparing elements forwards and/or backwards along the cycle. The tests depend only on the
permutation re and the values of i. They do not depend on the order in which the elements are
tested, as is the case for the algorithm in Fig. 4 (when b > 1) and the algorithm in Fig. 14, nor
on the data values stored in the array, as is the case for the algorithm in Fig. 14.

Such algorithms are interesting because they immediately lead to distributed algorithms,
using only comparisons of ID’s, for electing a leader in a bidirectional ring of synchronous
processors. Processor tests whether element is the leader of its cycle once it has learned
the ID’s of a sufficient number of its successors and predecessors. It requests these ID’s by
sending messages forwards and backwards around the ring for distances which are successive
powers of 2. (See [8].) The total number of messages sent is proportional to the time taken by
the cycle leader algorithm. Frederickson and Lynch [5] hava shown that any such distributed
leader election algorithm sends f2 (n log n) messages in the worst case. Thus these restricted
types of cycle leader algorithms must use at least f2 (n log n) time in the worst case. On the
other hand, it is not clear how algorithms for electing a leader in a ring of processors can be
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used to obtain cycle leader algorithms. The major problems seem to be how to deal with the
timing of messages and how to represent the states of all the processors using less than a linear
amount of space.
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Abstract. Measure-theoretic aspects of the <Pro-reducibility structure of the exponential time complexity classes
E=DTIME(2linear) and E2 DTIME(2plynmial) are investigated. Particular attention is given to the complexity
(measured by the size of complexity cores) and distribution (abundance in the sense of measure) of languages that
are _<Pro-hard for E and other complexity classes.

Tight upper and lower bounds on the size of complexity cores of hard languages are derived. The upper bound
says that the _<Pro-hard languages for E are unusually simple, in the sense that they have smaller complexity cores than
most languages in E. It follows that the <P -complete languages for E form a measure 0 subset of E (and similarly in
E2).

This latter fact is seen to be a special case of a more general theorem, namely, that every <Pro-degree (e.g., the
degree of all <P -complete languages for NP) has measure 0 in E and in E2

Key words, computational complexity, complexity classes, complete problems, complexity cores, polynomial
reducibilities, resource-bounded measure

AMS subject classification. 68Q 15

1. Introduction. A decision problem (i.e., language) A

___
{0, 1}* is said to be hard

for a complexity class C if every language in C is efficiently reducible to A. If A is also
an element of C, then A is complete for C. The most common interpretation of "efficiently
reducible" here is "polynomial time many-one reducible," abbreviated "<’-reducible" (See
2 for notation and terminology used in this introduction.) For example, in most usages,
"NP-complete" means "_< em -Complete for NP," the completeness notion introduced by Karp
15] and Levin 16].

In this paper, we investigate the complexity (measured by size of complexity cores) and
distribution (i.e., abundance in the sense of measure) of languages that are _<Pm-hard for E
(equivalently, E2) and other complexity classes, including NE (By "measure" here, we mean
resource-bounded measure as developed by Lutz [17] and described in 3 of this paper.)
We give a tight lower bound and, perhaps surprisingly, a tight upper bound on the sizes of
complexity cores of hard languages. More generally, we analyze measure-theoretic aspects of
the <Pm-reducibility structure of exponential time complexity classes. We prove that <m-hard
problems are rare, in the sense that they form a p-measure 0 set. We also prove that every
<P-degree has measure 0 in exponential time.--m

Complexity cores, first introduced by Lynch [24] have been studied extensively [8]-[ 12],
14], [27]-[29]. Intuitively, a complexity core of a language A is a fixed set K of inputs such

that every machine whose decisions are consistent with A fails to decide efficiently on all but
finitely many elements of K. The meaning of "efficiently" is a parameter of the definition that
varies according to the context. (See 4 for a precise definition.)

Orponen and Sch6ning [28] have established two lower bounds on the sizes of complexity
cores of hard languages. First, every _<m-hard language for E has a dense P-complexity
core. Second, if P - NP, then every <Pm-hard language for NP has a nonsparse polynomial
complexity core.
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In 4 below, we extend the first of these results to languages that are weakly <Pm-hard
for E. (A language A is <Pm-hard for E if every element of E is _<Pm-reducible to A. A language
A is weakly <Pm-hard for E if every element of some nonnegligible (i.e., nonmeasure 0) set of
languages in E is reducible to A. Very recently, Lutz 19] has proven that "weakly _<Pro-hard"
is more general than P<m-hard. Specifically, we prove that every language that is weakly
<P-hard for E or E2 has a dense exponential complexity core. It follows that if NP does--m

not have measure 0 in E or E2, then every _<Pm-hard language for NP has a dense exponential
complexity core. This conclusion is much stronger than Orponen and Sch6ning’s conclusion
that every such language has a nonsparse polynomial complexity core, although it is achieved
at the cost of a stronger hypothesis. This hypothesis, originally proposed by Lutz, is discussed
at some length in [18], [23], and [22].

In 5 we investigate the resource-bounded measure of the lower _<m-spans, the upper
<Pm-spans, and the <m-degrees of languages in E and E2. (The lower <m-span of a is the
set of all languages that are _<Pm-reducible to A. The upper <_Pm-span of A is the set of all
languages to which A is <Pm-reducible. The <_Pm-degree of A is the intersection of these two

spans.) We prove the Small Span Theorem, which says that if A is in E or E2, then at least one
of the upper and lower spans must have resource-bounded measure 0. This implies that every
_<Pm-degree (e.g., the degree of all <Pm-complete languages for NP) has measure 0 in E and in

E2. It also implies that the <Pm-hard languages for E form a set of p-measure 0. As noted in

7, a proof that this latter fact holds with <Pm replaced by < would imply that E BPP.
Languages that are _<Pm-hard for E are typically considered to be "at least as complex as"

any element of E. Very early, Berman [6] established limits to this interpretation by proving
that no _<Pm-complete language is P-immune, even though E contains P-immune languages. (In
fact, Mayordomo [25] has recently shown that almost every language in E is P-bi-immune.)
In 6 below we prove a very strong limitation on the complexity of _<m-hard languages for
E. We prove that every <Pm-hard language for E is decidable in < 24n steps on a dense set of
inputs which is also decidable in < 24n steps. This implies that every DTIME(24n)-complexity
core of every <Pm-hard language for E has a dense complement. Since almost every language
in E has {0, 1}* as a DTIME(24n)-complexity core (as proven in section 4), this says that
_<m-hard languages for E are unusually simple, in that they have unusually small complexity
cores. Intuitively, we interpret this to mean that the condition of being _<Pro-hard for E forces
a language to have a high level of organization, thereby forcing it to be unusually simple in
some respects.

2. Preliminaries. Here we present the notation and terminology that we use throughout
the paper. To begin with, we write N for the set of natural numbers, Z for the set of integers,
and Z+ for set of positive integers.

We deal primarily with strings, languages, functions, and classes. Strings are finite
sequences of characters over the alphabet {0, 1}; we write {0, 1}* for the set of all strings.
Languages are sets of strings. Functions usually map {0, }* into {0, 1}*. A class is either a
set of languages or a set of functions.

If x E {0, }* is a string, we write Ixl for the length of x. If A

___
{0, }* is a language,

then we write At, A_<n, and A=n for {0, }* A, A A {0, }_<n, and A (q {0, }n, respectively.
The sequence of strings over {0, }, so , sl 0, s2 1, s3 00, is referred to as the
standard enumeration of {0, }*.

We use the string-pairing function (x, y) bd(x)O1 y, where bd(x) is x with each bit
doubled (e.g., bd(ll01)- 11110011). For each g’{0, 1}* -- {0, 1}* and k E N, we also
define the function g {0, 1}* --+ {0, 1}* by g(x) g((O,x)) for all x {0, 1}*.

We say that a property 4(n) of natural numbers holds almost everywhere (a.e.) if q(n)
is true for all but finitely many n 6 N. Similarly, 4(n) holds infinitely often (i.o.) if 4(n) is
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true for infinitely many n 6 N. We write [[q]] for the Boolean value of a condition 4. That is,
limb]] if b is true, 114]] 0 if 4 is false.

If A is a finite set, we denote its cardinality by IAI. A language D is dense if there exists
some constant > 0 such that ID_<nl > 2n’ a.e. A language S is sparse if there exists a
polynomial p such that IS_<n < p(n) a.e.. A language S is cosparse if S is sparse.

All machines here are deterministic Turing machines. The language accepted by a ma-
chine M is denoted by L(M). The partial function computed by a machine M is denoted by
fM {0, }* --+ {0, }*. For a fixed machine M, the function time/(x) represents the number
of steps that M uses on input x.

If (n) is a time bound, then we write

DTIME(t(n)) {L(M) (3c)(Vx)time4(x) < c. t(lxl) + c}

for the set of languages decidable in O(t(n)) time. Similarly, we write

DTIMEF(t(n)) {f/ (3c)(Vx)time4(x) <_ c. t(Ixl) -+- c}

for the set of functions computable in O (t (n))-time. The classes of polynomial time decidable
languages and polynomial time computable functions are then P U=0DTIME(n) and
PF Uff=0DTIMEF(n), respectively. We are especially interested in classes of languages
decidable in exponential time. We write

and

E U DTIME(U)

E2 U DTIME(2W)
c=l

for the classes of languages decidable in 2linear time and 2plynmial time, respectively. Other
complexity classes that we use here, such as NR PH, PSPACE, etc., have completely standard
definitions [2], [3].

If A and B are languages, then a polynomial time, many-one reduction (briefly, -<Pm-
reduction) ofA to B is a function f PF such that A f-l(B) {x f(x) B}. A <-Pm-
reduction of A is a function f PF that is a <Pm-reduction of A to some language B. Note that

f is a <Pro-reduction of A if and only if f is a _<Pm-reduction of A to f(A) {f(x) x 6 A}.
We say that A is polynomial time, many-one reducible (briefly, <_Pm-reducible) to B, and we

<PBwrite A_m<p B, if there exists a _<Pro-reduction f of A to B. In this case, we also say that A_
via f.

A language H is <_Pm-hard for a class C of languages if A -<PmH for all A 6 C. A language
C is <_Pm-complete for C if C C and C is <em-hard for C. If C NP, this is the usual notion
of NP-completeness [13]. In this paper we are especially concerned with languages that are
<p -hard or _<Pro-complete for E or E2.

3. Resource-bounded measure. Resource-bounded measure 17], [21 is a very general
theory whose special cases include classical Lebesgue measure, the measure structure of the
class REC of all recursive languages, and measure in various complexity classes. In this paper,
we are interested only in measure in E and E2, so our discussion of measure is specific to these
classes. The interested reader may consult 3 of 17] for more discussion and examples.

Throughout this section, we identify every language A

_
{0, 1}* with its characteristic

sequence )A (E {0, }c, defined by XA[i] [Si A] for all e N. (Recall from 2 that
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SO, SI, S2 is the standard enumeration of {0, }*.) We say that x 6 {0, }* is a prefix, or
partial specification, of A

___
{0, }* if x is a prefix of XA, i.e., if there exists y 6 {0, }oc such

that XA xy. In this case, we write x

_
A. The set of all languages A for which x is a partial

specification,

Cx--{A_ {0,1}*Ix_A},

is the cylinder specified by the string x 6 {0, }*. We say that the measure of the set Cx is
2-Ixl. (Note that this is the probability that A 6 Cx if A

_
{0, }* is chosen probabilistically

according to the random experiment in which an independent toss of a fair coin is used to
decide membership of each string x 6 {0, }* in A.)

Notation. The classes Pl P and P2, both consisting of functions f {0, }* -- {0, }*,
are defined as follows.

Pi P {f[f is computable in polynomial time},
P2 {flf is computable in n (lgn)(’) time}.

The measure structures of E and E2 are developed in terms of the classes Pi, for l, 2.
DEFINITION. A densityfunction is a function d {0, }* -- [0, oc) that satisfies

(3.1) d(w) >_
d(wO) + d(wl)

for all w 6 {0, 1}*. The global value of a density function d is d(,k). The set covered by a
density function d is

(3.2) S[d]- U C.
w{0, I}*
d(w)>_

A density function d covers a set X

_
{0, } if X S[d].

For all density functions in this paper, equality actually holds in (3.1)"above, but this is
not required. Consider the random experiment in which a language A

_
{0, 1}* is chosen

by using an independent toss of a fair coin to decide whether each string x {0, }* is in A.
Taken together, parts (3.1) and (3.2) of the above definition imply that Pr[A 6 S[d]] < d())
in this experiment. Intuitively, we regard a density function d as a "detailed verification" that
Pr[A 6 X] < d()) for all sets X c_ S[d].

More generally, we are interested in "uniform systems" of density functions that are
computable within some resource bound.

Since density functions are real-valued, their computations must employ finite approxi-
mations of real numbers. For this purpose, let

D-- {m2 m Z,n N}

be the set of dyadic rationals. (These are rational numbers with finite binary expansions.) In
order to have uniform criteria for computational complexity, we consider all functions of the
form f X Y, where each of the sets X, Y is N, {0, 1}*, D, or some Cartesian product
of these sets, to really map {0, }* into {0, }*. For example, a function f N2 x {0, }* --+
N x D is formally interpreted as a function jr: {0, 1}* - {0, 1}*. Under this interpretation,
f (i, j, w) (k, q) means that f((Oi, (0j, w))) (Ok, (u, v)), where u and v are the binary
representations of the integer and fractional parts of q, respectively. Moreover, we only care
about the values of f for arguments of the form (0i, (0.i, w)), and we insist that these values
have the form (0k, (u, v)) for such arguments.
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DEFINITION. An n-dimensional density system (n-DS) is a function

d’ N x {0, 1}* --+ [0, cx))

such that d is a density function for every k E Nn. It is sometimes convenient to regard a
density function as a 0-DS.

DEFINITION. A computation of an n-DS d is a function a N+1 {0, }* -+ D such that

Id{,r(tO) d(w)l <_ 2

for allk E N, r 6 N, and w 6 {0,1}*. Fori 1,2, api-computation of ann-DS d
is a computation a of d such that a 6 Pi. An n-DS d is pi-computable if there exists a
pi-computation d of d.

Ifd is an n-DS such thatd N {0, }* -- D andd 6 Pi, then d is trivially pi-computable.
This fortunate circumstance, in which there is no need to compute approximations, frequently
occurs in practice. (Such applications typically involve approximations, but these are "hidden"
by invoking fundamental theorems whose proofs involve approximations).

We now come to the key idea of resource-bounded measure theory.
DEFINITION. A null cover of a set X

_
{0, } is a 1-DS d such that, for all k E N, dk

covers X with global value dk() < 2-. For 1,2, a pi-null cover of X is a null cover of
X that is pi-computable.

In other words, a null cover of X is a uniform system of density functions that cover X
with rapidly vanishing global value. It is easy to show that a set X

_
{0, } has classical

Lebesgue measure 0 (i.e., probability 0 in the above coin-tossing experiment) if and only if
there exists a null cover of X.

DEFINITION. A set X has pi-measure O, and we write #Pi (X) 0 if there exists a pi-null
cover of X. A set X has pi-measure 1, and we write/L/pi (X) if/Lpi (Xc) O.

Thus a set X has pi-measure 0 if Pi provides sufficient computational resources to compute
uniformly good approximations to a system of density functions that cover X with rapidly
vanishing global value.

We now turn to the internal measure structures of the classes E E DTIME(2linear)
and E2 DTIME(2Plynmial).

DEFINITION. A set X has measure 0 in El, and we write #(X Ei) 0, if #Pi (X NEi) 0.
A set X has measure inEi,andwewrite#(X gi) 1,if#(X gi) 0. If#(X Ei) 1,
we say that almost every language in Ei is in X.

We write #(XIEi) @ 0 to indicate that X does not have measure 0 in Ei. Note that this
does not assert that "#(XIEi)" has some nonzero value.

The following is obvious but useful.
FACT 3.1. For every set X {0, }c,

#p(X) 0 === #P2 (X) 0 === Pr[A 6 XI 0

#(XIE) --0 #(xlg2 -0,

where the probability Pr[A E X] is computed according to the random experiment in which a

language A c_ {0, }* is chosen probabilistically by using an independent toss of a fair coin
to decide whether each string x {0, }* is in A.

It is shown in 17] that these definitions endow E and E2 with internal measure structure.
This structure justifies the intuition that if #(XIE) 0, then X f)E is a negligibly small
subset of E (and similarly for E2). The next two results state aspects of this structure that are
especially relevant to the present work.
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THEOREM3.2 [17]. For all cylinders Cw, #(CwlE) Oand #(CwlE2) :/: 0. In particular,
#(EIE) 0 and #(EzlE2) -7(: 0.

The next lemma, which is used in proving Theorem 4.6 and Lemma 5.16, involves the
following computational restriction of the notion of "countable union."

DEFINITION. Let 6 1,2} and let Z, Z0, Z, Z2, c_ {0, }. Then Z is a pi-union of
the pi-measure 0 sets Zo, Z, Z2, if Z t..J=oZ and there exists a pi-computable 2-DS d
such that each dj is a pi-null cover of Zj.

LEMMA3.3 [17]. Leti {1,2} andlet Z, Zo, Z,Z2

_
{0, 1}. IfZ isapi-union

of the pi-measure 0 sets Zo, Z, Z2 then Z has pi-measure O. q

4. Complexity cores: Lower bounds. Orponen and Sch6ning [28] have shown that
every <Pm-hard language for E has a dense polynomial complexity core. In this section we
extend this result by proving that every weakly <m-hard language for E has a dense exponential
complexity core. We begin by explaining our terminology.

Given a machine M and an input x 6 {0, }*, we write M(x) if M accepts x,
M(x) 0 if M rejects x, and M(x) _1_ in any other case (i.e., if M fails to halt or M halts
without deciding x). If M(x) {0, }, we write time/(x) for the number of steps used in the
computation of M(x). If M(x) L, we define time/(x) cxz. We partially order the set
{0, 1, _1_} by 2_ < 0 and 2_ < 1, with 0 and incomparable. A machine M is consistent with
a language A {0, 1}* if M(x) <_ [Ix A]] for all x 6 {0, 1}*.

DEFINITION. Let N -+ N be a time bound and let A, K

_
{0, }*. Then K is a

DTIME(t(n))-complexity core of A if, for every c 6 N and every machine M that is consistent
with A, the "fast set"

F {x Itime(x) < c. t(Ixl) 4- c}

satisfies IF KI < cxz. (By our definition of timet(x), M(x) {0, for all x 6 F. Thus F
is the set of all strings that M decides efficiently.)

Remark. The previous definition quantifies over all machines consistent with A, while
the standard definition of complexity cores (cf. [3]) quantifies only over machines that decide
A. For recursive languages A (and time-constructible bounds t), it is easy to see that the above
definition is exactly equivalent to the standard definition. However, the above definition is
stronger than the standard definition when A is not recursive. For example, consider tally
languages (i.e., languages A c_ {0}*). Under our definition, every DTIME(n)-complexity
core K of every tally language must satisfy IK {0}*l < cxz. However, under the standard
definition, complexity cores are only defined for recursive sets A (as in [3]), or else every
set K

_
{0, 1}* is vacuously a complexity core for every nonrecursive language (tally or

otherwise). Thus by quantifying over all machines consistent with A, our definition makes
the notion of complexity core meaningful for nonrecursive languages A. This enables one to
eliminate the extraneous hypothesis that A is recursive from several results. In some cases,
this improvement is of little interest. However, in 6, we show that every <Pm-hard language
H for E has unusually small complexity cores. This upper bound holds regardless of whether
H is recursive.

Note that every subset of a DTIME(t(n))-complexity core of A is a DTIME(t(n))-
complexity core of A. Note also that, if s (n) O (t (n)), then every DTIME(t (n))-complexity
core of A is a DTIME(s(n))-complexity core of A.

DEFINITION. Let A, K c__ {0, 1}*.
1. K is a polynomial complexity core (or, briefly, a P-complexity core) of A if K is a

DTIME(n*)-complexity core of A for all k 6 N.
2. K is an exponential complexity core of A if there is a real number > 0 such that K

is a DTIME(2 )-complexity core of A.
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Much of our work here uses languages that are "incompressible by many-one reductions,"
an idea originally exploited by Meyer [26]. The following definitions develop this notion.

DEFINITION. The collision set of a function f {0, }* --+ {0, }* is

Ct- {x E {0, 1}* (3y < x)f(y) f(x)}.

Here, we are using the standard ordering so <.s < $2 < of {0, }*.
Note that f is one-to-one if and only if Cf 0.
DEFINITION A function f {0, 1}* -- {0, }* is one-to-one almost everywhere (or,

briefly, one-to-one a.e.) if its collision set CU is finite.
DEFINITION Let A, B

___
{0, }* and let N -- N. A <_DmTIME(t)-reduction ofA to B is a

function f E DTIMEF(t) such that A f- (B), i.e., such that, for all x {0, }*, x A iff
f(x) B A <OTME(t-reduction of A is a function f that is a <)TIM(t)-reduction of A tomm

f(A).
It is easy to see that f is a <mTIMt)-reduction of A if and only if there exists a language

B such that f is a _<mrMt)-reduction of A to B.
DEFINITION. Let N -- N. A language A

___
{0, }* is incompressible by

reductions if every <mE/)-reduction of A is one-to-one a.e. A language A _c {0, 1}*
DTIME(q)is incompressible by <r, reductions if it is incompressible by <m -reductions for all--ITI-

polynomials q.
Intuitively, if f is a <mVzt)-reduction of A to B and Cf is large, then f compresses

many questions "x 6 A?" to fewer questions "f(x) E B?" If A is incompressible by
<r,-reductions, then very little such compression can occur.

Our first observation, an obvious generalization of a result of Balcizar and Sch6ning [4]
(see Corollary 4.5), relates incompressibility to complexity cores.

LEMMA 4.4. If N --+ N is time constructible, then every language that is incom-

pressible by <I)TIMt)-reductions has {0 }* as a DTIME(t)-complexity core.--m

Proof Let A be a language that does not have {0, }* as a DTIME(t)-complexity core. It
suffices to prove that A is not incompressible by <mTME(t)-reductions. This is clear if A 0
or A {0, 1}*, so assume that 0 A - {0, 1}*. Fix u A and v At. Since {0, 1}* is
not a DTIME(t)-complexity core of A, there exist c N and a machine M such that M is
consistent with A and the fast set

F {x time/(x) < c. t(lx[) + c}

is infinite. Define a function f" {0, 1}* -- {0, 1}* by

u if M(x) in _< c. t(lx[) + c steps,

f (x) v ifM(x)-0in<c.t(lxl)+csteps,
x otherwise.

Since is time-constructible, f DTIMEF(t). Since M is consistent with A, f is a <DmM(t)-
reduction of A to A. Since F is infinite, at least one of the sets f- ({u}), f- ({v}) is infinite,
so the collision set Cf is infinite. Thus A is not incompressible by <DmTIME(t)-reductions.

COROLLARY 4.5. Let c N.
(Balcazar and Sch6ning [4]). Every language that is incompressible by <_Pm-reductions

has {0, }* as a P-complexity core.
2. Every language that is incompressible by <OmTIME(Z""-reductions has {0, }* as a

DTIME(U )-complexity core.

3. Every language that is incompressible by <DmTME(Z")-reductions has {0, 1}* as a

DTIME(2n)-complexity core.
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We now prove that, in E and E2, almost every language is incompressible by
reductions, for exponential time bounds t.

THEOREM 4.6. Let c Z+ and define the sets

X {A

___
{0, 1}*IA is incompressible by <DmIlE2"n)-reductions},

Y {A

_
{0, 1}*IA is incompressible by <DmIE2"C-reductions}.

Then #p(X) p2 (Y) 1. Thus almost every language in E is incompressible by _<DTIME(2"")_m
reductions, and almost every language in E2 is incompressible by <DmIEz"C)-reductions.

Proof. Let c 6 Z+. We prove that #p(X) 1. The proof that #P2 (X) is analogous.
Let f 6 DTIMEF(2+ln) be a function that is universal for DTIMEF(Un), in the sense

that

DTIMEF(Un) {f/ N}.

For each 6 N, define a set Z of languages as follows: If the collision set CI. is finite, then

Zi 13. Otherwise, if CI. is infinite, then Zi is the set of all language A such that fi is a
<Da’IE2’n)-reduction of A.m

Define a function d N N {0, }* -- [0, c) as follows" Let i, k 6 N be arbitrary, let
w 6 {0, 1}*, and let b 6 {0, }.

(i) di,: ()Q 2-.
(ii) If sl ’ C;., then di,t(wb) di,l(w).
(iii) If sl 6 Cf,, then fix the least j 6 N such that j (sj) j (sl I) and set

di,(wb) 2. di,(w) b w[j]]].

It is clear that d is a 2-DS. Since f 6 DTIMEF(2c+)) and the computation of di,k(w) only
uses values j(u) for strings u with lul O(log Iwl), it is also clear that d 6 p, so d is a
p-computable 2-DS.

We now show that Zi S[di,] for all i, k 6 N. If C, is finite, then this is clear (because
Zi 13), so assume that Ci is infinite and let A Zi. Let w be a string consisting of the first
bits of the characteristic sequence of A, where st- is the kth element of Ci. This choice

of ensures that clause (iii) of the definition of d is invoked exactly k times in the recursive
computation of di,t(w). Since fi is a <DmE2n)-reduction of A (because A Zi), we have
b w[j] in each of these k invocations, so

di,k (110) 2 di,k ()Q 1.

Thus A 6 C
___

S[di,l]. This confirms that Z S[di,t] for all i, k 6 N. It follows easily
that for each 6 N, di is a p-null cover of Zi. This implies that

X U Z
k=O

is a p-union of p-measure 0 sets, whence #p(X) by Lemma 3.3.
COROLLARY 4.7. Almost every language in E and almost every language in E2 is incom-

pressible by <Pm-reductions. q

COROLLARY 4.8 (Meyer [26]). There is a language A E that is incompressible by
<P -reductions. 3

COROLLARY 4.9. Let c Z+.
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1. Almost every language in E has {0, }* as a DTIME(2cn)-complexity core.
2. Almost every language in E2 has {0, }* as a DTIME(2n")-complexity core.
We now consider complexity cores of <Pm-hard languages. Our starting point is the

following two known facts.
FACT 4.10 (Orponen and Sch6ning [28]). Every language that is <Pm-hardfor E (equiv-

alently, for E2) has a dense P-complexity core.
FACT 4.11 (Orponen and SchiSning [28]). If P -f: NP, then every language that is

<Pm-hardfor NP has a nonsparse P-complexity core.
We first extend Fact 4.10. For this, we need a definition. The lower <Pm-span of a language

a_{o, 1}*is

Pm(A) {B {0, 1}*IB -<Pm A},

i.e., the set of all languages lying at or below A in the <Pm-reducibility structure of the set of
all languages. Recall that a language A is <Pm-hard for a complexity class C if C

___
Pro(A).

DEFINITION. A language A c_ {0, }* is weakly <Pm-hard for E (respectively, for E2) if
#(Pm(A) E) 0 (respectively, #(Pm(A) E2) 0). A language A c_ {0, }* is weakly
<Pm-complete for E (respectively, for E2) if A E E (respectively, A E E2) and A is weakly
<Pm-hard for E (respectively, for E2).

Thus a language A is weakly <Pm-hard for E if a nonnegligible subset of the languages in
E are <Pm-reducible to A. Very recently, Lutz [19] has established the existence of languages
that are weakly <Pm-complete, but not <Pm-complete, for E (and similarly for E2). Although
"<Pro-hard for E" and "<Pm-hard_ for E2" are equivalent, we do not know the relationship between
"weakly <Pm-hard for E" and "weakly _<Pro-hard for E2."

Recall that a language D

_
{0, }* is dense if there is a real number > 0 such that

D<n > 2n a.e.
THEOREM 4.12. Every language that is weakly <Pm-hardfor E or E2 has a dense expo-

nential complexity core.

Proof. We prove this for E. The proof for E2 is identical.
Let H be a language that is weakly <Pro-hard for E. Then Pm(H) does not have measure 0

in E, so by Theorem 4.6, there is a language A 6 Pm(H) that is incompressible by _<DmTIME(2")-
reductions. Let f be a _<Pro-reduction of A to H, let q be a strictly increasing polynomial bound

Then the language K f({0, 1}*) ison the time required to compute f, and let e 3.deg(q)

a dense DTIME(2)-complexity core of H.
Lutz has proposed the investigation of the consequences of the strong hypotheses

#(NP E) - 0 and #(NPI E2) 0 [18], [23], [22]. In this regard, we have the follow-
ing.

COROLLARY 4.13. If #(NP E) : 0 or #(NP E2) 0, then every <Pm-hard language
for NP has a dense exponential complexity core.

Thus, for example, if NP is not small, then there is a dense set K of Boolean formulas
in conjunctive normal form such that every machine that is consistent with SAT performs
exponentially badly (either by running for more than 2Ixl steps or by failing to decide) on all
but finitely many inputs x 6 K.

Note that Theorem 4.12 extends Fact 4.10 and that Corollary 4.13 has a stronger hypothesis
and stronger conclusion than Fact 4.11. Note also that Corollary 4.13 holds with NP replaced
by PH, PP, PSPACE, or any class whatsoever.

The following result shows that the density bounds of Theorem 4.12 and Corollary 4.13
are tight.

PTHEOREM 4.14. For every > O, each of the classes NP, E, and E2 has a <m-complete
language, every P-complexity core K ofwhich satisfies K<_nl < 2 a.e.
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Proof. Let e > 0, let C be any one of the classes NP, E, E2, and let A be a language that
is <m-complete for C. Let k and define the language

B--{xl0Ixl Ix A}.

Then B is <Pm-complete for C and every P-complexity core K of B satisfies K<_nl < 2
a.e.

5. Measure of degrees. In this section we prove that all _<m-degrees have measure 0 in
the complexity classes E and E2. This fact and more follow from the Small Span Theorem,
which we prove first.

Recall that the lower <Pro-span of a language A c__ {0, }* is

Pm(a) {B {0, 1}*[B -<Pro a}.

Similarly, define the upper <Pm-span of A to be

P(A)- {B c__ {0, 1}*[A <Pro B}.

The <Pm-degree of A is then

degPm(A) Pm(A) Pn (A),

the intersection of the upper and lower spans.
The main result of this section is that, if A is in E or E2, then at least one of the spans

Pm (A), Pn (A) is small.
THEOREM 5.15 (Small Span Theorem).
1. For every A E E,

#(Pm(A) E) 0

or

#p(Pn (A)) kt(Pn (A) E) 0.

2. For every A E2,

#(Pm(A) E2) 0

or

#P2 (Pn (A)) --/z(P (A) E2) 0.

We first use the following lemma to prove Theorem 5.15. We then prove the lemma.
LEMMA 5.16. Let A be a language that is incompressible by <Pm-reductions.
1. Ifa E, then #p(Pnl (a)) --/z(Pn(A)IE) --0.
2. If a E2, then #P2 (Pn (A)) --/z(Pn (A)IE2) 0.

Proof of Theorem 5.15. To prove 1, let A E and let X be the set of all languages that
are incompressible by <Pm-reductions. We have two cases.

Case I. If Pm(A) fh E (q X 0, then Corollary 4.7 tells us that ft(Pm(A) E) 0.
CaseII. IfPm(A)fqEf-)X 5/: 0, then fix alanguage B Pm(A) fqENX. Since B

Lemma 5.16 tells us that

#p(Pn (B)) #(Pn (B) E) O.
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Since pl (A)

___
P (B), it follows that

/zp(P (a)) --/z(Pn (a) E) 0.

This proves 1. The proof of 2 is identical. [3

Proof ofLemma 5.16. To prove 1, let A 6 E be incompressible by _<m-reductions. Let
f 6 DTIMEF(2n) be a function that is universal for PF, in the sense that

PF- {f/ N}.

For each 6 N, define the set Z of languages as follows. If the collision set C is infinite,
then Zi {3. Otherwise, if Ci is finite, then

Zi {B c__ {0, I)*[A <-Pm B via f/}.

Note that

Pn (A) U Zi’
i=0

because A is incompressible by <Pm-reductions.
Define a function d N x N x {0, }* -+ [0, oo) as follows. Let i, k 6 N be arbitrary, let

w 6 {0, 1}*, and let b 6 {0, 1}.
(i) di,l()) 2-k.
(ii) If there is no j < 21wl such that j (sj) slw I, then di,k(wb) di,(w).
(iii) If there exists j < 2lwl such that j (sj) slw I, then fix the least such j and set

di,(wb) 2. di,:(w) [[b I[sj A]]]].

It is clear that d is a 2-DS. Also, since f 6 DTIMEF(2") and A 6 E, it is easy to see that
d 6 p, whence d is a p-computable 2-DS.

We now show that Zi c_ S[di,k] for all i, k 6 N. If C,;. is infinite, then this is clear (because
Z ), SO assume that C;. c < and let B Zi, i.e., A <’ B via f/. Let v be the
string consisting of the first bits of the characteristic sequence of B, where is large enough
that

J({S0 $2k+4c-1}) {So Sl-l}.

Consider the computation of di,k(V) by clauses (i), (ii), and (iii). Since A <m B via fi,
clause (iii) does not cause di,k(W) to be 0 for any prefix w of v. Let

S {sn 0 < n < 2k + 4c and j (sn) ’ {so srl-1}}

and

T j(s),

then clause (iii) doubles the density whenever Slw T, so

di,l(v) >_ 21TIdi,k())- 2ITI- >_ 2ISl--c

Also, if

S’ {s, 0 < n < 2k + 4c and fi(Sn) {SO Sk+2c_l}},



290 DAVID W. JUEDES AND JACK H. LUTZ

then S’c S and

S’l (2k + 4c) (k + 2c) c k + c.

Putting this all together, we have

di,k(V) >_ 2Isl-- > 2Is’l-- > 1,

whence B 6 Cv c_ S[di,]. This shows that Zi c_ S[di,] for all i, k 6 N.
Since d is p-computable and di, (,k) 2- for all i, k N, it follows that, for all 6 N,

di is p-null cover of Zi. This implies that P (A) is a p-union of the p-measure 0 sets Zi. It
follows by Lemma 3.3 that #p(Pn (A)) /z(Pn (A) E) 0. This completes the proof of 1.

The proof of 2 is identical. One need only note that, if A E2, then d p2.

Remark. Ambos-Spies [1] has shown that Pro(A) has Lebesgue measure 0 whenever
A ’ P. Lemma 5.16 obtains a stronger conclusion (resource-bounded measure 0) from a
stronger hypothesis on A.

It is now straightforward to derive consequences of these results for the structure of E and

E2. We first note that _<m-hard languages for E are extremely rare.
THEOREM 5.17. Let 7-rE be the set of all languages that are <Pm-hard for E. Then

#v (7-t) O.
Proof Let A be as in Corollary 4.8. Then 7-/E

___
Pn (A), so Lemma 5.16 tells us that

#p(’"E) #p(Pn (A)) 0. 1

Theorem 5.17 immediately yields an alternate proof of the following result.
COROLLARY 5.18 (Mayordomo[25]). Let CE, CE2 be the sets of languages that are <P-rn

completefor E, E2, respectively. Then #(CEIL) #(CEzlE2) 0. [-]

(Mayordomo’s proof of Corollary 5.18 used Berman’s result [6], that no <Pm-complete
language for E is P-immune.)

As it turns out, Corollary 5.18 is only a special case of the following general result. All
_<m-degrees have measure 0 in E and in E2.

THEOREM 5.19. For all A c_ {0, }*,

#(degPm(A) E) #(degm(A) E) --0.

Proof Let A

___
{0, 1}*. We prove that #(degPm(A) E) 0. The proof that

#(degm(A) E2) 0 is identical (in fact simpler, because E2 is closed under -<Pm)"
If degPm(A)NE 0, then #(degPm (a) E) 0 holds trivially, so assume that degPm (A)AE -0. Fix B 6 degm(A) A E. Then, by Theorem 5.15,

#(degPm(B) E) #(Pm(B) E) --0

or

#(degPm(B) E) #(P (B) E) --0.

Since degPm(A) degPm(B), it follows that >(degPm(A) ]E) 0.
We now have the following two corollaries for NE
COROLLARY 5.20. Let 7-gNp be the set oflanguages that are <Pm-hardfor NP.
1. If#(NP E) 0, then #(7-/Np E) 0.
2. lf#(NP E2) - 0, then #(7-gNp Ez) 0.

Proof This follows immediately from Theorem 5.15, with A SAT.
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COROLLARY 5.21. Let CN, be the set of languages that are <Pm-complete for NP. Then
#(CNP E) #(CNp [E2) 0.

Proof Since CNp degPm (SAT), this follows immediately from Theorem 5.19. {q

It is interesting to note that Corollary 5.21, unlike Corollary 5.20, is an absolute result,
requiring no unproven hypothesis. The price we pay for this is that we do not know why it
holds! For example, the Small Span Theorem tells us that CN, 7-/Nr, N NP has measure 0 in
E because #(Nr, E) 0 or #(NP E) 0, but it does not tell us which of these two very
different situations occurs.

Note that Corollaries 5.20 and 5.21 also hold with NP replaced by any other class what-
soever.

We conclude this section by noting two respects in which the Small Span Theorem cannot
be improved. First, the hypotheses A E and A E2 are essential for parts and 2,
respectively. For example, if A is p-random [20], then/Zp({A}) :/: 0, so none of degPm(A),
Pm (A), Pn (A) can have p-measure 0.

The second respect in which the Small Span Theorem cannot be improved involves the
variety of small-span configurations. In both E and E2, either one or both of the upper and
lower spans of a language can in fact be small. We give examples for E.

(a) It is well known [26] that there is a language A 6 E that is both sparse and incompress-
ible by <Pm-reductions. Fix such a language A. By Lemma 5.16, #p(pnl (A)) 0.
Also, since A is sparse, the main result of [23] implies that #p(Pm(A)) 0.

(b) If a E P {13, {0, 1}*}, then #(Pm(a) E) #p(Pm(a)) 0, but #p(Pnl(a)) 7 0
and #(Pn (a) E) - 0.

(c) If A is _< Pm-complete for E, then/z(Pn (A) E) --/zp(Pn (A)) 0 by Theorem 5.17,
but #(Pm (a) E) =/z(E E) =/= 0.

Similar examples can be given for E2.

6. Complexity cores: Upper bound. In this section we give an explicit upper bound
on the sizes of complexity cores of languages that are _<em-hard for E. This bound implies that
_<em-complete languages for E have unusually small complexity cores, for languages in E.

THEOREM 6.22. For every <P-hard language H for E, there exist B D DTIME(2an)m

such that D is dense and B H 7) D.
Proof By Corollary 4.8, there is a language in E that is incompressible by _<em-reductions.

In fact, Meyer’s construction [26] shows that there is a language A 6 DTIME(5n) that is

incompressible by _<em-reductions. As in Fact 4.10 and Theorem 4.12, this idea has often been
used to establish lower bounds on the complexities of _<em-hard languages. Here we use it to
establish an upper bound.

The following simple notation is useful here. The nonreduced image of a language
S c__ {0, 1}* under a function f’{0, 1}* {0, 1}* is

f>(S)- {f(x) lx S and If(x)l Ixl}.

Note that

f>_(f-1 (S)) S f-) f>-({O, 1}*)

for all f and S.
Let H be _<Pm-hard for E. Then there is a <-reduction f of A to H. Let B f>- (A), D

f>({0, 1}*). Since A DTIME(5n) and f PF, it is clear that B, D E DTIME(10) c_
DTIME(24n).

Fix a polynomial q and a real number > 0 such that If(x)l _< q(lx[) for all x e {0, 1}*
and q(n2) < n a.e. Let W {x If(x)l < Ixl}. Then, for all sufficiently large n N,
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writing m [n2"], we have

whence

f({O, 1} -<m) --{0, l}

___
f({O, l} -<m) f(W<_m)___
f>-({O, l} -<m)
D<_q(m)_

ID<nl > f({0, 1}-<m)l- I{0, 1}<ml
>_ I{0, 1}-<ml Iffl I{0, 1}<ml

--2m-Iffl.

Since Iffl < , it follows that D_<n > 2n’ for all sufficiently large n. Thus D is dense.
Finally, note that B f>-(A) f>-(f-l(H)) H (q f>-({0, 1}*) H (q D. This

completes the proof of Theorem 6.22. q

We now use Theorem 6.22 to prove our upper bound on the size of complexity cores for
hard languages.

THEOREM 6.23. Every DTIME(24n)-complexity core of every <em-hard language for E
has a dense complement.

Proof. Let H be <Pm-hard for E and let K be a DTIME(24)-complexity core of H. Choose
B, D for H as in Theorem 6.22. Fix machines MR and MD that decide B and D, respectively,
with timeMB (x) O(241xl) and timeMD (x) O(241xl). Let M be a machine that implements
the following algorithm.
begin

input x;
if Mo(x) accepts
then simulate MR(x)
else run forever

end M.
Thenx D = M(x) [[x B]] [Ix 6 H A D]] llx 6 H]] andx D = M(x) _L <

llx 6 HI], so M is consistent with H. Also, there is a constant c 6 N such that for all x 6 D,

timeM (x) < c. 24n + c.

Since K is a DTIME(24)-complexity core of H, it follows that K (q D is finite. But D is
dense, so this implies that D K is dense, whence K is dense. [3

Note that Theorem 5.17 follows from Corollary 4.9 and Theorem 6.23, but that Theorem
6.23 tells us more.

The main construction of 19] shows that for every c 6 N, there is a language H that is
weakly <m-hard for E and has {0, }* as a DTIME(U)-complexity core. Thus, in contrast
with the lower bound given by Theorem 4.12, the upper bound given by Theorem 6.23 cannot
be extended to weakly <m-hard languages.

Finally, we note that the upper bound given by Theorem 6.23 is tight.
THEOREM 6.24. Let c N and 0 < R.
1. E has a <m-complete language with a DTIME(2*n)-complexity core K that satisfies

K<_, > 2n+ 2n’ a.e.
2. E2 has a <Pro-complete language with a DTIME(2"")-complexity core K that satisfies

IK<_nl > 2n+l 2n’ a.e.

Proof We prove the result for E. The proof for E2 is similar.
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Let A be a language that is _<Pm-complete for E and let k []. By Corollary 4.9, fix a
language B 6 E that has {0, }* as a DTIME(Un)-complexity core. Let

D-- {x10IxlkIX {0, 1)*)

and define the languages

C (B D) t3 {xl0Ixlk Ix A}

and

It is clear that C is <Pm-complete for E. Also, for all sufficiently large n,

[D<_nl-- lD=m[ < --2m
m=0 m=0

< (n+l)2nr < (n+l)2 <2n’-l,

so

]K<I 2+l -[D<I > 2+l 2n’ a.e.

We complete the proof by showing that K is a DTIME(U")-complexity core for C. For
this, let s 6 N, let M be a machine that is consistent with C, and define the fast set

F {x timet(x) < a. 2:lxl + a}.

It suffices to prove that K A F < oo.
Let Q be a machine (designed in the obvious way) such that, for all y 6 {0, }*,

(Y)--{ Y(Y) if y e
y c’ D’

Then is consistent with B (because B D C D and M is consistent with C) and
{0, }* is a DTIME(U)-complexity core for B, so the fast set

/-- {x time(x) < (a + 1)Ulxl + a}

is finite. Since K A F F D and (F D) / is finite, it follows that IK FI < ec,
completing the proof.

7. Conclusion. In this paper we have investigated measure-theoretic aspects of the <Pm-
reducibility structure of the exponential time complexity classes E and E2. Among other
things, we have proven the following. (For simplicity we only consider the class E.)

(i) Every weakly <Pm-hard language for E has a dense exponential complexity core

(Theorem 4.12).
(ii) For every language A 6 E, at least one of the spans Pm(A), Pn (A) has resource-

bounded measure 0 (Theorem 5.15, the Small Span Theorem). Thus the <Pm-hard
languages for E form a p-measure 0 set (Theorem 5.17), every <Pm-degree has measure
0 in E (Theorem 5.19), and the <Pm-complete languages for NP form a set of measure
0 in E (Corollary 5.21).
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(iii) Every DTIME(24n)-complexity core of every _<m-hard language for E has a dense
complement (Theorem 6.23). Since almost every language in E has {0, }* as a
DTIME(24n)-complexity core (Corollary 4.9), this says that in E the <m-complete
languages are unusually simple, in the sense that they have unusually small complex-
ity cores.

It is reasonable to conjecture that most of our results hold with <m replaced by <, but
investigating this may be difficult. For example, consider Theorem 5.17. Bennett and Gill [5]
have shown that pl (A) has (classical) measure for all A 6 BPP. Thus we cannot prove
that the _<-hard languages for E form a measure 0 set without also proving that E BPP.
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A GENERAL APPROXIMATION TECHNIQUE
FOR CONSTRAINED FOREST PROBLEMS*

MICHEL X. GOEMANS* AND DAVID E WILLIAMSON*

Abstract. We present a general approximation technique for a large class of graph problems. Our technique
mostly applies to problems of covering, at minimum cost, the vertices of a graph with trees, cycles, or paths satisfying
certain requirements. In particular, many basic combinatorial optimization problems fit in this framework, including
the shortest path, minimum-cost spanning tree, minimum-weight perfect matching, traveling salesman, and Steiner
tree problems.

Our technique produces approximation algorithms that run in O(n log n) time and come within a factor of
2 of optimal for most of these problems. For instance, we obtain a 2-approximation algorithm for the minimum-

weight perfect matching problem under the triangle inequality. Our running time of O(n log n) time compares
favorably with the best strongly polynomial exact algorithms running in O(n3) time for dense graphs. A similar
result is obtained for the 2-matching problem and its variants. We also derive the first approximation algorithms for
many NP-complete problems, including the nonfixed point-to-point connection problem, the exact path partitioning
problem, and complex location-design problems. Moreover, for the prize-collecting traveling salesman or Steiner
tree problems, we obtain 2-approximation algorithms, therefore improving the previously best-known performance
guarantees of 2.5 and 3, respectively [Math. Programming, 59 (1993), pp. 413-420].

Key words, approximation algorithms, combinatorial optimization, matching, Steiner tree problem, T-joins,
traveling salesman problem

AMS subject classifications. 68Q25, 90C27

1. Introduction. Given a graph G (V, E), a function f 2v --+ {0, 1}, and a non-
negative cost function c E --+ Q+, we consider the following integer program:

Min CeX
eEE

subject to:

(IP) x(3(S)) >_ f (S) 0 S C V

Xe E {0, 1} eEE

where 6(S) denotes the set of edges having exactly one endpoint in S and x(F) eEF Xe.
The integer program (I P) can be interpreted as a very special type of covering problem in
which we need to find a minimum-cost set of edges that cover all cutsets 6 (S) corresponding
to sets S with f (S) 1. The minimal solutions to (I P) are incidence vectors of forests. We
therefore refer to the graph problem associated with (I P) as a constrainedforestproblem. Let
(LP) denote the linear programming relaxation of (I P) obtained by relaxing the integrality
restriction on the variables x to X O. For the most part we will consider constrained forest
problems corresponding to proper functions; that is, a function f 2v __+ {0, such that the
following properties hold:

(i) [Symmetry] f(S) f(V S) for all S c_ V; and
(ii) [Disjointness] If A and B are disjoint, then f(A)= f(B)--0 implies f(A U B)--0.
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We also assume that f(V) 0. Many interesting families of forests can be modelled by
(I P) with proper functions. In Table 1, we have indicated some examples of proper functions
along with the corresponding set of minimal forests. Thus the minimum-cost spanning tree,
shortest path, Steiner tree, and T-join problems (see 3 for definitions) can be stated as proper
constrained forest problems; that is, they can be modelled as (I P) with a proper function.
Many more complex combinatorial optimization problems, such as the nonfixed point-to-point
connection problem and the generalized Steiner tree problem, are also proper constrained forest
problems.

TABLE
Examples ofproperfunctions and proper constrainedforest problems.

Input f(S)

f(S) VS

s,t E V f(S) 0

T V f(S) 0

T c_ V f(S) 0

Minimal forests

Spanning trees

IS {s, t}l
otherwise

s-t paths

otherwise

IS f3 T[ odd
otherwise

Steiner trees with terminals T

T-joins

Since many proper constrained forest problems are NP-complete, we focus our attention
on heuristics. If a heuristic algorithm for an optimization problem delivers a solution guar-
anteed to be within a factor of ot of optimal, it is said to have a performance guarantee of c.

Furthermore, if it runs in polynomial time, it is called an or-approximation algorithm. In this
paper, we present a (2 )-approximation algorithm for proper constrained forest problems,
where A {v 6 V f({v}) 1}. Our algorithm runs in O(min(nZlogn, mn(m,n)))
time, where n IV I, m E I, and t is the inverse Ackermann function. For the sake of the
analysis, we implicitly construct a feasible solution to the dual linear program to (L P), and

2we prove that the value of our approximate integral primal solution is within a factor of 2
Ial

of the value of this dual solution. Therefore, for all proper functions f, the ratio between the
2optimal values of (I P) and (L P) is upper bounded by 2 I-" This result can be contrasted

with the various logarithmic upper bounds on the ratio between the optimal values of general
integer covering problems and their fractional counterparts (Johnson [19], Lovisz [271, and
Chvital [5]).

Our algorithm can be characterized in several ways. It is an adaptive greedy algorithm
in which, at every iteration, the edge with minimum reduced cost is selected. It is adaptive
in the sense that the reduced costs are updated throughout the execution of the algorithm. It
can also be seen as a primal-dual algorithm in which, alternately, primal and dual updates are
performed.

Our approximation algorithm generalizes many classical exact and approximate algo-
rithms. When applied to the spanning tree problem, it reduces to Kruskal’s greedy algorithm
[23]. For the s-t shortest path problem, our algorithm is reminiscent of the variant of Dijkstra’s
algorithm that uses bidirectional search (Nicholson [28]). The algorithm is exact in these two
cases. For the Steiner tree problem, we obtain the minimum spanning tree heuristic whose
many variants have been described in the literature (see [39]). In the case of the generalized
Steiner tree problem, our algorithm simulates Agrawal, Klein, and Ravi’s 2-approximation
algorithm [1 ]. Their algorithm was instrumental in motivating our work. In particular, we
generalize their use of duality from generalized Steiner trees to all proper constrained for-
est problems. In the process, we make their use of linear programming duality explicit and
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provide some conceptual simplifications since neither our algorithm nor its analysis require
contractions, recursive calls to construct the forest or subdivisions of edges, as is used in the
presentation of Agrawal, Klein, and Ravi [1 ].

One important consequence of the algorithm is that it can be turned into a 2-approximation
algorithm for the minimum-weight perfect matching problem given that the edge costs obey
the triangle inequality. Our running time of O(n2 log n) time is faster than the currently
best-known algorithms that solve the problem exactly (due to Gabow [11 and Gabow and
Tarjan 13]) on all but very sparse graphs. In addition, our algorithm improves upon all known
approximation algorithms for this problem in either running time or performance guarantee.

Given the triangle inequality, the algorithm can also be turned into an approximation
algorithm for related problems involving cycles or paths, instead of trees. This observation
allows us to consider additional problems such as the traveling salesman problem, Hamiltonian
location problems [25], and many other problems. Our algorithm can also be extended to
handle some nonproper constrained forest problems. In general, our technique applies to
many NP-complete problems arising in the design of communication networks, VLSI design,
and vehicle routing. We have also been able to apply the technique to the prize-collecting
traveling salesman problem (given the triangle inequality) and the prize-collecting Steiner tree
problem, thereby deriving the first 2-approximation algorithms for these problems.

The rest of the paper is structured as follows. In 2, we describe our approximation
algorithm for proper constrained forest problems. We also present its analysis and an efficient
implementation. In 3, we describe how the algorithm can be applied to the various proper
constrained forest problems mentioned above. In 4, we show how to extend the algorithm
and proof techniques to other problems, including the prize-collecting traveling salesman
problem. We discuss previous work for particular constrained forest problems in 3 and 4.
We conclude in 5 with a discussion of subsequent work.

2. The algorithm for proper constrained forest problems.

2.1. Description. The main algorithm is shown in Fig. 1. The algorithm takes as input
an undirected graph G (V, E), edge costs c > 0 for all e E E, and a proper function

f. The algorithm produces as output a set of edges F’ whose incidence vector of edges is
feasible for (IP). The basic structure of the algorithm involves maintaining a forest F of
edges, which is initially empty. The edges of F will be candidates for the set of edges to be
output. The algorithm loops, in every iteration selecting an edge (i, j) between two distinct
connected components of F, then merging these two components by adding (i, j) to F. The
loop terminates when f(C) 0 for all connected components C of F; since f(V) 0, the
loop will finish after at most n iterations. The set F’ of edges that are output consists of
only the edges of F needed to meet the covering requirements. More precisely, if an edge e
can be removed from F such that f(C) 0 for all components C of F e, then e is omitted
from F’.

The approximation properties of the algorithm will follow from the way we choose the
edge each iteration. The decision is based on a greedy construction of an implicit solution to
the dual of (L P). This dual is

Max Z f S) ys
SCV

(D)

subject to:

Z yS<_Ce eEE,
S:e3(S)

ys>O O:/:SCV.
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Input: An undirected graph G (V, E), edge costs C 0, and a proper function f
Output: A forest F’ and a value LB

2
3
4
5
6
7
8
9
10
11
12
13
14

F+--0
Comment: Implicitly set ys <-- Ofor all S C V
LB<--O
C +- {{v} v V}
For each v E V

d(v) +- 0

While 3C C: f(C)
ce-d(i)-d(j)Find edge e (i, j) with Cp C, j Cq C, Cp Cq that minimizes
f(Cp)+f(Cq)

F +- FU{e}
For allvECr eCdod(v) +-d(v)+.f(Cr)
Comment: Implicitly set Yc *- Yc 4- f(C) for all C C.
LB +-- LB + Y--cC f(C)
C <--- C [.-J {Cp [..J Cq} {Cp} {Cq}

F’ +-- {e 6 F For some connected component N of (V, F {e}), f(N)

FIG. 1. The main algorithm.

Define an active component to be any component C of F for which f(C) 1. In each iteration
the algorithm tries to increase Yc uniformly for each active component C by a value 6 that is
as large as possible without violating the packing constraints Ys < Ce. Finding such an 6

will make a packing constraint tight for some edge (i, j) between two distinct components;
the algorithm will then add (i, j) to F and merge these two components. An alternate view
of this process is that the algorithm tries to find the edge (i, j) between distinct components
with the minimum "reduced" cost 6.

We claim that the algorithm shown in Fig. behaves in exactly this manner. To see
that the dual solution generated in steps 2 and 11 is feasible for (D), note first that initially
Zeca(S) YS 0 < Ce for all e 6 E. We show by induction that the packing constraints
continue to hold. Note that it can be shown by induction that d(i) s:ics Ys for each vertex
i; thus as long as vertices and j are in different components, ea{s) Ys d(i) + d(j) for
edge e (i, j). It follows that in a given iteration Yc can be increased by 6 for each active
component C without violating the packing constraints as long as

d(i) + d(j) + 6 f(Cp) + 6 f(Cq) < Ce,

for all e (i, j) E, Cp and j Cq, Cp and Cq distinct. Thus the largest feasible
increase in 6 for a particular iteration is given by the formula in step 8. Once the endpoints
and j of an edge e (i, j) are in the same component, the sum YS:e,as)Ys does not

increase, so that these packing constraints will continue to hold. Hence when the algorithm
terminates, the dual solution y constructed by the algorithm will be feasible for (D). By the
preceding discussion, we also have that Ce Y.S:e,aS) YS for each e 6 F. Note that the value
LB computed in steps 3 and 12 corresponds to the value of the dual solution y. As the value
of the dual solution is a lower bound on the optimal cost, LB provides a guarantee on the
performance of the algorithm for any specific instance. Furthermore, LB will also be used in
the analysis below to evaluate the worst-case performance guarantee of the algorithm.

To complete our claim that the algorithm in Fig. behaves as described, we need to show
that the edges removed in the final step of the algorithm are not necessary to meet the covering
requirements; in other words, we need to show that F’ is a feasible solution to (I P). We do
this below.
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Two snapshots of the algorithm for the proper function f (S) SI (mod 2) are shown in
Figs. 2 and 3. The two snapshots are one iteration apart. In both figures, the cost of an edge
is the Euclidean distance between its endpoints. The radius around each vertex v represents
the value d(v). Thick radii represent active components, thin radii inactive components. The
region of the plane defined by these radii are the so-called moats of Jiinger and Pulleyblank
[20], [21 ]. The set of edges F at the end of the main loop is shown in Fig. 4, and the set of
edges F’ output by the algorithm is shown in Fig. 5.

FG. 2. Snapshot of the algorithm.

We can now see that the algorithm is a generalization of some classical graph algorithms.
The shortest s-t path problem corresponds to the proper function f(S) if and only if

IS A {s, t}l 1. Our algorithm adds minimum-cost edges extending paths from both s and
in a manner reminiscent of Nicholson’s bidirectional shortest path algorithm [28]. The main
loop terminates when s and are in the same component, and the final step of the algorithm
removes all edges not on the path from s to t. Thus for this problem, whenever Ys > O,
IF’ A6(S)I 1, and whenever e F’, ZS:eEg(S) YS Ce. In other words, the primal and dual
feasible solutions F’ and y obey the complementary slackness conditions; hence the solutions
are optimal. Note that the edge removal step is necessary to obtain a good performance
guarantee in this case; this statement is also true in general. The minimum-cost spanning
tree problem corresponds to a proper function f (S) for 0 C S C V. For this function
f, our algorithm reduces to Kruskal’s algorithm: all components will always be active, and
thus in each iteration the minimum-cost edge joining two components will be selected. Since
Kruskal’s algorithm produces the optimal minimum-cost spanning tree, our algorithm will
also. The solutions produced do not obey the complementary slackness conditions for (L P),
but induce optimal solutions for a stronger linear programming formulation of the spanning
tree problem introduced by Jtinger and Pulleyblank [20].
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FIG. 3. Snapshot ofthe algorithm one iteration later.
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FIG. 4. Set ofedges after the main loop terminates.
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FIG. 5. Final set of edges.

9

2.2. Analysis. We now need to show that the algorithm has the properties we claim.
We will begin by showing that the algorithm produces a feasible solution, and then we will

2turn to proving that the solution is within a factor of (2 i-) of the optimal solution. We
assume throughout the ensuing discussion that F is the set of candidate edges selected by the
algorithm, F’ is the forest output by the algorithm, and that x’ is the incidence vector of edges
of F’.

OBSERVATION 2.1. If f (S) 0 and f(B) 0for some B S, then f (S B) O.

Proof. By the symmetry property of f, f(V S) f(S) O. By disjointness,
f((V S) U B) 0. By symmetry again, f(S B) f((V S) t2 B) 0. l-I

LEMMA 2.2. For each connected component N of F’, f(N) O.

Proof. By the construction of F’, N

___
C for some component C of F. Now, let

el ek be edges of F such that ei E 6(N) (possibly k 0). Let Ni and C Ni be the
two components created by removing ei from the edges of component C, with N

_
C Ni

(see Fig. 6). Note that since ei F’, it must be the case that f(Ni) O. Note also that
the sets N, N1, N2 Nk form a partition of C. So then f(C N) f(tO=Ni) 0 by
disjointness. Because f(C) O, the observation above implies that f(N) 0. 1

THEOREM 2.3. The incidence vector x’ is a feasible solution to (I P).

Proof. Suppose not, and assume that x’(3 (S)) 0 for some S such that f (S) 1. Let
N1 Np be the components of F’. In order for x’ (3 (S)) 0, it must be the case that for
all i, either S f3 Ni 0 or S (q Ni Ni. Thus S Ni, U t2 Nik for some i i. By
the lemma above, however, f(Ni) 0 for all i, so f(S) 0 by the disjointness of f. This
contradicts our assumption that f (S) 1. Therefore, x’ must be a feasible solution.

Now we will show that the algorithm has the approximation properties that we claim.
For this purpose, we use the dual solution y implicitly constructed by the algorithm. Let Z,
be the cost of the optimal solution to (L P), and let Z, be the cost of the optimal solution
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= = F’

FIG. 6. Illustration ofLemma 2.2.

to (1P). Obviously Z*p < Zp. Because y is a feasible dual solution and Ys > 0 only if
f(S) 1, it follows that LB scv Ys <_ Z*I,. We will now prove the following theorem.

THEOREM 2.4. The algorithm in Fig. produces a set of edges F’ and a value LB such
that

ce < 2 LB-- 2 Ys < 2 ZLp < 2 Zip.
eF’ IAI IAI IAI IAIscv

2Hence the algorithm is a (2 TN)-apprximatin algorithmfor the constrainedforestproblem
for any properfunction f

Proof Since we know that }--.eeF’ c Y.eF’ YS:ee(S)YS, by exchanging the summa-
tions we can rewrite Y-eeF’ C as scv Ys IF’ Cl 3(S)I. To prove the theorem, we will show
by induction on the main loop that

scv-Ys’lF’Na(S)l<-(2 IAI2)
SCV

YS.

Certainly the inequality holds before the first iteration of the loop, since initially all Ys O.
Consider the set C of components at the beginning of some iteration of the loop. The left-hand
side of the inequality will increase by

. IF’ 6(C)1
CC:f(C)=I

in this iteration. If we can prove that this increase is bounded above by the increase of the
right-hand side, namely

(2)2
IAI " Ic I,

where C {C 6 C f(C) }, then we will be done.
The basic intuition behind the proof of this result is that the average degree of a vertex in a

2forest of at most AI vertices is at most 2- IN" To begin, construct a graph H by considering the
active and inactive components of this iteration as vertices of H, and the edges e 6 6 (C) C) F’
for all C 6 C as the edges of H. Remove all isolated vertices in H that correspond to inactive
components. Note that H is a forest. We claim that no leaf in H corresponds to an inactive
vertex. To see this, suppose otherwise, and let v be a leaf, Cv its associated inactive component,
e the edge incident to v, and C the component of F that contains Cv. Let N and C N be the



304 MICHEL X. GOEMANS AND DAVID E WILLIAMSON

two components formed by removing edge e from the edges of component C. Without loss
of generality, say that Co

_
N. The set N Cv is partitioned by some of the components of

the current iteration; call these C1 Ck (see Fig. 7). Since vertex v is a leaf, no edge in F’
connects Cv to any Ci. Thus by the construction of F’, f(I,.)Ci) O. Since f(C) 0 also,
it follows that f (N) 0. We know f(C) 0, so by Observation 2.1 f (C N) 0 as well,
and thus by the construction of F’, e ’ F’, which is a contradiction.

F’

FIG. 7. Illustration ofclaim that all leaves of H are active.

In the graph H, the degree d of vertex v corresponding to component C must be If(C)
F’I. Let N, be the set of vertices in H corresponding to active components, so that ]N ]Cll.
Let Ni be the set of vertices in H that correspond to inactive components. Then

v6N, vENaUNi vGNi

< 2([N.[ + INil 1) 2INI
21NI 2.

This inequality holds since H is a forest with at most N, + Ni] edges, and since each
vertex corresponding to an inactive component has degree at least 2. Multiplying each side
by e, we obtain -v_Ua d, < e(21Na[ 2), or

e IF’ 6(C)1 _< 2e(IC’l- 1) _< (2--
CC

since the number of active components is always no more than AI. Hence the theorem is
proven. F1

2.3. Implementing the algorithm. We now turn to the problem of implementing the
algorithm efficiently and show how the algorithm can be made to run in O(min(n2 log n,
mnot(m, n))) time. We neglect the time taken to compute f from this discussion, since we
can compute f(C) in O(n) time for all problems of interest, and since we need to perform
this computation at most O (n) times.

Some of the implementation details are obvious. For example, we can maintain the
components C as a union-find structure of vertices. Then all merging will take at most
O(not(n, n)) time overall, where ot is the inverse Ackermann function [33]. The two main
algorithmic problems arise from selecting the edge that minimizes e at each iteration, and
from finding the edges in F that belong in F’. We consider each of these problems separately.

As a naive approach to finding the minimum edge, we can simply use O (mot (m, n)) time
each iteration to compute the reduced cost (Ce d(i) d(j))/(f(Cp) + f(Cq)) for each
edge e (i, j) and to check whether the edge spans two different components. Other loop



A GENERAL APPROXIMATION TECHNIQUE 305

operations take O (n) time, resulting in a running time of O (mnot (m, n)) for the main loop,
since there are at most n iterations.

By being somewhat more careful, we can reduce the time taken to find the minimum edge
in dense graphs to O (n log n). We need three ideas for this reduced time bound. The first idea
is to introduce a notion of time into the algorithm. We let the time T be 0 at the beginning of the
algorithm and increment it by the value of each time through the main loop. The second idea
is that instead of computing the reduced cost for an edge every time through the loop, we can
maintain a priority queue of edges, where the key of an edge is the time T at which its reduced
cost is expected to be zero. If we know whether the components of an edge’s endpoints are
active or inactive, and assume that the activity (or inactivity) will continue indefinitely, it is
easy to compute this time T. Of course the activity of a component can change, but this occurs
only when it is merged with another component, and only edges incident to the component
are affected. In this case, we can recompute the key for each incident edge, delete the element
with the old key, and reinsert it with the new key. The last idea we need for the lower time
bound is that we only need to maintain a single edge between any two components. If there is
more than one edge between any two components, one of the edges will always have a reduced
cost no greater than that of the others; hence the others may be removed from consideration
altogether.

Combining these ideas, we get the following algorithm for the main loop: first, we
calculate the initial key value for each edge and insert each edge into the queue (in time
O(m log n)). Each time through the loop, we find the minimum edge (i, j) by extracting the
minimum element from the queue. If Cp and j Cq, we delete all edges incident to Cp
and Cq from the queue. For each component Cr different from Cp and Cq we update the keys
of the two edges from Cp to Cr and Cq to Cr, select the one edge that has the minimum key
value, then reinsert it into the queue. Since there are at most n components at any point in
time, each iteration will have O(n) queue insertions and deletions, yielding a time bound of
O (n log n) per iteration, or O (n2 log n) for the entire loop.

To compute F’ from F, we iterate through the components C of F. Given a component
C, we root the tree at some vertex, put each leaf of the tree in a separate list, and compute the

f value for each of the leaves. An edge joining a vertex to its parent is discarded if the f value
for the set of vertices in its subtree is 0. Whenever we have computed the f value for all the
children of some vertex v, we concatenate the lists of all the children of v, add v to the list,
and compute f of the vertices in the list. We continue this process until we have examined
every edge in the tree. Since there are O(n) edges, the process takes O(n) time.

3. Applications of the algorithm. In this section, we list several problems to which the
algorithm can be applied.

The generalized Steiner tree problem. The generalized Steiner tree problem is the
problem of finding a minimum-cost forest that connects all vertices in T/ for p.
The generalized Steiner tree problem is a proper constrained forest problem with f(S)
if there exists 6 {1 p} with 0 =/:: S f3 Ti =/: Ti and 0 otherwise. In this case, our

2 wherek_ I[,_ji=, pT/Iapproximation algorithm has a performance guarantee of 2 ,
and simulates an algorithm of Agrawal, Klein, and Ravi [1 ]. Their algorithm was the first
approximation algorithm for this problem.

When p 1, the problem reduces to the classical Steiner tree problem. For a long time,
2the best approximation algorithm for this problem had a performance guarantee of (2 ) (for

a survey, see Winter [39]) but, very recently, Zelikovsky [40] obtained an !!-approximation
algorithm. An improved !-approximation algorithm based upon Zelikovsky’s ideas was later
proposed by Berman and Ramaiyer [3].
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The performance guarantee of the algorithm can be shown to be tight for this problem.
When p 1, our algorithm reduces to the standard minimum-cost spanning tree heuristic
(see Goemans and Bertsimas 15]) The heuristic can produce solutions which have cost 2 2

k
times the optimal cost, as is shown in 15].

The T-join problem. Given an even subset T of vertices, the T-join problem consists
of finding a minimum-cost set of edges that has odd degree at vertices in T and even degree
at vertices not in T. Edmonds and Johnson [9] have shown that the T-join problem can be
solved in polynomial time and can be formulated by the linear program (L P) with the proper
function f(S) if IS 7/T[ is odd and 0 otherwise. The edge-removing step of our algorithm
guarantees that the solution produced is a T-join (see below). Using our algorithm, we obtain
a (2 rl )-approximation algorithm for the T-join problem.

The performance guarantee of the algorithm is tight for the T-join problem. Figure 8(a)-
(c) shows an example on eight vertices in which the minimum-cost V-join has cost 4+3, while
the solution produced by the algorithm has cost 7, yielding a worst-case ratio of approximately
7=2_2g. Clearly the example can be extended to larger numbers ofvertices and to an arbitrary
set T.

When TI 2, the T-join problem reduces to the shortest path problem. Our algorithm
is exact in this case, since 2 ITI

The minimum-weight perfect matching problem. The minimum-weight perfect match-
ing problem is the problem of finding a minimum-cost set of nonadjacent edges that cover
all vertices. This problem can be solved in polynomial time by the original primal-dual algo-
rithm discovered by Edmonds [7]. The fastest strongly polynomial time implementation of
Edmonds’ algorithm is due to Gabow 11 ]. Its running time is O(n(m + n log n)). For integral
costs boundedby C, the best weakly polynomial algorithm runs in O (mnoe(m, n) log n log nC)
time and is due to Gabow and Tarjan [13].

These algorithms are fairly complicated and, in fact, too time-consuming for large in-
stances that arise in practice. This motivated the search for faster approximation algorithms.
Reingold and Tarjan [30] have shown that the greedy procedure has a tight performance guar-

4.0.585 for general nonnegative cost functions. Supowit, Plaisted, and Reingold [32]antee of 5n

and Plaisted [29] have proposed an O (min(n2 log n, m log2 n)) time approximation algorithm
for instances that obey the triangle inequality. Their algorithm has a tight performance guar-
antee of 2 log(1.5n). As shown by Gabow and Tarjan [13], an exact scaling algorithm for
the maximum-weight matching problem can be used to obtain an (1 / 1/na)-approximation
algorithm (a > 0) for the minimum-weight perfect matching problem. Moreover, if the orig-
inal exact algorithm runs in O(f(m, n)log C) time, the resulting approximation algorithm
runs in O(mv/n logn + (1 +a)f(m, n) log n). Vaidya [34] obtains a (3 + 2)-approximation
algorithm for minimum-weight perfect matching instances satisfying the triangle inequality.
His algorithm runs in O(n2 log2"5 n log(1/e)) time.

The algorithm for proper constrained forest problems can be used to approximate the
minimum-weight perfect matching problem when the edge costs obey the triangle inequality.
We use the algorithm with the proper function f(S) being the parity of IS[, i.e., f(S)
if IS] is odd and 0 if IS] is even. This function is the same as the one used for the V-join
problem. The algorithm returns a forest whose components have even size. More precisely,
the forest is a V-join, and each vertex has odd degree: if a vertex has even degree, then,
by a parity argument, some edge adjacent to the vertex could have been deleted so that the
resulting components have even size. Thus this edge would have been deleted in the final
step of the algorithm. The forest can be transformed into a perfect matching with no increase
of cost by repeatedly taking two edges (u, v) and (v, w) from a vertex v of degree three or
more and replacing these edges with the edge (u, w). This procedure maintains the property
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that the vertices have odd degree. After O(n) iterations, each vertex has degree one. Since
each iteration takes O(1) time, the overall procedure gives an approximation algorithm for
weighted perfect matching which runs in O(n2 log n) time and has a performance guarantee
of 2 2.

The performance guarantee of the algorithm is tight for this problem also, as in shown in
Fig. 8(d).

(e) (d)

FiG. 8. Worst-case example for V-join or matching. Graph (a) gives the instance: plain edges have cost 1,
dotted edges have cost + , and all other edges have cost 2. Graph (b) is the minimum-cost solution. Graph (c) is

the set of edgesfound by the constrainedforest algorithm, and graph (d) shows a bad (but possible) shortcutting of
the edges to a matching.

Point-to-point connection problems. In the point-to-point connection problem, we are
given a set C {ci Cp} of sources and a set D {dl dp} of destinations in a graph
G (V, E) and we need to find a minimum-cost set F of edges such that each source-
destination pair is connected in F [26]. This problem arises in the context of circuit switching
and VLSI design. The fixed destination case in which ci is required to be connected to di is
a special case of the generalized Steiner tree problem where T/ {ci, di }. In the nonfixed
destination case, each component of the forest F is only required to contain the same number
of sources and destinations. This problem is NP-complete [26].

The nonfixed case is a proper constrained forest problem with f(S) if IS
IS Cq DI and 0 otherwise. For this problem, we obtain a (2 7)-approximation algorithm.

Exact partitioning problems. In the exact tree (cycle, path) partitioning problem, for
a given k we must find a minimum-cost collection of vertex-disjoint trees (cycles, paths) of
size k that cover all vertices. These problems and related NP-complete problems arise in the
design of communication networks, vehicle routing, and cluster analysis. These problems
generalize the minimum-weight perfect matching problem (in which each component must
have size exactly 2), the traveling salesman problem, the Hamiltonian path problem, and the
minimum-cost spanning tree problem.

We can approximate the exact tree, cycle, and path partitioning problems for instances
that satisfy the triangle inequality. For this purpose, we consider the proper constrained forest
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problem with the function f (S) if IS] 0 (mod k) and 0 otherwise. Our algorithm finds
a forest in which each component has a number of vertices that is a multiple of k, and such

2 of the optimal such forest. Obviously the cost of thethat the cost of the forest is within 2
optimal such forest is a lower bound on the optimal exact tree and path partitions. Given the
forest, we duplicate each edge and find a tour of each component by shortcutting the resulting
Eulerian graph on each component. If we remove every kth edge of the tour, starting at some
edge, the tour is partitioned into paths of k nodes each. Some choice of edges to be removed
(i.e., some choice of starting edge) accounts for at least of the cost of the tour, and so we

remove these edges. Thus this algorithm is a (4(1 )(1 ))-approximation algorithm for
the exact tree and path partitioning problems.

To produce a solution for the exact cycle partitioning problem, we add the edge joining
the endpoints of each path; given the triangle inequality, this at most doubles the cost of
the solution produced. We claim, however, that the algorithm is still a (4(1 )(1 ))-
approximation algorithm for the cycle problem. To see that this claim is true, note that the
following linear program is a linear programming relaxation of the exact cycle partitioning
program, given the function f above:

Min

subject to:

Z CeXe
eEE

x(6(S)) > 2f(S) S c V

xe>O eE.

Its dual is

Max

subject to:

2 Z f(S).ys
SCV

Z yS<Ce eE,
S:e(S)

ys>O O#Sc V.

We know the algorithm produces a solution y that is feasible for this dual such that ZeEF’ Ce
2(2 g) Ys. The argument above shows how to take the set of edges F’ and produce a set

of edges T such that T is a solution to the exact cycle partitioning problem, and Y-eET Ce <

4(1 ) --eF’ Ce’ SO that

Ce _8 1--- 1--- YS.
eT 11

Since 2 ys is the dual objective function, 2 ys is a lower bound on the cost of the optimal
exact cycle partition, Z. Thus

ce <_4 1- - 1-- Zc.
eT

The proper functions corresponding to the nonfixed point-to-point connection problem,
the T-join problem and the exact partitioning problems are all of the form f(S) if

-,is ai 0 (mod p) and 0 otherwise, for some integers ai, V, and some integer p.
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4. Extensions. The main algorithm can be extended in a number of ways to handle
nonproper functions f and even other somewhat different integer programming problems.
We describe these extensions in this section.

4.1. More general functions f. We can weaken the conditions for a proper function f
)-approximation algorithm for the constrained forest problem. Aand obtain a modified (2-

number of new problems can be approximated under these weaker conditions; these problems
are listed below. To solve these problems, the main algorithm must be modified to handle
functions f that are not symmetric and cannot be made symmetric without violating disjoint-
ness. The central modifications that must be made involve maintaining a root vertex for each
component, to cope with the asymmetry of f, and maintaining sets of vertices that must be
connected in the final solution.

We omit discussion of the extended algorithm here because a recent algorithm of
Williamson et al. [38] simplifies and subsumes our extended algorithm. Williamson et al.
have shown how some of the results of this paper can be extended to uncrossable functions
h. A function h 2v -+ {0, 1} is uncrossable if whenever h(A) h(B) then either
h(A B) h(B A) 1, or h(A U B) h(A G B) 1. Williamson et al. show that an
algorithm somewhat similar to our algorithm finds solutions to (I P) for uncrossable functions
that are within a factor of 2 +/- of optimal. The algorithm can be implemented in polynomial
time for many uncrossable functions, including those for which the function has the property
that if h(A) then h(B) for 13 : B C A. The problems listed below fit in this
category. See Williamson [36] and Goemans and Williamson [17] for a discussion of how the
techniques of Williamson et al. apply to these problems.

Lower eapaeitated partitioning problems. The lower capacitated partitioning prob-
lems are like the exact partitioning problems except that each component is required to have at
least k vertices rather than exactly k vertices. The lower capacitated cycle partitioning problem
is a variant of the 2-matching problem. More precisely, the cases k 2, 3, and 4 correspond
to integer, binary, and triangle-free binary 2-matchings, respectively. The lower capacitated
cycle partitioning problem is NP-complete for k >_ 5 (Papadimitriou (as reported in [6]) for
k > 6 and Vornberger [35] for k 5), polynomially solvable for k 2 or 3 (Edmonds and
Johnson [8]), while its complexity for k 4 is open. Imielinska, Kalantari, and Khachiyan
18] have shown that the lower capacitated tree partitioning problem is NP-complete for k >_ 4.

The lower capacitated tree partitioning problem is the constrained forest problem cor-
responding to f(S) if 0 < IS[ < k and 0 otherwise. The extended algorithm gives
a (2 )-approximation algorithm for this problem for any k. Furthermore, assuming
the triangle inequality, this algorithm can be turned into a (2 +/-)-approximation algorithm

2)_approximation algo-for the lower capacitated cycle partitioning problem and a (4
rithm for the lower capacitated path partitioning problem.

Location-design and location-routing problems. Many network design or vehicle rout-
ing problems require two levels of decisions. In the first level, the location of special vertices,
such as concentrators or switches in the design of communication networks, or depots in the
routing of vehicles, need to be decided. There is typically a set of possible locations and a
fixed cost is associated with each of them. Once the locations of the depots are decided, the
second level deals with the design or routing per se. These problems are called location-design
or location-routing problems [24]. Several of these problems can be approximated using the
extended algorithm. For example, we can provide a (2 +/-)-approximation algorithm for the
problem in which we need to select depots among a subset D of vertices of a graph G (V, E)
and cover all vertices in V with a set of cycles, each containing a selected depot [25], [24].
The goal is to minimize the sum of the fixed costs of opening our depots and the sum of the



310 MICHEL X. GOEMANS AND DAVID E WILLIAMSON

costs of the edges of our cycles. The algorithm can also be extended to the case in which every
cycle is required to have at least k vertices.

4.2. Nonnegative functions f. Using techniques from Goemans and Bertsimas [15],
we can provide approximation algorithms for many functions f 2v

__
I, assuming that we

can have multiple copies of an edge in the solution. Suppose f satisfies f (S) f(V S)
for all S

__
V, and, if A and B are disjoint, then max{f(A), f(B)} > f(A U B). Suppose

also that f assumes at most p different nonzero values, P0 0 < p < < pp. Let (I P’)
denote the integer program (I P) with the Xe {0, 1} constraint replaced by the constraint

Xe 1. Then we can show that there is an approximation algorithm for (I P’) that comes
within a factor of 2 _t= (Pk Pk-1)/P, of optimal. Note that at worst the values of f
will be 0, 1, 2, 3 fmax maxs f (S), so that the performance guarantee will be at most
2 ’Jnax 1 O(log fma) The performance guarantee will also be no worse than 2p TheA.k=l k
algorithm for (I P’) works by performing p iterations of our main algorithm. In iteration
i, set g(S) if f(S) >_ IOp+l_i, g(S) 0 otherwise, and call the main algorithm with
function g. By the properties of f, g will be a proper function for the main algorithm. When
the algorithm returns F’, we make (lOp+l_i Dp-i) copies of each edge, and add them to
the set of edges to be output. The proof that constructing a set of edges in this way comes
within a factor of 2=(p p_)/p of optimal is essentially the same as the proof used
by Goemans and Bertsimas. We can potentially reduce the number of calls to our main
algorithm by using a "scaling" technique introduced by Agrawal, Klein, and Ravi [1 ], which
requires [log fmaxJ at- iterations. In iteration i, we set g(S) if f(S) > 2[lgJ%x/+l-i

g(S) 0 otherwise, and call the main algorithm with the function g. We make 2
copies of the edges in the resulting F’, and add them to the set of edges to be output. Using the
Goemans and Bertsimas proof, it can be shown that this procedure results in a (2 [log fmaJ +2)-
approximation algorithm.

One application of allowing fma > is the generalized Steiner network problem in which
each pair of vertices i, j must be connected by rij edge-disjoint paths. In this case we want

f(S) maxis,jcs rij For this particular problem, Agrawal, Klein, and Ravi [1] showed how
to reduce this general case to the 0-1 case.

Williamson et al. [38] have recently shown how to approximate (I P) for functions of the
type mentioned above when no edge replication is allowed.

4.3. The prize-collecting problems. The prize-collecting traveling salesman problem
is a variation of the classical traveling salesman problem (TSP). In addition to the cost on the
edges, we have also a penalty rri on each vertex i. The goal is to find a tour on a subset of the
vertices that minimizes the sum of the cost of the edges in the tour and the vertices not in the
tour. We consider the version in which a prespecified root vertex r has to be in the tour; this is
without loss of generality, since we can repeat the algorithm n times, setting each vertex to be
the root. This version of the prize-collecting TSP is a special case of a more general problem
introduced by Balas [2]. The prize-collecting Steiner tree problem is defined analogously. The
standard Steiner tree problem can be seen to be a special case of the prize-collecting Steiner
tree problem in which nonterminals have a penalty of zero, while terminals have a very large
penalty (e.g., equal to the diameter of the graph).

Bienstock et al. [4] developed the first approximation algorithms for these problems.
Their performance bounds are 5/2 for the TSP version (assuming the triangle inequality) and
3 for the Steiner tree version. These approximation algorithms are not very efficient, however,
since they are based upon the solution of a linear programming problem.

These problems do not fit in the framework ofproblems considered so far since they cannot
be modelled by (IP). However, the main algorithm can be modified to give a (2 _)-
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approximation algorithm for both the prize-collecting TSP (under the triangle inequality) and
the prize-collecting Steiner tree problem. Moreover, these algorithms are purely combinatorial
and do not require the solution of a linear programming problem as in [4]. We will focus our
attention on the prize-collecting Steiner tree problem, and at the end of the section we will
show how the algorithm for the tree problem can be easily modified to yield a prize-collecting
TSP algorithm.

4.3.1. The prize-collecting Steiner tree. The prize-collecting Steiner tree can be for-
mulated as the following integer program:

(PC-IP)

Min

subject to:

Z Cexe -3t- Z ZT(Z 7i)
e6E TCV;rT i6T

x(3(S)) + Z ZT > S C V; r S
T3S

Z ZT<I
TCV;rT

Xe E {0, 1} eEE

zr {0,1} TCV;rT.

Intuitively, zr is set to 0 for all T except the set T of all vertices not spanned by the tree
of selected edges. A linear programming relaxation (PC-L P) of the integer program can
be created by replacing the integrality constraints with the constraints Xe > 0 and zr > 0
and dropping the constraint -r zr < (in fact, including this constraint does not affect
the optimal solution). The LP relaxation (PC-L P) can be shown to be equivalent to the
following, perhaps more natural, linear programming relaxation of the prize-collecting Steiner
tree problem, which was used by the algorithm of Bienstock et al. [4]"

Min

subject to:

Z CeXe -- E(1 Si)7fi
eE ir

x((S)) s S; r S

xe>O eE

si >0 V =fir.

The dual of (PC-LP) can be formulated as follows:

(PC-D)

Max

subject to"

ZYs
S:rS

Z ys<Ce eEE
S:e(S)

Eys<_ZJri rCV;rCr
SC_T iT

ys >_O S C V;r S.

The algorithm for the prize-collecting Steiner tree problem is shown in Fig. 9. The basic
structure of this algorithm is similar to that of the main algorithm. The algorithm maintains a
forest F of edges, which is initially empty. Hence each vertex v is initially in its own connected
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component. All components except the root r are considered active, and each vertex is initially
unmarked. The algorithm loops, in each iteration doing one of two things. First, the algorithm
may add an edge between two connected components of F. If the resulting component contains
the root r, it becomes inactive; otherwise it is active. Second, the algorithm may decide to
"deactivate" a component. Intuitively, a component is deactivated if the algorithm decides it is
willing to pay the penalties for all vertices in the component. In this case, the algorithm labels
each vertex in the component with the name of the component. The main loop terminates
when all connected components of F are inactive. Since in each iteration the sum of the
number of components and the number of active components decreases, the loop terminates
after at most 2n iterations. The final step of the algorithm removes as many edges from F
as possible while maintaining two properties. First, all unmarked vertices must be connected
to the root, since these vertices were never in any deactivated component and the algorithm
was never willing to pay the penalty for these vertices. Second, if a vertex with label C is
connected to the root, then so is every vertex with label C’ __. C.
Input: An undirected graph G (V, E), edge costs cij >_ O, vertex penalties 7h >_ O, and a root vertex r

Output: A tree F’, which includes vertex r, and a set of unspanned vertices X

2
3
4
5
6
7
8
9
l0

ll
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

Comment." Implicitly set Ys +- 0for all S C V
C +- {{v} v V}
For each v 6 V
Unmark v

d(v) - 0

w({v}) <-- 0

If v r then X({v}) +-- 0 else ,k({v}) +--

While C C X(C)
ce-d(i)-d(j)Findedgee (i, j) with/

Find 6 C with () that minimizes :2

min(l, 2)
w(C) +-- w(C) + X(C) for all C 6 C
Comment." Implicitly set yc +- Yc / X(C) for all C C
For allv6Cr 6C
d(v) +- d(v) + )(Cr)

If e 2
() - o
Mark all unlabelled vertices of

else
F <-- FU{e}
d +- d u {C u C} {G} {C.}
uU(Cp U Cq) uo(Cp) -a u)(Cq)
If r Cp U Cq then k(Cp U Ca) +- 0 else k(Cp U Ca) +-

F’ is derived from F by removing as many edges as possible but so that the following two

properties hold: (1) every unlabelled vertex is connected to r; (2) if vertex v with label C is

connected to r, then so is every vertex with label C’

_
C.

X is the set of all vertices not spanned by F’.

FIG. 9. The algorithmfor the prize-collecting Steiner tree problem.

As with the main algorithm, the choices of the algorithm are motivated by the greedy
construction of an implicit solution to the dual (PC-D). Initially all dual variables are set to
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zero. In each iteration of the main loop, the algorithm increases Yc for all active C by a value
that is as large as possible without violating the two types of packing constraints of (PC-D)"

Ys:ee(s) Ys < ce for all e 6 E, and -sc_r ys <_ Y-ier rri for all T C V. Increasing the Yc for
active C by e will cause one of the packing constraints to become tight. If one of the first kind
of constraints becomes tight, then it becomes tight for some edge e between two connected
components of the current forest F; hence we add this edge to F. If one of the second kind of
constraints becomes tight, then it becomes tight for some active component C. In this case,
the algorithm chooses to deactivate C.

We claim that the algorithm shown in Fig. 9 behaves exactly in the manner described
above. The claim follows straightforwardly from the algorithm’s construction of y and F, and
from the fact that d(i) ZS:iS YS and w(C) ’s_c Ys at the beginning of each iteration.
Note that the algorithm keeps track of the activity of component C by setting )(C) if and
only if component C is active.

Let Z*PcLe and Z*czp be the optimal solutions to (PC-LP) and (PC-IP) respectively.
In a manner analogous to that of Theorem 2.4, weObviously -scv Ys < ZPcLP ZPctP.

will show the following theorem.
THEOREM 4.1. The algorithm in Fig. 9 produces a set ofedges F and a set ofvertices X

whose incidence vectors arefeasiblefor (PC-I P), and such that

ZPciPn-1 n-1eF iX SCV

Hence the algorithm is a (2 -l)-approximation algorithmfor the prize-collecting Steiner
tree problem.

Proof It is not hard to see that the algorithm produces a feasible solution to (PC-I P),
since F’ has no nontrivial component not containing r and the component containing r is a
tree.

By the construction of F’, each vertex not spanned by F’ (i.e., the vertices in X) lies in
some component deactivated at some point during the algorithm. Furthermore, if the vertex
was in some deactivated component C, then none of the vertices of C are spanned by F’.
Using these observations, plus the manner in which components are formed by the algorithm,
we can partition the vertices of X into disjoint deactivated components C1 Ck. These
sets are the maximal labels of the vertices in X. Since each Cj is a deactivated component,
it follows that y-sc_c Ys -iG 7ri, and thus that the inequality to be proven is implied by

-eGF Ce -Jl- Zj -SCj YS < (2 5--) SCV YS" In addition, since Ce ZS:eE6(S)YS for
each e 6 F’ by construction of the algorithm, all we need to prove is that

eF’ S:e6(S) S_Cj

or, rewriting terms as in Theorem 2.4,

_yslF’O 6(S)[ + Ys <_ (2-
S Sc_Cj

n-1
-) Zys,

scv

n-1 scv

As in Theorem 2.4, this theorem can be proven by induction on the main loop. Pick
any particular iteration, and let C be the set of active components of the iteration. Let H be
the graph formed by considering active and inactive components as vertices and the edges
e 6 3(C) C F’ for active C as the edges of H. Discard all isolated inactive vertices. Let
Na denote the set of active vertices in H, Ni the set of inactive vertices, Nd the set of active
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vertices corresponding to active sets contained in some Cj, and do the degree of a vertex v in
H. Note that Nd {v E Na do 0}. In this iteration, the increase in the left-hand side of
the inequality is (Y’-oU do + INd]) while the increase in the right-hand side of the inequality
is (2 V_)lNal. Thus we would like to prove that (Zvua do + INI) < (2 V_)lNal.
Note that the degree of any vertex corresponding to an active set in some Cj is zero. Hence if
we can show that -oNa-Nd do <_ (2 _l)]N Nal, then the proof will be complete.

To do this, we show that all but one of the leaves of H must be active vertices. Suppose
that v is an inactive leaf of H, adjacent to edge e, and let Co be the inactive component
corresponding to v. Further suppose that Co does not contain the root r. Since Co is inactive
and does not contain r, it must have been deactivated. Because Co is deactivated, no vertex
in Co is unlabelled; furthermore, since v is a leaf, no vertex in Co can lie on the path between
the root and a vertex that must be connected to the root. By the construction of F’, then,
e ’ F’, which is a contradiction. Therefore, there can be at most one inactive leaf, which must
correspond to the component containing r.

Then

vGNa --Nd oG(Na -Nd)t-JNi vGNi

< 2(I(N. Na) U Nil- 1) (21Nil- 1)

21N N,zl-
< (2- )lNa NI.

n-1

The inequality holds since all but one of the spanned inactive vertices has degree at least two,
and since the number of active components is always at most n 1. [3

The algorithm can be implemented in O(n2 log n) time, by using the same techniques
as were given for the main algorithm. In this case, we must also keep track of the time at
which we expect each component to deactivate, and put this time into the priority queue. The
only other difference from the main algorithm is the final step in which edges are deleted.
This step can be implemented in O (n2) time: first we perform a depth-first search from every
unmarked vertex to the root, and "lock" all the edges and vertices on this path. We then look
at all the deactivated components corresponding to the labels of "locked" vertices. If one of
these contains an unlocked vertex, we perform a depth-first search from the vertex to the root
and lock all the edges and vertices on the path. We continue this process until each locked
vertex is in deactivated components that only contain locked vertices. We then eliminate all
unlocked edges. This procedure requires at most n O (n) time depth-first searches.

4.3.2. The prize-collecting traveling salesman problem. To solve the prize-collecting
TSP given that edge costs obey the triangle inequality, we use the algorithm shown in Fig. 10.
Note that the algorithm uses the above algorithm for the prize-collecting Steiner tree problem
with penalties zr[ i/2. TO see that the algorithm is a (2 )-approximation algorithm,
we need to consider the following linear programming relaxation of the problem:

Min Z CeXe-- Z ZT(Z i)
eE TCV;rq{T iT

subject to"

x(6(S)) + 2 Z zr > 2 r f/ S
T_S

xe>O eEE

zr >0 T C V;r qT.
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This linear program is a relaxation of an integer program similar to (PC-I P) in which zr
for the set of vertices T not visited by the tour, and zr 0 otherwise. We relax the constraint
that each vertex in the tour be visited twice to the constraint that each vertex be visited at least
twice. The dual of the linear programming relaxation is

Max 2 ys
S:rS

subject to:

Z ys<_Ce e6E
S:e(S)

2Zys<__ZrCi TC V,rT
ST iT

ys>O SCV, rS.
Note that this dual is very similar to (PC-D). The dual solution generated by the algorithm
for the prize-collecting Steiner tree for penalties rr’ will be feasible for the dual program

is the cost ofabove with penalties rr By duality, 2 J-scv ys < ZPCTSP, where Zecrse
the optimal solution to the prize-collecting TSP. Given a solution F’ and X to the prize-
collecting Steiner tree problem, the cost of our solution to the prize-collecting TSP is at
most 2 eF’ Ce -- -iEX 7"gi 2(eF’ Ce + iEX ;)" Theorem 4.1 shows that e’ Ce +
iX; (2 ) SCV YS, SO that

2( c + i) < 2(2-) YS < (2-)
n-1 n-1 Zecse

e6F’ iGX SCV

Thus the cost of the solution found by the algorithm is within (2 ) of optimal

Input: An undirected graph G (V, E), edge costs Ci. > 0, vertex penalties 7/" > 0, and a root vertex r

Output: A tour T’, which includes vertex r, and a set of unspanned vertices X
Apply the prize-collecting Steiner tree algorithm to the problem instance with graph G, edge

/2.costs c, root r, and penalties 7r 2"/"

2 Duplicate the edges F’ of the Steiner tree returned to form an Eulerian graph T.
3 Shortcut T to form a tour T’. Let X be all vertices not in the tour.

FIG. 10. The algorithmfor the prize-collecting traveling salesman problem.

5. Concluding remarks. The approximation techniques described in the previous sec-
tions have been applied to a number of related problems since the appearance of a prelim-
inary version of this paper [16]. Saran, Vazirani, and Young [31] showed how to use our
techniques to derive an approximation algorithm for the minimum-cost 2-edge-connected
graph problem. Their algorithm has a performance guarantee of 3, equal to the perfor-
mance guarantee of an earlier algorithm of Frederickson and Ja’Ja’ [10] for the same prob-
lem. Klein and Ravi [22] demonstrated a 3-approximation algorithm for solving (I P) for
proper functions f 2v -- {0, 2}. Building on some ideas of Ravi and Klein, Williamson
et al. [38] devised an approximation algorithm to solve (IP) for general proper functions

f 2v __+ N in which the disjointness condition is replaced by the more general condi-
tion f(A U B) < max(f(A), f(B)) for disjoint A, B. The performance guarantee of the
algorithm is at most 2k, where k maxs f(S), but can be lower depending on the values
taken on by f. The algorithm depends on showing that the techniques of this paper can be
extended to approximate uncrossable functions, as defined in 4. Goemans et al. [14] have
shown how to improve the performance guarantee of this algorithm to 2(1 + 7 + -+- ).
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Gabow, Goemans, and Williamson [12] have shown how to efficiently implement the algo-
rithm of Williamson et al. A consequence of the implementation of Gabow, Goemans, and
Williamson is an O(n2 -+- nv/m log log n) implementation for our main algorithm. Finally, we
have implemented the 2-approximation algorithm for Euclidean matching problems [37]. The
performance of the algorithm in this case seems to be much better than the theoretical bounds
given here" on 1,400 random and structured instances of up to 131,072 vertices, the algorithm
was never more than 4% away from optimal.

Aeknowledgrnents. The authors would like to thank David Shmoys for extensive com-
ments on a draft of this paper.
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overl AN OPTIMAL ON-LINE SCHEDULING ALGORITHM FOR OVERLOADED
UNIPROCESSOR REAL-TIME SYSTEMS*

GILAD KOREN AND DENNIS SHASHA

Abstract. Consider a real-time system in which every task has a value that it obtains only if it completes by its
deadline. The problem is to design an on-line scheduling algorithm (i.e., the scheduler has no knowledge of a task
until it is released) that maximizes the guaranteed value obtained by the system.

When such a system is underloaded (i.e., there exists a schedule for which all tasks meet their deadlines), Dertouzos
[Proceedings IFIF Congress, 1974, pp. 807-813] showed that the earliest deadline first algorithm will achieve 100%
of the possible value. Locke [Ph.D. thesis, Computer Science Dept., Carnegie-Mellon Univ., Pittsburgh, PA] showed
that earliest deadline first performs very badly, however, when the system is overloaded, and he proposed heuristics
to deal with overload.

This paper presents an optimal on-line scheduling algorithm for overloaded uniprocessor systems. It is optimal
in the sense that it gives the best competitive ratio possible relative to an off-line scheduler.

Key words, competitive, worst-case guarantee, deadline

AMS subject classifications. 68M20, 68N25, 68Q20, 68Q25, 93C83

1. Introduction. In real-time computing systems, correctness may depend on the com-
pletion time of tasks as much as their input/output behavior. Tasks in real-time systems have
deadlines. If the deadline for a task is met, then the task is said to succeed. Otherwise it is
said to havefailed.

A system is underloaded if there exists a schedule that will meet the deadline of every
task, and overloaded otherwise. Scheduling underloaded systems is a well-studied topic, and
several on-line algorithms have been proposed for the optimal scheduling of these systems
on a uniprocessor [5], [15]. Examples of such algorithms include earliest-deadline-first (D)
and smallest-slack-time (SL). However, none of these classical algorithms make performance
guarantees during times when the system is overloaded. In fact, Locke has experimentally
demonstrated that these algorithms perform quite poorly when the system is overloaded 14].

Practical systems are prone to intermittent overloading caused by a cascading of excep-
tional situations. A good on-line scheduling algorithm, therefore, should give a performance
guarantee in overloaded as well as underloaded circumstances.

Researchers and designers of real-time systems have devised on-line heuristics to han-
dle overloaded situations [2], [17]. Locke proposed several clever heuristics as part of the
Carnegie-Mellon University Archons project [14]. Unfortunately, those heuristics offer no
performance guarantee. This paper proposes an algorithm with strong performance guaran-
tees for a large subset of the parameters considered by Locke’s algorithm.

1.1. Background. Real-time systems may be categorized by how they react when a task
fails to meet its deadline. In a hard real-time system, a task failure is considered intolerable.
The underlying assumption is that a task failure would result in a disaster, e.g., a fly-by-wire
aircraft may crash if the altimeter is read a few milliseconds too late.

*Received by the editors March 30, 1992; accepted for publication (in revised form) October 12, 1993. Sup-
ported by U.S. Office of Naval Research grants N00014-91 -J- 1472, N00014-92-J- 1719, N00014-91 -J- 1472, and U.S.
National Science Foundation grants IRI-89-01699 and CCR-9103953. Much of this work was done while the authors
were at INRIA, Rocquencourt, France.

Courant Institute, New York University, New York, NY 10012. Current address, Bar-Ilan University, Ramat-Gan
52900,Israel (koren@bimacs. cs .biu. ac. il).

Courant Institute, New York University, New York, NY 10012 (shasha@c s. nyu. edu).
The slack time of a task is the distance to its deadline minus its remaining computation time. Hence, the slack

time of a task is a measure of its urgency--a task with small slack time would have to be scheduled soon in order to
meet its deadline.
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A less stringent class of systems is denoted as soft real-time systems. In such systems,
each task has a positive value. The goal of the system is to obtain as much value as possible.
If a task succeeds, then the system acquires its value. If a task fails, then the system gains less
value from the task [15]. In a special case of soft real-time systems, called a firm real-time
system [7], there is no value for a task that has missed its deadline, but there is no catastrophe
either. (Other papers denote such deadlines as hard. The reader should therefore be aware
of the definitional variations.)

An on-line scheduling algorithm is one that is given no information about a task before
its release time. Different tasks models can differ in the kind of information (and its accuracy)
given upon release. We assume the following" when a task is released, its value and deadline
are known precisely, its computation time may be known either precisely, or, more generally,
within some range. Also, preemption is allowed and task switching takes no time.

The value density of a task is its value divided by its computation time. The importance
ratio of a collection of tasks is the ratio of the largest value density to the smallest value density.
When the importance ratio is l, the collection is said to have uniform value density, i.e., a task’s
value equals its computation time. We will denote the importance ratio of a collection by k.

As in [4], [8], and [18] we quantify the performance guarantee of an on-line scheduler
by comparing it with a clairvoyant [15, p. 39] scheduling algorithm (also called an off-line
scheduler). A clairvoyant scheduler has complete a priori knowledge of all the parameters of
all the tasks. A clairvoyant scheduler can choose a "scheduling sequence" that will obtain the
maximum possible value achievable by any scheduler.

As in [4], [8], and [18] we say that an on-line algorithm has a competitive factor r,
0 < r < 1, ifand only if it is guaranteed to achieve a cumulative value of at least r times the
cumulative value achievable by a clairvoyant algorithm on any set of tasks. For convenience
of notation, we use competitive multiplier as the figure of merit. The competitive multiplier
is defined to be "one over the competitive factor." The smaller the competitive multiplier is,
the better the guarantee. Our goal is to devise on-line algorithms whose guarantee is the best
possible one.

Baruah et al. [3], [4] has demonstrated, by using an adversary argument, that in the
uniform value density setting there can be no on-line scheduling algorithm with a competitive
multiplier smaller than 4.

Koren and Shasha describe in a technical report [11] an algorithm called DD-star (DD*)
that has a competitive multiplier of 4 in the uniform value density case and offers 100% of the
possible value in the underloaded case. This showed that the bound of 4 is tight in the uniform
value density case. Wang and Mao [20] independently report a similar guarantee.

On the complexity side, Baruah et. al [3], [4] showed, for environments with an importance
ratio k, a lower bound of (1 / x/)2 on the best possible competitive multiplier of an on-line
scheduler. This result and some pragmatic considerations reveal the following limitations of
the competitive scheduling algorithms described above:

1. The algorithms all assume a uniform value density, yet some short tasks may be more
important than some longer tasks.

2. The algorithms all assume that there is no value in finishing a task after its deadline.
But a slightly late task may be useful in many applications.

3. The algorithms all assume that the computation time is known upon release. However,
a task program that is not straight-line may take different times during different
executions.

Dve, the on-line scheduling algorithm presented in this paper, addresses all these limitations.

2Finding the maximum achievable value for such a scheduler, even in the uniprocessor case, is reducible from
the knapsack problem [6]; hence is NP-hard.
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2. The main results. In this paper we present an on-line scheduling algorithm called
Dver that has an optimal competitive multiplier of (1 / v/)2 for environments with impor-
tance ratio k. Hence, we show that the bound in [3] and [4] is tight for all k. D also gives
100% of the value obtainable by a clairvoyant scheduler when the system is underloaded.

D can be implemented using balanced search trees, and runs at an amortized cost of
O (log n) time per task, where n is the maximum over all time instants of the number of tasks
in the system.
We also investigated two important extensions to the task model studied earlier.

Gradual Descent:
We relax the firm deadline assumption. Tasks that complete after their deadline can
still have a positive value though less than their initial value. As in Locke 14], the
task’s value is given by a valuefunction which depends on its completion time.
We show that under a variety of value functions an appropriate version of D has
a competitive multiplier of (1 + ,,/)2 for environments with importance ratio k.
Situations in which the exact computation time of a task is not known:
Suppose the on-line scheduling algorithm does not know the exact computation time
of a task upon its release. However, for every task T, an upper bound on its possible
computation time denoted by Cma is given and the actual computation time of T
denoted by c satisfies

(1 ) "Cmax < C < Cmax

for some0< < 1.
We show that in that case D has a competitive multiplier of

(1 + ,/)2 + (. k)(1 + r) + 1.

We also show that no on-line scheduler can guarantee 100% of the value obtainable

by a clairvoyant algorithm for underloaded systems in this setting.
To conserve space, we omit the details of the above two extensions in this paper. Full

details can be found in [9] and [12].
The rest of the paper is organized as follows: Section 3 introduces some notation and

definitions used in the paper. Section 4 describes Dvet. Section 5 shows that D has
the optimal competitive multiplier as mentioned previously. Section 6 presents the complete
performance guarantee of D with respect to underloaded and overloaded periods. The
paper ends with a brief conclusion section and a discussion of open problems.

3. Notation. Before we describe the full algorithm, we need some notation. We are

given a collection of tasks T, T2.. Tn denoted by F. For each task T/, its value is denoted
by vi, its release time is denoted by ri, its computation time by ci and its deadline by di.

DEFINITION 3.1.
Underloaded and Overloaded Systems. A system is underloaded if there exists a
schedule that will meet the deadline of every task and overloaded otherwise.
Executable Period. The executable period, Ai, of the task T/ is defined to be the
following interval: A [ri, di ].
By definition, T may be scheduled only during its executable period.

Suppose a collection of tasks is being scheduled by some scheduler S.
Completed Task. A task (successfully) completes if before its deadline, the sched-
uler S gives it an amount of execution time that is equal to its computation time.
Preempted Task. A task is preempted when the processor stops executing it, but
then the task might be scheduled again and possibly complete at some later point.
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A Ready Task. A task is said to be ready at time if its release time is before t, its
deadline is after and it neither completed nor was abandoned before (the current
executing task, if any, is always a ready task).

The earliest deadline first algorithm (hereafter, D) is described in Fig. 1.

At any given moment,
schedule the ready task with the earliest deadline.

FIG. 1. D, the earliest deadline first scheduling algorithm.

We shall make the following assumption:
ASSUMPTION 3.2.

Task Model. Tasks may enter the system at any time; their computation times and
deadlines are known exactly at their time of arrival. (We weaken this assumption of
exact knowledge in [12].) Nothing is known about a task before it appears.
We do assume, however, that an upper bound on the possible importance ratio is
known a priori and can be used by the on-line scheduler. (This bound is denoted by
k.) Other researchers have shown that this assumption can be relaxed 16].
Task Switching Takes No Time. A task can be preempted and another one scheduled
for execution instantly.

Suppose that a collection of tasks 1-’ with importance ratio k is given.
Normalized Importance. Without loss of generality, assume that the smallest im-
portance of a task in is 1. Hence if 1-’ has importance ratio of k, the highest possible
value density of a task in is k.
No Overloaded Periods of Infinite Duration. We assume that overloaded periods
of infinite duration will not occur. This is a realistic assumption, since overload
is normally the result of a temporary emergency or failure. Indeed, in the unipro-
cessor case, Baruah et. al [3] showed that there is no competitive on-line algorithm
when overloaded periods of infinite duration are possible. Note that the number
of tasks in F may be infinite provided that no infinitely long overload period is
generated.4

4. D In the following algorithm, there are three kinds of events (each causing an
associated interrupt) considered:

-I’ask Completion: Successful termination of a task. This event has the highest
priority.
Task Fleloase: Arrival of a new task. This event has low priority.
Latest-start-time Intorrupt: The indication that a task must immediately be sched-
uled in order to complete by its deadline; that is, the task’s remaining computation
time is equal to the time remaining until its deadline. This event has also low priority
(the same as task release).

If several interrupts happen simultaneously they are handled according to their priorities.
A task completion interrupt is handled before the task release and latest-start-time interrupt
interrupts, which are handled in random order. It may happen that a task completion event
suppresses a lower priority interrupt, e.g., if the task completion handler schedules a task

3Intuitively, the adversary can generate a sequence of tasks with ever-growing values. This will force any
competitive scheduler to abandon the current task in favor of the next one, and so on. If the competitive scheduler
attempts to complete a task in favor of a new larger one, then the adversary completes the larger one. In either case,
the on-line schedule will result in a small value compared with an arbitrarily large value for a clairvoyant scheduler.

4For the definition of overloaded periods, see 6.
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that has just reached its LST (latest-start-time) then the task scheduling will obviate the need
for the latest-start-time interrupt.

At any given moment, the set ofready tasks is partitioned into two disjoint sets: privileged
tasks and waiting tasks. Whenever a task is preempted it becomes a privileged task. However,
whenever some task is scheduled as the result of a latest-start-time interrupt all the ready
tasks (whether preempted or never scheduled) become waiting tasks.

D maintains a special quantity called availtime. Suppose a new task is released into
the system and its deadline is the earliest among all ready tasks. The value of availtime is the
maximum computation time that can be taken by such a task without causing the current task
or any of the privileged tasks to miss their deadlines.

D requires three data structures, called Q_privilogocl, Q_waitin9 and Qlst. Each entry
in these data structures corresponds to a task in the system. Q_privileged contains exactly the
privileged tasks and Q_waitin9 contains the waiting tasks. These two structures are ordered
by the tasks’ deadlines. In addition, the third structure, Qlst, contains all tasks (again, not
including the current task) ordered by their latest start times.
These data structures support Insert, Delete, Min, and Dequeue operations.

The Min operation for Q_privileged or Q_waitin9 returns the entry corresponding to
the task with the earliest deadline among all tasks in Q_privileged or Q_waiting. For
Qlst the Min operation returns the entry corresponding to the task with the earliest
LST among all tasks in the queue. The Min operation does not modify the queue.
A Dequeue operation on Q_privileged (or Q_waiting) deletes from the queue the
element returned by Min; in addition it deletes this element from Qlst. Likewise
a Dequeue operation on Qlst will delete the corresponding element from either
Q_privileged if it is a privileged task or from Q_waiting if it is a waiting task.

An entry ofQ_waiting and Qlst consists of a single task, whereas an entry of Q_privileged
is a 3-tuple (T, Previous-time, Previous-avail) where T is a task that was previously preempted
at time Previous-time. Previous-avail is the value of the variable availtime at time Previous-
time. All of these data structures are implemented as balanced trees (e.g. 2-3 trees).

D"ver’s code is depicted in Figs. 2-4.
The following is an intuitive description of the algorithm: As long as no overload is

detected (i.e., there is no LST interrupt), D schedules in the same way as D. Tasks that
are preempted during this phase in favor of a task with an earlier deadline become privileged
tasks. The task with the earliest deadline (either a newly released task or a waiting task)
will be scheduled provided that it does not cause overload when added to the privileged tasks.
This proviso is always met in situations of underload. During overload, when a waiting task
reaches its LST, it will cause a latest-start-time interrupt. This means that some task must be
abandoned: either the task that reached its LST or some of the privileged tasks. The latest-
start-time interrupt routine compares the value of that task against the sum of the values of
all the privileged tasks. If its value is greater than (1 + /) times that sum, then this task
will execute on the processor while all the privileged tasks will lose their privileged status
to become waiting tasks (these tasks might later be successfully rescheduled). Otherwise,
the task reaching its LST is abandoned. A task T that was scheduled by a latest-start-time
interrupt can be abandoned in favor of another task T’ that reaches its LST but only if T’ has
at least (1 + /) times more value than T. D returns to schedule according to D when
some task scheduled by its latest-start-time interrupt completes.

The reader may be curious to know why D compares values rather then value densities
and why the values are compared using the magic factor of (1 + /)? The lower bound
proof [3], [4] shows why value density cannot be a good criterion for choosing which task to

5Excluding the currently executing task.
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In the following code, Now() is a function that returns the current time. Schedule(T)
is a function that gives the processor to task T. Laxity(T) is a function that returns
the amount of time the task has left until its deadline less its remaining computation
time. That is, laxity(T) deadline(T) (now()+ remaining_computation_time(T)).
4 denotes the empty set.
This code includes lines manipulating intervals. The notion of an interval is needed for
purpose of analysis only, so these lines are commented.

recentval := 0
2 availtime .= do

Qlst "= 4
Q_privileged "= 4
Q_waiting "= 4
idle

(, This will be the running value ofprivileged tasks. ,)

(, Availtime will be the maximum computation time that
can be taken by a new task without causing the current
task or the privileged tasks to miss their deadlines. ,)
(, All ready tasks, ordered according to their latest
start time. ,)
(, The privileged tasks ordered by deadline order. ,)
(, All the waiting tasks ordered by their deadlines. ,)

:= true (, In the beginning the processor is idle. ,)

8
9
10

11

12
13

14

loop
task completion

if (both Q_privileged and Q_waiting are not empty) then
(, Both queues are not empty and contain together all the ready tasks.
The ready task with the earliest deadline will be scheduled unless it is a
task ofQ_waiting and it cannot be scheduled with all the privileged tasks.
The first element in each queue is probed by the Min operation. ,)

(T Q_privileged, tP availprev) Min(Q_privileged);

FIG. 2. Dver--a competitive optimal on-line scheduling algorithm.

abandon. The factor of (1 + x/) happened to be the one that gave the desired result since
it yields the correct ratio between the minimal value gained by Dver and the maximal value
that might have been missed.

5. Analysis ofI)vet. In order to facilitate the analysis olD it is convenient to introduce
the notation of intervals.

DEFINITION 5.1.
Intervals. The intervals are created (opened) and closed according to the scheduling
decisions of Dve and this process is depicted in the code of Dver in 4.
When an interval is created (comments 37 and 59 of D it is considered open,
meaning that it may be extended, it is closed when a task completes while
Q_privileged is empty (comments 33 and 48). A new interval would be opened
when the next task is scheduled. Initially, there is no open interval. Hence, the first
interval is opened when the processor first becomes nonidle.

6In that proof, going after high value density tasks (the short teasers) will give the on-line scheduler minuscule
value compared to the clairvoyant scheduler that will schedule a low-value density task that has long computation
time and hence big value.
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15

16
17

18

19

20

21
22
23

24

25

26
27
28
29

30

31
32

33

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

(, Next, compute the current value ofavailtime. This is the correct value
because T Q_privileged is the task last inserted ofthose tasks currently in

Q_privileged; tprev is the time when T Q_privileged was preempted; and

the available computation time has decreased by the time elapsed since
this element was inserted to the queue. ,)

availtime := availprev (now() tprev);
(, Probe the first element ofQ_waiting and check which of the two tasks
should be scheduled. ,)
TQ_waiting := Min(Q_waiting);
if dQ_waiting < d Q_privileged and

availtime>_ remaining_computation_time(TQ_waiting) then

(, Schedule the taskfrom Q_waiting. ,)
Dequeue(Q_waiting);
availtime:= availtime remaining_computation_time(TQ_waiting)
availtime:= min(availtime, laxity(TQ_waiting));
Schedule TQ_waiting;

else
(, Schedule the taskfrom Q_privileged. ,)
Dequeue(Q_privileged);
recentval "= recentval value(T Q_privileged);
Schedule T Q_privileged;

endif (,which task to schedule. ,)
else ff (Q_waitin9 is not empty) then

(, Q_prMleged is empty. The current interval is closed here, t.to,e
now(). The first task in Q_waitin9 is scheduled ,)

Zcurren :- Dequeue(Q_waiting);
availtime:= laxity( Tcurrent );
(, A new interval is created with tbegin now().,)

Schedule Tcurrent
else if (Q_privileged is not empty)

(, Q_waiting is empty. The first task in Q_privileged is scheduled ,)

(Zcurrent, tprev, availprev) Dequeue(Q_privileged);
recentval := recentval- value(Tcurrent);
availtime := availprev (now() tprev);
Schedule Zcurrent

else
(, Both queues are empty. The interval is closed here, tctose now(). ,)

idle := true;
availtime:= oo;

endif
53 end (,task completion ,)

FIG. 3. D (continued).
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54
55
56
57
58
59
60
61

62
63
64

65

66
67
68
69
70
71
72
73
74

task release" (, Tarriva is released. ,)
if (idle) then

Schedule Tarrival
availtime := laxity(Tarriv,l);
idle "= false;
(, A new interval is created with tbegin nOW().*)

else (,Tcurren is executing ,)
if darriva < dcurren and
availtime >_ computation_time(Tarriv,t) then

(, No overload is detected, so the running task is preempted. ,)
Insert Tcurren into Qlst;
Insert (Tcurrent, not/)(), availtime) into Q_privileged;
(, The inserted task will be, by construction, the task with the earliest
deadline in Q_privileged,)
availtime:= availtime remaining_computation_time(Tarrival);
availtime:= min(availtime, laxity(Tarrivat))
recentval := recentval + value(Tcurrent);
Schedule Zarrival

else (, Tarriva has later deadline or availtime is not big enough.,)
(* Tarriva is to wait in Q_waiting ,)
Insert Tarriva into Qlst and Q_waiting;

endif
endif (,idle ,)

75 end (,release ,)

76

77

78
79
8O
81
82
83

84
85
86
87
88
89
90
91

latest-start-time interrupt"
(, The processor is not idle and the current time is the latest start time of
the first task in Qlst. ,)

Tnext Dequeue(Qlst);
if (Unext > (1 1- %/-) (Vcurrent + recentval)) then

(*Unext is big enough; it is scheduled. ,)
Insert Tcurren into Qlst and Q_waiting;
Remove all privileged tasks from
Q_privileged and insert them into Qlst and Q_waiting;
(, Q_privileged 4 *)
recentval := O;
availtime:= 0
Schedule Tnext

else (*Unext is not big enough; it is abandoned. ,)
Abandon Znext

endif
end (,LST ,)

92 end{loop

FIG. 4. D (continued).

The interval consists of the time between the point it was opened and the point it was
closed. We will denote by I [tbegin, tclose] an interval I that was opened at tbegin
and closed at tclose.
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Netez Two intervals may overlap only at their endpoints.
BUSE" Suppose Dver schedules a collection of tasks. Let BUSY denote the time
where the processor is not idle during the execution of these tasks. For simplicity,
the length of BU SY will also be denoted by BU SY.
Note that BU SY equals the union of all intervals created by Dvet.

Suppose that a collection of tasks F with importance ratio k is given, and D schedules
this collection. When a task is scheduled, it can have zero or positive slack time. A task
may be preempted and then rescheduled several times. We will be concerned mainly with
the last time a task was scheduled. For the purposes of analyzing Dw, we will partition the
collection of tasks according to the question of whether the task had completed exactly at its
deadline or before its deadline or failed.

Let F (for fail) denote the set of tasks that were abandoned.
Let Sp (for successful with positive time before the deadline) denote the set of tasks
that completed successfully and that ended some positive time before their deadlines.
Let So (for successful with 0 time before the deadline) denote the set of tasks that
completed successfully but ended exactly at their deadlines.

Call a task order-scheduled if it was scheduled by the task completion or task release
handlers. Call a task lst-scheduled if it was scheduled as a result of a latest-start-time interrupt.
(As mentioned previously, a latest-start-time interrupt is raised on a waiting task when it
reaches its latest start time (LST), i.e. the last time when it can start executing and still
complete by its deadline).

The first task in each interval is order-scheduled. The subsequent tasks (if any) in this
interval may be order-scheduled or lst-scheduled. Proposition 5.2 shows that once a task is
lst-scheduled, all subsequent tasks of this interval must be lst-scheduled. During an interval,
several order-scheduled tasks may complete but only one lst-scheduled task can complete.
(This task will also be the last task that executes in the interval.)

PROPOSITION 5.2. According to the scheduling ofDw, once a task is lst-scheduled, then
all subsequent tasks, in the current interval, are lst-scheduled.

Proof. Suppose the current task, T.,rnt, is lst-scheduled and a task, Tiva, is released.
Tivat will not be scheduled by the task release handler because when the current task is lst-
scheduled availtim equals zero (see statement 86 of Dvet) hence no task can be scheduled
by the task release handler (see statement 61 of DWr). [3

Let recentval(t) denote rcentval at time and achievedvalue(t) denote the value
achieved during the current interval before by Dver. For an interval I, achivedvalu(1)
is the total value obtained during I.
We partition the value obtained during I in two different ways:

ordervalue vs. Istvalue: ordervalue(1) is the total value obtained by order-
scheduled tasks that completed during I. The value obtained by lst-scheduled tasks
is denoted by Istvalue(1). (There is at most one such task in any interval I.)
zerolaxval vs. poslaxval: zerolaxval(I) denotes the total value obtained by tasks
that completed at their deadlines during I (tasks in sO). The value obtained by tasks
that completed before their deadlines is denoted by poslaxval(I).

Hence, for every interval

achievedvalue(I) ordervalue(I) + Istvalue(I) zerolaxval(/) + poslaxval(I).

When the index (I) is omitted we refer to the entire execution. For example, ordervalue
denotes the total value obtained by order-scheduled tasks summing over all intervals.

7In the following only recentval is a variable explicitly manipulated by Dvet. All the others,
zerolaxval, poslaxval, ordervalue and Istvalue, are introduced here to facilitate the analysis. This is why they do
not reference algorithm statements.
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EXAMPLE 5.3. Before the detailed analysis, let us first study an example of Dver’s
scheduling. Consider the overloaded collection of six tasks depicted in Table 1. For notational
convenience we will denote the tasks by their deadlines, hence for example T20 is a task with
deadline at time 20. In this example we assume uniform value density (i.e., k 1). D
schedules the above collection as follows: In the beginning availtime is oo and Q_privileged
is empty. First, D schedules T20 to run at time 0. Availtime is set to 14 since this is T20’s
laxity.

TABLE
The tasksfor Example 5.3.

Task lRelease-Time
T20 0

T34
T24 1
T8 2

T7 3

T5 4

Computation-Time

6
26
2O

Deadline Ai
20 [0, 20]
34 [1,34]
24 [1,24]
18 [2, 18]
17 [3, 17]
5 [4, 51

At time 1, T34 is released into the system. Since T34’S deadline is not earlier than the
current task’s (T20), T34 is inserted into Q_waitin9 (and Qlst with LST equal to 8). Also at
time 1, T24 is released. Again, since its deadline is after 20, this task is inserted into O_waitin9
and Cllst with LST equal to 4.

At time 2, T8 is released. This time the current task is preempted. T2o is inserted into
Q_privileged and Qlst with LST equals 16. Availtime is decremented by the computation
time of T8. Its new value is 9. The value of recentval is set to the value of T20 (6).

Tl8 executes for one time unit until time 3, when TIT is released. Tl7 is scheduled since
its computation time (2) is smaller then availtime (9). Availtime is decremented by the
computation time of T7. Its new value is 7. The value of T8 (5) is added to recentval, which
becomes 1.

At time 4, two events occur: T24 reaches its LST and T5 is released. These events can
be handled in any order and we choose to handle the latest-start-time interrupt first. T24
reaches its LST but its value is smaller than twice (1 -t- v 2) the value of the current
task plus recentval (2 + 11). Hence, T24 is abandoned. T5 is released and its deadline is
earlier than the current task’s (T7). T5 is scheduled since its computation time is smaller then
availtime(1 < 7). T5 has laxity of zero which is smaller than the current availtime minus
the computation time of T5 (6). Hence, availtime is now set to 0 and recentval becomes
11+2=13.

For reason of space we cannot describe here the rest of the execution. (Table 2 summarizes
the entire execution.) In this example So [Ts, T34], Sp [TIT] and F [Tl8, T20, T24].
Only three tasks complete their execution and the total value obtained by D is 29. A
clairvoyant scheduler can achieve a value of 34 by scheduling T17, T20, and T34. Also notice
that the system is already overloaded at time 1, but the first time an overload is "detected" by
D is at time 4 because of the LST interrupt.

5.1. Proof strategy. Our goal is to show that D has a competitive multiplier of
(1 + v/-) 2 for every collection of tasks with importance ratio of k. We will start by prov-
ing some lemmas about the behavior of Dver. Then we will try to estimate the best possible
behavior of a clairvoyant algorithm by comparison to Dver. Our basic strategy is to bound
from below what D achieves during each interval. This will lead to a global lower bound
over the entire execution. Then, we bound from above what a clairvoyant scheduler can
achieve during the entire execution.
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TABLE 2
Dver’s scheduling for Example 5.3. A new interval is opened at time O. T24 reaches its LSTat time 4 and

then abandoned. T34 reaches its LSTat time 8 and then scheduled. T2o and TI reach their LSTs at times 15 and 16
respectively both are abandoned. The interval is closed with the completion of T34 at time 34.

lea- empted pie- edu-
sed (LST) ted led

0
0

2
3
4
4
5
6
8
15
16
34

T2o
T34
T24
TI8
T7

To (16)
T8 (14)

T7 (16)

T8 (15)
TI7

T2o

TI
TiT

TIT
TI8
T34

T34

availtime Q_priv-
ileged

oo []
laxity(T2o) [1
14 []
14 [1
min(14- 5, 13) [T2o]
min(9- 2, 12) [r8, T2o]
min(9- 2, 12) [TI8, T2o]
min(7 1, 0) [Tl7, TI8, T2o]
7 (5 -4) 6 [T8, T2o]
9- (6- 3) 6 [T2o]
0 [1
0 []
0 []
0 []

rec-
ent-
val

0
0
0
0
6

5+6
1!

2+11
5+6
6
0
0
0

Q_wait

ing

[]
[l
[T34]
[T24, T34]
[T24, T34]
[T24, T34]
[T34]
[T34]
[T34]
1T341
[TIs, T2o]
[TI8]
[]
[]

5.2. Some lemmas about Dver’s scheduling. In this section we present some technical
lemmas about the behavior of Dver. These lemmas will be used in the next section when
comparing Dver’s performance with that of a clairvoyant scheduler. These lemmas concern
the relationship between the interval length and the value achieved by Dver in that interval
(Lemma 5.5), as well as the relationship between the computation time and value of tasks
abandoned in an interval with respect to the value achieved in the interval (Lemmas 5.6
and 5.7). Recall that BUSY is the union of all intervals (Definition 5.1).

LEMMA 5.4.
1. For any task Ti in SD, Ai [ri, di] c_ BU SY.
2. For any task Ti in F. Suppose Ti was abandoned at time taban, then [ri, tab, C__ BU SY.
Proof. A processor is idle under D scheduling only if there is no ready task.

A task T/of So does not complete before its deadline, hence it is a ready task during
all its executable period. This implies that there is no idle time during the executable
period of T/.
Similarly, a task of F is a ready task from its release time to the point at which
it is abandoned. Therefore there is no idle time between its release point and its
abandonment point.

LEMMA 5.5. For any interval I [tbegin tclose], the length of I, tclose tbegin will satisfy

t.Zose t,eg. <_ ordervalue(I) + + Istvalue(I)

achievedvalue(I) + Istvalue(I).

Recall that ordervalue(1) and Istvalue(1) are the values obtained by Dver from the order-
scheduled and the Ist-scheduled tasks, respectively, during I.

Proof. An interval I [tbegi., tc.lo,,.e] has the following two subportions, the second of
which may be empty:
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1. [tbegin, tfirst_lst]
From the beginning of I to the point in time, tfirst_lst, in which the first lst-scheduled
task is scheduled. During this period all tasks are order-scheduled and some may
complete their execution.
If no task is lst-scheduled in I then define tfirst_ls to be tclose. In this case the second
subportion is empty.

2. [tfirst_lst, tclose]
During this period, all tasks are scheduled and preempted by latest-start-time inter-
rupt. Only the last task to be scheduled completes.

If there are no lst-scheduled tasks in I then all tasks that executed from tbegin to &lose
completed successfully. The value achieved is ordervalue(l) and is at least as big as the
duration of execution. Hence, the lemma is proved in this case.

Otherwise, suppose that T, T2,..., Tm (m >_ 1) are the tasks that were lst-scheduled
in I. Hence, T was scheduled at tfirst_lst, later it was preempted (and abandoned) by
T2 and so forth. Eventually Tm preempts Tm- and completes at t,1ose, its value Vm is

Istvalue(1).
Denote by li the length of the execution of T/ during the process above. Tm preempted

Tm- hence Vm > (1 + -)Vm- 1. Which yields

Vm Istvalue(I)
lm-1 < Um-1 <

Going backward along the chain of preemptions we get

l)i_ Istvalue(l)
(1) li < vi < < for all <i < m- 1.

(1 + v/-) (1 qL. //-")rn--i

T preempted the last order-scheduled task hence (see statement 80 of Dver)

(2) v > (1 + /-){ recentval(tfir,t_t,t) + value(current task at time tfirst_lst) }.

Also,

(3)
tfirst_lst tbegin <_ ordervalue(1) + recentval(tfirst_m)

+ value(current task at time tfirst_Ist).

This holds because the processor is not idle between tbegin and tfirst_ls (as part of BU SY)
and the right-hand side above represents the sum of the values of all the tasks that were
scheduled between tbegin and tfirt_m. This sum must be greater than or equal to their period
of execution by the normalized importance assumption (Assumption 3.2). Inequalities (1)-(3)
imply

tfirst_lst tbegin < ordervalue(I) + v Istvalue(1)
< ordervalue(I) +

(1 + q/-) (1 --[- ,k//)

We have produced the following bound on the distance between tbegin and tclose"

8Recall that the value density of every task is equal to or greater than 1, by Assumption 3.2 above.
9Note that always li <_ I)i. However, for a task that was abandoned a strict inequality li < 1)i holds.
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t.lo,,e tegi. (tfir,t_m teui.) + (t.o,.e tfirL.t_m)
(tfirst_lst tbegin) -+- (11 + 12 +’’" + lm)

5 ordervalue(1)

+ Istvalue(I) + + + +
(1

< ordervalue(l) + Istvalue(I)

or6ervalue(/) + Istvalue(I) +

acheve6value(/) + Istvalue(I).

The last equality follows from the fact that achevevalue(I) or6ervalue(I) + Istvalue(I)
by definition.

LEMMA 5.6. Suppose was abandoned during the inteal I. Then

v (1 + ) acheve6vaue(/).

Recall that achv6valu(I) is the total value obtained during I.
Pro@ Let I [tbexin, tclose] be an interval. Define the Prospective Value map of I, P V,

as follows:

PV (t) or6ervaue(t) + recentva(t) + value(current task at time

where begin tclose.

Claim For every interval, I [txi, t.o,,],
1. PV is monotone nondecreasing.
2. PV reaches, at the end of the interval, the total value obtained in I, i.e.,

Note. P V is not a function because it might have several values for one time instance
since D can make several scheduling decisions at one time instance (Assumption 3.2).
However, as a map with the ordered sequence of scheduling decisions as its domain, PV is
a function.

Proof of Claim. There are two cases. The first applies when there are no lst-scheduled
tasks in I, the other applies when such tasks exist.

Case 1. Suppose that there are no lst-scheduled tasks in I. Then every task that was
scheduled does complete. Let S(t) be the set of tasks that were scheduled (not necessary
completed) up to t. One can verify by induction that

ui.
Ti6S(t)

The reason is that no scheduled task is abandoned hence at each moment a task is either the
current task or in Q_privilogeO or has already completed. At the closing of I all tasks have
completed. Hence,

P Vl(tclose) Ui achieveOvalue(1).. S(t,.
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P VI is monotone (when there are no lst-scheduled tasks) because S(t) is a monotone increasing
set of tasks.

Case 2. Suppose there were lst-scheduled tasks. Assume that the first lst-scheduled task,
T, was scheduled at time tfir,,t_m. Let be a time instance just before the scheduling of T,
then by definition:

P VI (t) ordervalue(t) + recentval(t) + value(current task at time t)

T is scheduled only if

vl > (1 + ,,/) (recentval(t) + value(current task at time t))

When T is scheduled recentval is set to zero hence we can conclude that

P VI (tfirst_lst) ordervalue(tfir,,.t_m) + recentval(tfir,,,t_Zst) + value(T

ordervalue(t) + 0 + value(T1)

> ordervalue(t) + (recentval(t) + value(current task at time t))

PVI(t)

Thus, P VI is monotone from tbegin to tfirst_lst (as in the case when there are no lst-scheduled
tasks). It is left to show that P VI continues to be monotone. After tfirst_lst, P VI equals to

ordervalue(I) + value(current task at time t)

because recentval remains equal to zero. This is a monotone increasing value since
ordervalue(I) is fixed and a task T will preempt the current task only if it has a larger
value than the current task’s value. In particular if T is the last task to be scheduled in I then

P VI ordervalue(I) + U

ordervalue(I) + Istvalue(l) achievedvalue(l).

So, the claim is proved.
End ofproof of claim. We return to the proof of Lemma 5.6. There is only one way a

task, T, can be abandoned at time t"

T/ reaches its LST at t. A latest-start-time interrupt is generated. However, T/ has
insufficient value to preempt the task executing at time t.

Hence if T/was abandoned then

vi < (1 + /) {recentval(t) + value(current task at time t)}

< (1 + x/-) P VI (t), by definition of P V,

_< (1 + x/) achievedvalue(1), by the claim. [3

LEMMA 5.7. Suppose Ti was abandoned at time in I [tbegin, tclose]. Then

Ci >__ di tclose.

Proof. A task T/, can be abandoned at time only when
It reaches its LST at t. A latest-start-time interrupt is generated. However, the current
task is not preempted.

T/ reached its LST hence its remaining computation time is di t. Also, < t.zo,,,e by
assumption. Hence the (initial) computation time of T/is at least di tclose. [3
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5.3. How well can a clairvoyant scheduler do. Given a collection of tasks F, our goal
is to bound the maximum value that a clairvoyant algorithm can obtain from scheduling 1-’. We
do it by observing the way Dver schedules 1-’. From Dver’s scheduling we get the partitioning
of the tasks to S, Sp, and F. We also take notice of the time periods in which the processor
was not idle in this scheduling. As defined earlier, the union of these periods is called BU SY.

In order to bound the value that can be achieved from scheduling 1-’, we will offer the
clairvoyant algorithm two gifts that can only improve the value it can obtain. We will show an
upper bound on the value the clairvoyant algorithm can get with these gifts hence bounding
the value it can achieve from the original collection.

As a first gift, we will give the clairvoyant algorithm the sum of the values of all tasks
in Sp at no cost to it (i.e. it will devote no time to these tasks). Then we will see
what the clairvoyant algorithm can achieve on F U S.
As a second gift, suppose that in addition to the value achieved from scheduling the
tasks FUSO the clairvoyant scheduler can get an additional value called granted value.
The amount of granted value depends on the schedule chosen by the the clairvoyant
scheduler: A value density of k will be granted for every period of BUSY that is
not used for executing a task. (This is reminscent of farm subsidies for not growing
grain.)

The clairvoyant scheduler must consider that scheduling a task might reduce the granted value
(since time in BU SY is used). Of course, when this reduction is bigger than the value of a
task then the task should not be scheduled. Suppose the clairvoyant algorithm had chosen a
scheduling for F U S. We can assume that no task was scheduled entirely during BU SY
because the granted value lost would be greater or equal to the value gained from scheduling
the task. We have shown that tasks of So can execute only during BUSY hence this leaves
only tasks of F that were scheduled partially outside BU SY. Executing T results in a gain of
value(T), but entails a loss of the granted value for the time that T executed in BU SY.

The clairvoyant scheduler has now two options. It can schedule no task during the entire
BUSY period and get only (the whole) granted value or it can use some of BUSY in order
to schedule some of F tasks. We will show that the maximal possible gain from choosing the
second option over the first is bounded by (1 -t- /) achievedvalue. Putting this together
will give the desired result (Theorem 5.14).

In the aforementioned scenario the clairvoyant scheduler can achieve (using the gifts) the
maximal value of the sum in equation (4) ranging over all possible schedulings of F.

(4) value obtainedfrom those tasks ofF
that were scheduled + k length oftime in BUSY not utilized

to schedule the tasks of F.

Denote by C (.) the value that a clairvoyant algorithm can achieve from a collection of tasks.
We would like to show that C (F tO S) cannot be greater then this maximal value. This will
then give us an upper bound on what a clairvoyant algorithm can achieve.

LEMMA 5.8.

C(F U S) < max
possible

scheduling of
F

value obtained by
scheduling tasks of F

length of time in
+ k BU SY not utilized by itasks of F

lSuppose a clairvoyant scheduler has to schedule a collection of tasks A. We can assume that it schedules a task
only if that task eventually completes. Hence the work of a clairvoyant scheduler is first to choose the set of tasks
A

_
A that will be scheduled and then to work out the details of the processor allocation among the tasks of Af. We

will call all possible selections of A and processor allocation a scheduling of A.
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Proof

{ value obtainedfrom value obtainedfrom scheduling tasks of }C(F U S) max scheduling tasks of F + So during the time not used by tasks of F

So tasks can be scheduled only during BUSY (Lemma 5.4), hence

value obtainedfrom scheduling + value obtainedfrom scheduling tasks of So
tasks of F during the time not used by tasks of F

< value obtained by scheduling + k length of time in BUSY not utilized by tasks
F ofF.

The lemma is proved.
Suppose a task Tf F is scheduled to completion by the clairvoyant algorithm. If Tf

executes entirely during BUSY then the left-hand factor of the sum is increased only by vi
which is smaller than or equal to k. ci while the right-hand factor is decreased by k. ci giving
zero or negative net change. Thus we assume that Tf executes (at least partially) outside
BUSY.

LEMMA 5.9. Suppose Tf is abandoned (by Dver) at time taban and that I [tbegin, tclose]
is the interval in which Tf is abandoned. Then, if Tf is to be executed (by the clairvoyant
algorithm) anywhere outside BUSY it must be after tclose.

Proof AU [rf, t,,,n] U It,ban,dr]. The first portion of AU is contained in BUSY
(Lemma 5.4). [tahan, tclose] I

_
BUSY, hence if T/ is to be scheduled anywhere outside

BU SY it must be after tclose .ll [3

Now we are ready to give an upper bound on how much additional value can the clairvoyant
algorithm achieve by scheduling tasks of F compared with collecting only the granted value
without scheduling any tasks. We make strong use of the fact that when a task T is abandoned
during I, T’s value cannot be too large with respect to achievedvalue(I).

LEMMA 5.10. With the above gifts, the total net gain obtained by the clairvoyant algorithm
from scheduling the tasks abandoned during I is not greater than

(1 + ,-) achievedvalue(1).

Proof Assume that a clairvoyant scheduler selected a scheduling for the tasks of F,
considering the value that can be gained from leaving BUSY periods idle. We can assume that
a clairvoyant algorithm executes a task only if this task eventually completes. If the clairvoyant
algorithm does not schedule any of the tasks abandoned during I, the lemma is proved. Hence,
assume that of all the tasks abandoned in I [tbegin, tclose], the clairvoyant scheduler schedules
T, T2 Tm (in order of completion). These tasks execute for l, 12 lm time after t,oe
(hence, maybe outside BU SY). We know that all the li’s are greater than zero (otherwise
there is no net gain).

Lemma 5.6 ensures that the biggest possible value of a task to be abandoned during I
is (1 + /-) achievedvalue(I). If such a task has value density k its execution time is
(+,/).achievedvalue(I) Denote by L the maximal value of this execution time and the lengthk
of 1

(1 + ,,/) achievedvalue(1)
L max

k

1Note that parts of [tclose, df] might be included in BUSY as a new interval may be opened before df.
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Let j be the index less than to m such that

Zli t < Zli-[- /j+l"
i<j i<j

If no such j exists, define j to be m.
First, assume that we have an equality, Zi<j li L. The Zi<j li < L case is a little

more complicated and will be treated later.
We will show that the net gain from scheduling tasks within a period of L after the end

of the interval cannot be greater than (1 + v/) achievedvalue(I).
Suppose that in (5), the maximum is the first term. Then the total net gain from
TI, T2 T./is not greater than

(6) k. Z 1 k. L (1 + /). achievedvalue(I).

If on the other hand the second term is maximal in (5) then the value obtained by
scheduling T1 is at most (1 + V) achievedvalue(1) (Lemma 5.6).

Now we will show that the net gain from scheduling tasks "after" L is never positive.
Every task Ti that executed at a time of at least L after the end of the interval, where

j < _< m, has an execution time ci of at least di tclose (see Lemma 5.7).

Ci di tclose

> "the point at which T/completes (according to the clairvoyant)"

:> (tclose -]- ZIg)- tclose Zlg
g<i g<i

>_ li -+- lg li -+- L.
g<j

For > j, Ti was scheduled by the clairvoyant scheduler but used only li time after
Hence, T/ executed at least L time before tch, that is to say in BU SY by lemma 5.9. The
"loss" from scheduling T during BUSY is at least k L. The value obtained by scheduling
T/ is at most (1 + v/) achievedvalue(I) (Lemma 5.6). Hence the net gain is less than or

equal to

(| + v) achievedvalue(1) k. L

<_ (1 + /) achievedvalue(1) (1 + v) achievedvalue(1) O.

We conclude that the clairvoyant algorithm is better off not scheduling any task Ti, j < < m.

Hence, the lemma is proved for the case that Zi<j li L.
What if L does not equal any of the partial sums? That is, what if -i<j li < L <

Zi<j+l li? We will augment the total value given to the clairvoyant by some non-negative
amount. Then we will show that even with this addition the net gain achieved by the clairvoyant
algorithm is bounded by (1 + V/) achievedvalue(I), hence proving the lemma.

First we will take the value density of Tj to be k. This move can only increase the overall
value achieved by the clairvoyant algorithm. We will also "transfer" some execution time (and
hence also value) from Tj+I to Tj. We will transfer exactly L -i<_j li execution time. There
will be a nonnegative net increase of (k value density(Tj+l)) (L -i<_j li) in the overall
achieved value of the clairvoyant algorithm and we are back in the case of L Zi<j li. The
total net gain from T1 T./is bounded by (1 + /-). achievedvalue(I) while the net gain
from all other tasks is zero or negative. [3
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Our strategy thus far has entailed partitioning the problem into what the clairvoyant
can obtain with respect to a given interval. We now compute an upper bound for what the
clairvoyant algorithm can obtain over all intervals. Note that this may overestimate what the
clairvoyant algorithm obtains, because the time periods that the clairvoyant algorithm uses on
the tasks of two neighboring intervals may overlap.

COROLLARY 5.11. With the previous gifts, the total net gain (over the entire execution)
obtained by the clairvoyant algorithmfrom scheduling the tasks of F is not greater than

(1 + v/) achievedvalue.

Proof. Lemma 5.10 measured the maximum net gain per interval. By construction,
each task is accounted for in exactly one interval. Therefore, summing over all intervals we
conclude that the total net gain during the entire execution is less than or equals to
(1 4-- /) achievedvalue. [3

The previous corollary bounds the value that the clairvoyant algorithm could obtain be-
yond the granted value, which equals k. BU SY. Now, we will estimate the granted value (by
bounding the length of BU SY) to get an upper bound on C (So U F).

LEMMA 5.12.

C(F U S) _< k. (achievedvalue + zerolaxval) + (1 + ). achievedvalue

(k + + v/) achievedvalue + v/ zerolaxval.

Proof Lemma 5.8 shows that C (So U F) is bounded by the maximum, ranging over all
possible schedulings of the tasks of F, of the following sum’

(value obtained by scheduling F) 4-

k (length of time in BU SY not utilized by F tasks).

Corollary 5.11 shows that this sum is less than or equal to

(1 + v/) achievedvalue + k BU SY.

Lemma 5.5, summed over all intervals, yields

BUSY < achievedvalue 4- Istvalue.

Istvalue(I) <_ zerolaxval(1) always holds because every task that is lst-scheduled must have
completed at its deadline. This implies that

BUSY <_ achievedvalue + zerolaxval.

Hence,

C(SO U F) _< k. achievedvalue + zerolaxval + (1 + 4’) achievedvalue

(k + +) achievedvalue + 4’. zerolaxval,

which proves the lemma. [3



336 GILAD KOREN AND DENNIS SHASHA

We gave the clairvoyant algorithm the value of all tasks in Sp. We also got a bound on
C(So U F). The following lemma shows that the sum of these two values bounds the value
the clairvoyant can get from the entire collection.

LEMMA 5.13.

C(F L SO tJ Sp) < C(F LJ S) + C(Sp) C(F U S) + Z Ui"
Ti ESP

Proof The first inequality is due to the fact that C (.) is a sublinear function. The reason
is that executing tasks of Sp might interfere with tasks of F tJ So and vice versa. Therefore,
the value of the union may be less than the sum of the values of the individual sets. D
schedules to completion all the tasks of Sp, hence C(Sp) equals the sum of the values of all
these tasks. This yields the desired result. [3

Given a collection of tasks F, Lemmas 5.12 and 5.13 give an upper bound on the value
that the clairvoyant algorithm can obtain from 1-’ in terms of the value obtained by D
(achievedvalue, zerolaxval, and poslaxval). The next theorem puts these results together.

THEOREM 5.14. Dver has a competitive multiplier ofof (1 4- /)2. That is, Dver obtains
at least (+j-fi)2 times the value ofa clairvoyant algorithm given any task collection I’.

Proof In the notation of the lemmas, we derive from Lemma 5.12 that

C(SO U F) _< (k 4- 4- v/) achievedvalue + v/ zerolaxval.

We will bound v/ zerolaxval in the previous equation.

/. achievedvalue ,/. zerolaxval + /. poslaxval >_ 4. zerolaxval + poslaxval

,/. zerolaxval _< /. achievedvalue poslaxval.

Hence, replacing (v/ zerolaxval) by (v/ achievedvalue poslaxval) yields

C(So U F) _< (k + + v/) achievedvalue + v/ achievedvalue poslaxval

(1 + 4)2 achievedvalue poslaxval.

By using Lemma 5.13 we get

C(F tJ SO tJ Sp) < C(F U S) + C(Sp)
C(F tJ SD) + poslaxval

_< ((1 + /)2. achievedvalue poslaxval) + poslaxval

(1 + ,/). achievedvalue, rq

5.4. The running complexity of Dvet. In the previous section, we analyzed the perfor-
mance ofD in the sense of what value it will achieve from scheduling tasks to completion.
In this section we study the cost of executing the scheduling algorithm itself.

THEOREM 5.15. Ifn bounds the number ofunscheduled tasks in the system at any instant,
then each task incurs an 0 (log n) amortized cost.

Proof D requires three data structures called Q_privileged, Q_waiting, and Qlst, all
of them priority queues, implemented as balanced search trees, e.g., 2-3 trees. They support
Insert, Delete, Min, and Dequeue operations, each taking O(log n) time for a queue with n
tasks. The structures share their leaf nodes which represent tasks.

D consists of a main loop with three "interrupt handlers" within it. The total number
of operations is dominated by the number of times each of these handler clauses is executed
and the number of data structure operations in each clause.
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Suppose a history of m tasks is given. First, let us estimate the number of times each
handler clause can be executed. A task during its lifetime causes exactly one task release
event and at most one task completion event as well as at most one latest-start-time interrupt
event. Hence, while scheduling m tasks the total number of events is bounded by 3m.

Now we will bound the number of queue operations in each handler clause.
In the handler for the task release event (statement 54), there is a constant number of
queue operations. Hence, this contributes a total of O (m) queue operations during
the entire history.
In the handler for the task completion event (statement 9) there is a constant number
of queue operations. Hence, this contributes a total of O (m) queue operations during
the entire history.
In the handler for latest-start-time interrupt event (see statement 76), the number
of queue operations is proportional to the number of tasks in Q_privileged plus a
constant. (Because the privileged tasks are all inserted into Q_waiting, statement
83.) How many tasks can be in Q_privileged throughout the history? A task can
enter Q_privileged only as a result of task release event (statement 64); there are
at most m such events. Hence, the total number of tasks in Q_privileged is at most
m, which means that the total number of queue operations is O (m) during the entire
history.

We conclude that the total number of operations for the entire history is O (m log n) and the
theorem is proved.

6. Underloaded periods: Conflicting tasks. Intuitively, D is an optimal scheduler
during underloaded periods, because it mimics the earliest-deadline-first algorithm during
those periods. It gives its nontrivial competitive guarantee during overloaded periods.

To make these statements precise, we must define what underloaded and overloaded mean.
Informally, underload means a situation in which all tasks can be scheduled to completion by
their deadlines. Such tasks are designated as conflict-free. The following algorithm (Fig. 5)
gives a precise definition of conflict-free and their antithesismconflicting tasks. 2

D schedules to completion all conflict-free tasks (thus, all tasks in an underloaded
times the value a clairvoyant algorithm can get fromsystem) and also obtains at least

the conflicting tasks. The proof rests on the proof of the competitive guarantee given in this
paper and can be found in [9] and [12].

7. Conclusions. This paper has presented an optimal on-line scheduling algorithm for
overloaded uniprocessor systems. It is optimal in the sense that it gives the best competitive
multiplier possible relative to an off-line scheduler. In fact, the performance guarantee olD
is even stronger: D schedules to completion all tasks in underloaded periods and achieves

of the value a clairvoyant algorithm can get during overloaded periods. Theat least

model accounts for different value densities and generalizes to soft deadlines [9], [12].
This work leaves many problems open. Here is a small sample.

This paper assumes that k is given and known in advance. It is interesting to know
if this assumption can be relaxed. Recently, in an unpublished result, Schieber [16]
devised a variant ofDver that gives the optimal guarantee even when k is not known
in advance.
What guarantees can be given for parallel scheduling algorithms? Recently we have
found some results in this area, but much remains to be done, because those results
are not tight in all cases [9], [10], [13].

2Note that the purpose of this algorithm is to define conflicting and conflict-free tasks. No scheduler need ever
execute it.
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Function Remove_Conflicts );

if num_of_tasks(I) then
return(l-’);

endif;

collection_num_of_tasks :=2;
repeat

(, Finds a collection of tasks that their combined computation time is
longer than their combined executable periods ,)

l0 select a collection of tasks S T/., T/2, , T,.,.,,,,e,.,, ,,j._,,,.,.k.,.
of size

collection_num_of_tasks such that
r Min,.<s{ri} and d Max,.s{di} and

Ci, -- Ci2 31-’’" + Ci,’,,tle,’,i ,f_,ass > (d r);
11 ff (such a collection is found) then
12 mark all the tasks in S as conflicting tasks;
13 create a task T with release time r and deadline d

and with no slack time;
14 (, T is an aggregated task ,)
15 return( remove_conflicts( F S + T }));

(, Start again with the new collection of tasks. The new collection has
a smaller number of tasks. When the recursive calls reach the bottom16
of the recursion (that is when I" has no conflicting tasks) the result is
propagated upwards (tail recursion). ,)

17 else
18 collection_num_of_tasks := collection_hum_of_tasks +
19 endif;
20 until collection_num_of_tasks > num_of_tasks(F);
21 return(F) (,In case that no conflict wasfound ,)

FiG. 5. The remove conflicts algorithm.

What guarantees can be given when tasks are not independent, e.g., for systems with
locks or precedence constraints?
In practice, real-time systems have some periodic critical tasks and other less critical
tasks which may be aperiodic. A typical solution (as taken in the Spring Kernel, for
example, in [19]) is to devote certain intervals to the critical tasks and to allow the
less critical tasks to run during the rest of the time. D gives its usual guarantee
with respect to the less critical tasks in this situation. (The accounting is a little more
difficult since useful time has "holes" in it which correspond to subintervals allocated
to critical tasks.) An unanswered question follows: What is a good competitive
algorithm that can take advantage of the cases when a given critical task executes in
less time than is allocated for it? We suspect the competitive guarantee may be worse,
since the clairvoyant algorithm might then execute a task that D had prematurely
abandoned.
In general, the question of proof tools for such systems is open. We believe that the
techniques in 5.3 will prove to be very useful.
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ORDERED AND UNORDERED TREE INCLUSION*
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Abstract. The following tree-matching problem is considered: Given labeled trees P and T, can P be obtained
from T by deleting nodes? Deleting a node u entails removing all edges incident to u and, if u has a parent v,
replacing the edge from v to u by edges from v to the children of u. The problem is motivated by the study of query
languages for structured text databases. Simple solutions to this problem require exponential time. For ordered trees

an algorithm is presented that requires O(I P IT I) time and space. The corresponding problem for unordered trees is
also considered and a proof of its NP-completeness is given. An algorithm is presented for the unordered problem.
This algorithm works in O(IPIITI) time if the out-degrees of the nodes in P are bounded by a constant, and in

polynomial time if they are O(log

Key words, trees, pattern matching, dynamic programming, NP-completeness
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1. Introduction and motivation. Let T be a tree and u be a node in T with parent node
v. Denote by delete(T, u) the tree obtained from T by removing the node u. The children of
u become children of v. (See Fig. 1.)

FIG. 1. The effect of removing the node u from the tree T.

We consider the following problem: Given two trees P and T, called the pattern and the
target, can we obtain pattern P by deleting some nodes from target T? That is, is there a
sequence u uk of nodes such that for

T/+I

T and

delete(Ti, Hi+l) for 0 k

we have Tk P. If this is the case, what are the nodes in T that are (not) deleted by the
sequence? We call this problem the tree inclusion problem.

Our specific interest in the tree inclusion problem comes from its applicability in structured
text databases. A structured text database can be considered as a collection of parse trees
that represent the structure of the stored documents [6], [11], [24]. Tree inclusion has been
suggested as a primitive for expressing queries on structured documents 17] and as a means
of retrieving information from structured documents 13].
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As an example, consider querying grammatical structures. Figure 2 shows the parse tree
of a natural language sentence. One might want to locate, say, those sentences that include
a verb phrase containing the verb "holds" and the noun "cat" and any adverb, in this order.
These are exactly the sentences whose parse tree can be transformed to the tree in Fig. 3 by
deleting nodes.

np

det n

"The boy"

v np adv

"holds" det adj n tightly"

"the big cat"

FIG. 2. The parse tree ofa sentence.

S

n adv

"holds cat"

FIG. 3. An included tree ofthe parse tree.

The tree inclusion problem resembles tree pattern matching [8], 16], [4], 19], which has
several applications. In that problem one wants to find out whether one can obtain a tree that
has P as a subtree by removing complete sets of descendant nodes from T. The resemblance
of the problems apparently does not extend to the algorithms. For tree pattern matching, the
trivial algorithm works in time O(IPI]TI), where IPI is the number of nodes in tree P, and
TI is the number of nodes in tree T. The reason why tree pattern matching is a fairly simple
problem is that there are only IT] possible places where P can be matched in T. Hence the
trivial algorithm can simply test all the possibilities. The O(IPI IT I) bound was not broken
unitl recently 16], [4].

For the tree inclusion problem, there are exponentially many ways to obtain the included
tree. Thus it is not feasible to check all the possibilities.

In this paper, we analyze the computational complexity of the tree inclusion problem.
We give a polynomial time algorithm for solving the tree inclusion problem for ordered trees,
i.e., when the ordering of siblings has significance. The algorithm is based on dynamic
programming and it works in time

The ordering among siblings is crucial for solving the tree inclusion problem efficiently.
In the case of unordered trees, the problem is NP-complete. This result follows from the
known NP-completeness of MINOR CONTAINMENT [9], [21]. To our knowledge, the
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proof has not been published. We present a proof that is based on a direct reduction from
SATISFIABILITY.

We also present an algorithm for solving the tree inclusion problem on unordered trees.
The algorithm may require time that is exponential, but only in the width of the pattern. This
means that if the out-degrees of the pattern nodes are O (log IT I), the unordered tree inclusion
problem is solvable in polynomial time. This would usually be the case if we think P as a
query and T as a large database 13].

The rest of this paper is organized as follows. We start by giving definitions and some
properties of tree inclusion in 2. In 3 we relate the tree inclusion problem and our results
to previous research, then we concentrate on solving the ordered tree inclusion problem. In
4 we develop the idea of left embeddings, which is the basis of our algorithms. Section 5
presents the basic algorithm. This algorithm may repeat the same computations many times,
which leads to an exponential behavior. In 6 we develop the algorithm further. The use of
a table for storing the results of subcomputations leads to an algorithm requiring O(IPIITI)
running time and storage. In 7 we consider the tree inclusion problem with unordered trees
and give a proof of its NP-completeness. In 8 we present and analyze an algorithm for solving
the unordered tree inclusion problem. Section 9 is a short conclusion.

2. Forest inclusion. We concentrate on labeled trees that are ordered, i.e., the order
between siblings is significant. Ordered labeled trees appear in various fields, including
programming language implementation, natural language processing, and molecular biology.

Technically, it is convenient to consider a slight generalization of trees, namely forests.
A forest is a finite ordered sequence of disjoint finite trees. A tree T consists of a specially
designated node root(T) called the root of the tree, and a forest (T Tk), where k >_ 0.
The trees T Tk are the subtrees of the root of T or the immediate subtrees of tree T, and
k is the out-degree of the root of T. The roots of the trees T1 T are the children of the
root of T and siblings of each other. The root is an ancestor of all the nodes in its subtrees,
and the nodes in the subtrees are descendants of the root. The set of descendants of a node u
is denoted by desc(u). A leaf is a node with an empty set of descendants.

Sometimes we treat a tree T as the forest (T). We may also denote the set of nodes in a
forest F by F. For example, if we speak of functions from a forest F to a forest G, we mean
functions mapping nodes of F onto nodes of G. The size of a forest F, denoted by IF l, is the
number of nodes in F.

The restriction of a forest F to a node u with its descendants is called the subtree of F
rooted by u, and it is denoted by F[u].

Let F (T1 T) be a forest. The preorder of a forest F is the order of the nodes
visited during a preorder traversal. A preorder traversal ofaforest (T1 T) is as follows:
Traverse the trees T T in ascending order of the indices in preorder. To traverse a tree
in preorder, first visit the root and then traverse the forest of its subtrees in preorder. The
postorder is defined similarly, except that in a postorder traversal the root is visited after
traversing the forest of its subtrees in postorder. The preorder and postorder numbers of a
node u are denoted by pre(u) and post(u).

The following lemma binds together the ancestorship and the preorder and postorder.
LEMMA 2.1. Let u and v be nodes in aforest F. Then u is an ancestor of v ifand only if

pre(u) < pre(v) and post(v) < post(u).
Proof See Exercise 2.3.2-20 in [15].
Let N be a set of nodes. A labeling for N is a function from N to some alphabet.
DEFINITION 2.2. Let F and F’ be forests, N and N’ be the sets of their nodes, and let

label be a labeling for N t2 N’. An injective function f N -- N’ is an embedding of F in
F’, iffor all nodes u, v E N
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1. f preserves labels, i.e., label(f (u)) label(u),
2. f preserves ancestors, i.e., f (u) desc(f (v)) ifand only if u desc(v), and
3. f preserves the left-to-right order ofnodes.

If there is an embedding of F in F’, we say that F’ includes F, denoted F

_
F’, and that F

is an included forest (or tree) of F’. Forests F and F’ are isomorphic if there is a bijective
embedding of F in F’.

If the second condition in the above definition is satisfied, the condition on the left-to-right
order can be stated as

pre(u) < pre(v) if and only ifpre(f(u)) < pre(f (v))

or, by Lemma 2. l, equivalently as

post(u) < post(v) if and only if post(f (u)) < post(f (v)).

EXAMPLE 2.3. The included forests of the forest (a(b, c)) are (), (a), (b), (c), (b, c),
(a(b)), (a(c)), and (a(b, c)).

LEMMA 2.4. The relation is a partial ordering (up to isomorphism), i.e., it is reflexive,
transitive, and antisymmetric.

The next lemma justifies the formulation of the tree inclusion problem given in the intro-
duction.

LEMMA 2.5. Aforest G includes aforest F ifand only ifaforest isomorphic to F can be
obtainedfrom G by deleting nodes. (The deletion ofa node v from G replaces the tree G[v]
by the subtrees of v.)

Proof If u and v are nodes of G, the removal of a third node does not change the relative
ordering of u and v. F]

A forest may have exponentially many included forests, as shown in the next lemma.
LEMMA 2.6. A forest F may have (IFml) nonisomorphic includedforests ofsize m.
Proof If every node in F has a different label, we get a nonisomorphic included forest

of size m for every possible selection of IF] m nodes to be deleted. The number of such
selections is (IFI]. [-]

EXAMPLE 2.7. Theforest (a(x, b(y(d, e), f), c)) has 8 nodes with different labels. There-

fore it has 256 nonisomorphic includedforests. Ifthe labels are similar, the number ofnoniso-
morphic includedforests is smaller. For example, theforest (a(a, a(a(a, a), a), a)) has same
size andform as the previous one, but it has only 68 nonisomorphic includedforests.

3. Related research. The ordered tree inclusion problem can be found in Exercise 2.3.2-
22 of 15]. Knuth gives a sufficient condition for the existence of an embedding.

Tree inclusion can be considered to be a special case of the editing distance problem for
trees [25], [27]. In [27], Zhang and Shasha give an algorithm for computing the edit distance.
It can also be used for solving the ordered tree-inclusion problem. Their algorithm requires
time

O(IPI [T[ min(depth(P), leaves(P)) min(depth(T), leaves(T)))

Thus their solution is slower than ours by a factor of

min(depth(P), leaves(P)) min(depth(T), leaves(T))

Shasha and Zhang have recently presented new sequential and parallel algorithms for the
editing distance problem with unit cost edit operations [22].
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The tree inclusion problem is a generalization of the subsequence problem for strings.
("Can the string x be obtained from the string y by deleting characters?") The subsequence
problem can be solved in linear time by a straightforward scan. On the other hand, tree
inclusion problem is a special case of the MINOR CONTAINMENT problem for graphs
[21 ], [9]. In that problem, given two graphs G (V, E) and H (U, F), one has to decide
whether G contains H as a minor, i.e., is there a subgraph of G that can be converted to H
by a sequence of "contractions." In a contraction, two adjacent vertices and an edge between
them are replaced by a single new vertex. All the other edges previously incident on either
contracted vertex are then viewed incident to the new vertex.

MINOR CONTAINMENT is known to be NP-complete even for free trees, when both H
and G are given as inputs. This implies that MINOR CONTAINMENT is NP-complete also
for rooted trees or, using our terminology, that tree inclusion is NP-complete for unordered
trees. Recently Matougek and Thomas [18] have independently published a proof of NP-
completeness of unordered tree inclusion.

This classification suggests some further problems. It is possible to compute a maximal
common subsequence for two strings in quadratic time and in linear space [7]. The corre-
sponding problem of finding a maximal common included tree of two trees can be solved by
Zhang and Shasha’s editing distance algorithm [27]. Our algorithm specialized for the tree
embedding problem is simpler and more efficient than Zhang and Shasha’s algorithm. It is
not clear yet if the algorithm also can be extended to solve the largest common included tree
problem.

A related problem is the tree pattern matching problem. (See, e.g., [8], [19].) In tree
pattern matching one is given a pattern tree (of m nodes), possibly with variables standing
for arbitrary subtrees, and a subject tree (of n nodes). The problem is to locate the subtrees
of the subject tree that are isomorphic to some tree presented by the pattern. The O(mn)
time bound of the naive algorithm has been difficult to improve for the general case. A re-
cent paper of Kosaraju [16] presents an O(nm0"75 polylog(m)) algorithm. Dubiner, Galil,
and Magen improve this result in their paper [4] by presenting an O(n,/ polylog(m)) algo-
rithm.

Checking whether an unordered tree is a subgraph of another one can be done in time
O(m3/Zn) by using bipartite matching [20], [26].

A unified treatment of related tree matching problems with some further variations is
presented in 14].

4. Left embeddings. In this section, we develop concepts that help us efficiently solve
the ordered tree inclusion problem. Throughout the rest of the paper, let label be a labeling
for the nodes of the trees.

We concentrate on searching root-preserving embeddings.
DEFINITION 4.1. Let P and T be trees. A root-preserving embedding of P in T is

an embedding f of P in T such that f(root(P)) root(T). If there is a root-preserving
embedding of P in T, we say that the root node of T is an occurrence of P.

The following simple lemma states that we do not lose generality by restricting to root-
preserving embeddings.

LEMMA 4.2. Let F and G beforests, and let P and T be two trees whose roots are labeled
by the same symbol, such that the immediate subtrees of P formforest F and the immediate
subtrees of T formforest G. Then F

_
G ifand only if there is a root-preserving embedding

of PinT.

1For everyfixed planar graph (and therefore for every fixed tree and forest) H there is a polynomial time algorithm
for testing whether H is a minor of a given graph G [21 ], [9].
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There may be exponentially many ways to embed the subtrees of a tree P in the subtrees
of a tree T. In order to limit the search among these embeddings, we develop algorithms that
search for a root-preserving embedding of P in T by processing the subtrees of P from left
to right and trying to embed them as deep and as left as possible in T.

In order to discuss the relationship between images of sibling nodes in an embedding, we
define the sets of right and left relatives of a node.

DEFINITION 4.3. Let F be a forest, N be the set of its nodes, and v be a node in F. The
set ofright relatives of v is defined by

rr(v) {x E N pre(v) < pre(x) /x post(v) < post(x)}

i.e., the right relatives of v are those nodes thatfollow v both in preorder and in postorder.
The set of left relatives ofnode v, denoted by lr(v), is the set ofnodes that precede v both in
preorder and in postorder. (See Fig. 4.)

". lr(v) rr(v) ."

FIG. 4. The left and right relatives ofnode v.

The crucial observation is that an embedding that maps a node u to a node v can map
right siblings of u to the right relatives of v only.

The next lemma can be used as a tool with Lemma 2.1 to derive the two lemmas following
it.

LEMMA 4.4. Let u, v, and x be three nodes in a forest. Then it is not possible that both

pre(u) < pre(v) < pre(x) and
post(x) < post(u) < post(v)

hold.

Proof The above conditions imply by Lemma 2.1 that u and v are ancestors of x but
neither of them is an ancestor of the other, which is not possible in a forest. [3

The next simple lemma states that the descendants of a right relative are also right relatives.
LEMMA 4.5. Let v and x be nodes, and assume x rr(v). Then desc(x) C rr(v).
The next lemma states that the right relatives of a node v are contained in the right

relatives of the nodes that precede v in postorder. This fact is the justification for the strategy
of embedding the trees as early as possible in postorder, when searching for an embedding of
a forest.

LEMMA 4.6. Let v and x be nodes in a forest. Ifpost(v) <_ post(x), then rr(x) c_ rr(v).
The next definition gives a name for the embeddings that are searched for by our algo-

rithms.
DEFINITION 4.7. Let F (T1 Tk) and G be forests, and let g be a collection of

embeddings of F in G. An embedding f g is a left embedding ofg iffor every g g

post(f (root(Tk))) < post(g(root(T)))

A left embedding of the set ofall embeddings of F in G is a left embedding of F in G.
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It is obvious that every finite nonempty set of embeddings has at least one left embedding.
Therefore the following theorem holds, allowing us to restrict to left embeddings when testing
for the existence of an embedding.

THEOREM 4.8. Let F and G be forests. There is an embedding of F in G if and only if
there is a left embedding of F in G.

The next theorem presents a method to build left embeddings by proceeding from left to
right. The method is applied in Algorithms 5.1 and 6.1.

THEOREM 4.9. Let F (P1 P), where k > 2, and G be forests, and let f be a left
embedding of F (PI Pi) in G, where < < k. Let F2 be the forest (Pi+l P)
and let E be the set of such embeddings g of F2 in G that g(root(Pi+l)) rr(f (root(Pi))).
Then thefollowing items hold."

1. If is empty, there is no embedding of F in G.
2. If is nonernpty and g is a left embedding of, then f t3 g is a left embedding of F

in G.

Proof.
1. Assume contrapositively that g is an embedding of F in G. Let g and g2 be the

restrictions of g in F1 and F2, respectively. Then gz(root(Pi+)) rr(gl(root(Pi))), and
post(f(root(Pi))) < post(g(root(Pi))), since f is a left embedding of F in G. Therefore

g2(root(Pi+l)) rr(f (root(Pi)))

by Lemma 4.6, which means that g2 G .
2. First we show that f t3 g is an embedding of F in G. It is sufficient to show that f U g

preserves the relative order of any two nodes x of F1 and y of F2. Now root(Pi) is the last
node of forest F in postorder. Therefore we have by Lemma 4.6 that root(Pj) rr(x) for all
< j < k, and Lemma 4.5 states that y rr(x) also when y is not the root of any of the trees

Pi+ P. Next we can see that g(y) rr(f(x)) by applying the same argument to the
images of the above nodes.

Next we show that f t3 g is a left embedding of F in G. For this, let h be any embedding
of F in G, and let hl and h2 be the restrictions of h to FI and F2, respectively. Now we have
that h2 , and therefore post(g(root(P))) <_ post(hz(root(P))). This entails the claim
since g(root(P)) (f U g)(root(P,)) and hz(root(Pl)) h(root(P)).

5. The basle algorithm. Now we are ready to give an algorithm for testing whether
there is a root-preserving embedding of a pattern tree P in a target tree T. Let PI P
be the immediate subtrees of P. First, our algorithm searches the image f(root(P)) of
root(P) under a left embedding f of {P) in the immediate subtrees of tree T, if such an em-
bedding exists. The algorithm uses a pointer p for traversing the descendants of root(T). After
finding a left embedding f for the forest PI Pi ), P points at node f (root(Pi)). In order
to extend f to a left embedding of {P Pi+) in the subtrees of root(T), we try to find the
closest right relative x ofp in postorder, such thatx is an occurrence of Pi+l and a descendant of
root(T).

The algorithm refers to nodes by their postorder numbers. The minimum of a set of nodes
is the first node of the set in postorder. The algorithm also refers to an auxiliary target node
0, which precedes every other node of tree T in both preorder and postorder. This means that
all other target nodes are right relatives of node 0. We denote the size of T by n. The root of
T being the last target node in postorder is then n.
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ALGORITHM 5.1. Testing whether a tree T includes a tree P.
Input: Trees P and T.
Output: true ifand only if there is a root preserving embedding of P in T.
Method: Call emb(root(P), root(T));

1. function emb(u, v);
2. if label(u) =/= label(v) then return false;
3. else
4. let u uk be the children of u; (if u is a leaf k O)
5. p :--- min(desc(v) U {n + 1}) l;
6. comment: p is the predecessor ofdesc(v), or n if v is a leaf;
7. :=0;
8. whilei <kandp < vdo
9. p :-- min({x E rr(p) emb(ui+l, x)} t2 {n + 1});
10. comment: p is the next occurrence of P[ui+l],

or n + if there is none;
11. if p desc(v) then
12. comment: p f(ui+) for a left embedding f

of (P[u] P[ui+l]) in desc(v);
13. :--i+l;
14. fi;
15. od;
16. if k then return true;
17. else return false;
18. fi;
19. fi;
20. end.

The loop on lines 8-15 tests whether there is a left embedding of the forest
(P[u] P[uk]) in the forest of subtrees of v. This is, by Theorem 4.8 and Lemma 4.2,
equivalent to testing whether there is a root-preserving ordered embedding of P[u] in T[v],
because on these lines label(u) label(v). The test is successful if and only if all the subtrees
of u can be embedded in the loop, i.e., if and only if k on line 16.

The test is obviously correct if the pattern node u is a leaf. Let node u have children. If the
target node v is a leaf, p gets value n on line 5 of the algorithm, which prevents the execution
of lines 8-16. This is consistent with the fact that in this case P[u] cannot be embedded
in T[v]. Otherwise, if target node v has descendants, p gets the value min(desc(v)) 1,
which is the closest left relative of v. The postorder numbers of the descendants of v then, are
{p / 1, p + 2 v }. By Lemma 4.5, desc(v) C rr(p). Then, if P[ul] has occurrences
in desc(v), the first execution of line 9 finds in p the first of them in postorder. The correctness
of the remaining executions of the loop follows from Theorem 4.9.

The primitive operations of moving to the first descendant node or to the next or previous
node in postorder can be performed in constant time, after a linear time preprocessing of tree
T. Note that the tests p desc(v) and x rr(p) can be realized as simple comparisons of
preorder and postorder numbers. (See Lemma 2.1 and Definition 4.3.)

The algorithm above may still need exponential time in the size of the trees. Con-
sider trees Pn r(a(a(...a(a(b))...))) (a b-leaf with n a-ancestors below root r) and
Tn r(a(a(.., a(... a(a)...), b)...))) (a chain of 2n a-nodes below root r; the ntha has also
a b-leaf as a child). The algorithm would try in the recursive calls on line 9 a total of (22) embed-
dings before finding the right images for the a-nodes and an embedding for the whole tree Pn.
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6. A dynamic programming solution. The previous algorithm may repeat the same
computations an exponential number of times in the worst case. To avoid this, we use an
m x n table (m P], n T I) to store results of subcomputations. As before, we test for the
existence of a root-preserving embedding of P[u] in T[v] by trying to find a left embedding of
u’s subtrees in v’s subtrees. The key is to organize the evaluation so that the step that extends
the left embedding of (P Pi) into an embedding of (PI Pi+l) can either find the
correct occurrence of Pi+ or decide that there is none in constant time.

Let us define a table e having rows m and columns 0 n 1. As before, we
refer to the nodes of P and T by their postorder numbers; the numbers of P are used as row
indices of the table, and the numbers of T are used as column indices and contents of the table.
Denote by R(P, T) the collection of root-preserving embeddings of a tree P in a tree T. We
compute into table e values (u E P, v E {0 n })

(1) e(u, v) min({x rr(v) 3 f e R(P[u], T[x])} U {n + 1})

That is, e(u, v) contains the closest right relative of target node v that is an occurrence of
P[u], or n + meaning that P[u] has no occurrences among the right relatives of v. The
result of the computation can be found on row m (i.e., root(P)) of the table. Pattern P can be
embedded in T if and only if e(m, O) < n, and every v T that appears on row m of table e
is an occurrence of P.

The new algorithm uses pointer p in the same way as Algorithm 5.1 did. When a root-
preserving embedding of P[u] in T[v] is found, another pointer q is used for writing value
v into e(u, q) for those nodes q for which v is the appropriate value along (1). Since those
nodes q are left relatives of node v, columns 0... n suffice for the table because node n,
i.e., the root of the target, has no right relatives.

ALGORITHM 6.1. Testing whether a tree T includes a tree P, dynamic programming
version.
Input: Trees P and T P m, IT[ n).
Output: Table e filled so thatfor all u P and v 0 n

e(u, v) min({x E rr(v) f R(P[u], T[x])} U {n + 1})
Method:

1. foru :-- m do
2. comment: Initialize row u of e;
3. for v := 0 n do e(u, v) := n + 1; od;
4. Let u u/ be the children of u; (if u is a leaf k O)
5. q :=0;
6. for v :-- n do
7. if label(v) label(u) then
8. p := min(desc(v) U {n + 1}) 1;
9. :=0;
10. whilei <kandp < vdo
11. p :--- e(ui+l, p);
12. if p desc(v) then := + 1; fi;
13. od;
14. if k then
15. while q lr(v) do
16. e(u, q) :-- v;
17. q := q + 1;
18. od;
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19.
20.
21.
22. od.

od;

fi;

As an example, consider how Algorithm 6.1 finds the embedding of a tree P a (c, e) in
a tree T a(b(c), a(b(d), a(b(e)))). The trees and the result of the computation can be seen
in Fig. 5. Each column of table e is shown to the right of the corresponding target node.

7

Fl. 5. The result ofapplying the algorithm to trees P and T.

First, u 1, the leaf of P labeled by c, and v 1, the similar leaf of T. Since the labels
match and u has no children (i k 0), we have an embedding. The value of v is
written into e(1,0) only, since 0 is the only left relative of v. After that, no more matching
labels are found for u in nodes v 2 9 of T.

Next u 2, the second leaf of P. The first node v of T such that label(v) label(u) e
is node 5. As above, we have an embedding, and the value of v 5 is written into e(2, q)
for the left relatives q 0 4 of v. Again the remaining nodes v 6 9 are scanned
without encountering any matching labels.

Finally, u 3 root(P). Node v 7 isthe first node of T withlabel(v) label(u) a.
The node p preceding desc(v) in postorder is node 4. The first child of u is node number 1.
Its image in rr(p) D desc(v) is looked up from e(1,4); value n / 10 means that there is
no embedding of the child in desc(v). Next, a similar failure occurs with v 8 and p 2.
Finally v 9 root(T), label(v) label(u) a, which leads to testing the embedding of
the subtrees of u by executing p 0, p e(1,0) 1, and p e(2, 1) 5. The algorithm
has found a root-preserving embedding of P in T. The value of v 9 is written as the final
result into e(3, 0). Since 0 is the only left relative of 9, the computation ends.

THEOREM 6.2. Algorithm 6.1 fills table e correctly.
Proof Consider a fixed pattern node u. We outline a proof that all columns of row u get

correct values in the while-loop on lines 15-18 of the algorithm. First, the precondition that
all columns up to q have got the right values is initially true when q 0. We show that the
following invariant holds on line 16"

(2) f e R(P[u], P[v]) A v e rr(q)

(3) A V1 < x < v (3 g e R(P[u], T[x]) = x rr(q))

The invariant shows that the loop writes correct values into e(u, q). Since q increases only in
the loop, the truth of the invariant maintains the precondition for the subsequent executions of
the loop.
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Assume that u is a leaf; then e(u, q) should be assigned the number of the first node v in
rr(q) such that label(v) label(u). It is clear that (2) holds when we are on line 16. (Note
that q lr(v) and v rr(q) are equivalent.) When line 6 is executed for the first time, (3)
is vacuously true. By Lemma 4.6 we can strengthen (3) into

(4) < x < v, y > q (3 g R(P[u], T[x]) := x rr(y))

At the exit from the loop, v rr(q) allows us to deduce from (4) that

(5) V < x < v, y > q (3 g R(P[u], T[x]) = x

_
rr(y))

This postcondition makes (3) true on the subsequent executions of the loop. It also shows that
the writing is complete, i.e., value v must not be written into e(u, y) for any column y > q.

Next, assume that u is a nonleaf node, and the rows of the table e corresponding to the
children of u have been correctly computed. Then, as in Algorithm 5.1, the while-loop on
lines 10-13 finds a left embedding of the subtrees of u in the subtrees of v, if there is any. The
correctness of the while-loop on lines 13-16 is verified as in the base case. [3

THEOREM 6.3. Algorithm 6.1 requires 0 (mn) time and space.
Proof Space: Table e requires O(mn) space.
Time: During every execution of the outermost loop q may increase in steps of one from

0 to n. Therefore, the while-loop that increments q requires O(n) steps per one outermost
loop. One execution of the while-loop on lines 10-13 requires time O(1 + lul), where lul is
the out-degree of node u. We get total time

(n / lul)) n Z(2 lul)O
u=l v=l u=l

The sum ,m__ lul equals the number of edges in tree P, which is m 1. Therefore the total
time is O(n(3m- 1)) O(mn). [3

7. Unordered tree inclusion. So far we have presented an efficient algorithm for the
tree inclusion problem in the case of ordered trees. Now we turn to the unordered version of
the problem, which appears to be essentially harder.

A tree P is an unordered included tree of a tree T if the nodes of P can be injectively
mapped onto the nodes of T preserving the labels and the ancestorship relation between nodes.
Such a mapping is called an unordered embedding. We do not require the left-to-right order
of the nodes to be preserved in an unordered embedding.

As before, the tree inclusion can be characterized also operationally.
LEMMA 7.1. A tree P is an unordered included tree of a tree T if and only if P can be

obtainedfrom T by deleting nodes andpermuting subtrees.
The existence of an efficient algorithm for unordered tree inclusion is unlikely, since

the problem appears to be NP-complete. We prove the NP-completeness of unordered tree
inclusion by a reduction from the basic NP-complete problem SATISFIABILITY [3], [5]. For
proving the NP-completeness of unordered tree inclusion we use the following lemma stating
that a slight restriction of SATISFIABILITY is still NP-complete.

LEMMA 7.2. Let U {ul un} be a set ofBoolean variables and C {c Cm}
be a collection ofclauses over U. Now C can be transformed in polynomial time into such a
collection ofclauses C’ {ct cm, that

1. C is satisfiable ifand only if C’ is satisfiable, and
2. no negated variable occurs in two clauses of C’.

Proof. Let D {{u, y, }, {ti, 37, u 6 U }, where y, is a new variable, for each u 6 U.
Clauses {u, y,} and {/i, 37,} express exclusive or of u and y,, i.e., a truth assignment can satisfy



ORDERED AND UNORDERED TREE INCLUSION 351

them only if it assigns opposite values to u and y,. Let E be the set of clauses obtained from
C by replacing each negated occurrence/ of a variable by y,, and let C’ D U E. Now
C’ is satisfiable if and only if C is satisfiable. The transformation obviously can be done in
polynomial time. E]

THEOREM 7.3. The unordered tree inclusion problem is NP-complete.
Proof It is easy to see that the problem is in NP: An algorithm can guess the mapping

of the pattern nodes onto the target nodes and check in polynomial time that it is indeed an
embedding.

The completeness for NP is shown by a reduction from SATISFIABILITY. Let an instance
of SATISFIABILITY be given by a collection of variables U {u un and a collection
of clauses C {c Cm over U. By Lemma 7.2 we can assume that no negated variable
appears in two clauses of C.

Form a pattern tree P and a target tree T of unordered tree inclusion problem as follows.
Let P (N,, E,) be a tree given by nodes N, {0 m} and by parent-child edges

Ep {(0, x) Ix E Np,x yO}.

Let label(x) x for all x Np. The intuition is that the nodes of tree P, excluding the root,
represent clauses of C and each of them is labeled by the index of the corresponding clause.
Let T (NT, ET) be the tree whose nodes consist of pairs

NT {(0, 0)}

{(u, j) u cj c} LJ

{(t,j)]8cj C},

and whose parent-child edges are

ET {((0, 0), (u, j)) u c C, Cuc}u
{((0, 0), (, j)) c C} u
{((/, j), (u, k)) 8 cj C, u ck C}

So, tree T has one node corresponding to each occurrence of a literal in a clause of C,
and an additional root node (0, 0). The nodes for the positive occurrences of variables that
do not occur negated in C are children of the root of T. A node (8, j) corresponding to
a negated occurrence of variable u is a child of the root of T and the parent of the nodes
corresponding to the positive occurrences of u. The assumption of unique occurrences of
negative literals implies that each node except the root has a unique parent, and thus T is
indeed a tree. Let label((x, j)) j for all nodes (x, j) NT, i.e., the nodes corresponding
to the literal occurrences in a clause cj are labeled by j. An example of the construction is
shown in Fig. 6.

Obviously, the trees can be formed in polynomial time.
Now we claim that there is a satisfying truth assignment for C if and only if P is an

unordered included tree of T. First, assume that is a satisfying truth assignment for C.
Define a mapping h from the nodes of P onto the nodes of T as follows: For the root of P
set h(0) (0, 0) and for other nodes j of P set h (j) (1, j), where (1, j) NT is some
node such that literal is true under truth assignment t; such a node can be selected because
satisfies at least one literal of every clause cj 6 C. Now h is an unordered embedding, since it
is obviously injective and label preserving, and it cannot map two sibling nodes from P to an
ancestor and its descendant in T. Otherwise, by the construction of T, truth assignment would
satisfy both a positive and a negative occurrence of the same variable, which is impossible.

Next assume that h is an unordered embedding of P in T. Set (x) false if the range of
h contains a node (Y, j) corresponding to a negative occurrence of variable x, and (x) true
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(z,3)

Fto. 6. Treesfor clauses c {x, y}, C2 {., 37}, and c. {y, z}. The embedding shown byarrowscorresponds
to satisfying truth assignments that set x to false and y to true.

if the range of h contains a node (x, j) corresponding to a positive occurrence of variable x.
It is easy to see that is a well-defined truth assignment for a subset of variables in C, and that
satisfies at least one literal in each clause of C. [3

8. An algorithm for unordered tree inclusion. In this section we present an algorithm
for solving the unordered tree-inclusion problem. The algorithm requires exponential time
in the worst case. In the light of the NP-completeness of the problem, it is unlikely that we
can do any better. We will see that the difficulty of solving the problem lies in permuting the
left-to-right order of the pattern nodes. If the size or the branching of the pattern is limited,
the problem becomes feasible to our algorithm.

Let P be the pattern tree and T the target tree. The next algorithm is based on manipulating
match systems consisting of subsets ofpattern nodes. The match system S(v) for a target node v
consists of all the subsets {u uk of pattern nodes such that the forest (P[u] P[uk ])
has an unordered embedding in T[v]. The algorithm computes the match systems for each
target node while going through the target in a bottom-up order. Note that if v’ is an ancestor
of a target node v, then T[v]

_
T[v’] and therefore S(v) c_ S(v’). Also, for each pattern node

u we have that {u} S(v) only if children(u) S(v).

ALGORITHM 8.1. Unordered tree inclusion algorithm.
Input: Trees P and T P m, TI n ).
Output: The nodes v of T such that there is a root-preserving unordered embedding of P in

T[v].
Method:

I.
2.
3.
4.
5.
6.
7.
8.
9.
10.
ll.

for v :-- n do
comment: Go through the target nodes in postorder;

s:= {};
Let v Vl, > O, be the children of v;
for/ := 1,...,ldo

S:={AUB A S,B S(vi)};
od;
SA :=J;
for all u P such that label(u) label(v) do

if children(u) S then
s/x := sex u {{u}};
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12. fi;
13. od;
14. if root(P) e SA then
15. comment: An occurrencefound;
16. output v;
17. fi;
18. S(v) := S U SA;
19. od.

The algorithm computes the match system S(v) for a target node v with children/31
as follows. First the loop on lines 5-7 computes from the match systems of the children of v a
set S. The invariant for the loop says that the set S consists of the subsets {u uk of such
pattern nodes that the forest (P[Ul] P[uk]) has an unordered embedding in the forest
(T[Vl] T[vi]). For 0 this is clearly true, since S {0}. Next, assume inductively
that the invariant holds for when 0 < _< l, and that S(vi) is the correct match system
for the child vi of target node v. Now it is rather easy to see that the forest (P[ul] P[u])
has an unordered embedding in (T[Vl] T[vi]) if and only if {Ul u} A U B for
some A E S and B S(vi).

Next the algorithm computes in a set SA the singleton sets {u} of the pattern nodes u for
which there is a root-preserving embedding of P[u] in T[v]; these are exactly those nodes u
whose label matches the label of v and whose set of children belongs to S. After this process,
S U SA is the the match system of v.

We will restrict match systems to consist of sets of sibling nodes only. (Note that they only
affect the insertion of new pattern nodes to the match systems on line 10 of Algorithm 8.1.)
This can be done by restricting, on line 6, to uniting only sets A and B of nodes that have a
common parent.

The size of the match systems depends on P only. If P is fixed, executing line 6 and the
loop on lines 9-13 takes constant time. The algorithm examines every target node at most
twice; once as v and at most once as a child of v. Therefore we have the following result.

THEOREM 8.2. For a fixed pattern P, an instance P, T) of the unordered tree inclusion
problem can be solved in time O(ITI).

If we are to solve the problem repeatedly with the same pattern P, we can solve it in two
phases. The first phase is to perform a preprocessing on P, which may take a long time as
a function of PI. After the preprocessing a modified version of Algorithm 8.1 needs time
that is only linear in TI and not a function of PI. The preprocessing would be based on
enumerating the collection $(P) of possible values of variable S, and using this enumeration
to index arrays storing the possible assignments performed on lines 6, 9-13 and 18. A similar
approach can be found in the bottom-up tree pattern matching algorithm of [8].

The preprocessing is reasonable only when the size of S(P) is not too large. The size
of collection ,5’(P) depends strongly on the form of the pattern P. If P consists of rn nodes
that form a path from the root to a single leaf, S(P) consists of m + systems that are {0},
{0, {1 }} and {0, {1} {m}}. At the other extreme, the size of S(P) can be doubly
exponential in m. To see this, consider a pattern P consisting of a root node and m
leaves. Let 4 be the system consisting of the sets of k(m 1)/2J leaves of P. Obviously
141 (Lmm_-I/2j), and every subset of 4 belongs to S(P). Therefore

IS(P)I > 2(L,,,’,"-5’)/2J)

Each match system S is monotone decreasing, i.e., if A S, then B S for each B

___
A.

Thus we can represent the match systems as Sperner systems by maintaining their maximal
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elements only. The following results give an upper bound for the number of Sperner systems
on m nodes.

PROPOSITION 8.3 [23], ]. The size of a Sperner system on an m-element set is at most

(tm2J)"
PROPOSITION 8.4 [2]. The number ofset systems t on an m-element set, satisfying

(6) 141 <c [m/2J
is at most

2 (.m/2J) log m(1 +o(1))

Putting together these propositions gives the following upper bound for the number of
Sperner systems on an m-element set, denoted by (m):

c(m) < 27(Lm/2J)lgm(l+(1))

When the systems in S(P) are Sperner systems this is also an upper bound for the size of
6’(P). As discussed above, a pattern consisting of a root node and m leaves brings 6"(P)
fairly close to this bound.

Let us next analyze how Algorithm 8.1 performs with patterns whose branching is limited.
The executions of line 6 will dominate the execution time of the algorithm. Let k be the largest
out-degree of any node in P. Any set of sibling nodes of P has at most 2 subsets. On line 6
we need to unite only subsets A and B that consist of children of a common parent at a time.
For each of the PI parents in the pattern there will be at most O(22) pairs of such sets.
Each union A t2 B can be formed in O (k) time and the union can be checked for not being a
duplicate of any other member of the resulting system S in O (k2) time.

The rest of the algorithm can be executed in O (1P l) time per one target node by choosing
a reasonable data structure for S and SA. We have derived the following upper bound for the
time complexity of the unordered tree-inclusion problem.

THEOREM 8.5. If the out-degrees of the nodes of P are bounded by k, the unordered
tree-inclusion problem is solvable in time 0 (I P [k22lT I). Specifically, if k is a constant, the
problem is solvable in O(IPIITI) time, and ifk is O(log ITI), the problem is solvable in time
O(]PI log ITllTI3).

A similar but less precise result could also be obtained by using the dynamic programming
approach.

9. Conclusions. We have considered the tree-inclusion problem, which arises from
database query processing. We have given a dynamic processing solution requiring O(mn)
time, where m and n are the sizes of the trees. The algorithm is faster than the previous ones.
The corresponding problem for unordered trees is considerably more difficult. We have given
a proof of its NP-completeness. For the unordered problem we have presented an algorithm
that works in O(mn) time if the out-degrees of the pattern nodes are bounded by a constant,
and in polynomial time if they are O (log n).

There are several open problems. One is improving the running time of the algorithm for
the ordered problem. Breaking the mn-barrier seems rather hard, however. Another promising
area is trying to reduce some matching problems to the tree-inclusion problem; this could give
upper or lower bounds for the complexity of this problem.

In an application where the target tree is very large, the (R)(mn) space and time require-
ments of Algorithm 6.1 may be unacceptable. Another algorithm that solves the ordered
tree-inclusion problem in O(m depth(T)) space has been presented in [10]. The idea of this
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algorithm is similar to Algorithm 8. l, with the difference that in the ordered case the match
systems have a more economical representation. The complexity of the new algorithm is
sensitive to the instances of the problem: it runs in time O(cp(T)n), where cp(T) is the
number of the subtrees of P that are included in T. If no part of the pattern appears in the
target, the algorithm runs in time O (n).

Aeknowledglnents. We wish to thank Kari-Jouko Riihi and an anonymous referee for
useful comments on previous versions of the article.
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Abstract. We present a randomized algorithm that interpolates a sparse polynomial in polynomial time in the
bit complexity model. The algorithm can be also applied to approximate polynomials that can be approximated by
sparse polynomials (the approximation is in the L2 norm).
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1. Introduction. We consider the problem of interpolating a sparse polynomial with
integer coefficients. The interpolation model is the following. The algorithm can query the
polynomial P on any input x, and receives the value P(x) with some finite accuracy. The
accuracy parameter determines the number of significant bits that are given from the value of
P(x), which helps truncate P(x) after that number of significant bits. The running time of
the algorithm is the number of bit operations performed.

The parameters of the sparse polynomial are n--the number of variables, t--an upper
bound on the number of nonzero coefficients, d--an upper bound on the degree of a single
variable, and L--an upper bound on the absolute value of the largest coefficient. A t-sparse
polynomial is a polynomial with at most nonzero coefficients. The number of bits required
to express a t-sparse polynomial is O(t (log L + n log d)) poly(n, t, log d, log L).

Our main result is a randomized algorithm that interpolates a t-sparse polynomial in time
poly(n, t, log d, log L). In the analysis of the algorithm, we count the number of operations
performed, but since the accuracy that our algorithm requires is very small (logarithmic in
the above parameters), the running time remains poly(n, t, log d, log L) in the bit complexity
model.

An interesting application of our algorithm is finding an approximation by a sparse poly-
nomial. The approximation is in the L2 norm, i.e., the expected error squared is small. The
main result is that if a polynomial P can be approximated by a t-sparse polynomial Q such
that the power of P Q is bounded by e, then our algorithm can find a t-sparse polynomial
Q’ such that the power of P Q’ is bounded by O(e). (The power of a polynomial is the
sum of the squares of its coefficients.) Our algorithm achieves this by finding only the "large"
coefficients of P, rather than finding all of the coefficients of P. This notion of approximation
is especially interesting when the values of the variables have approximately unit magnitude.
We believe that this notion of approximation is especially interesting in our framework, since
if we allow the value of the variable to be, for example, 2, then the output of the polynomial
may have already d bits.

Interpolation of a univariate polynomial can be performed in time O (d log d), using the
Fast Fourier Transform (FFT). The FFT does not use the information about the sparsity of the
polynomial, therefore, its running time is polynomial in d, rather than and log d. Since the
FFT algorithm does not consider the sparsity of the polynomial, for multivariate polynomials
where the number of possible coefficients is exponential, its running time is exponential.
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Previous works on sparse multivariate polynomial interpolation were mainly in the al-
gebraic model, where each operation requires one unit of time. When considering those
works in the bit complexity model, one has to take into account the number of bits which
were given to the polynomial, and also the size of the result of the polynomial and the re-
quired accuracy on the result. Zippel [Zip79] gave a probabilistic algorithm that runs in time
poly(n, t, d). His algorithm evaluates the polynomial at points of size (R)(log ntd) bits and
requires (R)(d log ntd + log L) bits, which implies that the running time in the bit complexity
model is poly(n, t, d, log L).

Grigoriev and Karpinski [GK87] showed a deterministic NC algorithm to compute a
matching, in the case that the permanent is sparse. (The permanent can be viewed as a
generic multivariate polynomial.) Ben-Or and Tiwari [BOT88] gave a deterministic algo-
rithm to compute a sparse multivariate polynomial that runs in time poly(n, t, log d). The
algorithm evaluates the polynomial at points of size O(t log n) bits and requires accuracy
of O(tdlogn + log L) bits. Therefore, the running time of their algorithm in the bit com-
plexity model requires time poly(n, t, d, log L). Grigoriev, Karpinski, and Singer [GKS90b]
showed how to interpolate a rational function with O(ntt) points, which is independent of
the degree d However, in the bit complexity model the running time is poly(n, t, d, log L).
Algorithms for interpolation of sparse polynomials over finite field appears in [GKS90a] and
[Kar89].

The work here extends the technique developed in [GL89] and [KM91] for the Fourier
transform over the hypercube. The extension handles a ring of integers modulo an integer
(i.e., Zd). After we show how to handle Zd, we use the previous techniques and extend the
result to handle Z.

Remark. In this work, we are interested in the bit complexity model. In the analysis,
we use the algebraic model and count the number of operations. By guaranteeing that the
precision that our algorithm requires is small, we make sure that its running time in both
models is similar.

The paper is organized as follows. Section 2 mentions a few known facts about the
Chernoff bounds, discrete Fourier transform, and defines the black box model. Section 3 has
the interpolation to univariate sparse polynomials with small coefficients, which is extended
in 4 to handle arbitrary coefficients. The precision accuracy that the algorithm requires is
discussed in 5. Section 6 deals with the approximation of a real valued function by sparse
polynomials. Section 7 extends the case ofunivariate polynomials to multivariate polynomials.

2. Preliminaries. Chernoff bounds. In the analysis of our randomized algorithms, we
use Chernoff bounds. The following theorem formalizes the bounds in a way which would be
most useful for us. (See [HR89].)

THEOREM 2.1 (Chernoffbound). Let X1 Xm be i.i.d with E[Xi] p, [Xi[ <_ H and
2 thenlet Sm X1 +"" + Xm. Ifm >_ 2-- In ,

Pr[
Complex numbers. The magnitude of a complex number z a + ib is [[z[[ w/a2 + b2.

2n
Let cod e-3i be a dth root of unity. Recall that [[coa for any d and k.

Discrete Fourier transform. We list here a few known facts about the discrete Fourier
transform. Consider a polynomial P (x) y’j=_ ajxj. Each coefficient of the polynomial
satisfies

d-1

k=O
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Parseval identity relates the sum of the squares of the coefficients to the values of the
polynomial as follows:

d- d-1d-1
k

=0 k=0 k-0

For any integer k not divisible by d,
d-1

E(4) -0.
m--0

The Black box model. Our algorithm assumes that it has a black box that evaluates the
polynomial P. The algorithm evaluates the polynomial at roots of unity of the form o),. The
interaction between the algorithm and the black box is the following.

To evaluate the polynomial P at co, the algorithm gives the black box the pair (d, k).
Denote by p(k, d) the output of the black box on input (d, k).

The black box has precision accuracy if for any input (d, k), the absolute error is at
most e, i.e.,

IlP(w) p(d, k)[[ _< .
Let H max, {[[ P (to)[[ }. The number of bits required for precision accuracy is

O (log H + log ).
3. Univariate polynomials. In this section we discuss interpolation of t-sparse polyno-

mials with integer coefficients. The result is based on a searching technique that we develop
to search in the space of the possible coefficients. The search technique is similar to the one
in [GL89] and [KM91].

Given a polynomial P(x), we split it into two polynomials" one that includes the co-
efficients of odd degrees (denoted by Pl,1), and the other which includes the coefficients of
even degrees (denoted by P0,1). Note that Po,(x) (P(x) + P(-x))/2 and Pl,l(x)
(P(x) P(-x))/2. In a similar way we define P,(x), where 0 < a < 2 and
0 _< t < log d, as follows:

P,e(x) E aej xe’
J" ei mod 2e=

The algorithm works as follows. It keeps a list of the current candidates polynomials,
P,e. The algorithm takes a polynomial P,e off the list and tests if it is identically zero.
If the polynomial is identically zero no action is taken. (This implies that we terminate
the search for coefficients of exponents e, e c mod 2e, since all those coefficients are
zero.) Otherwise, we continue recursively searching, i.e., we add to the list of candidates
polynomials the polynomials Po+ze,e+l and P,+I. When t log d, then we have reached a
nonzero coefficient. (Namely, the polynomial P,,logd(X) ax.)

Since there are at most nonzero coefficients and for each coefficient we perform log d
recursive calls, the total number of recursive calls is bounded by O (t log d).

We are not able to compute the values of the polynomials that we create exactly, but rather
we are able to approximate them very well. One way to overcome this is to approximate the
value of a polynomial at randomly selected points, and if at some point it is more than 1/2
then we assume that it is a nonzero polynomial. Here we choose an alternative way to test
for zero polynomials that is based on approximating the power of the polynomial. Since the
polynomial has integer coefficients, if it is a nonzero polynomial then it has power at least one.
We approximate the power of the polynomial and if the approximation is more than 1/2, we
assume that the polynomial is nonzero. We prefer the method that is based on approximating
the power since it extends more naturally to the case of large coefficients and to the case of
approximation by sparse polynomials.
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3.1. The main procedure. In this subsection, we outline the main idea of how to recover
the coefficients of a t-sparse polynomial P(x) .ti= a.jx .j whose coefficients are integers.
The basic strategy is to recover the exponents ej bit after bit, starting from the least significant
bit.

Allow d to be the smallest power of two greater than maxj {ei }, i.e., d 2 [lg(l+maxj{ej})]

Consider the sets Se {ej mod 2 _< j _< for 0 _< g _< log d. The set Se includes the g
least significant bits of the exponents ej. Clearly, the size of a set Se is bounded by t, and the
set So includes only zero. We show how to compute the set Se+l given the set Se.

From the definition of Se it follows that if o ’ Se then P,e(x) =- 0, while if o Se
then P,e(x) O. One step in the construction is testing if a polynomial is identically zero.
Assume that we are given such a procedure ZERO(P,e) that returns TRUE if and only if

P,e =-- 0 (later we will show how to implement it).
Given the set Se we construct the set Se+ as follows. For each o 6 Se we create two

integers: c0 o and o o + 2e. For each o, o- {0, 1}, we test ZERO(P,,e). If
ZERO(P,,e) is FALSE we add o to Se+. Since the set Sogd includes all the exponents
of P, when we recover Sog d we have found all the exponents of P.

CLAIM 3. I. The algorithm constructs each St correctly.
Proof. The proof is by induction on g. Initially So includes only zero, so it is correct.

Assume that we constructed Se correctly. We have to show two properties of Se+" that any
element added should have been added and that every element of Se+ was added at some
point.

An element/ o, cr {0, 1}, is added to Se+ only if ZERO(P,e+I) is FALSE.
a2This implies that y.j:e.imod2e+,=fi e. O. Therefore, there exists some coefficient a. such that

ej mod 2e+ fl, which is not zero.
For the second part assume that fl Se+. Let/ rood 2 or. By the induction hy-

pothesis o 6 St. When we handle o, in one of the two cases we test o /. Since
[d Se+I,ZERO(P/,e+I) ZERO(P,e+)isFALSE. Hencefi wasaddedto Se+. [3

LEMMA 3.2. The number of calls to the procedure ZER 0 is bounded by 0 (t log d).
Proof. There are log d sets Se. The size of each set Se is bounded by t. For each element
Se we perform two calls, ZERO (c0, ) and ZERO (Ol, ). E]

So far we have an algorithm that requires an oracle for computing P,,e(x) and the proce-
dure ZER O. In the next subsection we show how to approximate P,,e, and in the subsection
after that we show how to approximate ZER O.

3.2. Approximating P,e(x). In this subsection we show how to approximate P,e(x).
The main tool in the approximation is the following lemma.

LEMMA 3.3. For any polynomial P (x), o and g,, such that 0 < c < 2e, then

P,e(co) -7 m--0

Proof The proof is somewhat technical. We basically transform the right-hand side to
the left-hand side. We start by substituting for P(x) the expression j=0 aJ xj. This means
that the right-hand side is

Z .j(k+m) -om
2-7 ai Cd Wd

=0 =0

We can change the order of summation and rewrite it as

jo j (.j-) -a.icOd - COd
m-O
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Consider the expression between the brackets. If j o rood 2e, then the expression is one,
and otherwise it is equal to zero. Therefore we can rewrite it as

Z ajco P,e
j: jmod2e=o

We can use Lemma 3.3 to approximate P,e. Define the following random variable:

Am (, , k) P [Wd Wdm
i=1

where fli is chosen uniformly in the set {0 2 }. The random variable Am (, , k) is
an approximation for P,e(w) that uses m sample points. The following lemma, which is an
application of Chernoff bounds, states how "good" the approximation is.

LEMMA 3.4. Let P(x) be a polynomial such that max.i{] P(w)[]} H. There exists a
2 Then,(oranyk,constant c, such thatfor m cH4 log .

Pro@ The proof is an application of the Chernoff bounds and the fact that Ilnm (, , k)

The main use of Lemma 3.4 would be through the following claim.
thenCLAIM 3.5. Let a and b be complex numbers such that Ila H. If lla b ,

<
-4

3.3. Testing for ero polynomials. Our aim is to show that with high probability we
can approximate each ZER0(, ) correctly. This would imply that we can run the entire
algorithm using the approximation, rather than testing ZERO(, ). The approximating
function is named APPR0X_ZER O. The main idea would be to approximate the power of
the function. If the polynomial is the zero polynomial, then the power is zero, otherwise the
power is at least one (since we assumed that the coefficients are integers).

For a polynomial P(x) ax let power(P) a? In order to approximate the
power of a polynomial, we define the following random variable:

Bm,,m2(@, e) IIAm(, e, k,)ll ,
ml i=1

where ki is chosen uniformly in the set {0 d }. The random variable Bm,,m (, g) is an
approximation of power(P,e). The following lemma states how "good" the approximation is.

LEMMA 3.6. Let P (x) be a polynomial such that H max {11 P (w)l }. There exists a
and m2 > cH4 log , thenconstant c, such thatfor m cH4 log X

Prob IBm.,m(, ) power(P,e) R .
Pro@ Lemma 3.3 shows how to compute P,e(m) from the values of P(w). One can

observe that the value of P,,e(m) is a weighted average of the values of P(w). From this
we can deduce that max{lP,e(o)ll/ H.

The proof of the lemma uses Chernoff bounds. Since IIe,e(m)ll H, by choosing
m values of ki S at random, such that m cH4 log g, Theorem 2.1 guarantees that with
probability /2,

power(,e) I,e(o)l <-.
m i=

-4
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Based on Lemma 3.4 for every ki with probability -3/(2m), the random variable

Am2 (or, g, ki) approximates P,e (COdi) with error less than / 16H. By Claim 3.5 this im-

plies that the difference between Ilam2(Ot, t, ki)]l 2 and IlP,e(coi)]l 2 is at most 1/4, which
completes the proof of the lemma.

Now we are ready to define the function APPR0X_ZER0 (or, g.). In order to compute
APPROX_ZERO(c, g), we first compute Bm,,m2(Ot, ) b, where ml and m2 are chosen
according to Lemma 3.6, then if b is smaller than 1/2 we return TRUE, otherwise we return
FALSE. The following theorem states that with high probability, this is a good approximation.

THEOREM 3.7. For any and or, 0 < ot < 2e,
Prob[APPROX_ZERO (ot,

Proof It is easy to show that if APPR0X_ZER0 (or, g) 5 ZER 0 (, g), then

IBm,,m2 (ol, e) power(P e)] > 2’
the theorem follows from Lemma 3.6.

3.4. Approximating a single coefficient. We need to approximate each coefficient that
we found at the end of the algorithm with an error of at most . Given an exponent e, we show
how to approximate its coefficients, ae.

Define the random variable C0EFm (e) to be

C OEFm (e) - q-- P (O)di )o_)-ffie
m

i=1

where/3i is chosen uniformly from {0 d }. The random variable C0EFm (e) is an
approximation of the coefficient ae using m sample points. The following lemma states how
close the random variable C0EFm (e) is to the coefficient ae.

2LEMMA 3.8. Let P be a polynomial and H

Prob [CO EFm (e)

Proof If COEFm(e) ae then ICOEFm(e) ael > 1, since they are both integers.
In such a case, 17 + 1 -i=lrn P (gOfld )O)-ff [3ie ae >_ 1/2 The claim of the lemma follows from
Chernoff bounds.

3.5. Univariate interpolation algorithm: Small coefficients. We can now use the
building blocks in this section to show the following result.

THEOREM 3.9. Let P be a nonzero univariatepolynomial with at most integer coefficients,
each ofmagnitude at most L, and H maxk{llP(Wd)ll}. The running time of the algorithm

I).is O(Hgt logd log2 7 +tH2 log g) poly(n, t, logd, log L), where 3’ O(HstlogdlogZ
Proof. There are O (t log d) recursive calls. Each time in AP PR0X_ZER0 we test

’SO(H4 In ) different ki For each ki we use O(H4 log ) points to approximate it. At
the end, for each of the coefficients we call the procedure COEF and use O(H2 log
points.

The main drawback of the above result is that the running time depends on H, which could
be proportional to the largest coefficient, i.e., L, and not polynomial in the bit representation of
the coefficients, i.e., log L. In the next subsection we show how to overcome this deficiency.

4. Handling large coefficients. The aim of this section is to modify the algorithm of
the previous section so that its running time would be polynomial in log L. The technique
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we use in handling large coefficients is similar in spirit to the scaling techniques in graph
algorithms. We first find the exponents whose coefficients are "very" large. We approximate
the coefficients of those exponents and subtract them from the polynomial. Since we only
approximate the coefficients, the new polynomial may still have nonzero coefficients for those
exponents. The main advantage is that the new polynomial has, in the worst case, the same
number of nonzero coefficients, while the maximum value of a coefficient is smaller.

Consider a t-sparse polynomial P (x), i.e.,

P (x) Z ae.j xej"

j=l

As before, let the parameter d be the smallest power of two larger than the degree, i.e.,
d 2 lg(l+max{e.i})] Similarly, let L be the smallest power of two that is larger than the

maximum coefficient in absolute value, i.e., L 2Flg(maxj{lae.l}).
Our aim is to perform the interpolation in time that is polynomial in t, log d and log L.

The following is the basic idea of the algorithm. Given L, the bound on the largest coefficient,
Lwe consider the sets Z {ej L/2 < lae.l _< L} and Z2 {ej 8---- <- lae.l < L}. We

find a set Y such that Z1 C Y C Z2. Once we found the set Y (in time polynomial in t, log d
and log L), we approximate each of the coefficients of the exponents in Y with an absolute
error of less than a L/4. This implies that, with high probability, the difference between the
real coefficient and the approximated coefficient is less than L/4. For each ej E Y, denote by

Ve. the approximated value of the coefficient ae.j and in order to ensure that the new polynomial
is integral, enforce Ve.j to be integral. More formally, let Q be the polynomial we created,

Q(x) eXe.
ej EY

Consider the polynomial P’(x)= P(x)- Q(x). Assume that Z1 C Y C Z2 and

IVe.-ae.l < L/4, the polynomial P’ is t-sparse, and has integer coefficients of size at most L/2.
This implies that in polynomial time we reduced the problem of recovering the coefficients
of a polynomial with maximum coefficient L (i.e., P(x)), to the problem of recovering the
coefficients whose maximum coefficient is L/2 (i.e., P’(x)). Therefore after O(log L) such
iterations the maximum coefficient is 0(47). Once the coefficients are of size 0(,,/7) the
algorithm of Theorem 3.9 would recover all the coefficients.

4.1. Approximating the power. The main idea is that with a sample size that depends
on and is independent of L, we can approximate power(P,,e). We start by modifying the
approximation of P,,e.

LEMMA 4.1. Let P be a t-sparse polynomial each of whose coefficient is bounded in
2magnitude by L. There exists a constant c, such that ifm > ct4 log , thenfor any k,

As before, this implies the following about the difference in the magnitude.
LCLAIM 4.2. Let a and b be complex numbers such that Ilall _< tL. If lla bll <_ -, then

L
llall 2 Ilbl12[ <-16

We can now claim the result about approximating the power.
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LEMMA 4.3. Let P be a t-sparse polynomial each of whose coefficient is bounded in
and m2 > ct4 logmagnitude by L. There exists a constant c such that ifm > ct4 log

then

Prob [Bm,,m2(Or, g) power(P,e)[ < - < 6.

Proof. The polynomial P is t-sparse. Furthermore, each coefficient is bounded by L.
Therefore, the magnitude of P(w) is bounded by tL, and the magnitude of P,e(w) is
bounded by L. Once we bounded the magnitude of P,e we can use the Chernoff bounds
to claim that with probability (3/2 the difference between power(P,e) and

P,e(co;)ll 2 is less than L2/32.
Based on Lemma 4.1, for every ki with probability (3/(2m) the random variable

Am2 (, , ki) approximates P,e(coi) with error less than L/(64t). By Claim 4.2 this implies
that the difference between [IAm(O,g, ki)l[ 2 and I[P,e(coi)[[ 2 is at most L2/16.

Now we define the equivalent of the ZERO and A PPR0X_ZER0 procedures. Let
LARGE(P, L), where P is a polynomial and L an integer, be TRUE if and only if P has
some coefficient ai such that [ail > L/2. As before, we cannot compute LARGE(P, L)
directly, but we can approximate it. We approximate the value of LARGE(P,e, L) by
APPROX_LARGE(, , L) which is defined as follows: Compute Bm,,m(Ot, ) b and if

b > return TRU E, otherwise return FALSE.
LEMMA 4.4. Let P be a t-sparse polynomial, each of whose coe.lficient is bounded in

magnitude by L. For any oe and , 0 <_ <_ 2e, then

Prob[APPROX_LARGE(, , L) FALSE and LARGE(P,,e, L) TRUE] <_(3.

Proof Assume that LARGE(P,e, L) is TRUE. This implies that power(P,e) > L2/4,
since some coefficient is larger than L/2. With probability (3,

3L2

IBm ,,, (or, e) power(P,e)l >
32"

5t’2 which is equivalent toThis implies that with probability a we have Bm,,m2(Ot, ) >_ --,
APPROX_LARGE(o, , L) being TRUE.

LEMMA 4.5. Let P be a t-sparse polynomial each of whose coefficient is bounded in
magnitude by L. For any c and , 0 < o < 2e, then

Prob [APPROX_LARGE(, , L)

TRUE and LARGE P,e, - FALSE < (3.

LProof. Assume that LARGE(P,e, -g-) is FALSE. This implies that power(P,e) <
LL2/64, since no coefficient is larger than --. With probability (3,

]Bm,,, (oe, e) power(P,e)] >
3L2

32

"SL2 which is equivalentThis implies that with probability at most 6, we have Brn,,m (or, ) >_ .--,
to APPROX_LARGE(o, , L) TRUE. 1

The above two lemmas show that if A P PR0X_LARGE(, , L) is TRUE, then with
Lhigh probability P,e is a nonzero polynomial (and even has a coefficient larger than g-), and if
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P,e has a coefficient larger than L/2, then with high probability A P PR0X_LARGE (o, , L)
is TRUE.

Note that the number of recursive calls when we use the procedure LA RGE is bounded,
as before, by log d, since every time LARGE is T RUE, we are focusing on at least one of
the coefficients.

4.2. Approximating a single coefficient. The approximation of a single coefficient is
done as in the case of small coefficients, in 3.4. The only difference is that we need to

approximate each coefficient that we found with absolute error less than L/4.
LEMMA 4.6. There is a constant c such thatfor m > ct2 log ,

Prob[[COEFm(e)-ael > L/4] < 6.

4.3. Putting it all together. The basic building block would be aprocedure FIND(P, L)
that receives a polynomial P with coefficients of magnitude at most L and returns a list of
exponents and their respective coefficients such that with high probability this list includes all
the coefficients larger than L/2 and no coefficient smaller than /

8/7"
The procedure FIND(P, L) works as the algorithm in 3, but uses the subroutine

APPR 0X_LARGE instead of APPR0X_ZER O. At the beginning we start with a set Y0
that has only 0. At phase g, for each element c E Ye, we create o0 o and a c + 2e. We
add o to Ye+l only if APPROX_LARGE(c, + 1, L) is TRUE.

Since we are modifying the original polynomial, we describe how to compute the output
that the black box returns to the algorithm. We have a polynomial R(x), which is initially
identically zero. (This polynomial would be used to "change" the original polynomial P that
the algorithm is approximating.) Each time the algorithm queries the black box on a point

cod
, we query the original black box on input (d, k) and get a reply p(d, k) (which is simply

P(co) with finite accuracy), we reply to the algorithm with p(d, k) R(co).
The main algorithm runs in phases. We maintain that after the ith phase, with high

probability, P(x) R(x) is a polynomial with at most nonzero coefficients and its maximum
coefficient is at most L/2i. The ith phase consists from the following steps: (1) We call
FIND(P R, L/2i-) that returns a set Y/. With high probability the set Y/includes all the
coefficients in the range L/2 to L/2i- (2) For each exponent in e E Y we approximate its
coefficient ae by ’, such that the difference is at most L/2i+l Let Qi(x) Ze6Yi ’eye" (3)
We add the polynomial Qi(x) to the polynomial R(x).

Once the size of the coefficients is O(,,/), the algorithm uses the algorithm for small
coefficients (see Theorem 3.9) to completely recover the coefficients and adds this polynomial
to R. At this point, with high probability, the polynomial R(x) at is identical to the polynomial
P(x).

We have established the following theorem.
THEOREM 4.7. There exists a randomized algorithm that interpolates a t-sparse polyno-

mial, whose coefficients are integers less than L. The algorithm runs in time polynomial in t,
log d, and log L.

5. Precision accuracy. Our algorithms use complex numbers. When we measure the bit
complexity, we need to specify the accuracy to which we require the complex numbers to be.
This in turn also determines the bit complexity of the algorithm, since it determines the size of
the numbers that the algorithm operates on. Since most of our operations are simply averaging
over a set of random inputs, the algorithm requires only a low accuracy. The following claim
shows how we can bound the precision accuracy.

CLAIM 5.1. Adding m numbers with precision accuracy /m results in an output that
has an absolute error of at most . Furthermore, f each of the m numbers is bounded in
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absolute value by H, then their description requires only 0 (log H + log ) bits to guarantee
a precision accuracy ofe in the result.

The values used in COEFm(e) and Am(ol, g, k) are bounded by L. This implies that
by using O(logtL + log ) bits (and precision accuracy e/m) in their computation, we
introduce an additive error of at most O(e). Since those random variables are used only as an
approximation, the additional error could be absorbed in the error margins that we assumed
before. (Recall that Bm,,m (or, ) is define through Am, and therefore the precision accuracy
of Bmt,m2 is determined by the precision accuracy of Am.)

6. Approximation by polynomials. Assume that rather than recovering all the coeffi-
cients of the polynomial we are interested in recovering all the "large" coefficients of the
polynomial. This is a very interesting case, since in many cases we may regard the other
coefficients as "noise" that is not interesting.

The formal scenario is the following. As before, we are given a polynomial P as a black
box, however, we are not guaranteed that it is either t-sparse or has integer coefficients. We
assume that there is some polynomial Q, with integer coefficients, such that the power of
P Q is at most v.

Our algorithm will recover a polynomial Q’ such that the power of P Q’ is bounded
by v + O(e). The number of recursive calls done by the algorithm is bounded by O((t +
v) log d). The correctness is argued as before (each coefficient larger than one would be
reached, with high probability). The running time can be bounded by observing that the
difference between P and Q can cause the algorithm, for each specific value of e, to search at
most O (v) values that would not lead to a coefficient of size at least one. The time to perform
a single APPR0X_ZER0 or APPR0X_LARGE remains the same.

We made a restriction that the approximating polynomial Q has integer coefficients. This
restriction can be easily removed in the following way. Assume that there is a polynomial R
that has real coefficients, and the power of P R is at most v. Consider the polynomial R’
that is achieved by multiplying the coefficients of R by t/e, and rounding them to the nearest
integer. The difference between R (x) and R’(x) (e/t) is bounded by e. This implies that
the polynomial P(x) (t/e) has a good approximation by an integer polynomial R’.

7. Multivariate polynomials. The technique that we developed for univariate polyno-
mials extends to multivariate polynomials and uses ideas similar to [GL89], [KM91], and
[Zip79]. In this section we give a sketch of the ideas of the extension.

The idea for multivariate polynomials is the following. As before, we first recover all
the "large coefficients." We proceed variable by variable, and find the exponents of the "large
coefficients." Then we approximate the coefficients, and subtract them from the original
polynomial. The main difference is that we recover the exponents ofthe interesting coefficients
sequentially.

In the rest of this subsection we set the required definitions for the algorithm, and the test
function that is used. Consider the polynomial

el.. e2..j en.jP (x Xn ae,.i e,,.j.X .x2 y6n

j=l

As in the case of a single variable, we can compute a single coefficient as follows:

ae, en dn
P(codk’ 09 o)kdn )O)k’e’ 00knen

k--’0= k,, =0

Also, the Parseval identity holds:
d-1 d-1

Zel,j en,,j dn
P (C0’, O)2, O)d )11

k =0 k, =0
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The polynomial P,e is replaced by P<e, ej_ >,,e, which is the polynomial that includes
only the coefficients in which the exponents of x xj_ are el ej_ 1, respectively, the
power of xj equals to o modulus 2e, and the exponents of the variables xj+ Xn are
unrestricted. The idea is that we are executing the univariate polynomial algorithm on the jth
input. The input x xj_ can appear with only a specific power, while there is no restriction
on the exponents of xj+ xn. Formally,

P<e ej_l>,ot,e(Xl, Xn)
d-I d-1

X ej_ ej enZ
ej mod2e ej+l =0 en=O

We define POWER as follows:

P O WER[e ej_, o, ] EF,[IIP<e, e._,>,,(oS)ll2].
Where/ k, k, and kj E {0 d 1}, and co is the input Xl

The expectation is uniform over all k. As before, P 0 WER[el ej_, u, g] equals the sum
of the squares of coefficients in the polynomial P<e, _,>,,e(x x,).

We search the jth variable before we continue to the j + variable. We find all the
exponents to be prefixes of all the nonzero coefficients, up to the jth component (there are at
most t). With each such prefix we continue to search for the j + th component. The argument
for correctness is similar to the argument for the univariate polynomials.

Consider the following example: P(x, X2) q (Xl) + qZ(Xl)X2, where ql and q2 are
polynomials. Consider the expression

+ +

+ Ek[qz(w)qz(wk)]
+ Ek[ql (wd)q2()w]

-k k2+ Ez[qZ()ql(Wd )Wd ]"

Note that the first two terms do not depend on x2 while the last two terms evaluate to zero,
due to the averaging over x2. In general, the averaging over all possible values of a certain
variable causes the cross terms in the expression of the power to cancel out, therefore it has
the effect of essentially "ignoring" this variable.

Acknowledgments. would like to thank Lfiszl6 Babai, Persi Diaconis, Marek Karpinski,
Eyal Kushilevitz, Michael Rabin, and Prasoon Tiwari, for the discussions that I had with each
of them.
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Abstract. Goldschlager first established that a special case of the monotone planar circuit problem can be solved

by a Turing machine in O(log n) space. Subsequently, Dymond and Cook refined the argument and proved that the
same class can be evaluated in O (log n) time with a polynomial number of processors. In this paper, we prove that
the general monotone planar circuit value problem can be evaluated in O (log n) time with a polynomial number of
processors, settling an open problem posed by Goldschlager and Parberry.
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1. Introduction. The complexity of computing the output values of a boolean combina-
tional circuit has been a much-studied problem in theoretical computer science. Ladner [12]
showed that the general circuit value problem is 7-complete, and Goldschlager [4] showed
that even if the circuit is restricted to be planar, or if it is restricted to be monotone, the problem
remains 7-complete.

Goldschlager also established that a special case of the monotone planar circuit value
problem can be solved by a Turing machine in O(log2 n) space [5]. Subsequently, Dymond
and Cook refined the argument and proved that the same class is in .A/’C by showing that it can
be evaluated in O(log2 n) time with a polynomial number of processors [2]. In this paper,
we prove that on a CREW PRAM the general monotone planar circuit value problem can be
evaluated in O (log4 n) time with a polynomial number of processors, which settles an open
problem posed in [6].

In the next section we define the problem precisely. In 3 and 4 we describe solutions
to restricted versions of the problem. Finally, in 5 we show how the general problem can be
reduced to these restricted versions.

2. Preliminaries. The input to our problem is a monotone combinational circuit, with
a given embedding in the two-dimensional plane. Each node in the circuit is one of the
following:

1. A boolean AND gate.
2. A boolean OR gate.
3. A NO-OP gate which has fan-in one and computes the identity function.
4. A constant gate with value 0 or 1. Such a node may have nonzero fan-in; however,

the output is the specified constant, independent of the inputs.
Our problem will be to compute the truth value of every node in the circuit.
In a natural way, we view the circuit as a directed acyclic graph. We shall refer to nodes

with zero fan-in (which must be constant nodes) as source nodes. Similarly we shall refer to
nodes in the circuit with zero fan-out as sink nodes.

Without loss of generality, we can assume the following.
1. No gate has fan-in greater than two. Otherwise, we can easily replace higher fan-in

gates with a planar arrangement of fan-in-2 gates.
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2. The sink nodes of the circuit all lie on a single face of the planar embedding. Other-
wise, in parallel for each separate sink independently, we can solve the circuit value problem
consisting of exactly those nodes from each of which there is a path to the given sink. This
results in a single sink, and the value ofeach node is the same as its value in the original circuit.
In what follows we consistently arrange the circuits so that the sinks lie on the outermost face
of the embedding. Our algorithms, however, do not depend on this fact.

Note that all these assumptions can be realized from an arbitrary instance of the problem by
an A/’C computation. For example, testing a graph for planarity and constructing its embedding
can be done in O (log2 n) time with O (n) processors 10]. Reachability for general graphs can
be computed by simple transitive closure in O(log2 n) time with O(n3) processors, and for
planar directed graphs in O(log4 n) time with only O(n) processors [8]. Further references
may be found in [1], [3], [7], [9], and [14].

We shall describe the algorithm for the general problem by presenting algorithms for
a sequence of special cases to which the general problem can be reduced. Throughout this
paper, unless otherwise specified, the term "circuit" should be interpreted to mean a monotone
circuit with a given planar embedding. This embedding will remain fixed throughout all the
computations.

3. Stratified circuits. We begin with a special class of circuits in which all nodes are
arranged into levels such that all interconnections occur in a regular fashion between adjacent
levels.

Let C (V, E) be a circuit. We use IC] to denote the number of nodes in C. By the
level of any node v in C we mean the length of its longest path to a sink node. We assume
that level numbers are calculated for each node based on the initial circuit C, and that these
same level numbers are used in all recursive procedures on subcircuits of C. Thus, the level
of each sink node in C is 0, but in subcircuits of C, sink nodes may have other level numbers.
We use Lc to denote the highest-numbered level in C. We shall refer to nodes at level Lc of
the circuit as primary source nodes. (Note that all nodes at level Lc must be source nodes,
since otherwise there would be a level number higher than Lc.) Finally, let Ci..j denote the
subcircuit of C that comprises all nodes at levels through j.

DEFINITION 3.1. A stratified circuit is a circuit C (V, E) in which we have thefollowing
items.

1. Every arc connects nodes at consecutive level numbers, i.e., for each arc u --+ v in E,
level (u) + level (v).

2 (Nested level property). For 0 < < Lc, all level-i nodes in Co..i lie on a single face.
(Recall that the planar embeddingfor Co..i is fixed by the given embedding of C.)

3. Every source node is a primary source node.
A restricted stratified circuit is a stratified circuit in which all constant gates havefan-in

zro.
Dymond and Cook showed that a restricted stratified circuit with left and right boundaries

for each level could be solved in O (loge n) time with a polynomial number of processors [2].
Their algorithm computes truth values at each level of the circuit as alternating intervals of
0/1 values. By determining where the alternations occur, the truth values of all remaining
nodes are implicitly computed. The algorithms in [5] and [2] rely crucially on the fact that in
a monotone planar circuit, no alternation at level of the circuit can result in more than one
alternation at level 1.

We note that the Dymond-Cook algorithm does not require that all sinks of the circuit
be on the same face, or that level numbers be defined in terms of distance to sink nodes. In
particular, if u is an AND- or OR-node in a restricted stratified circuit, the result of converting u
to a NO-OP-node and deleting one of its input connections remains a restricted stratified circuit,
although a new sink node may have been created.
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The algorithm of Dymond and Cook [2] can be modified in a straightforward fashion to
handle any restricted stratified circuit. The only difference is that whereas each level of the
circuit in the Dymond-Cook case has distinct left and right boundaries, in the general restricted
stratified circuit each level is a "ring." These rings have the same properties with regard to
alternations, however, and the alternations can be computed in the same fashion, simply by
allowing for the wraparound. The modifications needed to the algorithm ofDymond and Cook
are minor and obvious.

Thus, we have the next proposition.
PROPOSITION 3.2. The value at each node in a restricted stratified circuit can be computed

in 0 (log2 n) time with a polynomial number ofprocessors.
Following the approach in 11 ], we generalize slightly our notion of stratified circuits as

follows in Definition 3.3.
DEFINITION 3.3. A stratified circuit with variables is a stratified circuit in which primary

source nodes, in addition to being labelled 0 or 1, may be labelled by a third possibility, [-,
indicating that the value of the node is not known.

A restricted stratified circuit with variables is a stratified circuit with variables in which
all constant gates havefan-in zero.

We shall refer to source nodes labelled with as variables. The value to be computed at
each node v in circuit with variables now also has three possibilities: 0 or if the value of v is
independent of any variable inputs, or if v does depend on variable nodes, i.e., if there is at
least one assignment of 0/1 values to variables that makes v be 0, and at least one assignment
that makes v be 1. Note that our initial problem is the special case of this generalized problem
in which there are no input variables, so that the value of no node in the circuit is -].

PROPOSITION 3.4. The value at each node in a restricted stratified circuit with variables
can be computed in 0 (log2 n) time with a polynomial number ofprocessors.

Proof The version with variables can be reduced to the version without variables as
follows.

Step 1. Set the value of all source variables to 0 and compute the value of each node in
the resulting restricted stratified circuit. Any node whose value is will be for
any assignment of values to the input variables.

Step 2. Set the value of all source variables to and compute the value of each node in
the resulting restricted stratified circuit. Any node whose value is 0 will be 0 for
any assignment of values to the input variables.

Step 3. All other nodes depend on the input variables and should be labelled [-4-].
The correctness of this procedure follows from the fact that the circuit is monotone,

containing only AND and OR operations. By Proposition 3.2, each step can be performed in
O (log2 n) time with a polynomial number of processors. [3

We now consider the entire class of stratified circuits with variables. Our strategy in
evaluating such a circuit is to split the circuit into two subcircuits, C1 and C2, where the
outputs of C2 are the inputs to C1. We change the inputs of C to be variables and then
recursively solve the two subcircuits. Finally, we convert C into a restricted stratified circuit
and resolve it by using the correct outputs of C2.

More specifically, let C (V, E) be a stratified circuit with ICI n. We determine the
value at each node in C as follows.

Step 1. Find a level/such that n/4 < IC0..il < 3n/4 and n/4 < ICi..Lcl < 3n/4. Such
an exists since the fan-in of each node in C is at most 2, if we assume that C
is connected. If C is not connected, we can compute its connected components
and process each separately.

1When we say C is connected we mean that the graph obtained by making all arcs in C undirected is connected.



372 A.L. DELCHER AND S. RAO KOSARAJU

Step 2. Relabel all level-/ AND, OR, and NO-OP nodes in Co..; to , and denote the
resulting circuit C. Let C2 denote Ci..c.

Step 3. Recursively solve C and C2 in parallel. The values of the C2 nodes are the
correct values for that part of the original circuit C.

Step 4. Remove from CI all nodes whose labels have been determined to be 0 or 1,
together with all out edges from these nodes. Note that the other end of such
an edge is now either labelled 0 or (and hence is removed), or else is labelled
] and has exactly one input also labelled [. Also convert AND and oe, nodes
labelled [ and having exactly one input labelled ] to a No-op node. Call the
resulting circuit C’ Note that all in-degree-0 nodes of C’ are at level i, i.e., C’
is a restricted stratified circuit with variables.

Step 5. Assign the labels computed for the sink nodes of C2 to the corresponding C’
sources, and call the resulting circuit C’’. Since C’’ is a restricted, stratified circuit
with variables, its values can be computed as described in Proposition 3.4.

Steps 1, 2, and 4 are easily accomplished in O(logn) time with a polynomial number
of processors, and by Proposition 3.4, Step 5 can be computed in O(log2 n) time with a
polynomial number of processors. In Step 3, since there are two parallel recursive calls on
circuits of size at most 3n/4, the entire algorithm runs in O(log n) time with a polynomial
number of processors.

PROPOSITION 3.5. The value at each node of a stratified circuit C (with or without
variables) can be computed in O(log n) time with a polynomial number ofprocessors.

4. Focused circuits. In this section we show how another class of circuits can be con-
verted to stratified circuits, and therefore can be solved in .A/’C.

DEFINITION 4.1. A focused circuit is a circuit C (V, E) in which there is a subset of
the sources {s sk lying on a single face ofC such that every non-source node in C can
be reached by a (directed) pathfrom some si.

Note that in a focused circuit, any node that cannot be reached from {s sk} must be
a source node. Recall that we are assuming all circuits are given with a planar embedding that
has all sinks on a single face.

We now describe a procedure that converts any given focused circuit C into an equivalent
stratified circuit C’. By equivalent we mean that every node of C has a corresponding node in
C’ that computes the same value.

Procedure Convert
Step 1. For each node v, determine the length gv of the longest path from any si to v.

Let max be the maximum value of g, in C.
Step 2. Set the level number of all sink nodes to 0, and set the level number of every

other node v to max v
Step 3. For each arc u -+ v of the circuit with level (u) > level (v) + 1, replace u -- v

with a path of length level(u) lot/el(v) composed entirely of No-op nodes.
Assign appropriate level numbers for these new nodes. (Note that level(u)
cannot be less than level (v).)

Step 4. Remove every source node v that is not reachable from any si by making an
appropriate change to the labels of nodes adjacent to v. For example, if the value
of v is and there is an arc v -+ u, then make u a NO-OP node if it were an AND
gate, make u a constant-1 node if it were an op, gate, and leave u unchanged if
it is a constant gate. Note that u cannot be a NO-OP gate since such gates have
fan-in of one and u is reachable from some si and is adjacent to source node v.
A similar set of changes applies if the value of v is 0.
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PROPOSITION 4.2. The above procedure converts a focused circuit C into an equivalent
stratified circuit Ct.

Proof Clearly, C’ is a planar circuit equivalent to C since the only changes made are the
replacement of arcs by paths of NO-OP nodes and the partial evaluation of nodes with constant

inputs. To show that C’ is a stratified circuit, it is easy to verify that the procedure correctly
determines level numbers, that every arc in C’ connects nodes at successive levels, and that
the only source nodes are {sl sk}, which are primary source nodes. It only remains to

verify that C’ satisfies the nested level property.
Suppose C’ did not satisfy the nested level property. Then let be a level number such

that in C..i there are two level-/nodes, a and b, that do not lie on the same face. But a and b
are both reachable from the face containing s sk by edges not contained in C’o..i, which
contradicts the planarity of C’. Thus, C’ must satisfy the nested level property.

Steps 2-4 in Procedure Convert are accomplished easily in O (log n) time with a polyno-
mial number of processors. Step 1, finding the longest paths in a directed acyclic graph, can be
accomplished by matrix multiplications by using addition and MAX operations in O(log2 n)
time with a polynomial number of processors [1], [3]. Thus, from Propositions 3.5 and 4.2
we have the next proposition.

PROPOSITION 4.3. The value at each node ofafocused monotone planar circuit C can be
computed in 0 (log n) time with a polynomial number ofprocessors.

5. General circuits. In this section we show how the procedures from the previous
sections can be used to construct an A/’C algorithm to compute the value at each node in any
monotone planar circuit C.

In C (V, E), with IVI n, and for any set of nodes S, let roach(S) denote the
subgraph of C by comprising the union of all (directed) paths that begin at a node in S. By an
abuse of notation we denote roach ({si sj }) as simply roach (S Sj). By a connected
component of C \ roach (S), we mean a subcircuit of C, which is a connected component in
the underlying undirected graph of C with roach (S) having been removed. Let s, s2 s
be the source nodes of C.

We consider two cases.
Case 1. Some si, < < k, has the property that no connected component of C \

roach (si) contains more than n/2 nodes.
In this case, we can first, in parallel, recursively solve the subcircuits corresponding to

each connected component in C \ roach (si), and then use the results to solve the subcircuit
corresponding to roach (si), which is now a focused circuit.

Case 2. For each si, < < k, some connected component of C \ roach (si contains
more than n/2 nodes.

Fix an arbitrary order for s l, s2 s We first find the smallest index i0 such that
C \ roach(Sl si,,) has a connected component with more than n/2 nodes, but that no
connected component of C \ roach (sl sio sio+l has more than n/2 nodes. Clearly such
an i0 exists, since every node in C is contained in roach (s s), and can be found within
O(log n) time by an A/’C algorithm.

Let P be the connected component of C \ roach (s si,,) that contains more than n/2
nodes. (See Fig. 1.) By our choice of i0, si,,+ must lie within P. In addition, observe that there
is no arc in C from a node u outside P to a node v in P, since otherwise roach (s si,,)
would include v. Note also that no connected component of P \ roach (sio+) contains more
than n/2 nodes, since C \ roach (s sio si,,+) has no connected component with more
than n/2 nodes.

To solve the original circuit C, we first find index i0 and connected component P as above.
We then compute C roach (P) and C2 roach (si,,+). Now recursively, in parallel, we
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P

FIG. 1. Abstract Representation ofa Case 2 Circuit. Recall that all sinks lie on the outerface. (a) The shaded
region represents roach (sl Sio). (b) Nodes in C2 roacPl (Si0+I) are now also shaded.

solve all the subcircuits corresponding to connected components of both C \ C1 and P \ C2.
Note that each of these subcircuits contains fewer than n/2 nodes. After all these subcircuits
have been solved, what remains of the original circuit is C2 P within P and CI \ P outside
of P. Now C2 P can be solved as a focused circuit, since by definition every node in C2
is reachable from Sio+. Note that all inputs needed to solve C2 A P are now available as a
result of solving P \ C2. Finally, C \ P can be solved as a focused circuit, since all its nodes
can be reached from source nodes on the face representing P, and the values of these source
nodes have been computed. In addition, the previous solution of the connected components
of C \ C1 provides the other necessary inputs to C1 \ P.

In both cases, by performing a series of A/’C computations in O (log n) time, we reduce
the problem to parallel recursive calls on subcircuits of size at most n/2, where the combined
size of all these subcircuits is less than n.

Thus we show our main result in the following proposition.
PROPOSITION 5.1. The value at each node ofa monotone, planar circuit C can be computed

in O(log4 n) time with a polynomial number ofprocessors.
Recently, Yang 15] has developed an O (log n)-time A/’C algorithm for solving monotone

planar circuits using the straight-line-code parallel evaluation technique of Miller, Ramachan-
dran, and Kaltofen 13].
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Abstract. The subject of this work is the possibility of private distributed computations of n-argument functions
defined over the integers. A function f is t-private if there exists a protocol for computing f, so that no coalition
of at most participants can infer any additional information from the execution of the protocol. It is known that

overfinite domains every function can be computed I_(n 1)/2J-privately. Some functions, like addition, are even
n-private.

We prove that this result cannot be extended to infinite domains. The possibility of privately computing f is
shown to be closely related to the communication complexity of f. By using this relation, we show, for example, that
n-argument addition is [(n 1)/23-private over the nonnegative integers, but not even 1-private over all the integers.

Finally, a complete characterization of t-private Boolean functions over countable domains is given. A Boolean
function is 1-private if and only if its communication complexity is bounded. This characterization enables us to prove
that every Boolean function falls into one of the following three categories: It is either n-private, [_(n 1)/23-private
but not [n/2]-private, or not 1-private.

Key words, private distributed computations, communication complexity
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1. Introduction. A set of n >_ 3 computationally unbounded parties, each holding an
input xi taken from a domain D, wishes to cooperate in distributively computing the value
f(xl, x2 xn) of a predetermined function f. These parties are honest, namely, they all
follow their prescribed protocol. They communicate over a complete point-to-point communi-
cation network, where eavesdropping is not possible. A function f is called t-private if there
is a communication protocol for computing f so that no coalition of at most participants
gets any additional information from the execution of the protocol. Ben-Or, Goldwasser, and
Wigderson [5] and Chaum, Cr6peau, and Dmgard [8] have shown that if the domain D of

f is finite, then f is l_(n 1)/2/-private. Specific functions, like addition, are even n-private
over finite domains [6], while certain functions, like Boolean OR, are not [n/2]-private [5].
However, functions of interest are typically defined not over finite domains, but over all strings,
over the integers, or more generally over some countable domain. To apply the protocol of [5]
and [8], one has to (implicitly or explicitly) assume an upper bound on the input size. If the
bound does not hold, then the protocol, which depends not only on f but also on the size of
the domain, has to be adjusted. This adjustment amounts to revealing additional information
on the magnitude of the inputs.

The question we deal with in this work is private computations of functions defined over
countable domains. In other words, is there a private protocol for computing f which can be
applied to all inputs, regardless of their sizes? Before going any further, we remark that the
[_(n 1)/2/-private protocol of [5] and [8] cannot be used in the infinite domain. Its first step
is to apply a secret sharing scheme to every input. Secret sharing schemes strongly rely on
the finiteness of the domain, and indeed do not exist over countable domains [7], ].
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communication lines are not secure against eavesdropping, and on the other hand the participants are computationally
bounded, so cryptographic techniques can be employed.

376



PRIVATE COMPUTATIONS OVER THE INTEGERS 377

We show that the privacy of f is closely related to the communication complexity of f
as defined by Yao [17]; namely, to the number of bits that need to be communicated among
n parties in order to compute f (using any protocol, not necessarily a private one). The
connection between these two notions enables us to show that a wide class of functions are
[(n 1)/2J-private. This class includes, among others, maximum and minimum, addition
over the nonnegative integers, and multiplication over all integers. The relations to commu-
nication complexity are further used in our impossibility results. For example, we show that
over the (negative and nonnegative) integers, addition is not even 1-private. That is, there is no
protocol which computes the sum of n integers and preserves privacy even with respect to sin-
gle participants. This contrasts with the/(n 1)/21-privacy of addition over the nonnegative
integers, and the n-privacy of addition over any finite domain.

We give a complete characterization of private Boolean functions: A Boolean function
is 1-private if and only if its communication complexity is bounded. Since many Boolean
functions have unbounded communication complexity, this proves that there are Boolean
functions which are not even 1-private. Furthermore, we show that if a Boolean f is 1-private,
then it is also [(n 1)/2J-private. In [10] it was shown that if a Boolean f is [-n/2-]-private,
then it is also n-private. Hence there is a three-level privacy hierarchy for Boolean functions"
Every Boolean function (defined over a countable domain) is either n-private, [_(n 1)/21-
private but not [n/2-private, or not 1-private.

The remainder of this paper is organized as follows" In 2 we describe the model and
give the needed definitions. In 3 we apply communication complexity arguments to produce
private protocols for various functions. Section 4 contains the impossibility results for the
functions addition and integer gcd. In 5 we prove our characterization for the Boolean case,
and its implications. Section 6 introduces a model of nonterminating protocols which compute
f "in the limit," and demonstrate some intriguing private protocols in this model. Finally, 7
contains concluding remarks and open problems.

2. Model and definitions. The system consists of a synchronous network of n computa-
tionally unbounded parties, P, P2 Pn. Each pair of parties is connected by a secure (no
eavesdropping) and reliable communication channel. At the beginning of an execution, each
party Pi has an input xi E {0, 1}*. (No probability space is associated with the inputs.) In
addition, each party has a random input ri taken from a source of randomness Ri (the random
inputs are independent). The parties wish to compute the value of a function f(x, x2 x,,).
To this end, they exchange messages as prescribed by a protocol f. The parties are honest,
that is, they follow the protocol f, and there are no failures of any kind. Messages are sent
in rounds, where in each round every processor sends a (nonempty) message to every other
processor. The protocol specifies n functions, one per party, which determine the messages
sent by each party. The arguments to the messages producing function of each processor are
its input, its random input, the round number, the messages it received so far, and the identity
of the receiver.

The communication S sent in an execution of the protocol is the concatenation of all
messages sent in the execution, parsed according to sender, receiver, and round number. For
a subset T

___
{1,2 n}, we denote by Sr the communication S with the exception of

messages sent between parties in ]?. The communication length of the protocol f" on inputs
X xn is the maximum length of all communications S, sent in f" on these inputs, over
all random inputs. We say that a communication string S, parsed as above, is consistent with
the protocol 9c, party Pi, and input xi if the following holds" There is a positive probability
that if P has input xi and receives the messages in the string S that are destined to P, then

P will send messages identical to those messages in S that emanate from P. (Notice that to
be consistent with just one party, the communication string need not be an actual string sent
in some execution.)
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We say that a protocol $- computes the function f with e-advantage (0 < s < ) if for
every input Y (Xl xn) the last message in the protocol, is an identical message sent by
party P1 to all parties, indicating that this is the last message in the execution, and containing
a value U(Y, r-) which satisfies

Prz ((2, f (2)) >_ - + s

Denote by p(Y) the probability that more than k bits are exchanged between the parties
during the execution of the protocol .T" with input Y, (the probability space is over the random
inputs of all parties). The protocol is terminating if for every input Y’,

lim p(Y’) 0.
k--->o

We say that a coalition (i.e., a set of parties) T does not learn any additional informa-
tion (other than what follows from its input and the function value) from the execution of
a randomized protocol 9t-, which computes f, if the following holds: For every two inputs
Y, 37 E ({0, }*)n that agree in their T entries (i.e., i T x Yi) and satisfy f() f(37),
the messages passed between T and T are identically distributed. That is, for every commu-
nication S,

PrF(STI,)

where the probability space is over the random inputs of all parties.
We say that a protocol 9t- for computing f is t-private if any coalition T of at most

parties does not learn any additional information from the execution of the protocol. We say
that a function f is t-private if there exists a t-private terminating protocol that computes it
with e-advantage, for some 0 < s < .

We end this section with some standard communication complexity definitions. Let
{0, }_<m denote the collection of binary strings whose length is at most m. The e-advantage
communication complexity of f, when restricted to {0, }<_m denoted C(fm), is the minimum
over all n-party protocols which compute f with s-advantage over {0, }<m_ of the worst
case communication length of the protocol, over all n-tuples of inputs that are all at most
m-bit long. (Notice that party Pi has input xi. This is the "regular" definition, as in [1 7]
and [1 6], and should not be confused with the one of Chandra, Furst and Lipton [9].) The
s-advantage communication complexity of a function f, denoted C(f)(m), is defined as
C(fm). For deterministic protocols, Caet(f)(m) is defined similarly. We say that f has
bounded communication complexity if there is some positive s (0 < s _< 1/2) and an integer
d such that for all m, C(f)(m) < d.

3. Functions that san be privately computed. In this section we present a sufficient con-
dition, based on C(f), for L(n 1)/2J-privacy of f. This enables us to derive [(n 1)/2J-
private error-free protocols for a wide family of "natural" functions. We start with a lemma.

LEMMA 3.1. Let B c_ {0, 1}* and let f ({0, 1}*) --+ B. Iffor every b B thefunction

iff() b,
ft() 0 otherwise,

can be computed t-privately, using an error-free protocol, then f is t-private.

Proof The value of fb(Y) for every b 6 B is determined by the value of f(Y). Thus,
to compute f(Y), the parties can go over every b 6 B (say, in lexicographic order) and
compute fb (Y’) by using the given t-private protocol for f without revealing any additional
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information. The protocol terminates when for some b E B the value of fb(2) is 1. From
the definition of fb, this implies that f() b. Since every function fb is computed by an
error-free, t-private protocol, it is not hard to verify that the resulting protocol is error-free and
is t-private. ]

Ifforeveryb B theTHEOREM 3.2. Let f ({0,1}*) --+ B and O < e < 7"
communication complexity C(fb) is bounded, then f is [(n 1)/2J-private.

Proof. Using Lemma 3.1, it is enough to prove that for every b 6 B, the function fb
is [(n- 1)/2]-private. Fix b 6 B. By the assumption, C(f) is bounded. Extending a
theorem of Yao [17] from the two-party to the n-party case, it follows that Cdet(fb)(m) is at
most exponential in C(f) (m). In particular, if C(f) is bounded, then so is Caet(f). If
for all m, Caet(f)(m) < d, this means that for every m, there is a d-bit protocol for f on

({0, }<-m) n. Using K6nig’s lemma, this implies the existence of one deterministic protocol,
f’, defined over ({0, }*)n, which computes f and for every input exchanges at most d bits.
(To prove this, consider the following tree: The nodes in level m of the tree are the proto-
cols that compute f on ({0, 1}-<m) that use at most d bits of communication. A protocol
in level m + is the son of a protocol in level m if they have the same communication on
all inputs in ({0, }_<m)n. Since for every m there exists such a protocol, the tree is infi-
nite. In addition, each protocol in level m has finitely many sonsmat most the number of
possibilities to map the strings of length m + into the set of d-bit communications. This
implies, through the use of K6nig’s lemma, the existence of an infinite branch in the tree.
This branch defines a protocol that computes f over ({0, }*), and uses at most d bits of
communication.)

Let S1, $2 S (k < 2d) be the set of all possible communications (in this determin-
istic protocol) with last message (the output) consisting of "1." We describe an [(n 1)/21-
private protocol, U’, which computes fb. In the first step of U’, each party Pi locally computes
the set yi as follows:

Yi {j I1 < j < k, the communication Sj is consistent with X }.

Let

f(Yl Yn) 0
if Oyi 5 ,
otherwise,

that is, f* (37) if and only if there is a communication Sj with "output" 1, which i,

consistent with the inputs of all n participants. One can verify that fff (37) f,(Y’) and that

fff’s domain is finite (every Yi is a subset of 1, 2 k}). Thus, using the protocols of [5] and
[8] the value of f* (37) can be computed/(n 1)/2/-privately, which implies that the value of
f (Y) can be computed/(n 1)/21-privately. Through Lemma 3.1, the proof of the theorem
is completed.

COROLLARY 3.3. Let f" ({0, 1}*) --+ B and O < e <_ 7" If C(f) is bounded, then f is
/(n-1)

COROLLARY 3.4. Let f ({0, }*) -- B. Iffor every b B the set f-1 (b) isfinite, then

f is (n 1)/21 -private.
These results imply that many "natural" functions can be computed/(n 1)/2/-privately.

This includes functions as addition over the positive integers, maximum and minimum, and
multiplication over the integers. Note that for the minimum and maximum, f-1 (b) is infinite
for every b. However, these two functions satisfy the condition of Theorem 3.2 and thus are
/(n- 1)/2J-private.

Finally, we remark that the above protocols satisfy a stronger definition of privacy, as
defined in [101.
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4. Impossibility results. In this section we apply communication complexity arguments
to prove the existence of functions that are not even 1-private. Specifically, we show that
addition over Z, the ring of integers, is not l-private. The same result holds for integer gcd.

THEOREM 4.1. Let 0 < e <_ - and n >_ 3. Let SUMn -+ Z be defined as
SUM (.) Zi--I xi. There is no e-advantage protocol which computes SUM 1-privately.

The high-level structure of the proof is as following: Assume, towards a contradiction, that
there exists an e-advantage, 1-private protocol 5r which computes SUMs. Privacy arguments
imply that, with high probability, the number of bits communicated by f" on all inputs
which satisfy SUMs(Y) 0 is bounded. We then show how to transform 9r into a two-
argument protocol which computes the predicate "identity" using bounded communication.
This contradicts a known lower bound.

LEMMA 4.2. Let 0 < e < and 0 < 6 < be two constants. Suppose there is an

e-advantage, -private protocol Ufor computing SUMn. Then there exists a constant d such
that for every input vector 2 with SUM,, (2) O, the probability that fewer than d bits are
transmitted during the execution off is at least 6.

Proof We first show that for every 2 with SUMn (2) 0, the distribution of messages on
every link (Pi, Pj) (i < j) of the network, when the input is 2, is the same as the distribution
of messages on this link, when the input is (0, 0 0). Then, we prove the existence of a
constant d as above for the input vector (0, 0 0). Combining these two claims we get the
proof of the lemma.

Let 2 be an input vector satisfying SU M,, () 0. To simplify the notation, we restrict
attention to the link (P, P2). Consider the following three input vectors:- (XI, X2, X3, X4 Xn),

X’ (X l, 0, X2 -I-" X3, X4 Xn),
0 (0, 0, 0, 0 0).

By the assumptions, SUM, is 0 for all three vectors. By -privacy,the distribution of messages
on the link (P, P2) must be the same for the two vectors and x’. Otherwise P will be able
to distinguish between the two. S_milarly, the distribution of messages on the link (P, P2)
must be equal for the two vectors x’ and 0, as otherwise P2 will be able to distinguish between
them. Thus, the distribution of messages on the link (P, P2) is equal for and 0.

In the second part of the proof, we use the termination condition for the input vector (.
It implies that for each link (Pi, Pi) there exists a constant di,j such that the probability that
more then di,j bits are exchanged over (Pi, P.i) during the execution of the protocol on 0 is at
most 3/().

Let be any input vector that satisfies SUM,, () O. By the first part of the proof, the
probability that more than di,j bits are exchanged over (Pi, Pi) during the execution of the
protocol on is also bounded by 3/(). Thus, the probability that more than d -i<.i di,j
bits are exchanged (over all (2) communication lines) during the execution of f on is at
most 3. This completes the proof of the lemma.

The next lemma is a known result in communication complexity. Let ID {0, 1} x
{0, 1} - {0, 1} be the following function"

if a-b,I D(a, b) 0 otherwise.

LEMMA 4.3 (Yao [17]). For every constantO < e < , C.(ID)(m) (R)(logm).
Proof of Theorem 4.1. Assume, towards a contradiction, that there exists a protocol f"

which computes SUM l-privately with e-advantage. Let 3 . By using Lemma 4.2 we
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see that there exists a constant d such that for every input vector 2 that satisfies SUMn (2") 0,
the probability that more than d bits are transmitted during the execution of
We use this property of f" to construct a randomized protocol ,4 to compute the ID function
over {0, }m x {0, 1}m, with e/2 advantage, which uses only a constant (d + 1) number of
bits. This will be a contradiction to Lemma 4.3.

The protocol ,4 works as following: On input (a, b) E {0, }m x {0, }m, the two parties
(denoted by P* and P) will simulate the protocol

P* will simulate P1 with x a (the integer in the range [0, 2 1] whose binary
representation is the string a).

P2* will simulate P2, P3 Pn with x2 -b and x3 x4 ..... xn 0.

The. parties P* and P2* will simulate 9c until it either terminates, or d bits are transmitted. If

" terminates with final value 0, the parties output I D(a, b) (specifically, they claim that
a b). If f" terminates with value -76 0, or does not terminate after exchanging d bits, then
the parties output I D(a, b) 0 (that is, they claim that a -76 b).

Clearly, the protocol ,4 transmits at most d+ bits. What we now show is that ,4 computes
If a b, thenthe value of the I D function over {0, }m x {0, with probability >

the constructed 2 satisfies SUMn (2) 0. Through Lemma 4.2, the probability that more
than d bits are exchanged on such input is at most 6. The other possible source of error is an
incorrect output of 9c. The probability that this happens is no greater than g e. Thus, the

overall error probability of [ on (a, b) is no greater than g e + 3. By the choice of 6 this is

If a 76 b then satisfies SUMn (2) 76 O. If more than d bits are transmitted,equal to g g.
then ,4 outputs 0, which is the correct value of ID in this case. As the probability of error
in U is bounded by g e, then clearly this is so in case that the execution terminates with at
most d communicated bits. Thus, on such (a, b) the protocol .A computes the correct value
of I D(a, b) with probability at least / e. This completes the proof.

COROLLARY 4.4. Multiplication over the rationales is not 1-private.

Proof. Addition over the integers can be reduced to multiplication in the cyclic group
2i E Z by mapping the integer to the rational number 2i. Thus a 1-private protocol for

multiplication over the rationales would translate into a 1-private protocol for addition over
the integers, which contradicts Theorem 4.1.

The technique relating communication complexity and privacy is applicable for various
other functions. For example, we have the following theorem.

and n > 2. Let Jk[ denote the set of natural numbersTHEOREM 4.5. Let 0 < e <

{1,2 }, and GCDn JV"n --+ iV" be defined as the greatest common divisor of the n

arguments. There is no e-advantage protocol which computes GCD 1-privately.
Proof. The proof of this theorem is very similar to the proof for Theorem 4.1. We

sketch the differences: the analogue of Lemma 4.2 will be proved for input vectors satisfying
GCD (2) 1. In the proof of the analogous lemma we use the following triples of n-tuples"

X l, X2, X3, X4 Xn ),
/C’ X l, 1, X, X4 X ),

l, 1, l, ).

Now, let PRIMES {q, q2, q denote the sequence of prime numbers. In the proof
of the theorem we will construct a protocol for I D as follows: On input (a, b) (two natural
numbers >_ 1)

P* will simulate P with x qa.

P2* will simulate P2, P.3 P with x2 x x qh.

Clearly, GCD(2) if and only if a 76 b. Thus the original argument holds here as
well. [
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5. Characterization for Boolean functions. In this section we characterize the privacy
of any Boolean function f in terms of its communication complexity. Corollary 3.3 implies
that any Boolean function f with bounded communication complexity is L(n 1)/2J-private.
The main theorem in this section states the reverse implication. More precisely, a Boolean
function whose communication complexity is unbounded is not even 1-private. We set the
stage for the theorem by introducing some definitions and claims.

Let A {0, 1}* x {0, 1}*. Define a relation a Oil A x A by (xl, Yi) a (X2, Y2) if

Xl x2 or y Y2. The equivalence relation a is defined as the transitive closure of

a. Class(A) denotes the number of equivalence classes of a (it can be infinite). For any
set S

___
{0, 1}* x {0, 1}*, define S and $2 as the projections of S on the first and second

coordinates, respectively. We now present two simple properties of the equivalence classes of
the relation previously defined.

CLAIM 1. Let A {0, 1}* x {0, 1}*, and let K and L be two disjoint (nonempty)
equivalence classes of a. Then K C) L K2 A L2 ).

Proof The proof follows directly from the definition of the equivalence rela-
tion =-a. 1-]

CLAIM 2. Let A c_C_ {0, 1}* {0, 1}*, and let K and L be two disjoint (nonempty)
equivalence classes of =Z. If (X, y) E (KI L2) t (Ll K2), then (x, y) A.

Proof. Assume, without loss of generality, that (x, y) E (K L2). This implies that
there exist y’ such that (x, y’) 6 K and x’ such that (x’, y) 6 L. Suppose that (x, y) 6 A.
By the definition of "Z these pairs satisfy (x, y’) ’A (X, y) Z xt, Y), contradicting the
disjoinmess of the two ----A equivalence classes K and L.

The next lemma states that if A and B cover {0, 1}* {0, 1}* (A and B need not be
disjoint), then either Class(A) < 2 or Class(B) < 2. Furthermore, if Class(B) > 3 then
Class(A) 1. Notice that it is possible to have Class(A) Class(B) 2, e.g., by taking
A--{(x,y)lx=y (mod2)}andB-{(x,y)xy (mod2)}.

LEMMA 5.1. Suppose that {0, 1}* x {0, 1}* c_ A U B. If Class(B) > 3, then
Class(A)- 1.

Proof. Let C, D, E be three distinct equivalence classes of =B. Let (Xl, Yl), (x2, Y2),
and (x3, Y3) be arbitrary elements of C, D and E, respectively (see Fig. 1). By Claim 1,
xi =/= xj and yi =/= yj for every - j (1 < i, j < 3). Consider the element (Xl, Y2). By
Claim 2, (x, y2) 6 A. Similarly, (xi, yj) A for every =/- j (1 < i, j _< 3). Furthermore,
by Claim 1, they all belong to the same equivalence class of =a. Denote this class by F.

Xl

x2

x3

x4

C
F
F
?

F
D
F
9

FIG.

Assume, towards a contradiction, thatA has another equivalence class G and let (X4, Y4) G

G. By Claim 1, x4 - xj and Y4 5k Yj for every _< j < 3. Consider the element (x4, yl).
By Claim 2, (x4, yi) A. Therefore, (x4, y) B and by Claim it must belong to C. By a
similar argument, (x4, Y2) must belong to D. This implies that C1AD =/= 0, which contradicts
Claim 1.

2This proof simplifies our original proof, which appeared in the early version of this paper. It is due to Freddy
Bruckstein and Alon Orlitsky, and it appears here with their kind permission.
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THEOREM 5.2. Let f ({0, 1}*) -- {0, 1} be 1-private. Then the communication
complexity of f is bounded.

Proof Let f ({0, }.)n
__

{0, }, and 9Cbe a 1-private protocol which computes f with
e-advantage. We show that 5c can be modified to a communication protocol which computes
f with -advantage while exchanging only a bounded number of bits between every pair of
parties (where the bound does not depend on the input).

In order to carry out this transformation, it would be desirable to be in a situation similar
to that occuffing in SUMn, where every . 6 f-J (0) has message distribution similar to some

fixed input (0 for SUM). While this desired situation may not occur, something weaker, but
sufficient for our purposes, does. For every link (Pi, Pj), there is a value v 6 {0, and there
are at most two fixed inputs 2(i, j), ff;(i, j) ({0, 1}*) so that for every E f- (v), the
distribution of messages exchanged on the link (Pi, Pj), given input ’, is identical to the same
distribution either given input 2(i, j) or given input t(i, j).

Let < < j _< n. Define the set Ai,j (resp., Bi,j) by (xi, xj) Ai,j if there exists an
n-tuple 2 (x j, x2 xn) extending (xi, xj) such that f(2) 0 (resp., f(2) 1). Notice
that Ai,j L.J Bi,j covers {0, }* x {0, }*. We now relate the 1-privacy of f to the sets Ai,j, Bi,j.

Suppose f (2) f (ff;) 0 and (xi, xj) ----ai..j (wi, Wj). Any 1-private protocol which
computes f induces identical distribution of messages exchanged between Pi and Pj, given
the input 2 and the input t. (Similarly for f(2) f(t) and (xi, xj) =-i..j (wi, wj).)
The proof of this claim is immediate from the definitions of the sets Ai,j, Bi,j, the relations

"’ai,j, Bi,j, ai,j and ,..j, and 1-privacy.
By Lemma 5.1, for each (i, j), at least one of the sets Ai,j, Bi,j has no more than two

equivalence classes in the corresponding equivalence relation. Without loss of generality,
Ai,.i has at most two equivalence classes, and let (xi, x;) and (wi, Wi) be fixed representatives
of the two classes. (Notice that for a different pair i’, j’, the set Bi,,j, can be the set with
Class(.) <_ 2.) Let 2(i, j) and t(i, j) denote two inputs in f- (0) whose projections on the
and j coordinates yield the above representatives (take 2(i, j) ff;(i, j) if there is only one

equivalence class).
Let c be a 1-private protocol which computes f with e-advantage (0 < e _< ). Consider

runs of 9c on the 2. () inputs 2(1,2), (1,2) 2(n 1, n), ff(n 1, n). Let d be the
minimal integer such that the probability that Pi and P; exchange more than d bits, given that
the input is either 2(i, j) or t(i, j), is less than e/n2 (for all (i, j) pairs).

We modify the protocol f" as follows" All parties run .U until it either terminates, or some
pair attempts to exchange more than d bits. Suppose, without loss of generality, that the first
such pair is (1,2), and further that 2(1,2), t(1,2) 6 A ,2. In this case, the pair aborts the
execution of Y’, and announces that the value of f is 1. (In case of conflicting announcements
in the same round, the one resulting from the minimal pair in lexicographical order is adopted
by all parties.)

The modified protocol exchanges at most d. () bits on all inputs. We argue that it cora-

Suppose, without loss of generality,putes the correct answer with probability at least g 4- g.
that f(z.-) 0. For all pairs i, j with representatives 2(i, j), ff;(i, j) Ai,j, the messages
exchanged between Pi and Pj on input . are distributed identically to one of the two repre-
sentatives, and thus the probability that more than d bits will be exchanged in .)c is bounded
above by e/n2. Thus the probability that some i, j with representatives in Ai,j will abort the
execution of 9c and announce "1" as the final outcome is smaller then e/2. Any pair i, j with
2(i, j), ff;(i, j) Bi,; cannot announce "1" as the final outcome by aborting 9O’s execution.
The other source of errors stems from errors in f"s final outcome. The probability that this
occurs is smaller than g e. Thus the overall probability of error in the modified protocol is

smaller than 2 " E]
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By combining Theorem 5.2 and Corollary 3.3, we get the next corollary.
COROLLARY 5.3. A Booleanfunction f ({0, 1}*) -- {0, 1} is 1-private ifand only ifit

has bounded communication complexity. If f is -private, then it is [_(n )/2_] -private.
Together with the characterization of n/2]-private Boolean functions of [10], we con-

clude with the following theorem.
THEOREM 5.4. Any Booleanfunction f ({0, 1}*) -+ {0, 1} is either

n-private.

(n )/21 -private private but not n/2 -private.
not 1-private.

6. Nonterminating protocols. So far, we considered protocols that are private, compute
the correct value (with probability at least + e), and terminate (with probability 1). In this
section we show that if we abandon the termination condition (and the requirement that a
distinguished "last message" is sent), and require instead only "correctness in the limit," then
private computations which were not possible before become possible. We exemplify the
model via two examples. Consider the following nonterminating protocol for computing
SUMs"

Fork-- 1,2,3
each party Pi locally computes Yi E [-k, k] such that Yi xi (mod 2k / 1).
The parties compute n-privately, using the protocol of [6], sk such that sk =_ -i= Yi
(mod 2k + 1) and s E [-k, k]. The value s is the outcome of the kth round.

It is easy to see that no coalition (of any size < n) gets any additional information
from the execution of this protocol. After afinite number of iterations (which depends on the
input vector) the output s stabilizes on the correct value. Thus, SUMn is n-private in the
nonterminating model.

The next example shows that we can demand even more. Consider the following nonter-

minating protocol for computing GCDn"
Fork-- 1,2,3

each party Pi computes Yi if k xi and Yi 0 otherwise.

The parties compute, /(n 1)/2J-privately, the AND of the yi’s. This bit indicates
whether k divides all the xi’s or not. The output of the kth round is the maximal
g < k that divides all the xi’s.

The protocol computes the function GCD, and it is [(n 1)/2J-private in the nonter-

minating model. In the protocol for SUMs, no participant knows when the result stabilizes.
Here, however, the gcd can never exceed xi. Thus after xi many iterations, party Pi knows
that he knows the final outcome. After max,= xi iterations, all the parties know that they
know the final outcome. However, the protocol must continue, since the parties do not know
whether the other parties know that the result is already final. In other words, the privacy
requirements prevent the parties from achieving common knowledge 14] on the fact that the
result is already final, and an infinite execution is enforced.

7. Concluding remarks. In case that a function f is not -private, it can still be computed
by first revealing the lengths [xil of all participants inputs, and then by using the protocols
for the finite case of [8] and [5]. However, f(Y’) can always be computed while revealing
only smaller amount of additional information (for a formal definition see [3] and [4])--the
maximal input length, i.e., maxT= Ixi Imin the following two steps:

Compute [(n 1)/2J-privately the value m maxT=
Compute (n l)/2J-privately the value of f over thefinite domain of strings with
length at most m.
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For functions with low circuit complexity, the second step can be performed efficiently
using the protocols described in [5], [8], and ]. The first step can be performed by using the
protocol described in the proof of Theorem 3.2 (3)" In the gth round, party Pi sets yi

if Ixil < g and yi 0 otherwise. Then, the parties compute L(n 1)/2J-privately the AND
of the yi’s and stop with output if the AND is 1. This step is therefore polynomial time
in the length of the input Y. It is possible to substantially reduce the number of iterations in
this part while preserving the polynomial complexity, by checking in the gth round whether

maxT= ]xil < 2e. Thus if the maximum is m, this fact is found in O(logm) rounds (instead
of O (m) rounds).

A possible direction for extending Theorem 5.2 to functions with non-Boolean range
might be to generalize Lemma 5.1 to the coloring of the two-dimensional plane by more
than two colors. However, such generalizations of the lemma are not true: There are three
colorings of the plane (say by colors 0,1,2), where Class(O) Class(l) Class(2)
Such example was constructed by Nati Linial, and is included, with his kind permission, in
the Appendix. It remains open whether the corresponding generalization of Theorem 5.2 is
true.

One of the interesting questions in the area of private computations has been to investigate
the structure of the privacy hierarchy. Recently, we have resolved this question 12] for n-

argument functions which are defined over finite domains. We have shown that for finite
domains, the privacy hierarchy has exactly n/21 levels. For any n/2 < < n 2, an

n-argument function which is t-private but not + 1-private was constructed. The major tool
used in this proof was to partition the n inputs into two sets of appropriate sizes and apply
the criteria for privacy of two argument functions. This approach is not useful in determining
t-privacy for which is at most l(n 1)/2, because one of the two sizes will be larger than
t. Indeed, the results in [12] leave open the structure of the privacy hierarchy for functions
defined over countable domains.

The communication complexity techniques used in the present work are of a very different
nature than the partition techniques which we have just mentioned. They enable us to show
that the privacy hierarchy contains a new, additional level (0-privacy). We believe that these
techniques will also play an important role in future research towards resolving the exact
structure of the privacy hierarchy over countable domains.

Appendix. In this appendix we describe an example, due to Nati Linial, of a function

f" ./V" x.A/" -- {0, 1,2} with the property that Class(O) Class(l) Class(2) xz. This
example implies that Lemma 5.1 cannot be extended to non-Boolean functions. The function

f is defined as follows (see Fig. 2)"

x mod 3 ifx y,

f(x,y)- x+l mod3 ifx:/:y/(x=y) mod3,

2(x + y) mod 3 otherwise.

It can be verified that every diagonal point (x, x) forms a singleton equivalence class. Since
for each value in {0, 1,2} there are infinitely many preimages of the form (x, x), it follows
that Class(O) Class(l) Class(2)

Aeknowledgmentso We are grateful to Shai Ben-David, Josh Benaloh, and Charlie Rack-
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Abstract. In this paper, we consider the problem of interpolating univariate polynomials over a field of charac-
teristic zeros that are sparse in (a) the Pochhammer basis, or (b) the Chebyshev basis. The polynomials are assumed
to be given by black boxes, i.e., one can obtain the value of a polynomial at any point by querying its black box. We
describe efficient new algorithms for these problems. Our algorithms may be regarded as generalizations of Ben-Or
and Tiwari’s (1988) algorithm (based on the BCH decoding algorithm) for interpolating polynomials that are sparse
in the standard basis. The arithmetic complexity of the algorithms is O (t + log d), which is also the complexity
of the univariate version of the Ben-Or and Tiwari algorithm. That algorithm and those presented here also share the
requirement of 2t evaluation points.
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Introduction. In this paper, we consider the problem of efficiently interpolating poly-
nomials given by black boxes that have sparse representations in various bases. Usually, one
considers a polynomial f(x) Zi=oaixi as t-sparse if at most of the coefficients ai are
non-zero. The problem of interpolating a sparse polynomial from a list of values at specific
points, or from values given by a black box that evaluates the polynomial is of great importance
in computational algebra. Sparse interpolation has received significant attention in several re-
cent papers. (Ben-Or and Tiwari (1988), Clausen, Dress, Grabmeier, and Karpinski (1988),
Kaltofen and Lakshman (1988), Grigoriev and Karpinski (1987), Grigoriev, Karpinski, and
Singer (1990), (1991 a), (1994), Borodin and Tiwari (1990), Zippel (1990).) In particular, the
problem of interpolating a t-sparse univariate polynomial given a black box for evaluating
the polynomial can be efficiently solved using Ben-Or and Tiwari’s adaptation of the BCH
decoding algorithm.

Sparse interpolation is well recognized as a very useful tool for controlling intermediate
expression swell in computer algebra (Zippel (1990), Kaltofen and Trager (1990)). Sparse
polynomials and rational functions can be evaluated quickly and that makes them attractive
to several applications and an interesting line of research is to try to infer properties of sparse
polynomials (such as divisibility, existence of nontrivial greatest common divisor, the existence
of real roots, etc.) from their values at a small number points (see Grigoriev, Karpinski,
and Odlyzko (1992)). Traditionally, "sparse polynomial (or rational function)" is taken to
mean a polynomial (or rational function) with a "few terms" where the "terms" are power
products of the variables involved. One can reasonably ask for sparse representations for
polynomials in other bases such as the Chebyshev polynomials or the shifted power basis
1, x o, (x or) 2 In this paper, we consider two classes of polynomialsnthose which
are sparse in the Chebyshev basis and those which are sparse in the Pochhammer basis. A
polynomial f(x) _,i=o ai Ti(x) is t-sparse in the Chebyshev basis if at most of the
coefficients ai are nonzero, where T/(x) is the th Chebyshev polynomial. Sparse Pochhammer
polynomials are defined similarly. We provide algorithms for interpolating such polynomials
efficiently, given a black box that evaluates the polynomial. The algorithms require as input
an upper bound on the number of nonzero terms in the interpolating polynomial. The
arithmetic complexity of the algorithms is O (t2 + log d), which is also the complexity of the
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univariate version of the Ben-Or and Tiwari algorithm. That algorithm and those presented
here also share the requirement of 2t evaluation points. However, when one considers the
bit complexity (when the ground field is Q), the Ben-Or and Tiwari algorithm and our sparse
Chebyshev algorithm involve intermediate values of bit size O(td), whereas in the sparse
Pochhammer algorithm intermediate values grow to a bit length of O(d log(t)).

Several recent results concerning sparse interpolation are similar in spirit to the BCH-
decoding algorithm. In Dress and Grabmeier (1991), it is shown that many of the sparse
interpolation algorithms can be formulated and proven correct in the context of t-sparse sums
of abelian monoids. A somewhat different framework in Grigoriev, Karpinski, and Singer
(1991a) in terms of t-sparse sums of eigenfunctions of operators is shown to provide several
generalizations of the sparse interpolation algorithm of Ben-Or and Tiwari. In fact, an efficient
algorithm for interpolating polynomials sparse in the Pochhammer basis follows from an
observation in Grigoriev, Karpinski, and Singer (1991a) which points out that t-sparse sums
of eigenfunctions of the operator xA(f) x(f (x) f (x 1)) correspond to polynomials
that are t-sparse in the Pochhammer basis. We use the Pochhammer case as a motivating
example for our discussion of the Chebyshev case.

The problem of efficiently interpolating polynomials that are sparse in the Chebyshev
basis was stated as an open problem in Borodin and Tiwari (1990). Our algorithm provides
a solution and it is another generalization of the algorithm of Ben-Or and Tiwari. It uses
properties shared by the standard power basis and the Chebyshev polynomials and appears
to be different from the generalizations presented in Dress and Grabmeier (1991), Grigoriev,
Karpinski, and Singer (1991a). While the general structure of our algorithm appears similar
to the algorithms falling into the Dress-Grabmeier framework, the details are quite different.
In particular, the centerpiece of the algorithms in the Dress-Grabmeier framework is a certain
Toeplitz matrix where, as in our algorithm, a similar role is played by a matrix that is the sum

of a Toeplitz matrix and a Hankel matrix. It would be interesting to reconcile our algorithm
with the Dress-Grabmeier or the Grigoriev-Karpinski-Singer framework.

The rest of the paper is organized as follows. In 1, we motivate our discussion by briefly
stating the algorithm for interpolating polynomials that are sparse in the Pochhammer basis.
In 2, we describe our algorithm for interpolating polynomials sparse in the Chebyshev basis.
Section 3 provides an analysis of the complexity of the algorithm, which is followed by some
additional remarks in the last section.

1. Sparse interpolation in the Poehharnrner basis. The Pochhammer symbol x de-
notes the rising factorial power

x(x + 1)...(x +n- 1)

for any integer n >_ 0. It is easily shown that x i, 0, 1,2 is a Q basis for the polynomial
ring Q[x]. A polynomial f(x) is t-sparse in the Pochhammer basis (of rising powers) if and
only if3f/ 6 Q, ei Z+, t, such that

f (x) fx-Z.
k=l

We assume that e > e2 > > et. Suppose we are given a black box that returns the value of
f (x) at any x 6 Q and a bound on the number of nonzero terms in the representation of f (x)
in the Pochhammer basis. Then, we can interpolate f (x) from its values at x 1,2 2t.
The algorithm follows from an observation in Grigoriev, Karpinski, and Singer (1991 a) which
places this problem in the framework of Dress and Grabmeier. It is an elementary fact that
the finite difference operator behaves like the derivative on the Pochhammer symbol. More
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precisely, let

A(f (x)) f (x + l)- f (x).

We have

A (xn) (X + )n x

n(x+l)n-l.
Let

Note that

f(i) (x) ek fkxek for 0,
k=l

X A (f(i) (X)) f(i+)(X).
We can compute f(i)(a) for 0, 2t by repeated applications of the above
recurrence from the values f(a + i), 0, 2t 1.

Consider the polynomial q (z) of degree whose roots are the ei, t, i.e.,

(z) H(z el).
i=l

Let

The f(i) and 7ti satisfy the following linear relations. Assume that Pt 1.
LEMMA 1. For j 0 1, (i+j)2i=0 Oi f (a) 0.

Proof This is a special case of Theorem in Dress and Grabmeier (1991). (See page 62
in that paper.)

Furthermore, Theorem in Dress and Grabmeier (1991) shows that if is the number of
nonzero terms in the representation of f(x) in the Pochhammer basis, then the x matrix
9c with ,j f(i+j-2)(a) is nonsingular for any a > 0. By using this, one can compute
the polynomial q (z) from f (a), f (a + 1) f (a + 2t 1). The roots of q (z) are the
"Pochhammer exponents" of f(x). Knowing these one can easily compute the coefficients

f. We omit details to avoid repetition but state the algorithm for the sake of completeness.

Algorithm Sparse-Pochhammer-lnterpolation
Input." A black box for evaluating a polynomial f(x). f(x) is known to be t-sparse in the
Pochhammer basis.
Output: A list of pairs (f/, ei), such that f (x) -i=1 fixeT.

1. Query the black box to obtain the values of f(x) at x a, a + a + 2t

for some a :/: O. Compute f(i)(a).for O, 2t from f(a + i),
0,1 2t-1.

2. Solve the system of linear equations. -f. If
r (1/f0 f lp,t_ T

then the auxiliary polynomial tp (z) is given by

,t-1q(z) z + 7r_ +... + 7rz + o.
3. Find the integer roots of (z). The roots are thee. exponents off (x), i.e., e, e2 et.
4. Solve the linear system of equations ]2 F to obtain flae ftae’. Since we

know the ei and a, the coefficients .. are easily determined. Output the list ofpairs
[(fl, e) (ft, et)].
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Analysis of the Sparse-Pochhammer-lnterpolation algorithm. While the sparse
Pochhammer interpolation algorithm and the algorithm of Ben-Or and Tiwari for interpo-
lating polynomials sparse in the standard power basis both illustrate the Dress-Grabmeier
framework, the details are quite different. The sparse Pochhammer algorithm differs in a
fundamental way from the algorithm of Ben-Or and Tiwari. The counterpart of the auxiliary
polynomial q () in Ben-Or and Tiwari’s algorithm has as roots aei, whereas here the aux-
iliary polynomial q(z) has as roots the degrees ei of the nonzero terms in the interpolating
polynomial. This has implications on how we actually compute the roots of the auxiliary poly-
nomial. Also, this algorithm uses a completely different set of evaluation points (importantly,
the evaluation points are smaller).

The analysis will be brief, pointing out the effect of the differences just mentioned. We
assume unit cost for a black box query. The .fi)(a) for 0, 2t can be computed
from f(a / i), 0, 2t by using O(t2) field operations. The Toeplitz system of
equations -’can be solved using O (t2) field operations using the Berlekamp-Massey
algorithm (Kaltofen and Lakshman (1988)) to find the coefficients of the auxiliary polynomial
q (z). We can use the Cantor-Zassenhaus algorithm to factor q (z) modulo a suitable prime
p and the Hensel lifting to recover the integer roots. The cost is O (t2 -+- log d), where d is
the degree of the interpolating polynomial (see, for instance, Loos (1983)). The final step of
solving a transposed Vandermonde system of equations can be done using the algorithm of
Zippel (1990) in O(t2) field operations. We can now add up the costs of the four steps and
we have the following theorem.

THEOREM 2. The sparse Pochhammer interpolation algorithm performs 0 (t2 -k- log d)
field operations to interpolate a t-Pochhammer-sparse polynomial given by a black box. Here,
d is the degree o.f the polynomial being interpolated (not part of the input). The algorithm
makes 2t queries to the black box evaluating the polynomial. The numerator and denominator
of the rational numbers that arise during the algorithm have O(d log(t)) bits. ]

2. Sparse interpolation in the Chebyshev basis. In this section, we describe an efficient
algorithm for interpolating polynomials in Q[x] that are sparse in the Chebyshev basis, where
Q is the field of rational numbers. The algorithm is entirely rational, so it applies over any
field of characteristic zero. The analysis in 3 in terms of arithmetic operations would apply
in the general characteristic zero case as well, provided the evaluation point a is rational and
a >_ 2. The bit complexity analysis, of course, is specific to the base field Q. Let Tn (x) denote
the nth Chebyshev polynomial of the first kind:

To(x) 1, Tl(x) x, Tn(x) 2xTn_(x) T,_z(x) forn > 2.

It is well known that T/(x), 0, 1,2 is a Q-basis for the polynomial ring Q[x].
Let f(x) Yim=o i Ti(x) be a polynomial in the ring Q[x]. As usual, we say that f(x)

is t-sparse (in the Chebyshev basis) if and only if at most of the f,.’s are nonzero.
Suppose we are given a black box that returns the value of f(a) for any a E Q. We

present an algorithm that interpolates f(x) from its values at specially chosen 2t points. Our
algorithm may be regarded as a generalization of the Ben-Or and Tiwari algorithm (Ben-Or
and Tiwari (1988)). We identify two crucial properties that are required for the generalization
to work. In the context of Chebyshev polynomials, they are the following items:

For m,n > O, T(Tm(x))-- Tm(X)= Tm(T(x)), i.e., Chebyshev polynomials
commute with respect to composition.
For m,n >_ O, T,(x)Tn(x) l/2(Tm+(x) / Tim_hi(x)), i.e., the product of two
Chebyshev polynomials is afixed linear form in two others.

These properties are easy consequences of well-known properties of the Chebyshev polyno-
mials. Before describing our interpolation algorithm, we need a statement of uniqueness of a
sparse interpolating polynomial.
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LEMMA 3. Let f(x) be a t-sparse polynomial (in the Chebyshev basis). Iffor some a > 1,
f (Ti(a)) Ofor O, 1,2 1, then f (x) is identically zero.

Proof Since f(x) is t-sparse, there exist fi E Q and 6i E Z+, for such that

f (x) fl T, (x) + f2 T2 (x) +... "Jr- ft T, (x).

Now, we can rewrite the fact that f(Ti(a)) 0 for 0, l, 2 as ]2f 0, where

T, (To(a)) T (To(a)) T, (To(a)) f
T, (TI (a)) T2 (Tl (a)) T, (T1 (a)) f2

?,
If f is not identically zero, then ]g is singular. Let 7 (co, C ct_)r be such that
--,T
c 0. Consider the polynomial

C(x) coTo(x) + Cl T (x) +... + ct-1Tt-1 (x)

of degree at most 1. Use the fact that T.; (Ti (a)) T/(Tj (a)) and rewrite as

To T, a To Th a To T, a
T1 (T, (a)) T (T: (a)) Ti (T, (a))

T_(TI (a)) Tt_(T(a)) Tt_(T,(a))

Now, ?r 0 implies that T, (a), T(a) T, (a) are all roots of C(x). These values
are distinct. (In fact, the values T/(a) are strictly monotonic increasing if a > 1, which is
straightforward to check from the defining recurrence.) But C (x) is of degree and cannot
have roots. Hence, ]2 cannot be singular, and f must be identically zero. El

As a consequence, we have the next corollary.
COROLLARY 4. If f (x) and g(x) are two distinct t-sparse polynomials, then for each

a > there is an i, 0 < < 2t such that f(Ti(a)) =/= g(Ti(a)).
Proof Consider h (x) f(x) g(x). The polynomial h (x) is 2t-sparse and if the cor-

ollary is not true, then h(Ti(a)) 0 for 0 2t- 1. Apply the previous
lemma.

We can now describe the sparse interpolation algorithm. As before, f (x) Y’I= f/Ti (x).
The algorithm determines the i first. Once the 6i are known, it is a simple task to compute
the coefficients f/. Let ai f(Ti(a)), 0, 2t for some a > 1. Consider the
polynomial of degree whose roots are T; (a) represented in the Chebyshev basis, normalized
to have a leading coefficient of 1, i.e.,

(z) T,(z) + ck,_ T,_ (z) +... + oTo(z)

and

(T,(a))- 0 for i--1 t.

Our strategy is to compute (z) and then find its integer roots First, we show that the
coefficients of (z) satisfy the following linear relations:

LEMMA 5.
t-I

Z d/)j x (ai+j + alj-i I) -(ai+t -1- al,-i I)
j=o

fori --0, 1,2



392 Y.N. LAKSHMAN AND B. DAVID SAUNDERS

Proof Assume 4), 1.

j=0 j=0 /=1

:(]Tl(+i(a))j:0 --(]+i(T’())

=[*(T&(a))x2(T&(a))-(JTIJ-il(T&(a)))]=, j=o

- = j=o

Hence,
The above lemma says that the coefficients of (z) satisfy the system of equations

-a,
where

2a0 2a 2ar_l q0
2a a2 + ao a, -+- at-2

2at_ at + at-2 a2t-2 + ao qt-1

2at
/t+l -- at-1

(2t-I -Jr-

Notice that u4i,j ai+j +a[i-jl is the sum of a Toeplitz matrix and a symmetric Hankel matrix.
Next, we show that A is nonsingular.

LEMMA 6. Z[ is nonsingular.
Proof Consider the (transposed) Vandermonde-like matrix V and diagonal matrix/3.

Ta (To(a)) Ta (To(a)) Ta, (To(a))
Ta, (Tl (a)) Ta2 (TI (a)) Ta, (T1 (a))

Ta, (T/-I (a)) Ta (T/I (a)) Ta, (Tt:_! (a))
f20 2f2 0

0 )
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According to arguments similar to those in Lemma 1,12 is nonsingular. Since f has exactly
terms, no f/is zero, hence/3 is nonsingular. We claim that A 12/312r, thereby proving that
.A is nonsingular. The (i, j)th element of the product 12/312tr is

2fra,(Tl.(a))ra,((a)) 2)Ti(ra,(a))Tj(ra,(a))
/=l /=1

Z.f(Ti+j(r,(a))4- Tli_jl(r,(a)))- Z f(r,(Ti+j(a))-t- r,(rli-jl(a)))
/=l /=1

a +.j at- a z
From the above lemmas we see that we can compute the coefficients of (z) by solving

the linear system of equations given by Aq -c. The roots of (z) are integers with special
properties and they can be determined without using numerical root finding algorithms. The
roots of (z) are Tsi() and we can determine the "Chebyshev exponents" 8i from Ts; (a). The
coefficients f/of f can be determined by solving the linear system of equations given by

where 12 is the matrix in the previous lemma and

-(-- fl f2 ft )r, gl-- ao al at-i )r.

To summarize, we now collect all the steps of our interpolation algorithm.

Algorithm Sparse-Chebyshev-Interpolation
Input: A black box for evaluating a polynomial f(x) known to be t-sparse in the Chebyshev
basis.
Output: A list of pairs (./, 8i), such that f (x) i=1 3’; T; (x).

1. Query the black box to obtain the values of f (x) at the 2t points x Ti(a),
O, 2t for some a > 1. Let ai f (Ti (a)).

2. Solve the system of linear equations 4dp -. If

(])0 1 (/) T

then the auxiliary polynomial (z) is given by

Z
t-1(z) z + t +"" + 49z + 4o.

3. Find the integer roots of (z). The roots are T, (a), T (a) T, (a). Find the
"Chebyshev powers" 81,82 8 from Ts, (a), T2 (a) T, (a).

4. Solve the linear system of equations ]2- gl to obtain the coefficients f ft of
f Output the list ofpairs [(f, 81) (ft, St)].

3. Analysis of the Chebyshev Interpolation Algorithm. In our analysis, we first count
the number of field operations (+,-, x,/ involving rational numbers) performed by the
algorithm in the worst case. We then bound the bit sizes ofthe rational numbers that might arise
during the computation, thus giving upper bounds on the number of bit operations performed
by the algorithm. We also assume that querying the black box for the value of f(x) is a unit
cost operation.

Solving Aq5 -c. The matrix A is the sum of a Hankel and a Toeplitz matrix of size
t. Such systems can be solved by well-known techniques using O (t2) field operations (see,

for example, Merchant and Parks (1982)).
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Finding the integer roots of (z). The special nature of the roots of () (all are integers
of the type Tj (a)) allows us to compute them without using regular root finders. Since
is expressed in the Chebyshev basis with leading coefficient 1, qt-, the coefficient of Tt_l (z),
is given by

ift 1,
q,-I

-2 Y=I Ta.i (a) if > 1.

Let s -49t-1/2. It is easily shown from the defining recurrence that Tn(a) 1/2( +/’),
where fi a + /ct2- and/ a w/a2- for n 0, 1,2 Suppose that for
convenience we choose a 2. Then/ 2 + / and fi 2 /-. Without any loss of
generality, assume that 6 > 62 > > 6t. Clearly, 6 is the unique integer k such that

/2/ +/ _< s < /2q+ +/+).

We can find such a k by an algorithm analogous to the binary powering algorithm as follows"

Choose D 2[-logz(s)-]; (1/2(/3/9 +//9) > s)
Compute integer arrays p, q such that

Pi + qi- fl 2i for 0, to at most D.
0; P0 1; q0 0;

loop
increment(i);
Pi "= PZi_ + 3q/2_1; qi 2pi-iqi-

until Pi > s;
decrement(i);
k 2i" j 1" ": Pi" q :: qi"

loop
tmp x Pi + 3" qi

if (trap <_ s) then

’::Pi x + qi ; ’-- tmp; k k + 2J; fi;
decrement(j);

until j 0;
return k, ; { Tk (2)

Once we know k, i.e., , we can set s := s Tk (2) and repeat the process to get 62 and so on.
The number of field operations performed by the above algorithm is O(log2 D) and we need
to run it times to compute all the i. Therefore, the Chebyshev exponents can be computed
by performing O(t log2 D) field operations. D is chosen to be 2l-logz(s) and

s--dpt_/2 Z Taj(a) < 1/2(/a+ +/a’+) < 48’
j:l

Therefore, the number of bits in the integers involved in the root finding step is no more
than

Solving Vf .. V is the transpose of a Vandermonde-like matrix. An n x n non-
singular Vandermonde matrix can be inverted by using O(n2) field operations and O(n)
space (Zippel (1990)). More efficient algorithms (O(n log2 n log(logn)) time) that use fast
polynomial multiplication are also known (Canny, Kaltofen, and Lakshman (1989)). In the

following discussion, we adapt Zippel’s algorithm for solving the system of equations "lgf

Consider the product
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To(T, (a))

]2rA
To T2 (a

To(T, (a))

T(T,(a)) Tt_l(T,(a)) c C12
T(T2(a)) Tt_(T2(a)) C21 C22

Tl (T, (a)) Tt-l (T, (a)) c,l Ct2

This product is the matrix

P(T,) Pz(T,) Pt(T,)
PI(T) P(Th) Pt(T)

P(T,) P2(T,) Pt(T,)

where Pj (z) is the polynomial

Clt
c2t

Ctt

pj(g) CIj T0(Z) --1-- c2jT1 (g) -]- c3j T2(z) --]--...-]-- ctjTt_l(g).

Notice that by choosing

Pj(Z)- H Z- T (a)
T; a T a

the product becomes the identity matrix. In other words, the jth column of the inverse of VT

is made up of the coefficients of Pj (z) expressed in the Chebyshev basis. Let Pj,i denote the
coefficient of T/(z) in Pj (z). Since the inverse of the transpose is the transpose of the inverse,

the system of equations V’- , i.e.,

Ta, (To(a)) Ta (To(a)) Ta, (To(a)) f ao
Ta, (T1 (a)) Ta (T1 (a)) Ta, (T1 (a)) f2 a

T,, (Tt-1 (a)) T82 (Tt- (a)) Ts, (Tt-1 (a)) )t a,-i

has the solution

fj aoPj,o + al Pj, -Jr-’’’ -1
I- a,_ Pj,,-1 for j t.

The coefficients Pj,i can be computed as follows. Let

P(z)-- H(z- Ta (a)).
k=l

(P(z) is actually cI)(z)/2t-l, cI) (g) being the auxiliary polynomial computed in step 2 of the
interpolation algorithm.) Let

Pj(Z) P(Z)/(Z T, (a)),

be expressed in the Chebyshev basis. We can compute pj (z) from P (z) by "synthetic Cheby-
shev division"use the identity

Tk(z) (Z Taj(a)) x 2Tk_(z) + 2Taj(a)T_l(Z) + Tk_2(g for k >

times on P(z). This division can be performed by using O(t) field operations. Let
DJ P.i(Ta, (a)). Clearly,

P.(z)- P.(z)/D.
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DJ can be computed by using O(t) field operations (evaluate Pj(z) at Ts; (a)). Therefore, we
can compute all the Chebyshev coefficients of Pj(z) in O(t) field operations, and from them
we can compute fj. by using O(t) field operations. Since each j needs O(t) field operations
in this scheme, we need O (t2) field operations to compute all the J), j t. Notice that
we need O(t) space to hold the coefficients of each Pi(z). However, we can reuse the same
space for all the Pj(z). Hence, we only need O(t) storage units. Also, notice that the rational
numbers encountered in this scheme have numerators and denominators with O (t log(T, (a)))
bits. Notice that log(T, (a) O(d)), where d is the degree of the interpolating polynomial.
We can now add up the costs of the four steps and we have the next theorem.

THEOREM 7. The sparse Chebyshev interpolation algorithm performs O(t + log d)
field operations to interpolate a t-Chebyshev-sparse polynomial given by a black box. Here
d is the degree of the polynomial being interpolated (not part of the input). The algorithm
makes 2t queries to the black box evaluating the polynomial. The numerator and denominator
ofthe rational numbers that arise during the algorithm have O(td) bits. q

Remark 1. We may not know the exact number of terms in the polynomial, just only an
upper bound r > t. In such a case, we can still use the algorithm, except that the matrix 4 will
be singular (for r > t). The solution is to use the largest nonsingular leading principle minor
of 4 in place of . Its rank gives the exact number of terms in the interpolating polynomial.
The details are worked out for the Ben-Or and Tiwari algorithm in Kaltofen and Lakshman
(1988) and are essentially the same for this case.

Remark 2. We have used classical algorithms for solving the various subproblems in the
interpolation algorithm. One can use asymptotically faster algorithms to improve the overall
complexity of the interpolation algorithm to O(t(log2 log(log t) / log d)) field operations.
See Kaltofen and Lakshman (1988) and Canny et al. (1989).

Remark 3. The algorithm that we have discussed can be viewed as a generalization of
the Ben-Or and Tiwari algorithm which in turn is based on the BCH decoding algorithm.
The generalization uses a crucial property of the Chebyshev polynomials, namely, that they
commute with respect to composition, i.e., Tn(Tm(z)) Tm(Tn(z)). It turns out that this
property is rather special and the only familieS of polynomials that exhibit this property are
the Chebyshev polynomials and the standard powers {1, z, z2 }. More precisely, it is
known that if in a family of polynomials f0(z), f(z), fa(z) with deg(f/(z)) i, it is
true that fi(..i.(z)) j(f/(z)) for any i, j > 0, then either fi(z) ,(()- (z))i) for all
or fi(z) )(T/(,- (z))) for all i, where ,k(z) az -+-b and )- (z) (z a)/b for some
constants a, b. (See, for instance, Rivlin (1974).) The algorithm can be adapted easily to
interpolate polynomials that are sparse in such "generalized" power bases or Chebyshev bases.

One can consider several possible "natural" bases and polynomials that are sparse in
those bases. For example, suppose we know that the polynomial given by a black box is
t-sparse in the basis 1, x c, (x or) 2, (x o) for some unknown or. Two recent papers
discuss algorithms for solving this problem (Grigoriev and Karpinski (1992) and Lakshman
and Saunders (1994)).

Sparsity in the standard basis is related to the number of real roots of the polynomial
(sparsity limits the number of variations in sign), which is not the case when we consider
polynomials that are sparse in the Chebyshev or Pochhammer bases. What are the corre-
sponding observations about sparsity in these bases?
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Abstract. We present a new approach to formal language theory by using Kolmogorov complexity. The main
results presented here are an alternative for pumping lemma(s), a new characterization for regular languages, and a

new method to separate deterministic context-free languages and nondeterministic context-free languages. The use

of the "incompressibility arguments" is illustrated by many examples. The approach is also successful at the high
end of the Chomsky hierarchy since one can quantify nonrecursiveness in terms of Kolmogorov complexity.
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tomata, deterministic context-free languages
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1. Introduction. It is feasible to reconstruct parts of formal language theory by using
algorithmic information theory (Kolmogorov complexity). We provide theorems on how to
use Kolmogorov complexity as a concrete and powerful tool. We do notjust want to introduce
fancy mathematics; our goal is to help our readers do a large part of formal language theory
in the most essential, easiest, and sometimes even obvious ways. In this paper, it is only
important to us to demonstrate that the application of Kolmogorov complexity in the targeted
area is not restricted to trivialities. The proofs of the theorems in this paper may not be easy.
However, the theorems are the type that are used as a tool. Once derived, our theorems are
easy to apply.

1.1. Prelude. The first application of Kolmogorov complexity in the theory of compu-
tation was in [18] and [19]. By redoing proofs of known results, it was shown that static,
descriptional (program size) complexity of a single random string can be used to obtain lower
bounds on dynamic, computational (running time) complexity. None of the inventors of
Kolmogorov complexity originally had these applications in mind. Recently, Kolmogorov
complexity has been applied extensively to solve classic open problems of sometimes two
decades standing [15], [1 1], [8], [9]. For more examples, see the textbook [12].

The secret of Kolmogorov complexity’s success in dynamic, computational lower bound
proofs rests on a simple fact: the overwhelming majority of strings has hardly any computable
regularities. We call such a string "Kolmogorov random" or "incompressible." A Kolmogorov
random string cannot be (effectively) compressed. Incompressibility is a noneffective prop-
erty: no individual string, except finitely many, can be proved incompressible.

Recall that a traditional lower bound proof by counting usually involves all inputs of
certain length. One shows that a certain lower bound has to hold for some "typical" input.
Since an individual typical input is hard (sometimes impossible) to find, the proof must involve
all the inputs. Now we understand that a typical input of each length can be constructed via
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an incompressible string. However, only finitely many individual strings can be effectively
proved to be incompressible. No wonder the old counting arguments had to involve all inputs.
In a proof using the "incompressibility method," one uses an individual incompressible string
that is known to exist even though it cannot be constructed. Then one shows that if the assumed
lower time bound would not hold, then this string could be compressed, and hence it would
not be incompressible.

1.2. Outline of the paper. The incompressibility argument also works for formal lan-
guages and automata theory. Assume the basic notions treated in a textbook such
as [6].

The first result is a powerful alternative to pumping lemmas for regular languages. It
is well known that not all nonregular languages can be shown to be nonregular by the usual
uvw-pumping lemma. There is a plethora of pumping lemmas to show nonregularity, like the
"marked pumping lemma," and so on. In fact, it seems that many example nonregular lan-
guages require their own special purpose pumping lemmas. Recently, [7], [21 ], [3], exhaustive
pumping lemmas that characterize the regular languages have been obtained.

These pumping lemmas are complicated and complicated to use. The last reference uses
Ramsey theory. In contrast, by using Kolmogorov complexity we give a new characterization
of the regular languages that simply makes our intuition of the "finite stateness" of these
languages rigorous and easy to apply. Since it is a characterization, it works for all nonregular
languages. We give several examples of its application, some of which were quite difficult
using pumping lemmas.

To prove that a certain context-free language (cfl) is not deterministic context-free (dcfl)
has required laborious ad-hoc proofs [6], or cumbersome and difficult pumping lemmas or
iteration theorems [4], [24]. We give necessary (Kolmogorov complexity) conditions for dcfl,
that are very easy to apply. We test the new method on several examples in cfl-dcfl, which
were hard to handle before. In certain respects the KC-DCFL lemma may be more powerful
than the related lemmas and theorems mentioned above. On the high end of the Chomsky
hierarchy we present, for completeness, a known characterization of recursive languages, and
a necessary condition for recursively enumerable languages.

2. Kollnogorov complexity. From now on, let x denote both the natural number and the
xth binary string in the sequence 0, 1,00, 01, 10, 11,000 That is, the representation "3"
corresponds both to the natural number 3 and to the binary string 00. This way we obtain
a natural bijection between the nonnegative integers A/" and the finite binary strings {0, 1}*.
Numerically, the binary string xn-I x0 corresponds to the integer

n-1

(1) 2n- + Z xi2i.
i=0

We use notation (x) to denote the length (number of bits) of a binary string x. If x is
not a finite binary string but another finite object like a finite automaton, a recursive function,
or a natural number, then we use (x) to denote the length of its standard binary description.
Let (., .) N" x N" -- A/" be a standard recursive, invertible, one-one encoding of pairs of
natural numbers in natural numbers. This idea can be iterated to obtain a pairing from triples
of natural numbers with natural numbers (x, y, z) (x, (y, z)), and so on.

Any of the usual definitions of Kolmogorov complexity in [10], [19], and [12] will do
for the sequel. We are interested in the shortest effective description of a finite object x. To
fix thoughts, consider the problem of describing a string x over 0’s and ’s. Let T1, T2 be
the standard enumeration of Turing machines. Since T/computes a partial recursive function
qi J jt’, we obtain the standard enumeration 4, q2 of partial recursive functions.
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We denote q ((x, y)) as 4(x, y). Any partial recursive function q from strings over 0’s and l’s
to such strings, together with a string p, the program for p to compute x, such that 4(p) x,
is a description ofx. It is useful to generalize this idea to the conditional version: p(p, y) x
such that p is a program for q to compute x, given a binary string y for free. Then the
descriptional complexity C of x, relative to p and y, is defined by

C(xly) min{/(p) p 6 {0, 1}*, 4)(p, y) x},

or o if no such p exists.
For a universal partial recursive function 40, computed by the universal Turing machine

U, we know that, for each partial recursive function 4 Qi there is a constant c such that
for all strings x, y, we have (P0(i, x, y) 4(x, y). Hence, C,o(Xly) <_ C4,(xly) + c. We
fix a reference universal function 4)o and define the conditional Kolmogorov complexity of x
given y as C(xly) C4o(Xly).

The unconditional Kolmogorov complexity of x is C(x) C(xl), where denotes the
empty string (1 () 0).

Since there is a Turing machine that just copies its input to its output we have C(x[y) <_
l(x) / O(1), for each x and y. Since there are 2 binary strings of length n, but only 2
possible shorter descriptions, it follows that C(x) > l(x) for some binary string x of each
length. We call such strings incompressible or random 16], 17]. It also follows that for each
length n and each binary string y, there is a binary string x of length n such that C(xly) > l(x).
Considering C as an integer function, using the obvious one-one correspondence between finite
binary words and nonnegative integers, it can be shown that C (x) -- c for x -- o. Finally,
C(x, y) denotes C((x, y)).

EXAMPLE (self-delimiting strings). A prefix code is a mapping from finite binary code
words to source words such that no code word is a proper prefix of any other code word. We
define a particular prefix code.

For each binary source word x x x,, define the code word Y by

ll(X)Ox"

Define

x l(x)x.

The string x is called the self-delimiting code of x.
Set x 01011. Then l(x) 5, which corresponds to binary string "10," and l(x)

11010. Therefore, x’ 1101001011 is the self-delimiting code of "01011."
The self-delimiting code of a positive integer x requires l(x) + 2 log l(x) -4- bits. It is

easy to verify that l(x) Llog(x + 1)_]. All logarithms are base 2 unless otherwise noted. For
convenience, we simply replace the length (x) of a natural number x by "log x."

EXAMPLE 2 (substrings of incompressible strings). Is a substring of an incompressible
string also incompressible? A string x uvw can be specified by a short description for v
of length C(v), a description of l(u), and the literal description of uw. Moreover, we need
information to tell these three items apart. Such information can be provided by prefixing
each item with a self-delimiting description of its length. Together this takes C(v) -4- l(uw) +
O (log (x)) bits. Hence,

C(x) < C(v) -4- O(logl(x)) -t- l(uw).

Similarly, we define the complexity of the xth partial recursive function b conditional to the yth partial recursive
function by C(q[) C(xly).
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Thus, if we choose x incompressible, C (x) > l(x), then we obtain

C(v) > l(v)- O(logl(x)).

It can be shown that this is optimalnsome substring of an incompressible string of length n
may be compressible by an S2 (log n) additional term. This conforms to a fact we know from
probability theory: every random string of length n is expected to contain a run of about log n
consecutive zeros (or ones). Such a substring has complexity O (log log n).

3. Regular sets and finite automata.
DEFINITION 3.1. Let E be a finite nonempty alphabet, and let Q be a (possibly infinite)

nonempty set ofstates. A transition function is afunction 3 I2 x Q -- Q. We extend 3 to 3’
on F* by 3’ (, q) q and

3’ (a ...an, q) 3(an, 3’ (a ...an_l, q)).

Clearly, [3’ is not 1, then the automaton "forgets" because some x and yfrom I]* drive 3’
into the same memory state. An automaton A is a quintuple (I2, Q, 3, qo, qf ), where everything
is as above and qo, qf Q are distinguished as initial state and final state, respectively. We
call A a finite automaton (fa) if Q is finite.

We denote "indistinguishability" of a pair of histories x, y 6 Z* by x y, defined
by 3’(x, q0) 3’(y, q0). "Indistinguishability" of strings is reflexive, symmetric, transitive,
and right-invariant (3’(xz, qo) 3’(yz, qo) for all z). Thus, "indistinguishability" is a right-
invariant equivalence relation on Z:*. It is a simple matter to ascertain this formally.

DEFINITION 3.2. The language accepted by automaton A as above is the set L {x
3’ (x, q0) qf}. A regular language is a language accepted by a finite automaton.

It is a straightforward exercise to verify from the definitions the following fact (which
will be used later).

THEOREM 3.3 (Myhill and Nerode). The following statements about L

_
2" are equiv-

alent.
(i) L

_
I2" is accepted by some finite automaton.

(ii) L is the union ofequivalence classes ofa right-invariant equivalence relation offinite
index on I2".

(iii) For all x, y * define right-invariant equivalence x y by the following item:

for all z * we have xz L iff yz L. Then the number of-equivalence classes isfinite.
Subsequently, closure of finite automaton languages under complement, union, and inter-

section follow by simple construction of the appropriate 3 functions from given ones. Details
can be found in any textbook on the subject such as [6]. The clumsy pumping lemma approach
can now be replaced by the Kolmogorov formulation below.

3.1. Kolmogorov complexity replacement for the pumping lemma. An important part
of formal language theory is deriving a hierarchy of language families. The main division
is the Chomsky hierarchy, with regular languages, context-free languages, context-sensitive
languages and recursively enumerable languages. The common way to prove that certain
languages are not regular is by using "pumping" lemmas, for instance, the uvw lemma. How-
ever, these lemmas are quite difficult to state and cumbersome to prove or use. In contrast, we
show below how to replace such arguments by simple and intuitive, yet rigorous, Kolmogorov
complexity arguments.

Regular languages coincide with the languages accepted by finite automata. This invites
a straightforward application of Kolmogorov complexity. Let us give an example. We prove
that {0 k > is not regular. If it were, then the state q of a particular accepting fa A after
processing 0k, together with A, is, up to a constant, a description of k. Namely, by running A
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initialized in state q on input consisting of only l’s, the first time A enters an accepting state
is after precisely k consecutive l’s. The size of the description of A and q is bounded by a
constant, say c, which is independent of k. Altogether, it follows that C(k) < c 4- O(1). But
choosing k with C(k) > log k we obtain a contradiction for all large enough k. Hence, since A
has a fixed finite number of states, there is a fixed finite number that bounds the Kolmogorov
complexity of each natural number: contradiction. We generalize this observation as follows.

DEFINITION 3.4. Let be afinite nonempty alphabet and dp A/" --> * be a total recursive
function. Then dp enumerates (possibly a proper subset of) 2" in order b(1), b(2) We call
such an order effective and d? an enumerator. The lexicographical order is the effective order
such that all words in * are ordered first according to length, and then lexicographically
within the group of each length. Another example is dp such that dp(i) Pi, the standard
binary representation ofthe ith prime, is an effective order in {0, }*. In this case cD does not
enumerate all of *. Let L c_ 2". Define Lx {y xy L}.

LEMMA 3.5 (KC regularity). Let L c_ * be regular and let ck be an enumerator in *.
Then there exists a constant c that depends only on L and dp such thatfor each x, if y is the
nth string enumerated in (or in the complement of) Lx, then C (y) <__ C (n) 4- c.

Proof. Let L be a regular language. The nth string y such that xy L for some x can be
described by

this discussion and a description of the fa that accepts L,
a description of qS, and
the state of the fa after processing x, and the number n.

The statement "or in the complement of" follows, since regular languages are closed under
complementation.

As an application of the KC Regularity lemma we prove that {lP p is prime} is not
regular. Consider the string xy p with p the (k 4- 1)th prime. Set x p’, with p’ the
kth prime. Then y 1P-P’, and y is the lexicographical first element in Lx. Hence, by
Lemma 3.5, C(p p’) O (1). But the difference between two consecutive primes grows
unbounded. Since there are only O(1) descriptions of length O(1), we have a contradiction.
We give some more examples from the well-known textbook of Hopcroft and Ullman [6].

EXAMPLE 3 (Exercise 3.1(h)* in [6]). Show that L {xxRw x, w {0, 1}* {}}
is not regular. Set x (01)m, where C(m) > log m. Then, the lexicographically first word
in Lx is y with y (10)m0. But C(y) (logm), which contradicts the KC Regularity
lemma.

EXAMPLE 4. Prove that L {0il - j} is not regular. Set x 0m, where C(m) >

logm. Then the lexicographically first word not in Lx{1}* is y m. But C(y)
fa (log m), which contradicts the KC Regularity lemma.

EXAMPLE 5 (Exercise 3.6* in [6]). Prove that L {0 gcd(i, j) 1} is not regular.
Set x 0(p-1)!I, where p > 3 is a prime, l(p) n, and C(p) > n logn. Then the
lexicographically first word in L is p-l, which contradicts the KC Regularity lemma.

EXAMPLE 6 (2.2, Exercises 11-15 in [4]). Prove that {p p is the standard binary
representation of a prime is not regular. Suppose the contrary, and pi denotes the ith prime,
> 1. Consider the least binary Pm Ul) (= u2l(v) + v), with u [Ii<kP and v not in

{0}*{1}. Such a prime Pm exists since each interval [n, n + n 11/20] of the natural numbers
contains a prime [5].

Consider Pm now as an integer, Pm 2/(V)Fli<kP + v. Since integer v > and v is
not divided by any prime less than Pk (because Pm is prime), the binary length l(v) >_ l(p,).
Because pk goes to infinity with k, the value C(v) > C(l(v)) also goes to infinity with k.
But since v is the lexicographical first suffix, with integer v > such that u v L, we have
C(v) O(1) by the KC Regularity lemma, which is a contradiction.
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3.2. Kolmogorov complexity characterization ofregular languages. While the pump-
ing lemmas are not precise enough (except for the difficult construction in [3]) to characterize
the regular languages, this is easy with Kolmogorov complexity. In fact, the KC Regularity
lemma is a direct corollary of the characterization below. The theorem is not only a device to
show that some nonregular languages are nonregular, as are the common pumping lemmas,
but it is a characterization of the regular sets. Consequently, it determines whether or not a
given language is regular, just like the Myhill-Nerode theorem. The usual characterizations of
regular languages seem to be practically useful only to prove regularity. The need for pump-
ing lemmas stems from the fact that characterizations tend to be very hard to use in showing
nonregularity. In contrast, the KC characterization is practicable for both purposes, as shown
in the examples.

DEFINITION 3.6. Let E be a nonemptyfinite alphabet, and let yi be the ith element of E*
in lexicographic order, > 1. For L E* and x E*, let X X1 X2 be the characteristic
sequence of Lx {y xy L}, defined by Xi if xyi L, and Xi --0 otherwise. We
denote )l Xn by X l:n.

THEOREM 3.7 (Regular KC characterization). Let L c_ E*, and assume the notation
above. Thefollowing statements are equivalent.

(i) L is regular.
(ii) There is a constant ct that depends only on L, such thatfor all x E* andfor all n,

C(Xl:nln) <_ eL.
(iii) There is a constant ci that depends only on L, such thatfor all x E* andfor all n,

C(;gl:n) _< C(n) + cir.
(iv) There is a constant cL that depends only on L, such thatfor all x E* andfor all n,

C(XI:) _< logn + c/.

Proof (i) -+ (ii): By similar proof as the KC Regularity lemma.
(ii) -- (iii): obvious.
(iii) -- (iv)" obvious.
(iv) -- (i)" shown in the following claim.
CLAIM 3.8. For each constant c there are only finitely many one-way infinite binary

strings co such that for all n, C(co:n) < log n + c.

Proof The claim is a weaker version of Theorem 6 in [2]. It turns out that the weaker
version admits a simpler proof. To make the treatment self-contained, we present this new
proof in the Appendix. 71

By (iv) and the claim, there are only finitely many distinct )’s associated with the x’s
in E*. Define the right-invariant equivalence relation by x x’ if ) )’. This relation
induces a partition of E* in equivalence classes [x] {y y x}. Since there is a one-one
correspondence between the [x]’s and the )’s, and there are only finitely many distinct )’s,
there are also only finitely many [x]’s, which implies that L is regular by the Myhill-Nerode
theorem. 71

REMARK 1. The KC Regularity lemma may be viewed as a corollary ofthe theorem. If L is
regular, then clearly Lx is regular, and it follows immediately that there are only finitely many
associated X’s, and each can be specified in at most c bits, where c is a constant depending
only on L (and enumerator 4). If y is, say, the nth string in Lx, then we can specify y as the
string corresponding to the nth ’1’ in X, using only C(n) + O(1) bits to specify y. Hence
C(y) < C(n) + O(1). Without loss of generality, we need to assume that the nth string
enumerated in Lx in the KC-regularity Lemma is the string corresponding to the nth ’1’ in )
by the enumeration in the Theorem, or that there is a recursive mapping between the two.

REMARK 2. If L is nonregular, then there are infinitely many x 6 E* with distinct
equivalence classes [x], each of which has its own distinct associated characteristic sequence
). It is easy to see, for each automaton (finite or infinite) and for each X associated with an
equivalence class [x], we have



404 LI AND VITANYI

C(x:nln) -- inf{C(y) y E [x]}-4- O(1),

for n . The difference between finite and infinite automata is precisely expressed in the
fact that only in the first case does there exist an a priori constant which bounds the left-hand
term for all ,.

We show how to prove positive results with the KC characterization theorem. (Examples
of negative results were given in the preceding section.)

EXAMPLE 7. Prove that L E* is regular. There exists a constant such that for each x
the associated characteristic sequence is X 1, with C(x:nln) < c. Therefore, L is
regular by the KC characterization theorem.

EXAMPLE 8. Prove that L {x x is accepted by a 2-way dfa} is regular. There exists
a constant c such that for each x we have C(x:ln) < c. Therefore, L is regular by the KC
Characterization theorem.

4. Deterministic context-free languages. We present a Kolmogorov complexity based
criterion to show that certain languages are not dcfl. In particular, it can be used to demonstrate
the existence of witness languages in the difference of the family of context-free languages
(cfls) and deterministic context-free languages (dcfls). Languages in this difference are the
most difficult to identify; other non-dcfl are also non-cfl and in those cases we can often use
the pumping lemma for context-free languages. The new method compares favorably with
other known related techniques (mentioned in the Introduction) by being simpler, easier to

apply, and apparently more powerful (because it works on a superset of examples). Yet our

primary g0al is to demonstrate the usefulness of Kolmogorov complexity in this matter.
A language is a dcfl iff it is accepted by a deterministic pushdown automaton (dpda).
Intuitively, Lemma 4.2 tries to capture the following. Suppose a dpda accepts L

{0 2" n > }. Then the dpda needs to first store a representation of the all 0 part, and then
retrieve it to check against the all part. But after that check, it seems inevitable that it has
discarded the relevant information about n, and cannot use this information again to check
against the all 2 part. That is, the complexity of the all 2 part should be C(n) O (1), which
yields a contradiction for large n.

DEFINITION 4.1. A one-way infinite string co oo... over Z is recursive (fi there is a

total recursive function f N" -+ such that COl .f (i) for all >_ 1.
LEMMA 4.2 (KC-DCFL). Let L G * be recognized by a deterministicpushdown machine

M and let c be a constant. Let o9 oleo2.., be a recursive sequence over which can be
described in c bits. Let x, y * with C(x, y) < c and let ’2’1 be a (reversed)
recursive sequence over , of theform yyx. Let n, rn N" and w * be such that items

(i)-(iii) below are satisfied.
(i) For each (1 < < n), given M’s state andpushdown store contents qfterprocessing

input m ’1 (-Ol (-oi, a description ofo, and an additional description o.fat most c bits, we
can reconstruct n by running M and observing only acceptance or rejection.

(ii) Givenpushdown store contents afterprocessing input m 1 (-01 (.On and M’s state,

we can reconstruct w from an additional description ofat most c bits.
(iii) C(col co) > 2 log log m.
Then there is a constant c’ depending only on L and c such that C(w) <

Proof Let L be accepted by M with input head hr. Assume that m, n, w satisfy the
conditions in the statement of the lemma. For convenience we write

For each input z 6 Z*, we denote with c(z) the pushdown store contents at the time hr has
read all of z, and moves to the right adjacent input symbol. Consider the computation of M
on input uv from the time when hr reaches the end of u. There are two cases, which follow.
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Case 1. There is a constant c such that for infinitely many pairs m, n that satisfy the
statement of the lemma, if hr continues and reaches the end of v, then all of the original c(u)
has been popped except at most the bottom c bits.

That is, machine M decreases its pushdown store from size l(c(u)) to size c during the
processing of v. The first time this occurs, let v’ be the processed initial segment of v, and v"
the unprocessed suffix (so that v v’v") and let M be in state q. We can describe w by the
following items:

A self-delimiting description of M (including N) and this discussion in O (1) bits.
A self-delimiting description of co in (1 / )c bits.
A description of c(uv’) and q in cl log [Il + O(1) bits.
The "additional description" mentioned in item (i) of the statement of the lemma in
self-delimiting format, using at most (1 + e)c bits. Denote it by p.
The "additional" description mentioned in item (ii) of the statement of the lemma in
self-delimiting format, using at most (1 / e)c bits. Denote it by r.

By item (i) in the statement of the lemma we can reconstruct v" from M in state q and
with pushdown store contents c(u v’), and co, using description p. Subsequently, by starting M
in state q with pushdown store contents c(u v’), we process v". At the end of the computation
we have obtained M’s state and pushdown store contents after processing u v. According to
item (ii) in the statement of the lemma, together with description r, we can now reconstruct
w. Since C(w) is at most the length of this description,

C(w) <_ 4c + c log IZI + 0(1).

Setting c’ := 4c + Cl log ]NI + O(1) satisfies the lemma.
Case 2. By way of contradiction, assume that Case does not hold. That is, for each

constant C all but finitely many pairs m, n that satisfy the conditions in the lemma cause M
not to decrease its stack height below cl during the processing of the v part of input uv.

Fix some constant Cl. Set m, n so that they satisfy the statement of the lemma, and to be
as long as required to validate the argument below. Choose u’ as a suffix of yy... yx with
l(u’) > 2 and

(2) C (1 (u’)) < log log m.

That is, l(u’) is much larger than l(u) (= m) and much more regular. A moment’s reflection
learns that we can always choose such a u’.

CLAIM 4.3. For large enough m there exists a u’ as above, such that M starts in the same
state and accesses the same top l(c(u)) Cl elements of its stack during the processing of the
v parts of both inputs u v and u’v.

Proof. By assumption, M does not read below the bottom c symbols of c(u) while
processing the v part of input u v.

We argue that one can choose u’ such that the top segment of c(u’) is precisely the same
as the top segment of c(u) above the bottom c symbol for large enough l(u), l(u’).

To see this we examine the initial computation of M on u. Since M is deterministic, it
must either cycle through a sequence of pushdown store contents, or increase its pushdown
store with repetitions on long enough u (and u’). Namely, let a triple (q, i, s) mean that M is
in state q, has top pushdown store symbol s, and h is at ith bit of some y. Consider only the
triples (q, i, s) at the steps where M will never go below the current top pushdown store level

2Since we need to glue together different binary items in the encoding, and in a way so that we can effectively
separate them again, like (x, y) x’y, we count C(x) + 21ogC(x) + bits for a self-delimited encoding x’
lt(l(x))Ol(x)x of x. We only need to give self-delimiting forms for all but one constituent description item.
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again while reading u. (That is, s will not be popped before going into v.) There are precisely
l(c(u)) such triples. Because the input is repetitious and M is deterministic, some triple must
start to repeat within a constant number of steps and with a constant interval (in height of M’s
pushdown store) after M starts reading y’s. It is easy to show that within a repeating interval
only a constant number of y’s are read.

The pushdown store does not cycle through an a priori bounded set of pushdown store
contents, since this would mean that there is a constant c such that the processing by M of
any suffix of yy... yx does not increase the stack height above c. This situation reduces to
Case with v .

Therefore, the pushdown store contents grow repetitiously and unboundedly. Since the
repeating cycle starts in the pushdown store after a constant number of symbols, and its size
is constant in number of y’s, we can adjust u’ so that M starts in the same state and reads the
same top segments of c(u) and c(u’) in the v parts of its computations on uv and u’v. This
proves the claim.

The following items form a description from which we can reconstruct v.
This discussion and a description of M in O (l) bits.
A self-delimiting description of the recursive sequence co of which v is an initial
segment in (1 + e)c bits.
A self-delimiting description of the pair (x, y) in (1 + )c bits.
A self-delimiting description of/(u’) in (1 + e)C(l(u’)) bits.
A program p to reconstruct v given co and M’s state and pushdown store contents
after processing u. By item (i) of the statement of the lemma, l(p) < c. Therefore,
a self-delimiting description of p takes at most (1 4- e)c bits.

The following procedure reconstructs v from this information. By using the description of M
and u’ we construct the state q,, and pushdown store contents c(u’) of M after processing u’.
By Claim 4.3, the state q, of M after processing u satisfies q, q,, and the top l(c(u)) c
elements of c(u) and c(u’) are the same. Run M on input co starting in state q,, and with
stack contents c(u’). By assumption, no more than l(c(u)) c elements of c(u’) get popped
before we have processed col.., con. By just looking at the consecutive states of M in this
computation, and using program p, we can find n according to item (i) in the statement of the
lemma. To reconstruct v requires by definition at least C(v) bits. Therefore,

C(v) < (1 4- )C(l(u’)) 4- 4c 4- O(1)
_< (1 + e)loglogm +4c + O(1),

where the last inequality follows by equation (2). But this contradicts item (iii) in the statement
of the lemma for large enough m. E]

Items (i)-(iii) in the KC-DCFL lemma can be considerably weakened, but the presented
version gives the essential idea and power: it suffices for many examples. A more restricted,
but easier, version is the following.

COROLLARY 4.4. Let L c_ 2" be a dcfl and let c be a constant. Let x and y befixedfinite
words over and let co be a recursive sequence over I2. Let u be a suffix of yy. yx, let v
be a prefix of co, and let w 2" such that

(i) v can be described in c bits given L, in lexicographical order;
(ii) w can be described in c bits given L,v in lexicographical order; and
(iii) C (v) > 2 log log l(u).

Then there is a constant c’ depending only on L, c, x, y, co such that C(w) <_ c’.
All the following context-free languages were proved to be not dcfl only with great effort

before [6], [4], [24]. Our new proofs are more direct and intuitive. Basically, if v is the first
word in L,, then processing the v part of input u v must have already used up the information
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of u. But if there is not much information left on the pushdown store, then the first word w in
L, cannot have high Kolmogorov complexity.

EXAMPLE 9 (Exercise 10.5 (a)** in [6]). Prove L {x x x R, x E {0, }*} is not dcfl.
Suppose the contrary. Set u 0 and v 0n, C(n) > log n, which satisfies item (iii) of the
lemma. Since v is lexicographically the first word in L,, item (i) of the lemma is satisfied.
The lexicographically first nonempty word in L, is 10n, and so we can set w 10 which
satisfies item (ii) of the lemma. But now we have C(w) S2(logn), which contradicts the
KC-DCFL lemma and its corollary.

Approximately the same proof shows that the context-free language {xx x E*} and
the context-sensitive language {xx x E*} are not deterministic context-free languages.

EXAMPLE 10 (Exercise 10.5 (b)** in [6] andExample in [24]). Prove {0 m n, 2n}
is not dcfl. Suppose the contrary. Let u 0 and v ln, where C(n) >_ log n. Then v is the
lexicographically first word in L,. The lexicographically first nonempty word in L, is n.
Set w n, and C(w) S2 (log n), contradicting the KC-DCFL lemma and its corollary.

EXAMPLE 11 (Example 2 in [24]). Prove L {xy l(x) l(y), y contains a "1,"
x, y 6 {0, 1}*} is not dcfl. Suppose the contrary. Set u 0nl where l(u) is even. Then
v 0n+ is lexicographically the first even length word not in L,. With C(n) > log n, this
satisfies items (i) and (iii) of the lemma. Choosing w 102n+3, the lexicographically first
even length word not in L, starting with a "1", satisfies item (ii). But C(w) f2(logn),
which contradicts the KC-DCFL lemma and its corollary.

EXAMPLE 12. Prove L {0 j2k i, j, k > 0, j or j k} is not dcfl. Suppose the
contrary. Let u 0 and v n, where C(n) >_ logn, satisfying item (iii) of the lemma.
Then, v is lexicographically the first word in L,, satisfying item (i). The lexicographic first
word in L, A }{2}* is 12n+l. Ttierefore, we can set w 12n+ and satisfy item (ii). Then
C(w) f2 (log n), contradicting the KC-DCFL lemma and its corollary.

EXAMPLE 13 (pattern-matching). The KC-DCFL lemma and its corollary can be used in
a tricky manner. We prove {x#yxz x, y, z {0, 1}*} is not dcfl. Suppose the contrary.
Let u ln# and v ln-0, where C(n) > logn, which satisfies item (iii) of the lemma.
Since v’ is the lexicographically first word in L,, the choice of v satisfies item (i) of the
lemma. (We can reconstruct v from v’ by flipping the last bit of v’ from to 0.) Then w
is lexicographically the first word in L,, to satisfy item (ii). Since C(w) S2(logn), this
contradicts the KC-DCFL lemma and its corollary.

5. Recursive, recursively enumerable, and beyond. It is immediately obvious how to
characterize recursive languages in terms of Kolmogorov complexity. If L c__ E*, and E*
{vl, v2 is effectively ordered, then we define the characteristic sequence ,k ,k, ,k2
of L by ,ki if vi L and ,ki 0 otherwise. In terms of the earlier developed terminology,
if A is the automaton accepting L, then ) is the characteristic sequence associated with the
equivalence class [e]. Recall Definition 4.1 of a recursive sequence. A set L E E* is recursive
iff its characteristic sequence ,k is a recursive sequence. The next theorem then follows from
the definitions and the first paragraph of the Appendix.

THEOREM 5.1 (recursive KC characterization). A set L E* is recursive iff there exists
a constant ct (depending only on L) such that, for all n, C(,k:n In) < cL.

L is r.e. (recursively enumerable) if the set {n )n is r.e. In terms of Kolmogorov
complexity, the following theorem gives not only a qualitative but even a quantitative difference
between recursive and r.e. languages. The following theorem is due to Barzdin’ [1 ], [13].

THEOREM 5.2 (KC r.e.). (i) IfL is r.e., then there is a constant cL (depending only on L),
such thatfor all n, C(,kl:n In) < logn + c/.

(ii) There exists an r.e. set L such that C():) > logn, for all n.
Note that, with L as in item (ii), the set E* L (which is possibly non-r.e.) also satisfies

item (i). Therefore, item (i) is not a Kolmogorov complexity characterization of the r.e. sets.
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EXAMPLE 14. Consider the standard enumeration ofTuring machines. Define k k k2
by ki if the ith Turing machine started on its ith program halts (i(i) < OO), and ki 0
otherwise. Let A be the language such that k is its characteristic sequence. Clearly, A is an
r.e. set. In [1] it is shown that C(k:n) > log n for all n.

EXAMPLE 15. Let k be as in the previous example. Define a one-way infinite binary
sequence h by

h k102k2022 ki 02i ki+l

Then, C(h:n) O(C(n)) + ()(log log n). Therefore, if h is the characteristic sequence of a
set B, then B is not recursive, but more "sparsely" nonrecursive than A is.

EXAMPLE 16. The probability that the optimal universal Turing machine U halts on self-
delimiting binary input p, randomly supplied by tosses of a fair coin, is , 0 < < 1. Let the
binary representation of f2 be 0.f21 S22... Let E be a finite nonempty alphabet, and vl, v2
an effective enumeration without repetitions of E*. Define L c_C_ E* such that vi L iff

"i 1. It can be shown (see, for example, 12]) that the sequence 1, 2 satisfies

C(ff2:nln) > n logn 21oglogn O(1),

for all but finitely many n.
Hence neither L nor E* L is r.e. It is not difficult to see that L 6 A2 (1 U I-I1) in

the arithmetic hierarchy (that is, L is not recursively enumerable) [22], [23].

6. Questions for future research. (a) It is not difficult to give a direct KC analogue of
the uvwxy pumping lemma (as Tao Jiang pointed out to us). Just like the pumping lemma,
this will show that {anbnc n >_ 1}, {xx x E*}, {a p p is prime}, and so on, are not cfl.
Clearly, this hasn’t yet captured the Kolmogorov complexity heart of cfl. In general, can we
find a CFL-KC characterization?

(b) What about ambiguous context-free languages?
(c) What about context-sensitive languages and deterministic context-sensitive languages?

Appendix: ProofofClaim 3.8. A recursive real is a real number whose binary expansion
is recursive in the sense of Definition 4.1. The following result is demonstrated in [14] and
attributed to A.R. Meyer. For each constant c there are only finitely many co 6 {0, } with
C(co:n In) <_ c for all n. Moreover, each such co is a recursive real.

In [2] this is strengthened to a version with C(co:n) _< C(n) / c, and strengthened again
to a version with C(col:n) <_ log n -4- c. Claim 3.8 is weaker than the latter version by not

requiring the co’s to be recursive reals. For completeness sake, we present a new direct proof
of Claim 3.8 avoiding the notion of recursive reals.

Recall our convention of identifying integer x with the xth binary sequence in lexico-
graphical order of {0, 1}* as in (1).

Proofof Claim 3.8. Let c be a positive constant, and let

(3) An {x {0, l} "C(x) < log n + c},
A {co {0, 1} ’nv[C(co:n) < log n + c]}.

If the cardinality d(An) of An dips below a fixed constant c’, for infinitely many n, then
c’ is an upper bound on d(A). This is because it is an upper bound on the cardinality of the
set of prefixes of length n of the elements in A, for all n.

Fix any 6 .N’. Choose a binary string y of length 21 + c + that satisfies

.(4) C(y) > 21 + c + 1.
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Choose maximum such that for division of y in y mn with l(m) we have

(5) m < d(an).

(This holds at least for 0 m.) Define similarly a division y sr with l(s) + 1. By
maximality of i, we have s > d(Ar). From the easily proven s _< 2m + 1, it then follows that

(6) d(ar) _< 2m.

We prove (r) > 1. Since by (5) and (3) we have

rn < d(An) <

it follows that (m) _< (n) + c. Therefore,

21 + c + l(y) l(n) + l(m) < 2/(n) + c,

which implies that l(n) > 1. Consequently, l(r)- l(n)- >_ 1.
We prove d(Ar) O(1). By dovetailing the computations of the reference universal

Turing machine U for all programs p with (p) < log n + c, we can enumerate all elements of

An. We can reconstruct y from the mth element, say Y0, of this enumeration. Namely, from Y0
we reconstruct n since (Y0) n, and we obtain rn by enumerating An until Y0 is generated.
By concatenation we obtain y mn. Therefore,

(7) C(y) < C(yo) + O(1) < logn / c + O(1).

From (4), we have

(8) C(y) > log n + log m.

Combining (7) and (8), it follows that log m _< c + O(1). Therefore, by (6),

d(A) < U+().

Here, c is a fixed constant independent of n and m. Since l(r) > and we choose arbitrarily,
d(Ar) < co for a fixed constant co and infinitely many r, which implies d(A) < co, and hence
the claim.

We avoided establishing, as in the cited references, that the elements of A defined in (3)
are recursive reals. The resulting proof is simpler, and sufficient for our purpose, since we
only need to establish the finiteness of A.

REMARK 3. The difficult part of the Regular KC Characterization theorem above consists
in proving that the KC Regularity lemma is exhaustive, i.e., can be used to prove the nonreg-
ularity of all nonregular languages. Let us look a little more closely at the set of sequences
defined in item (iii) of the KC Characterization theorem. The set of sequences A of (3) is
a superset of the set of characteristic sequences associated with L. According to the proof
in the cited references, this set A contains finitely many recursive sequences (computable by
Turing machines). The subset of A consisting of the characteristic sequences associated with
L, satisfies much more stringent computational requirements, since it can be computed using
only the finite automaton recognizing L. If we replace the plain Kolmogorov complexity in the
statement of the theorem by the so-called "prefix complexity" variant K, then the equivalent
set of A in (3) is

{co {0, 1} ’v’ne[K(co:n) < K(n) + c]},

which is finite 12, Exercise 3.24] and contains nonrecursive sequences by a result of Solovay
[20].
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O(M. N) ALGORITHMS FOR THE RECOGNITION AND ISOMORPHISM
PROBLEMS ON CIRCULAR-ARC GRAPHS*

WEN-LIAN HSU

Abstract. Circular-arc graphs have a rich combinatorial structure. The circular endpoint sequence of arcs in a
model for a circular-arc graph is usually far from unique. We present a natural restriction on these models to make
it meaningful to define the unique representations for circular-arc graphs. We characterize those circular-arc graphs
which have unique restricted models and give an O(m n) algorithm for recognizing circular-arc graphs. We think
a more careful implementation could reduce the complexity to O(n2). Our approach is to reduce the recognition
problem of circular-arc graphs to that of circle graphs. This approach has the following advantages: it is conceptually
simpler than Tucker’s O(n3) recognition algorithm: it exploits the similarity between circle graphs and circular-arc
graphs in a natural fashion: it yields an isomorphism algorithm. A main contribution of this result is an illustration
of the transformed decomposition technique. The decomposition tree developed for circular-arc graphs generalizes
the concept of the PQ-tree, which is a data structure that keeps track of all possible interval representations of a given
interval graph. As a consequence, our approach also yields an O(rn n) isomorphism algorithm for circle graphs.

Key words, circular-arc graph, circle graph, graph decomposition, complexity

AMS subject classifieations. 68Q25, 68R05, 68R10

1. Introduction. Intersection graphs have recently received much attention in the study
of algorithmic graph theory and their applications (see e.g., ], [8], [9], [12], [15], [20]). Well-
known special classes of intersection graphs include interval graphs, chordal graphs, circular-
arc graphs, permutation graphs, circle graphs, and so on. Various optimization problems
(e.g., maximum clique, maximum independent set, and minimum coloring problems) on these
graphs have also been studied extensively [6], [7], [10], [11], [13], [14], [21]. We shall denote
a graph G by a pair (V, E), where V denotes the finite vertex set of G and E denotes a set of
edges connecting vertices of G. Let n IVI and rn IEI.

Circular-arc graphs have applications in genetic research [18], traffic control 19], and
computer compiler design [21]. Tucker [22] has given an O(n3) algorithm for recognizing
circular-arc graphs. However, the algorithm and its proof are involved. Based on Tucker’s
algorithm, Wu [23] wrote a dissertation on the isomorphism problem of circular-arc graphs
(but it never appeared in journal form). Spinrad [17] simplified Tucker’s algorithm for the
case that the given graph can be covered by two cliques.

In this paper we present O(m n) algorithms for both the recognition and isomorphism
problems on circular-arc graphs. We think a more careful implementation could reduce the
complexity to O(n2). Our approach is to reduce the circular-arc graph recognition problem to
the circle graph recognition problem. We believe this approach has the following advantages:
(1) it is conceptually simple, (2) it exploits the similarity between circle graphs and circular-arc
graphs in a natural fashion, and (3) it yields an isomorphism algorithm for circular-arc graphs
as a by-product.

A main contribution of our result is an illustration of the "transformed decomposition"
technique. A common drawback ofordinary decomposition techniques is that they do not seem
to yield useful reduction for the specific class ofgraphs of interest. Our example illustrates how
one might be able to modify the given class to another one for which decomposition produces
fruitful reduction. In the study of interval graphs (a subclass of circular-arc graphs), a new
data structure, PQ-trees ], was created to keep track of all possible interval representations
of a given interval graph. The decomposition tree discovered in this paper generalizes the

*Received by the editors March 1, 1993; accepted for publication (in revised form) May 23, 1994. This research
was supported in part by the National Science Council of the Republic of China.

tlnstitute of Information Science, Academia Sinica, Taipei, Taiwan, Republic of China.
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concept of PQ-trees and keeps track of all possible representations of a given circular-arc
graph. We also give characterizations of the class of uniquely representable interval graphs as
well as circular-arc graphs. Finally, for the two widely used techniques, substitution and join
decomposition, our result illustrates a case where they can be blended together harmoniously
to complement each other.

The difficulty in dealing with circular-arc graphs lies largely in the fact that even a simple
circular-arc graph (or interval graph) can have an exponential number of arc representations.
We propose a notion ofnormalized representations with the property that the relative endpoint
positions of any two arcs in such representations are prescribed by the adjacency relationships
of their corresponding vertices in G. By restricting ourselves to these special representations,
we can eliminate trivial variations. Through graph decomposition, we provide a characteriza-
tion of those circular-arc graphs that possess "unique" normalized representations.

We now define some notations used in the paper. Let F be a family of nonempty sets. The
intersection graph of F is obtained by representing each set in F by a vertex and connecting
two vertices by an edge if and only if their corresponding sets have a nonempty intersection.
When F is a family of intervals on the real line, the intersection graph is called an interval
graph. When F is a family of arcs (resp., chords) on a circle, the intersection graph is called
a circular-arc graph (resp., circle graph). A permutation graph is a circle graph in which the
circle can be divided into two halves, say part A and part B, and each chord has one end in A
and the other end in B. Each of these representations using intervals, arcs, or chords is called
a model for the corresponding graph

Let R be an arc model of a circular-arc graph G. Without loss of generality, assume all arc
endpoints in R are distinct. Each point on the circle has a coordinate, denoted by p. Let the
arcs of F be denoted as 1, 2 n. Since it is the relative positions (not the actual coordinates)
of these endpoints that concern us in this paper, we shall label the endpoints as follows. For
each arc i, traversing from a point of the circle not in along the clockwise direction, the first
endpoint of encountered is called the head of (labeled by h(i)), and the second endpoint of
encountered is called the tail of (labeled by t(i)). Denote arc by (h(i), t(i)). Associate

with R a circular label sequence obtained from a clockwise traversal (see Fig. 1.1 of the circle
starting with any endpoint label. In the special case of an interval graph, we associate with its
interval model a left-right label sequence. Denote the coordinate of a label m by p(m). For
two points c and d on the circle define segment (c, d) to be the part of the circle obtained by
traversing from c along the clockwise direction to d. For convenience, an arc (h (i), t(i)) is
also used to denote the segment (p(h(i)), p(t(i))). From now on, we shall only consider the
label of an endpoint rather than its actual coordinate.

Two models for a circular-arc graph (resp., interval) are said to be equivalent if a circular
(resp., left-right) label sequence of one model can be obtained from that of the other through
rotation or reflection (resp., through reflection). A circular-arc (resp., interval) graph G is said
to have a unique circular-arc (resp., interval) model if all circular-arc (resp., interval) models
for G are equivalent. It is easy to see that a given circular-arc graph can have an exponential
number of nonequivalent models. For example, by permuting the head labels and the tail
labels of n mutually overlapping intervals, one can obtain (n!)2/2 different models. In the
next section, we introduce the notion of normalized models that eliminates a large number
of trivial model variations. Note that equivalent chord models for a circle graph have been
defined analogously in [5].

The main technique used in our recognition algorithm is graph decomposition. This is a
useful divide-and-conquer scheme for attacking many optimization and recognition problems.
Gabor, Hsu, and Supowit [5] and, independently, Bouchet [2] used the join decomposition to
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The circular label sequence starting with h(1) is

h(1 )t(3)h (4)t(1)h (2)t(5)t(4)h(3)t(2) h(5)

FIG. 1.1. The circular label sequence ofa circular-arc graph.

efficiently recognize circle graphs. We shall adopt the same decomposition here in recognizing
circular-arc graphs.

The idea behind these decompositions is discussed in greater detail in 3. In the next

section we introduce the notion of normalized models for a circular-arc graph, which is used
throughout the remainder of this paper. Section 4 describes uniquely representable interval
graphs. Section 5 is devoted to the transformation of circular-arc graphs to circle graphs.
The decomposition of circular-arc graphs is discussed in 6 and 7. Section 8 discusses the
time complexity of our algorithm. Finally, we show that our approach yields an isomorphism
algorithm on circular-arc graphs in [}9.

2. Normalized models for circular-arc graphs. We are interested in those circular-arc
models in which the overlapping relationships (described below) of any two arcs are strictly
dictated by their corresponding neighborhood structures in the graph (and therefore remain
the same in all these representing models).

DEFINITION. Given a circular-arc model R, there are four possible overlapping rela-
tionships on a pair of arcs u2 and u2 in D defined as .follows (an example is shown in
Fig. 2.1):

(1) u. is independent of u2 if they do not overlap.
(2) Ul is contained in (resp., contains) u2 ifsegment (h(ul), t(ui)) is contained in (resp.,

contains) segment (h(u2), t(u2)).
(3) u and u2 strictly overlap iftheirfour endpoints appear alternately on the circle.
(4) ul and u2 cover the circle if the two segments (h(u), t(ui)) and (h(u2), t(u2))

together cover the whole circle.
For the special class of interval graphs, only the first three relationships are applicable when
considering their interval representations.
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i i

is independent of j and j cover the circle

is contained in j

i

strictly overlaps with j

FIG. 2.1. Four possible overlapping relationships on arcs ul and u2.

Denote by N(v) (or Na (v)) the set consisting of v and all vertices adjacent to v in G.
DEFINITION. Two vertices Vl and v2 in a graph G are said to be
(1) independent ifv is not adjacent to v2.
(2) strictly adjacent if v is adjacent to v2 but neither N(vl) nor N(v2) is contained in

the other
(3) strongly adjacent ifv and v2 are strictly adjacent but every w in V G)\N v satisfies

that N(w)

_
N(v2) and every w’ in V(G)\N(v2) satisfied that N(w’) N(v).

(4) similar if N(vl)\{v} N(o2)\{v2} (Vl, l)2 are said toform a similarpair).
These relationships can be determined by finding the partial order (based on _) on the

containment relationships of the N(v)’s for all v (details in 8). A vertex v in G is said to be a
D-vertex (short for "dominating") if N(v) V (G). To avoid ambiguity, normalized models
are defined only for those circular-arc graphs that contain neither similar pairs nor D-vertices.

DEFINITION. Let G be a circular-arc graph containing neither similar pairs nor D-
vertices. A circular-arc model R for G is said to be a normalized model (N-model) if ev-
ery pair of arcs u2 and u2 in R and their corresponding vertices v and v2 in G satisfy the
following conditions:

(1) u is independent of u2 v is not adjacent to v2.
(2) ul is contained in U2 4 N(v) N(v2).
(3) ul strictly overlaps with u2 v and v2 are strictly but not strongly adjacent.
(4) u and u2 cover the circle : v and v2 are strongly adjacent.
For interval graphs, an interval N-model is defined with (3) and (4) cotnbined into
(3’) u strictly overlaps with uz , v and v2 are strictly adjacent.
Since the conditions on the vertex pair are mutually disjoint and collectively exhaustive,

the notion "normalized model" is well defined. The overlapping relationships of all pairs
of arcs in an N-model are completely determined by their corresponding vertex adjacency
relationships.
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Next, we describe an algorithm that transforms any circular-arc model of G into an N-
model provided there are no similar pairs or D-vertices in G. Let R be a circular-arc model
for G. It suffices to find a model R* in which two arcs cross exactly when their corresponding
vertices are strictly but not strongly adjacent, since this condition will force R* to be an
N-model.

DEFINITION. A pair ofarcs U and u2 are said toform a "violation" ifthey strictly overlap
with each other in R but either their corresponding vertices Vl and v2 are strongly adjacent
(type I violation) or they are not strictly adjacent (type II violation).

We divide our algorithm into two parts. Define a head (or tail) block of a model R
to be a set of maximal contiguous subsequence of head (or tail) labels in the circular label
sequence of R. The term "block" refers to either a head block or a tail block. Given a block
B, NEXT(B) (resp., PREV(B)) refers to the neighboring block of B in the clockwise (resp.,
counterclockwise) direction. By inserting an endpoint into a block B, we mean inserting its
label into the subsequence of B in arbitrary order. It is easy to check that, in both algorithms,
reordering within a block does not change the arc overlapping relationships.

ALGORITHM I (ELIMINATING TYPE PAIRS)
1. For each head h(i), let T(h(i)) be the first tail block (encountered in a counterclock-

wise traversal from h(i)) that contains the tail of some arc not overlapping with arc i.
Partition T(h(i)) into two blocks T1 {t(il) t(ir)} and T2 {t(jl) t(j.)}
where T1 contains those tails whose corresponding arcs are not overlapping with and
T2 T(h(i))\T. If T2 0, then insert h(i) into NEXT(T(h(i))). If T2 -7/: 13, then insert
a new head block B’ {h(i)} in between T and T2.

2. Repeat the above procedure symmetrically for each tail (i) in the clockwise direction.

LEMMA 2.1. Let R1 be the model obtained at the end ofAlgorithm I. Then, R does not

contain any type I pain
Proof. Suppose otherwise. Let i, i2 be a pair crossing in R with their corresponding

vertices v and v2 strongly adjacent in G. Without loss of generality, assume the circular label
sequence for R is h(i)h(i2)t(i)t(i2). Let H be the block containing h(il) and T2 the block
containing (i2).

By Algorithm I, there exists an arc j not overlapping with i such that (j) is in PREV(H
and another arc j’ not overlapping with i2 such that h (j’) is in NEXT(T2). Let the corresponding
vertices of j and j’ be w and w’, respectively. Then, to

is strongly adjacent to v2, we must have that to N(v2), to’ N(v). Then, t(j) must be in
arc j’ and to is adjacent to to’. But then, we have N(to)

_
N(v2), contradictory to the strong

adjacency of vt and v2.

ALGORITHM II (ELIMINATING TYPE II PAIRS)
1. For each head block H {h (i) h (ir) in R, let the clockwise tail order of arcs

" "’ (transversing from h(i)). Then order the head labels in Hi ir in R be ,
in the reverse order as h(i’) h(i’).

2. Reorder the tails in each tail block in reverse to the clockwise order of their heads.

Note that all arcs with their heads in the same block must have their corresponding tail
labels in distinct tail blocks; otherwise, we would have similar pairs. Hence, the relative order
of their tails remains the same throughout the algorithm and there is no need to reorder the
same head block. The same holds for the tail blocks.

LEMMA 2.2. Let R be the arc model obtainedfrom R at the end ofAlgorithm II. Then R
is an N-model.

Proof Since we do not move any arc label out of its current block and R does not contain
any type I pair, R cannot contain any type pair. Next, we show that R does not contain any
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type II pair. Suppose otherwise. Let l, i2 be a pair crossing in R such that their corresponding
vertices v and l)2 satisfy N(vl) c_C_ N(v2).

Without loss of generality, assume the circular label sequence for R is h (i h (i2) (i i2 ).
h(i) and h(i2) cannot belong to the same head block, otherwise their relative order would
be h(i2)h(i)t(i)t(i2) by Algorithm II. Hence, there must exist a tail t(j) in segment (h(i).
h(i2)) such that arc j does not overlap with arc i2, contradictory to the fact that N(Vl)

_
N(v2). [

COROLLARY 2.3. Let G be a circular-arc graph containing neither similar pairs nor
D-vertices. Then there exists an N-modelfor G. If, in particular. G is an interval graph, then
there also exists an interval N-modelfor G.

From here on, we assume the given graph does not contain similar pairs or D-vertices
and consider only normalized models. To characterize graphs having unique N-models, we
need to apply certain graph decompositions, which are discussed in the next section.

3. The substitution decomposition and the join decomposition. We shall consider
two important graph decompositions in this section. The first such operation is substitution
decomposition, also known as modular decomposition. We shall follow closely the notations
of Spinrad 16], in which an O(n2) decomposition algorithm is given. Let V’ be a subset of
V. Denote by G[V’] the subgraph of G induced on V’.

DEFINITION. A graph G contains a substitution ifthere exists a partition of V (G) into I/o,
V, and V2 with IV01 >_ 2 and lVl u V2l >_ such that every vertex in Vo is adjacent to every
one in VI and no vertex in Vo is adjacent to any one in V2. Then, G is decomposable into
G[V0] and the graph G[V L; V2] with an additional vertex vo connected to every vertex in Vi.
Such a decomposition is called the substitution decomposition or modular decomposition.

DEFINITION. A module M is a subset of V (G) such that between M and each vertex v
in V\M there are either no edges or all possible edges. M is a connected module iff G[M]
is connected. M is complement connected iff the complement of G[M] is connected. An
unconnected module is called a parallel module. A connected module whose complement is
unconnected is called a series module. A module that is both connected and complement
connected is called a neighborhood module. A module M ofsize greater than is nontrivial

ifM 56 V (G). A graph G is s-inseparable if it does not contain any nontrivial module.
By definition, every module is exactly one of these three types. A series or parallel

module M can be decomposed into the connected components of G[M] or G[M]. A module
M( N) is a maximal submodule of a neighborhood module N if no other proper submodule
of N contains M. A neighborhood module can be uniquely decomposed into its maximal
submodules as its components. The modular decomposition starts with the module V(G)
and creates a corresponding root node in the decomposition tree labeled with S, P, or N,
depending on the type of the module. Then it decomposes this module into components Ml,
M2 Mk using one of the above three rules. For each Mi, find its modular decomposition
tree and make its root node a son of the root node representing V (G). The resulting tree is
called a modular decomposition tree of G. In [15], it was shown that there exists a unique
modular decomposition tree for a graph G, namely, all modular decomposition trees for G are
isomorphic. Fig. 3.1 gives a sample graph with its modular decomposition tree.

The representative graph of a module M in the decomposition tree is a graph induced
by a subset consisting of a single vertex from each component submodule of M. We de-
note the representative graph of each module by G and attach it to the root of this module.
The representative graph of a series module is a clique. The representative graph of a par-
allel module is an independent set. The representative graph of a neighborhood module is
s-inseparable by our definition.
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SUBSTITUTION DECOMPOSITION

The graph G

N

FIe;. 3.1. The substitution decomposition tree ofa graph.

DEFINITION. The s-inseparable components ofa graph G am defined to be either
(1) a single vertex if there is no neighborhood module in T, or
(2) the representative graphs ofneighborhood modules in the decomposition tree T ofG.
The example in Fig. 3,1 has three neighborhood modules and each of their representative

graphs is an induced path with four vertices.
Another decomposition is the join decomposition of Cunningham [3].
DEFINITION. A graph G is said to have a join if V (G) can be partitioned into Vo, Vl,

and V3 with ]Vo tA Vii >_ 2 and IV2 tA V31 > 2 such that every possible edge exists between
V1, V2 and no edge exists between Vo, V2 tA V3, or between Vo U V, V3. In this case, we say
G is decomposable into Hi and H2 where Hi is the induced subgraph ofG[Vo tA VI] with an
extra vertex v adjacent to every vertex in Vl and H2 is the induced subgraph G[V2 t.J V3] with
an extra vertex v2 adjacent to every vertex in V2. A graph G is said to be j-inseparable if it

does not contain anyjoin.
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The graph G

G
4 G

2 G
3 G

() is a marker vertex

FIG. 3.2. The join decomposition tree ofa graph G.

A j-inseparable graph with at least four vertices must be connected. Cunningham [3]
gave an O(n3) algorithm to decompose a graph completely into j-inseparable components
and showed that there is a unique join decomposition tree. (There is no complete description
on how such a tree is formed; however, the reader familiar with the decomposition of a graph
into 3-connected components should be able to figure out the construction.) Gabor, Hsu, and
Supowit [5] later improved it to O(m n) time (faster than [3] on sparse graphs). An example
is shown in Fig. 3.2.

Our decomposition scheme on circular-arc graphs can be briefly described as follows.
For the special class of interval graphs, we show that their s-inseparable components have
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unique interval N-models in 4. We transform a general circular-arc graph G into a circle
graph G and separate this circle graph into s-inseparable components. We then show that
the corresponding induced subgraphs in G of these components in Gc have unique N-models.
These N-models can be used to compose an N-model for the original circular-arc graph G.

4. A characterization of uniquely representable interval graphs. In this section, we
present a proofthat s-inseparable interval graphs have unique interval N-models. This analysis
is of interest in its own right since it does not involve those powerful arguments borrowed from
circle graphs [5]. The characterization of circular-arc graphs that have unique circular-arc
N-models is given in 6.

Given an interval N-model R of an interval graph, the head of an interval is its left
endpoint and the tail is its right endpoint. We shall not be concerned about the notion of
"strongly adjacent" vertices for interval graphs since there is no corresponding geometric
meaning on intervals.

THEOREM 4.1. If an interval graph G does not contain any substitution, then it has a
unique interval N-model.

Proof Associate with G the following graph Gc, whose vertex set is V(G) and whose
edge set consists of those strictly adjacent pairs of vertices in G. Since G does not contain any
substitution, G must be connected. An interval is said to be minimal in G if it does not contain
any other interval in G. An interval is said to be simplicial if it is minimal and is contained in
all intervals that overlap with it. Let V be the set of all simplicial intervals in G. Note that
intervals in V must be independent.

We first show that Gc\V is connected. Suppose otherwise. Let be a minimal arc in
G\V. Let C1 be a connected component in Gc\Vj. containing i. Let j be any interval in
G\(V UC) that overlaps with some interval, say w, in C (such a j must exist; otherwise, G
is disconnected). Since j does not strictly overlap with w, we must have j contains w. Then
all vertices of C that overlap with w must also overlap with j and, hence, are contained in j.
Through breadth-first search, we can argue that all vertices in C must be contained in j. Let
V; be the subset of simplicial intervals in V that overlap with some vertices in C. Then, all
intervals in V’ are also contained in j. Now, if ICl I{i}1 1, then since is not simplicial
in G, there must exist an interval i’ in V’ contained in i. Therefore, IC
is a nontrivial module in G, a contradiction.

We now show that there is a unique endpoint ordering for intervals in G\V in any
N-model for G. This would imply that there is a unique N-model for G, since there is a
unique way to insert intervals of V1 once a model for G\V is formed. Let T be a spanning
tree for the graph Gc\V. Pick an arbitrary node of T as the root and perform a breadth-first
search on T. Let zr i ik be the resulting vertex ordering of G\V. Then rr satisfies
that each i. strictly overlaps with some interval in {i is-l}. Since i2 strictly overlaps
with i, one may assume the endpoint order of i, i2 is h(i2)h(i)t(i2)t(il).

We now prove inductively that for each is, s 3 k, there is a unique way to insert
the endpoints of i,. into the unique label sequence for Hs- {i is-I }. It suffices to
show that, for any interval j in Hs_, there is a unique left-right order between {h(is), (i.)}
and {h(j), t(j)}. If j contains is, then the order for is and j is h(j)h(is)t(is)t(j)" if j is
contained in is, then the order is h(i)h(j)t(j)t(is). Hence, consider the case that j strictly
overlaps with is. Let j’ be another interval of Hs that strictly overlaps with j. Without loss
of generality, assume the endpoint order of j, j’ is h(j’)h(j)t (j’)t (j). If i, does not overlap
with j’, then the order is h(j)h(is)t(j)t(is). If is contains j’ or is contained in j’, the order is
h(is)h(j)t(is)t(j). Hence, assume is strictly overlaps with .j’. If N(is)\[N(j) U N(j’)] 0,
then the order is h(j)h(is)t(j)t(i); otherwise, we have N(j)\[N(is) U N(j’)] 0, and the
order is h(i)h(j)t(is)t(j).
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FIG. 5.1. The chord model associated with a circular-arc model.

5. The circle graph Gc associated with a circular-arc graph G. Graph decomposition
has been successfully adopted to tackle the recognition problems for special classes of inter-
section graphs (see [7]). Gabor, Hsu, and Supowit [5] recently gave an O(m. n) decomposition
algorithm for recognizing circle graphs. They made use of the following properties.

THEOREM 5.1 [5]. (1) A graph G is a circle graph iff every j-inseparable component of
G is a circle graph.

(2) Each j-inseparable circle graph has a unique chord model.
We shall apply similar decomposition approaches to circular-arc graphs to obtain compo-

nents that have unique N-models. In our approach, we first transform the proposed circular-arc
graph to a circle graph and then make use of Theorem 5.1.

DEFINITION. Associate with each graph G the graph Gc that has the same vertex set as G
such that two vertices in Gc are adjacent iff they are strictly but not strongly adjacent in G.

Consider a circular-arc graph G with an N-model R. Associate with each arc in R a chord
that connects its two endpoints The resulting chord model D is called an associated chord
model for G. Since two arcs cross in R exactly when their corresponding chords in D cross,
this chord model gives rise to the circle graph Gc. An example is shown in Fig. 5.1. Although
there can be many associated chord models for G, they all give rise to the unique circle graph
Gc defined above.

Our decomposition approach is motivated by the analysis below. Given a circular-arc
graph G and an N-model R for G, the following two types of structures in R can create
multiple chord models by reversing the order of arc endpoints in a subset of V (G). Let ,4 be
a subset of vertices in G. For convenience, we shall refer to "an arc in A" instead of "an arc
in R corresponding to a vertex in A." (The notions "vertex;’ "arc," and "chord" will be used
interchangeably whenever no confusion arises.)

Type I. There exist a segment (a, b) and a partition of V (G) into two sets A and B such that
all endpoints of arcs in ,4 are contained in (a, b) and all endpoints of arcs in B are contained
in (b, a) and 1,41 >_ 2, IBI >_ 2 (see Fig. 5.2).
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FIG. 5.2. A circular-arc graph containing a type structure.

Type II. There exist two disjoint segments (al, bl), (a2, b2) and a partition of V (G) into
A and B such that each arc in .4 has one endpoint in (al, bl) and the other endpoint in (a2, b2)
but none of the endpoints of arcs in B are in (al, bl) U (a2, bE) and IAI >_ 2, IBI >_ 1 (see
Fig. 5.3).
Note that, in both cases, if G is an interval graph, then it must contain a substitution.

As one can see in Figs. 5.3 and 5.4, type I structures give rise to disconnected Gc and
type II structures give rise to nontrivial modules in Gc. These two types of structures can
be eliminated by applying the modular decomposition on the transformed graph Go. The
corresponding induced subgraph in G of the s-inseparable components in Gc can be shown to
have unique N-models. The above discussion of type I and type II structures is there to give
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FIG. 5.3. A circular-arc graph containing a type II structure.

the reader guidance and is not necessary for the remainder of the proof. The following lemma
states that, without loss of generality, we can assume the complement of Gc is connected.

LEMMA 5.2. Let G be a graph with a disconnected Gc. Let C1, C2 Ck be the
components of-c. Let Hic and Hi, k, be their corresponding induced subgraphs
in Gc and G, respectively. Then G is a circular-arc graph iffeach ofthe Hi, k, is
a circular-arc graph.

Proof. The "only if" part is trivial. Consider the "if" part. Each H, k, is a
permutation graph since there is a chord intersecting all of its chords in any model of Gc. Let
the circular endpoint sequence H be S (,4)Si(B), where every arc has exactly one endpoint
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in si(A) and the other one in Si(B). Then S(A)S2(A) Sk(A)S1(B)S2(B) Sk(B) is
a valid circular label sequence of an arc model for G.

The transformation from an associated chord model of Gc back to an N-model for G
involves the decision as to on which side of the chord the corresponding arc should be placed.
This can be uniquely determined as shown in the following lemma.

LEMMA 5.3. Let G be a circular-arc graph with a connected Gc. Let D be an associated
chord model of Gc. Then D determines a unique N-model R ofG.

Proof Fix the placement of any arc u in the circle first. Let U1 be the set of all vertices
adjacent to u in G. Then every arc in U1 can now be placed on the side of their corresponding
chord opposite u (if it is independent of u or covers the circle with u) or on the same side as u
(if it contains u or is contained in u). Since the complement of Gc is connected, one can argue
through a breadth-first search in Gc from u that every arc in G can be placed on a unique side
of its corresponding chord in D. 71

Conversely, however, not every chord model of Gc is an associated chord model for G
since the model could violate other adjacency relationships in G that are missing in Gc.

5.1. The series and parallel relationships among nonadjacent vertices in Gc. The
missing adjacency relationships in G caused by the transformation can be completely captured
by the "series and parallel" relationships in Gc.

DEFINITION. Three chords dl (al, b), d2 (a2, b2), and d3 (a3, b3) in a circle are
said to be in parallel with d2 between d and d3 (denoted by d Id21d3) if the clockwise order

oftheir endpoints is aa2a3b3b2b. They are said to be in series (denoted by d d2 d3) if
the clockwise order is albla2b2a3b3.

The following lemma is easy to justify.
LEMMA 5.4. Let D be any chord model associated with an N-modelfor G. Let vi, vj, and

vk be three vertices in G and di, dj, dk their corresponding chords in D. Then these three
chords satisfy di Idj Idk iff one of the following conditions holds:

(1) vk contains vj vj contains vi.
(2) vk contains vj; v and vi cover the circle.
(3) vk is contained in vj; vi contains vj.
(4) vk is contained in vj; vi is independent of vj.
(5) vk is independent of vj; vj contains vi.

(6) vk is independent of vj; vj and vi cover the circle.
(7) Vk and vj cover the circle; vj is independent of
(8) vk and vj cover the circle; vi contains vj.
DEFINITION. Three pairwise nonadjacent vertices vi, vj, and vk in Gc are said to be in

parallel with vj between vi and vk (denoted by vi vj Irk) if their relationships in G satisfy one

of the eight (mutually exclusive) conditions in Lemma 5.4. Three vertices vi, vj, and vk are
said to be in parallel if they are in parallel with one of them "between" the other two. Three
pairwise nonadjacent vertices vi, vj, and vk of G that are not in parallel are said to be in
series (denoted by vi vj Vk). A set ofmore than three vertices are said to be in parallel
(resp., in series) ifevery three vertices in the set are in parallel (resp., in series).

Note that when vi vj vk, there is nothing special about j rather than or k. Consider
any vertex u of Gc. Let I,, be the set of vertices not adjacent to u in Gc. Partition I,, into
two subsets Lu and R,, such that Lu consists of all vertices in I, that are either contained in u
or strongly adjacent to u in G and R,, consists of those in I, that are either not adjacent to u
or containing u in G. These two sets Lu and R,, are referred to as the "two sides" of u. Note
that when v v vk, then any two of them are on the same side of the third one. It is easy
to see that if v 6 L and l)2 R,, then v lulv2. The converse is also true as shown in the
following lemma.
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LEMMA 5.5. lf vilVjlVk in Gc then (i) vi and Vk are on different sides of vj; (ii) vj and Vk
are on the same side of vi. If vi vj v, then vi and v are on the same side of vj.

Proof. Without loss of generality, assume vi is in Lu.,. Consider their relationships in G.
First, assume vi vj Ivy. If vi is contained in vj in G, then vg ]vj v implies that either v

contains vj (condition (1) of Lemma 5.4) or Vk is independent of vj (condition (5) of Lemma
5.4). In either case, vk must be in Re; and Rye. Hence, (i) holds. Since vg is in R/, (ii) also
holds. If, on the other hand, vg is strongly adjacent to vj, then either Vk contains vj (condition
(2) of Lemma 5.4) or Vk is independent of vj (condition (6) of Lemma 5.4) and we arrive at
the same conclusion.

Now, assume v vj vk. This implies that none of the eight conditions in the definition
of parallel vertices given in Lemma 5.4 apply to vi, vj, and Vk. If v is contained in vj, then
because conditions (1) and (5) do not hold, we have that Vk is either contained in vj or strongly
adjacent to vj. Hence, Vk L. and vi, 1)k are on the same side of vj. If vi is strongly adjacent
to vj, then because conditions (2) and (6) do not hold, we also have that v is either contained
in v or strongly adjacent to v and thus, derive the same conclusion. [3

5.2. Conformal models. We shall now characterize those models of G that can be
transformed into N-models for G.

DEFINITION. A model D of Gc is said to be conformal to G (in short, conformal), iffor
every vertex u ofG the chords associated with vertices in Lu are on one side ofdu (the chord
for u) and those in Ru are on the other side ofdu.

Equivalently, by Lemma 5.5, a model D is conformal if it satisfies (5.1) in G,

for any three pairwise nonadjacent vertices v, v,i, and v,
(5.1)

vlv./lv iff their corresponding chords in D satisfy Dld.ldk.
DEFINITION. An arc model R (H) for an induced subgraph H of G is an induced N-

model for H if the arc overlapping relationships in R(H) conform to the vertex adjacency
relationships in G (rather than those in H). A chord model D(Hc) for an induced subgraph
Hc of Gc is conformal if it satisfies (5.1) in Gc. D(Hc) is said to be conformal to a vertex
u not in Hc if there exists a placementfor the chord of u into D(He) such that the resulting
chord model satisfies (5.1).

THEOREM 5.6. Let G be a circular-arc graph with a connected Gc. Then a modelfor Gc
is conformal iff it is a chord model associated with an N-modelfor G.

Proof The "if" part is trivial by the definition of parallel vertices. Hence, consider the
"only if" part. Let D be a conformal chord model for G. Let u be any vertex of Gc. Fix
the arc placement of u in the circle first. Then start placing the remaining arcs one by one
according to the breadth-first search procedure described in the proof of Lemma 5.3. Similar
to Lemma 5.3, the arc placement is uniquely determined.

We show that the resulting model R is an arc model for G (such an arc model is necessarily
an N-model for G). If every new arc placed satisfies its adjacency relationships with all arcs
previously placed, then we are done. Hence, assume there are violations of the adjacency
relationships. Since two adjacent vertices of G must have their chords cross in model D,
they cannot create any violation. Therefore, assume the first violation is found between two

nonadjacent vertices vi and vj of Gc when we try to place v (whereas the arc for vi has already
been placed). We shall derive a contradiction. Let S be the set of arcs successfully placed so
far (immediately before v.). Let v Pvj be a shortest path in G connecting v and vj through
vertices in S. The path v Pv.i can be viewed as a series of "forced" placements starting with
some vertex (the one first encountered in a breadth-first search from u) in P and ending with

vi, vj.
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If lPI > 2, then the subgraph He of Gc is induced on vertices of the path is j-inseparable.
By Theorem 5.1, there is a unique chord model for Hc. By Lemma 5.3, this results in a unique
arc model for Hc, which must be the same as the one induced by D. But the violation on

vi and vj implies that such a placement produces a violation. Hence, G is not a circular-arc
graph.

If P {v}, then vi, ’Oj, and v, are pairwise nonadjacent in Gc. Hence, either (i) vi, 1)j,
and vk are in parallel or (ii) they are in series. In either case, it is easy to verify that once the
two pairs of arcs {vi, vk} and {vj, v} are correctly placed, it forces the placement of {vi,
to be correct. A similar argument can be used for case (ii).

Hence, such a violation does not exist and our placement strategy successfully produces
an N-model for G.

By Theorem 5.7, the problem of testing whether G is a circular-arc graph is equivalent to
that of checking if Gc has a conformal model. In the next section, we first consider the special
case that Gc is s-inseparable. The general case is discussed in 6 and 7.

5.3. S-inseparable components of G.
THEOREM 5.7. Let G be a circular-arc graph. IfGc is s-inseparable, then G has a unique

N-model.
Proof We show that Gc has a unique conformal model. First, decompose G into

j-inseparable component graphs. Each of these components has a unique chord model by
Theorem 5.1, which must be conformal (otherwise, G is not a circular-arc graph). Next, we
show by induction on IV(Gc)I that there is a unique way to compose a conformal model for
Gc from those individual conformal models of the j-inseparable components of Gc. This is
trivially true for graphs with no more than four vertices. Suppose this holds for all graphs
whose cardinality is less than IV (Gc)l(> 5). If Gc is j-inseparable, we are done. Otherwise,

there exists a partition of V (Gc) into V0, VI, Vg., and with IV0 U Vl >_ 2 and V LI V31 >_ 2
such that every possible edge exists between V1, V and no edge exists between V0, Vg_ t3 V3, or
between V0 V, V3 in Gc. Because Gc is s-inseparable, none of these four sets can be empty.
If Vl > and there exists a vertex s in V that is adjacent to all other vertices in V V, then
it is easy to verify that Gc\{S} is s-inseparable. We can proceed with the construction below
to show that Gc\{S} has a unique conformal model, and, furthermore, there is a unique way to
insert the chord of s into this model. The argument is symmetric if such a vertex s belongs to

V2. Therefore, assume no such vertex s exists. Then it is easy to verify that the corresponding
two component graphs, H and H2 of Gc (the existence of a substitution in either H or H
would imply the existence of one in Gc), are s-inseparable.

By induction, both H and H have unique conformal chord models D and D, respec-
tively. First, assume IV0 Vii >_ 3 and V U V3I >_ 3. Now, there must exist a chord do from

V0 and a chord dl from V that do not intersect each other (otherwise, either V0 or V1 has size
>_ 2 and creates a substitution). Similarly, there exist a chord d from V and a chord d3 from

V3 that do not intersect each other. There are four possible placements in composing chords in

D and D to form a model for Gc. Each of these placements creates different series or parallel
relationships among {do, d, d3} and {do, d2, d3 }. Hence, the vertex adjacency relationships of
G dictates that there is a unique way to compose DI and D (the fact that G is a circular-arc
graph guarantees that there is at least one feasible placement from these two models).

Now consider the degenerate case where either IV01 Vl or V2l IV31 1.
Suppose there are two noncrossing chords d2 and d3 in D2. The two placements of do create
different {do, d2, d3} relations, so they cannot both be N-models. If no such noncrossing pair
exists, then either V2 or V3 is a module or (if both have just one vertex) G is a P,,.

COROLLARY 5.8. Let G be a circular-arc graph with a connected Gc. Then each induced
subgraph H ofG corresponding to the representative graph Hc ofa parallel or neighborhood
module M in Gc has a unique induced N-model.
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Proof. Note that since Gc is connected, each proper submodule of Gc must correspond
to a permutation graph. If M is a neighborhood module, then Hc is s-inseparable. Hence, the
corollary is true by Theorem 5.8. If M is a parallel module (M cannot be V (Gc)), then Hc
consists of a set of parallel vertices. Since the chords in any conformal model for H, must
follow the unique linear order dictated by the parallel relationships of vertices in H, there is
a unique conformal model D(H) for He. Since the complement of Hc is connected, D(H)
gives rise to a unique N-model for H by Lemma 5.3.

This corollary will be used at the end of 6 to compose a conformal model for Go. The
general scheme of our transformed decomposition can be summarized as follows. Take a
proposed circular-arc graph G, transform it into the graph Gc, and perform a decomposition
on Gc to obtain components that correspond to uniquely representable induced subgraphs for
G. If G is indeed a circular-arc graph, then we find a conformal model of Gc and transform it
back to an arc model for G. Otherwise we could either detect a contradiction at an intermediate
step or, at the end, construct an arc model for G that violates its vertex adjacency relationships.
The transformation enables us to use well-known techniques for decomposing circle graphs.

We shall first illustrate our decomposition approach in 6 on those circular-arc graphs
whose associated circle graphs are connected and then describe the reduction from general
circular-arc graphs to the above subclass in 7.

6. Consistent decomposition of a connected Go. Throughout this section we assume
the graph G satisfies the following"

(6.1) Both Gc and Gc are connected.

The general case is discussed in 7. We shall describe a decomposition scheme on Gc that
serves the following purposes: (a) yields components that are s-inseparable, (b) provides
enough information on constructing a conformal model for Gc when G is a circular-arc graph,
and (c) gives rise to a unique decomposition tree.

The example in Fig. 6.1 points out a major drawback of the ordinary modular decompo-
sition when applied to Go. Although the set 1, 2, 3 is a maximal submodule in the neighbor-
hood module V (G), their placements are quite different due to the additional "conformity"
constraint. A closer look at the type II structures reveals that they give rise to modules of a

very special kind--those modules whose endpoint labels consists of two consecutive subse-
quences in any N-model (such modules will be called consistent modules in the next section).
Therefore, we need to devise a decomposition scheme that accommodates this requirement.

6.1. Consistent modules of Gc. Let M be any subset of V (Gc). Let I(M) denote the
set of vertices in V(G)\M that are not adjacent to all vertices of M in G. Note that M is a
module iff no vertex in I (M) is adjacent to any vertex of M.

DEFINITION. A subset M ofV (Gc) is consistent with a subset M’ I(M) ifthefollowing
three conditions hold:

(6.2) All vertices of M are on the same side of every vertex v in M’ (in particular,
M is a module).

(6.3) If v u v2 (resp., v iulv2 or ulv iv2) for some u in M and v, v2 in M’, then

v u v2 (resp., VllUllV2 or ulVllV2) for every ul in M.

(6.4) There exist no/,ll,/,/2 in M and v in M’ such that v u -/12.

M is consistent in Gc if it is consistent with I (M).
Note that any module (other than the whole graph) in a connected circle graph must be a

permutation graph. Since it is possible to draw a chord that crosses all chords in a permutation
model, a permutation graph does not contain three vertices in series.
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FIG. 6.1. A maximal submodule that is not consistent. The partition of V(G) into maximal submodules is

{1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {9}. The partition ofVfG)into maximal consistent submodules is {1, 2}, 13}, {4},
{5}, {6}, {7}, {8}, {9}. Hence the submodule 1, 2, 3} is not consistent.

LEMMA 6.1. Let M be a consistent submodule of V (Gc) that gives rise to a permutation
graph, then all submodules resulting from the ordinary substitution decomposition ofM are
consistent.

Proof Let MI M, be the children submodules of M. Then each Mi is consistent
with I(M). We shall show that each Mi is consistent with I(Mi). Since M gives rise to a
permutation graph, there do not exist three vertices in series in M. Hence (6.4) holds for each
Mi. To show that (6.2), (6.3) hold for M;, we consider the following three cases

(1) M is a parallel module. Then each Mi is a connected component of M. The parallel
relationships dictate that there is a unique linear order for vertices from different M,.’s in any
conformal model. Hence, (6.2) and (6.3) hold.

(2) M is a series module. Then each Mi is a connected component in the complement
of G[M] and I(M) I(M). Since M is consistent, each Mi is consistent with I(M), the
same as I(M).

(3) M is a neighborhood module. Then Mt Mk are the maximal submodules of M.
Suppose one of them, say Mi, is not consistent.

If Mi violates (6.2) then there exist a vertex v in I(Mi)\I(M) and two vertices tt, u’
in Mi such that ulvlu’, Let U be the set of all vertices in I(Mi) between u and u’ (and in
parallel with u, u’). Since M is consistent, U M. Let be any vertex in M\Mi adjacent
to t in Gc. Because Mi is a module, is also adjacent to u’. By considering any chord
model D for Go, it is easy to argue that must be adjacent to every vertex in U. Now, let
v be any vertex in I(Mi)\U. Then, u and u’ must be on the same side of v’ and we have
either v11ulu or ulu’lv’. In any case v’ cannot be adjacent to any vertex in U. Furthermore,
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M\(Mi t2 U) :/: 0; otherwise, M is not connected. Hence, we conclude that M U U is a
module in M, contradictory to the fact that Mi is a maximal submodule of M.

If Mi violates (6.3), then a similar contradiction can be obtained. [3

COROLLARY 6.2. If Go is a permutation graph, then all submodules in the substitution
decomposition tree are consistent (note that this holds even if Gc is disconnected).

6.2, Consistent partition of the neighborhood module V(Gc). By assuming (6.1),
V (Gc) must be a neighborhood module. Let M Mk be the maximal submodules that
partition V (Gc) in the "ordinary" neighborhood decomposition that are not necessarily con-
sistent. Then each of them gives rise to a permutation graph. Note that k must be at least 3.
The following lemma shows that it suffices for us to refine the series modules of V (Gc).

LEMMA 6.3. Ira maximal submodule Mi of V(Gc) is not consistent, then it is a series
module.

Proof Consider any chord model D of G. Since Mi gives rise to a permutation graph,
chords in Mi have one endpoint in a segment s and the other endpoint in a disjoint segment
sz of the circle. If those endpoints ofM in s as well as those in s2 are consecutive in D, then
one can easily verify that Mi is consistent.

Hence, without loss of generality, assume there is a chord [a, b] in V(Gc)\Mi such
that endpoint a is between two endpoints i, i’ of M in segment s. If crosses all chords of
Mi, then endpoint b must fall in segment sz. From model D, one can see that Mi is a series
module. Now consider the case that 6 I(M;). Let P t... t’u be a shortest path from
to M with t’ q Mi, u M. Then one endpoint of t’ falls between i, i’ in segment s and t’
crosses all chords of Mi. Hence, the other endpoint of t’ is in segment s2. Since all chords of
Mi crosses t’, Mi must be a series module. [3

THEOREM 6.4. Let Mi be a maximal series submodule ofthe neighborhood module V G ).
Then there is a unique partition ofMi into maximal subsets M M2 M, each ofwhich
is consistent in Gc.

Proof. Consider the following relation "-" on Mi: u v iff (a) u, v are on the same side
of every in I(Mi); (b) for any two q, t2 in l(Mi), qlult2 ifftlvlt2; t u t2 ifftl v t2;
and (c) there is no in I(M) such that u v. It is not difficult to show that this is an
equivalence relation. Let M M be the unique partition of Mi into equivalence classes.
By the definition of .....-,, these MJ’s must be maximal subsets of M consistent with I (M).
Since Mi is a series module, I(M) I(Mi) for j r. Hence, each MJ is consistent
with I (MJ). [3

DEFINITION. The consistent partition of V (Gc) is the unique refinement ofmaximal sub-
modules of V (Gc) into their maximal consistent submodules as described in Theorem 6.8. A
maximal submodule in the neighborhood partition of V (Gc) is said to be split if it is refined
in the consistent partition (an example is shown in Fig. 6.1).

DEFINITION. The consistent decomposition tree T has V(Gc) as its root module, the
maximal consistent submodules of V(G) as the children submodules of V(Gc), and the
substitution decomposition tree of each children submodule Mi as the subtree of T with root

module Mi. Every submodule associated with an internal node ofthe decomposition tree T is

referred to as a T-submodule
Because the decomposition at each node is unique, the tree T is unique up to isomor-

phism. Since all children T-submodules of V(G) are consistent and give rise to permutation
graphs, by Lemma 6.5, all T-submodules of the tree T are consistent. We shall show that
the representative graph of V (Gc) has a unique conformal model. An important property of
T-submodules is the following.

LEMMA 6.5. Let M be a T-submodule that gives rise to a permutation graph. Let D be
any conformal modelfor Gc. Then the endpoints ofchords ofM can be partitioned into two
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sets A l, A2 such that each chord ofM has one endpoint in A and the other in A2 and those
endpoints in A (resp., A2) are consecutive in D.

Proof We first show that the lemma holds for each children T-submodule MJ of V (G).
CLAIM. Let v [w,x] be a chord in V(G)\MJ crossing all chords in MJ. Let (a, bl)

(resp., (a2, b2)) be the shortest segment containing w (resp., x) with endpoints from. chords
in Mj. Then, there must exist a chord in I(Mj) whose two endpoints are contained either in
(a, bl) or in (a2, b2).

Proof of Claim. Suppose otherwise. Let U (resp., U2) be the set of chords in D such
that at least one of their endpoints falls in (a, b) (resp., (a2, b2)). Since we assume no chord
of U (resp., U2) have both endpoints in (a, b) (resp., (a2, b2)), each chord of U must cross
all chords in MJ. Therefore, all of their other endpoints must fall in (a2, b2) (resp., (al, b)).
Hence, U U2. From model D, it is easy to check that Mj O UI is consistent. Since
V(Gc)\(Mj U U)

_
I(M)) 93, we have that MJtg U is a nontrivial consistent submodule

of V(Gc), a contradiction. 1
Let v’ be a chord in I(M) with its endpoints either in (a, b) or in (a2, b2). We shall find

another chord t’ in I(M) whose endpoints are either in (b, a2) or in (b2, al). If none of the
segments (b, a2) and (b2, a) contain endpoints of chords not in MJ, the lemma holds. Hence,
assume to the contrary, there is a chord (p, q) in V (G)\MJ such that one of its endpoints,
say p, falls in (b2, a). Let (c, d) be the shortest segment containing p with endpoints in Mj.

Ifq 6 (c, d), lett’ t. Otherwise, crosses MJ andq must fallin (b, a2). Let (c2, d2) bethe
shortest segment containing q with endpoints in mj (see Fig. 6.2). By the claim, the existence
of implies that there exists a chord t’ in I(M) whose endpoints are contained in either (c, dl)
or (c2, d2). In either case, one can easily verify that t’ and v’ are in series with some chord
in Mj, and they are in parallel with some other chord in MJ, contradictory to the consistency
of MJ

Next, we show that Lemma 6.5 holds for each T-submodule ofM. By induction, we need
only show this for every children T-submodule of Mj. By Lemma 6.1, these T-submodules
are all consistent. If Mj is a parallel module, then the lemma is implied by the unique parallel
linear order of the T-submodules of Me. If Me is a neighborhood module, then the above
argument on Mj itself can be applied here. Hence, consider the case that Mj is a series
module. If any child T-submodule M’ of Mj does not satisfy the lemma, then M’ must be a
series module. But then, M’ should not have been a component in the series decomposition
ofM (each component of a series module must have a connected complement). ’THEOREM 6.6. Consider a neighborhood module V(Gc). Let V’ {v v} be a
set ofrepresentativesfrom the maximal consistent submodules M Mp in the consistent
partition of V (Gc). Then there is a unique conformal modelfor V’. Furthermore, this model
is independent of the vi’s selected (we shall refer to the subgraph induced on V’ as the
representative graph for V (G)).

Proof By Lemma 6.5, the consecutive endpoint property of the MJ"s implies that such
a model is independent of the v;’s selected. The endpoints of any subset V of V’ divide the
circle into a collection of segments. Chords not in V can be inserted into a chord model for
V by specifying the pair of segments that contain its two endpoints.

CLAIM 1. There do not exist four chords u, u2, u3, and u4 with endpoints ai, bi,
1, 2, 3, 4 arranged as ala3a2abb3b2b4 in D such that u, u2 belong to a maximal submodule
Mi u3, u4 belong to another maximal submodule Mj.

ProofofClaim 1. If these chords exist, then any chord in V (Gc) \(Mi tO M) that crosses

Mi must also cross M. and vice versa. This would make M tO Mj a module of V (G,,) (note
that the number of maximal consistent submodules of V(G) is at least three).
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FIG. 6.2. Thefour segments and Mj.

Let Mi be any maximal submodule in the neighborhood partition (as opposed to the
consistent partition) of V (Gc). Let vi vie be the representatives in V’ from the maximal
consistent submodules Mi Mir of Mi.

CLAIM 2. For any subset V" ofV that constitutes a set ofrepresentativesfor all maximal
submodules except Mi in the neighborhood partition of V (Gc), there is a unique conformal
modelfor {Uil Uik [,.J V t’.

ProofofClairn 2. By Theorem 5.7, there is a unique conformal model for each {Vim tO V",
m k. Since there is a conformal model for {vii viA. tO V", the endpoint order
for chords in V" in each model vi,, tO V", m k must be the same. The endpoints
of chords in V" divide the circle into a collection C of segments. Therefore, there is a unique
pair of segments in C for the chord of each vi.... m k. It remains to show that no two
representative chords form Mi can have one of their endpoints sharing the same segment in C
(since Mi is a module, these two chords would have to share the same pair of segments in C).

Suppose there are two chords, say vit, vi., sharing the same pair of segments of C. By
Lemma 6.3, Mi is a series module. Hence, vit must cross vi,.. If there exists a chord v in I (Mi)
such that one of its endpoints separates those of vil and vi,. in one of the segment pair, say s,
then following the proof of Lemma 6.3, one can argue that there exist a chord v’ in V (G)\M
with an endpoint in s that crosses both vi and v.,. Let Vs be the representative in V" of the
module containing v’ (since the endpoints of Vs are used in defining the segments in C,
cannot be the same as v’). Then vi, vi2, v’, and Vs form a forbidden configuration described
in Claim 1.

By Claim 2, there will be no ambiguity in placing the representative chords vi,, vi.
of any maximal submodule M into the unique model for any subset V’f of V’ described in the
beginning of the proof. Hence, we can construct a unique model for V’ as follows. Start by
choosing an arbitrary V" and construct the unique conformal model for V". Let M
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be the maximal submodules of V (Gc) in the neighborhood partition. Place the chords in
V’ N Mi, s into the current conformal model one by one. This concludes the proof
of Theorem 6.6.

Suppose Gc has a conformal model. To ensure that a model D(M) for a T-submodule
iV/is consistent with respect to chords not in M, it may appear that we need to check the
consistency of D(M) with respect to each vertex in I(M). Since each T-submodule M other
than V(G) is consistent and gives rise to a permutation graph, it can be easily shown that
D(M) is consistent in G iff D(M) is consistent with respect to an arbitrary vertex in I(M).
Hence, we can construct a conformal model for G. as follows.

For each T-submodule M, let V (M) be a set ofrepresentatives in a representative graph for
M. Choose a vertex u(M) in I (M) and construct a conformal model for the subgraph induced
on V(M) t3 {u(M)}. By Lemma 6.5, a model for Gc can be composed in a bottom-up fashion
along the tree T by recursively replacing the representative chord with its corresponding
permutation chord model as follows: (a) when M is a parallel module, we place the chord
models of its children T-submodules according to the unique linear order dictated by the
parallel relationships; (b) when M is a neighborhood module, we place them according to the
unique N-model described in Corollary 5.8; and (c) when M is a series module, its children
chord models are made to intersect each other’s.

THEOREM 6.7. Let G be a graph satisfying (6.1). Let T be the unique decomposition tree

for G. Then G is a circular-arc graph ifffor every T-submodule M there is a conformal model
for the subgraph induced on V(M) U u(M) }.

7. Decomposition of a circular-arc graph G with a disconnected Go. In 6 we assume

G. is connected and apply the consistent decomposition to eliminate type II structures in G.
In case Gc is not connected (type structure exists), one needs to arrange the relative positions
of its components according to the series and parallel relationships in G, which makes the
model construction for each component of Gc more involved. We shall adopt the following
approach:

(a) Represent the series and parallel relationships among the components by a tree.
(b) Construct a unique conformal model for each component node of the tree in (1).
(c) Combine the individual component models together based on the tree in (1) to form a

conformal model for G.
Figure 7.1 illustrates the importance of keeping track of such relationships by showing

an example of a noncircular-arc graph G with disconnected Gc. In this example, we have two
conflicting series relationships 6-2-4 and 6-3-5.

7.1. The unique tree Tus representing the series and parallel relationships among
components in Go. Consider a circular-arc graph G with a disconnected Gc. Let C1 Ck
be the connected components of Go.

DEFINITION. Three components Ci, Cj, and Cir. are said to be in parallel (denoted by
Ci [Cj ICk) ifthere exist three vertices vi, vj, and v/from Ci, Cj, and CI, respectively, satisfying
vii vj lye. Three components that are not in parallel are said to be in series (denoted by
Ci C) Ck) (if Ci C ck, then any three vertices vi, vj, and vk from Ci, C/, and
respectively, must also be in series). A collection ofcomponents are in series ifevery three of
them are.

DEFINITION. A component C is said to be near another component C,i if there exists 1lo

component Ck such that Ci ]Cx, ICi. Define a collection Q ofcomponents to be an NS-collection

if the components in Q are in series and every two components are near each other
Let N1, N2 Nr be the maximal NS-collections of G. It is easy to check that the num-

ber of maximal NS-collection of G is no greater than the number of connected components
in Gc. An example is given in Fig. 7.2.
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FIG. 7.1. A noncircular-arc graph G with a disconnected Gc. Thefive vertices component ofGc gives a uniquely
representable circular-arc graph. Because 6 and are adjacent in G. we have to place arc 6 to the left Qf its chord.
But then 6 and 2 have to be adjacent, a contradiction.

The following relationships on the components can be easily justified.
LEMMA 7.1. Let Ci be any component of Gc. Let Nj, N) be two maximal NS-collection

containing Ci. Then, for any two components C, C’ of Nj\ Ci and N)\ Ci }, respectively,
we have C lCilC’.

Now, construct a bipartite graph TNS with vertex set on the components Ci’s of Gc and
the maximal NS-collections Ni’s by connecting each Ni to every component in Ni by an edge.
An example is given in Fig. 7.3.

THEOREM 7.2. The graph TNS is a tree (called the series-parallel tree, or SP-tree, ofGc).
Proof Suppose there exists a cycle Cl, Nl, C2, N2 Cm, Nm, CI. By Lemma 7.1, we

have (a) C11C21C3, C21C31C4 Cm-llfmlC and (b) Cm!CllC2. However, (a) implies that
C2 and Cm are on the same side of C, which contradicts (b). [3

7.2. C-inseparable graphs. In this section, we show that the problem of constructing a
conformal model for G can be reduced to that of constructing a conformal model for each of
its c-inseparable components defined below.

DEFINITION. For each component Ci, define a c-inseparable component G ofGc to be the
union ofCi together with any vertexfrom Njfor each maximal NS-collection Nj containing Ci
(as shown in Fig. 7.4). Gc is c-inseparable ifthere exists a component Ci such that Gc Gi.

As far as the conformal model S of Gi is concerned, any vertex from any component of Nj
will result in the same model. Therefore, the selection is immaterial. If Gc is connected, then it
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G

4; C= }

N2= {C ,C8,C ]-
1 9

Na= {C ,C,C o}1 1

{ }

Ns= { Cl, C11}
Ns= {C2, Cs }

NT= {C,C C }
2 7

FIG. 7.2. The maximal NS-collection of Gc.

is clearly c-inseparable by this definition. The following two lemmas provide characterizations
of c-inseparable graphs. The first one can be easily justified.

LEMMA 7.3. The TNs treefor a c-inseparable graph Gc(= Gi) satisfies that
(1) every component of Gc, except possibly Ci, is a leaf in TNS containing exactly one

vertex of Gc.
(2) every, maximal NS-collection of Gc consists of Ci and a leafcomponent.
THEOREM 7.4. Consider a circular-arc graph G. Suppose G is c-inseparable and

disconnected. Let Ci be the component such that G Gc. Let K be the set ofvertices ofGc
not in Ci. Then any conformal modelfor Gc satisfies that

(1) between any two chords u, v in K there is a chord d in Ci sttch that uld[v.
(2) those chords in K are in seriesfollowing a unique (up to rotation and reversal) circMar

order around the circle.

Proof. Each vertex in K forms a single vertex component of Go. Let u, v be two vertices
in K. By Lemmas 7.1 and 7.3, ulCilv. Hence, condition(l) holds.
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FIG. 7.3. The series parallel tree Tlvs ofa graph G

G

G

i= 4,5,6,7,8,9,10,11

G

FIG. 7.4. The c-inseparable components ofa graph Gc.

Condition (2) can be proved by the following set partitioning argument. Each vertex u
in Ci partitions K into two sets, L. and R.. By considering vertices of Ci one by one and
refining the partition on K, we can eventually conclude that, in the final partition of K, every
set is a singleton by (1).

THEOREM 7.5. Assume Gc is connected. Then, Gc has a conforma! model iff each of its
c-inseparable component G has a conformal model.
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Proof The "only if" part is trivial since each G is an induced subgraph of Gc. Hence,
consider the "if" part.

We prove this by induction on IV(Gc)I. Assume Gc is not c-inseparable; otherwise, the
theorem is trivially true. By Lemma 7.3, we have the following cases.

Case 1. TNS contains a leafcomponent C whose size is greater than 1. Let u be any vertex
in C and//2 be any vertex not in C. Let H be the subgraph of Gc induced on [V (Ge)\C]O{Ul}
and H2 be the subgraph of G induced on C t.) {u2}.

Case 2. TNS contains a maximal NS-collection N that contains more than two components
and at least one of them, say C, is not a leaf. Now, deleting the edge between N and C will
result in two trees T (the one containing N) and T2 (the one containing C). Let u be any
vertex in C and u2 be any vertex contained in a component in T. Let H be the subgraph of
G induced on the union of {u} and those components in T. Let H2 be the subgraph of Gc
induced on the union of {u2} and those components in T2.

By Lemma 7.1, all vertices of V(Hj)\{/j} are on the same side of llj in G,. for j 1,2.
By induction, each of H and H2 has a conformal model D, D2 with endpoint sequences,
Sab and S cd, respectively, where [a, b] is the chord for u, [c, d] is the chord for u2. The
reason that a, b are consecutive in D1 is because all other chords are on the same side of [a, b]
by the conformity of D. The same argument goes for c, d.

Let D be the chord model with endpoint sequence S $2. D satisfies that any two chords
of A are on the same side of every chord in B and vice versa. It also satisfies the intersection
relationships of Gc. Hence, it is easy to check that D satisfies (5.1). ]

7.3. Constructing a conformal model for a c-inseparable Gc. In this section, assume
Gc has a conformal model and is c-inseparable. Let C be the component of Gc of size greater
than (if no such component exists, then IV(Gc)I < 3 and the problem is trivial). Let K be
the set of remaining vertices u uk, each of which constitutes a single-vertex component
of G and is indexed according to the unique circular order prescribed in Theorem 7.4. We
shall first construct a consistent decomposition tree T for the subgraph Gc[C] and then insert
the vertices of K into conformal models of appropriate T-submodules. For any T-submodule
M in C, let I (M) be the set of vertices of C not adjacent to M. A module M is said to be split
by a vertex u M if there exist vertices v, v in M such that either (a) u v v or (b) there
exists a u’ M such that ulvlu’ and u v’ u’.

LEMMA 7.6. Let u be a vertex in K. Let M be a T-submodule and M Mr be the
children T-submodules ofM. IfM is split by u, then at most one of the Mi ’s is split by u.

Proof. Suppose Ml and M2 are both split by u. Let D be a conformal model for Gc.

Suppressing the endpoints on u, the endpoints of MI (resp., M2) should be divided into two
consecutive sequences A1 and B (resp., A2 and B2) because Ml and M2 are consistent in C
(Lemma 6.5). Since all chords of C are on the same side of u, h(u) and t(u) should also be
consecutive. The chord of u can be split M only if either A or B is separated by h(u), t(u).
Since h(u), t(u) can only separate one of the four sequences A, B, A2, and B2, at most one
of M and Mz can be split by u. 0

Following this lemma, we can find a unique path P from the root of T to a node represent-
ing a module, denoted by M(u), which is split by u, but none of the children of M(u) is split.
If M(u) is a series module, let u(M) be a vertex outside MU {u}. Then divide those represen-
tative chords ofM uniquely into two sets: those that are in between u, u(M) and those that are
in series with u and u(M). Hence, consider the case that M(u) is a parallel or a neighborhood
module. Let D* be the unique conformal models for the representative graph of M(u). Then
the series and parallel relationships of G dictate that there is a unique way to insert the chord of
u into D*. Therefore, we can insert each u of K uniquely into its corresponding T-submodule
M(u) in T. We call these adjusted modules augmented T-submodules (note that several u’s
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could be inserted into the same T-submodule, but no two of them can share the same seg-
ment). The resulting tree T’ with vertices ofK added is called the consistent decomposition tree

of G.
8. Complexity analysis of the recognition algorithm. Our algorithm consists of the

following five major steps. Each step can be shown to take at most O(m n) time. Steps (4)
and (5) are used for disconnected Gc. Described below is not the flow chart, but the main
steps of the algorithm. After a model of Gc is constructed, we need to test if its corresponding
arc model faithfully represents G.

(1) Transform G to Gc, determine L and Ro for each vertex v in G.
(2) Given a graph G satisfying (6.1), determine its consistent decomposition tree T.
(3) Determine a unique conformal chord model for the representative graph of each T-

submodule by applying the join decomposition. Compose a conformal model for G,. in (4)
from those of its T-submodules or declare that such a model does not exist.

(4) Given a graph G with a disconnected G, determine its series parallel tree TNS.
(5) For each inseparable component Gi of G such that Gc[C] G, construct the

consistent decomposition tree T,. for G[C]. Determine the unique path for each vertex of K
along T and construct the corresponding augmented T-submodule. Construct a conformal
model for G. Finally, compose a model for G from those of its c-inseparable components.

To carry out step (1), we first construct the containment graph G* of G, which is the
directed graph with the same vertex set as G whose edges satisfy that (u, v) 6 G* (directed
from u to v) iff N(u) N(v) (u contains v in G). For each vertex u, it takes O(m) time to
determine all Nc;(v)s that contain N6(u). Hence, the construction of G* takes O(m n) time.
Now, two vertices u and v are strictly adjacent iff (u, v) 6 G but there is no edge from one to
the other in G*; they are strongly adjacent iff N6(u) N6(v) V, V\N6(v) N6.(u) and
V\N6(u) N6.(v). The partition of vertices in Gc not adjacent to a vertex v into Lo and R,
can be obtained from the graph G and its containment graph G*.

If we assume that G satisfies (6.1), V(G.) must be a neighborhood module. Hence, in step
(2), we first partition V (G) into its maximal submodules using the substitution decomposition.
Then refine each maximal series submodule Mi of V(G) into its maximal consistent subsets
M M based on the following partitioning argument. Pick a vertex u in Gc, partition
each maximal module Mi not containing u into Mi fq L,, and Mi fq R,, by scanning each vertex
of L,, once. Now, iteratively refine the current partition based on the remaining vertices of G..
Then the final partition of each Mi will be the collection of its maximal consistent subsets.
This operation would take O(m) time. Now, find the substitution decomposition tree of each
mj and combine them to form our consistent decomposition tree T. Hence, the total time
spent in step (2) is O(n2) due to the substitution decomposition.

For step (3), the conformal models for series and parallel T-submodules can be easily
composed from those of their children. To determine a conformal model for the representative
graph Gt of each neighborhood T-submodule M (other than V(Gc)), we apply the join
decomposition to Gt and combine the unique models of the j-inseparable components of
Gt according to the algorithm described in the proof of Theorem 5.7. The conformal model
for the representative graph of V (G) is obtained using the above partitioning argument. These
conformal models can then be used to compose a conformal model for T. In summary, the
operations involved in step (3) are the substitution decomposition, the join decomposition,
and the chord model construction in [5], each of which takes at most O(m n) time.

The operations involved in the construction of TNS in step (4) are very similar to the
refinement procedure used in step (2). Pick a component C of G and a vertex u in C.
Partition the remaining components into two clusters according to L, and R,,. Iteratively
refine the clusters based on every other vertex of C. At the end, each cluster consists of
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components whose series-parallel relationships with respect to every vertex of C are identical.
Furthermore, each cluster corresponds to a maximal NS-collection Nj containing C. This
procedure can be recursively applied to the connected components within each cluster and
we can eventually determine the series-parallel relationships of all components of G and
construct the SP-tree Tus. The total time complexity is O(m + n).

Now consider step (5). Let Gi be a c-inseparable component graph of Go. We shall
follow the notations in 7.3 to construct a conformal model for Gi. Let Ci be the connected
component of G; with more than one vertices. Let K be the set of remaining vertices. The
unique T-submodule M(u) for each u in K can be determined in a bottom-up fashion. For
each T-submodule M in the bottom level, we test which u in Ki splits M by keeping a

vertex u(M) E Ci\M and partition K with respect to each v in M according to L, and Rv.
Hence, all the augmented T-submodules and the consistent decomposition tree of G,, can
be constructed in O(m) time. Once the chord model for each c-inseparable component is
available, composing a conformal model of G according to TNS takes only O(m) time.

9. The isomorphism problem on circular-arc graphs. We first consider the isomor-

phism problem for circular-arc graphs satisfying (6.1). To test the isomorphism between two
such circular-arc graphs G and G’, it suffices to test whether there exist isomorphic conformal
models for G and G’. We shall make use of the unique consistent decomposition trees T and
T’ for G and Gf, respectively. A by-product of our algorithm is an isomorphism algorithm
for circle graphs, which involves only the join decomposition. The unique consistent decom-
position tree T of Gc satisfies the following properties. Its leaves are the vertices of Go. It
has a unique root and every interior node (except the root, which uses the consistent partition)
is associated with N, P, or S, indicating three types of decompositions. The representative
graph of an S-node is a clique. The representative graph of a P-node is an independent set

(consisting of parallel vertices). The representative graph of an N-node is an s-inseparable
component that is neither a clique nor an independent set. Each s-inseparable component of
G, corresponds to a uniquely representable induced subgraph of G. Since each internal node
has at least two children, the total number of internal nodes (and therefore, the total number
of nodes) of T is O(n).

Define the level g.(v) of a node v in T to be the length of the unique path from v to the
root. For each internal node v of T, denote the subtree with root v by Tv. Our isomorphism
algorithm assigns integer labels to the nodes of T and T’ such that a node v of T and another
node v’ of T’ receive the same label iff there exists isomorphic conformal models for T
and T.

ISOMORPHISM ALGORITHM

(1) Determine the respective consistent decomposition trees T and T’. Assign the label
to each leaf of T and

(2) Assign labels to the internal nodes of T and T’ level iteratively with decreasing
Assume all nodes at level g (denoted by S, S, respectively) of T and T’ have been

assigned labels. Let v and v be nodes in Se- and S_, respectively.
(2.1) If v and v’ correspond to series modules in T and T and their children have the

same collections of labels, then assign the same new label to them.
(2.2) If v and v’ correspond to parallel modules in T and T and the labels of their children

follow the same unique parallel sequence, then they receive the same new label.
(2.3) If v and v’ correspond to neighborhood modules (or, consistent partitions) in T

and T’, then there exist unique conformal models D and D’, respectively, for their

representative graphs H and H’. The isomorphism testing of v and v’ can be reduced
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FIG. 9.1. Testing the isomorphism of two unique chord models. If the chords are not labeled, then index each
end the clockwise distance to its opposite end. Then, the isomorphism testing can be reduced to test if44534453 is a

substring of 344534453445344553544354435443544. If the chords are labeled, then in the above indexing scheme
attach the label ofthe chord immediately after its index and apply string matching.

to a string matching problem by using origin-free circular indexing of the endpoints
of D and D’ as shown in Fig. 9.1.

The time complexity for step (1) is O(m n). Next, we claim the complexity for step
(2) is O(n2) provided all the conformal models of the representative graphs are available.
The labels assigned at each level starts from 0. Using bucket sort, we can obtain the sorted
children label sequence of each node in level in ISel time. Step (2.1) can be done by
comparing the sorted children label sequence. Step (2.2) can be carried out by comparing
the unique label sequence. The complexity for (2.3) can be analyzed as follows. Testing the
isomorphism between two unique conformal models D and D’ as illustrated in Fig. 9.1 takes
O(IDI+ID’I) time. Hence, the time it takes to label all nodes in Se- and S_ is 0(1312). Let
g.* be the largest level number. Given the decomposition trees and conformal models for their
representative graphs, the overall time complexity is bounded by y= O([Sel 2) O(n2),
since ee*__ ISel- O(ITI)= O(n).

Next, consider the isomorphism problem for circular-arc graphs whose associated G
is not connected. Assume the SP-tree and all c-completion graphs have been computed.
We divide our algorithm into two parts. First, we test their e-inseparable components for
isomorphism. This can be carried out by testing the isomorphism of their corresponding
(augmented) consistent decomposition tree using the algorithm in Fig. 9.1. Next, assign the
same label to all components in the SP-trees TNS and Ts of Gc and G’c, respectively, if
their c-inseparable components are isomorphic Assign another distinct label to all nodes
representing maximal NS-collections. Then the isomorphism testing ofG and G’c is reduced
to that of two labeled trees TNS and Tso

Testing the isomorphism of two e-inseparable components, say Hc and H, of G and

G’c takes O(IV(H)I) time according to the previous analysis. Now, assigning labels to the
components of the SP-trees can be done by testing for each component Hc of TNS whose
isomorphic components in Ts in O([V(Hc)[. n) time. Hence, the total time for the label
assignment of nodes in the SP-trees is O(n2). Finally, testing the isomorphism of two labeled
trees takes time proportional to the number of vertices in the trees. Therefore, the total time
spent in step (2) is O(n2).
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Acknowledgments. We would like to thank the referees for their detailed comments that
greatly enhanced the readability of this paper. We think a more careful implementation of the
algorithm of this paper could reduce the complexity to O(n2). For example, a crucial step
constructing the containment graph of circular-arc graphs in step (1) of 8 can be reduced
to O(n 2) time using a result of [4]. Since this result was submitted four years ago, some
improvement has been obtained in the interim (notably, the result of [4]). However, we believe
this paper has provided a useful framework for dealing with the structures of interval graphs
and circular-arc graphs; in particular, the characterizations of prime components. Perhaps
more efficient algorithms can be discovered along this line of thought.
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WHEN TREES COLLIDE: AN APPROXIMATION ALGORITHM FOR THE
GENERALIZED STEINER PROBLEM ON NETWORKS*

AJIT AGRAWAL, PHILIP KLEIN;, AND R. RAVI

Abstract. We give the first approximation algorithm for the generalized network Steiner problem, a problem
in network design. An instance consists of a network with link-costs and, for each pair {i, j} of nodes, an edge-
connectivity requirement rij. The goal is to find a minimum-cost network using the available links and satisfying
the requirements. Our algorithm outputs a solution whose cost is within 2[log2(r + 1)] of optimal, where r is
the highest requirement value. In the course of proving the performance guarantee, we prove a combinatorial min-
max approximate equality relating minimum-cost networks to maximum packings of certain kinds of cuts. As a
consequence of the proof of this theorem, we obtain an approximation algorithm for optimally packing these cuts;
we show that this algorithm has application to estimating the reliability of a probabilistic network.

Key words, approximation algorithm, network design, Steiner tree problem

AMS subject classifications. 68R 10, 68Q25

1. Introduction. Consider the following scenario. Client industries of a telephone com-
pany have requested commercial telephone connections between pairs of their offices in dif-
ferent cities. The telephone company must then install a network of fiberoptic telephone links
that accommodates all the clients’ requirements. That is, the network must contain a path us-
ing these links between every pair of cities specified by the clients. Given the cost of installing
links between different cities, the company must now decide which links to install so as to
minimize its cost. (See Fig. 1.)

We formalize the problem as follows. Let G be a graph with nonnegative edge-costs,
and let R be a set of node-pairs (si, ti). We call these pairs site-pairs, and we say the nodes
Si, ti are sites. We call a subgraph H of G a requirementjoin if H contains a path between
si and ti for every requirement (si, ti). We call the node-pairs requirements because they
represent connectivity constraints that must be satisfied by the output subgraph. We abbreviate
requirementjoin by R-join when we want to emphasize the set R ofrequirements. The problem
we consider in this paper is to find a minimum-cost R-join.

The problem faced by the telephone company can be directly formulated as a minimum-
cost R-join problem. In this formulation, it is assumed that a link can be used simultaneously
by many clients. This assumption is reasonable in light of the very high bandwidth of fiberoptic
links.

Consider the special case of this problem in which there is a set T of terminals, and every
pair of nodes in T needs to be connected. This special case is known in the literature as the
Steiner tree problem in networks. This problem was one of the first seven problems shown
to be NP-complete by Karp [19]. Given the range of its applications, it is not surprising that
this problem has been well-studied. Many enumeration algorithms, heuristics [33], [44], 18],
and approximation algorithms [6], [38], [25], [11], [31], [37], [29], [45] are known for the
problem. Polynomial-time solutions for restricted classes of graphs are also known (see [42]).
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FG. 1. An instance of the unweighted network design problem and its solution. Solid edges correspond to

unit-cost links; dotted edges connect site pairs.

However, none of the algorithms addresses the more general case in which each client
can specify an arbitrary pair of cities. Note that in this general case the solution network need
not be connected. Moreover, a minimum-cost Steiner tree solution can be arbitrarily costlier
than a minimum-cost solution to this more general problem.

In this paper, we give the first approximation algorithm for the minimum-cost R-join
problem.

THEOREM 1.1. There is a polynomial-time algorithmforfinding an R:join ofcost at most

2 2/k times minimum, where k is the number ofsites.

1.1. The generalized Steiner problem in networks. The algorithm of Theorem 1.1 is
useful when the network to be constructed need not be connected. However, the algorithm
is also useful, as a subroutine, even in designing connected networks. Namely, we consider
a generalization of the minimum-cost R-join problem involving certain redundancy require-
ments.

Consider the scenario described above but where each client can specify that her pair of
cities must be connected by some number of edge-disjoint paths so that the connection is less
vulnerable to link failure. The goal is to design a network satisfying these specifications. The
network is allowed to contain multiple links between the same pair of nodes; all such links
have the same cost.

To model this situation, we allow more general requirements. The set R of requirements
consists of triples (si, ti, ri), where ri, the requirement value, is a positive integer. An R-
multijoin is a multiset of the edges of G that contains ri edge-disjoint paths from si to ti, for
every requirement (si, ti, ri). The cost of an R-multijoin is the sum of the costs of the edges in
the multiset, counting multiplicities. Using our approximation algorithm for minimum-cost
R-join, we obtain an approximation algorithm for minimum-cost R-multijoin.

THEOREM 1.2. There is a polynomial-time algorithmforfinding an R-multijoin ofcost at

most (2 2/k)[logz(rma + 1)] times minimum, where rma is the largest requirement value
and k is the number ofsites.
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This problem is called multiterminal network synthesis by Chien [7] and Gomory and
Hu [13]. Gomory and Hu and later Sridhar and Chandrasekaran [35] address the synthesis
problem for the special case where the input graph is the complete graph with all costs identical.

The problem is also essentially identical to the generalized Steinerproblem as formulated
by Krarup ([26], as cited in [41 ]). The problem is referred to as the design of minimum-cost
survivable networks in the work of Steiglitz, Weiner, and Kleitman [36]. These researchers
pose the problem of finding a subgraph of minimum cost satisfying given connectivity re-

quirements. The problem we address differs in that we allow the solution to contain multiple
copies of links appearing only once in the input graph G.

In this paper we will use the term R-multijoin whenever the requirements R include
requirement values exceeding one, and will reserve the term R-join for the case when the
requirement values are all one. The former case is addressed only in 3.3, where we show
how to reduce the problem to the latter case. The remainder of the paper addresses only the
latter case.

1.2. Packing cuts, with application to network reliability. Our results also have ap-
plication to evaluating network reliability. Suppose the telephone company has an existing
network and the same list of clients, each specifying a pair of cities. The company needs
to determine how likely it is that random failure of communication links renders some of its
clients’ requirements unsatisfiable. Assuming link failures are independent, determining the
probability that the surviving links can serve all clients’ requirements is a generalization of
the #P-complete problem [39] called network reliability. No approximation algorithms are
known.

However, one powerful and useful heuristic for estimating two-terminal and k-terminal
reliability [8], [9] can be directly generalized to handle the case of arbitrary pairs. The
(generalized) heuristic consists in finding a large collection of edge-disjoint cuts in the network
such that each cut separates at least one client’s pair of cities. For a surviving network to
be able to serve all clients requirements, at least one edge in each cut must survive; thus
such a cut-packing can be used to obtain a lower bound on the probability of catastrophic
failure. Experience [9] with this heuristic in the cases oftwo-terminal and k-terminal reliability
indicates that it is one of the best available.

One of the results of this paper is an algorithm for finding a nearly maximum collection of
such cuts in an auxiliary network whose reliability is the same as that of the original network.
We give more details in 3.

1.3. The combinatorial basis for our algorithms" A new approximate min-max
equality. At the heart of our proofs of near-optimality is a combinatorial theorem that re-
lates the R-join problem to the cut-packing problem in the case of unit edge-weights.

THEOREM 1.3o The minimum size of an R-join is approximately equal to one-half the
maximum size ofa collection ofcuts, where each cut separates some site-pair, and no edge is
in more than two cuts. By "approximately," we mean within a factor of 2 2/k, where k is
the number ofsites.

The proof of Theorem 1.3 is algorithmic and is given in 5. We can formulate the
two combinatorial quantities as the values of integer linear programs that are dual to one
another. It follows from Theorem 1.3 that the fractional relaxations of these programs provide
good approximations to both combinatorial quantities. Moreover, the factor of 2 2/k is

A related problem--finding the minimum number of communication links that would need to fail for all
requirements to be unsatisfiablencan be solved approximately, using techniques we presented in an earlier paper
[22].
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existentially tight, as shown by the example of a k-cycle given by Goemans and Bertsimas
[141.

2. Related work.

2.1. The Steiner tree problem in networks. There have been volumes of work done on
the Steiner tree problem in networks, including proposed solution methods, computational ex-
periments, heuristics, probabilistic and worst-case analyses, and algorithms for special classes
of graphs. Winter [41] and more recently Hwang and Richards [17] surveyed this body of
work.

Karp [19] showed that the problem is NP-complete. Takahashi and Matsuyama [38],
Kou, Markowsky and Berman [25], E1-Arbi [11 ], Rayward-Smith [33], Aneja [2], and Wong
[44] are among those who proposed heuristics. Among these, the heuristics that have been
analyzed have a worst-case performance ratio of 2 2/k, where k is the number of terminals
that need to be connected (called Z-vertices in [41 ]). One algorithm, proposed by Plesnik [31
and by Sullivan [37], performs somewhat better. Recently Zelikovsky gave an approximation
algorithm with a performance ratio of 11/6 [45]. Berman and Ramaiyer [6] have improved
this to 16/9.

In computational experiments, these heuristics generally perform considerably better than
the worst-case bounds. Jain 18] proposed an integer-program formulation of the Steiner tree

problem in networks, and showed that for two random distributions of costs, the value of this
integer program differed drastically from the value of its fractional relaxation.

2.2. The generalized Steiner problem in networks. The generalized Steiner problem
in networks, as originally formulated by Krarup (see [42]), is as follows. The input consists
of a graph with edge-costs, a subset Z of the vertices, and, for each pair of vertices i, j 6 Z, a

required edge-connectivity rij. The goal is to output a minimum-cost subnetwork satisfying
the connectivity requirements. When the rij’s are allowed to be zero, we can clearly assume
without loss of generality that Z consists of all the vertices of the graph.

Previous to our work, no approximation algorithms for the generalized Steiner problem
were known. There have been papers on finding exact solutions and on algorithms for special
classes of graphs [41 ], [42].

In the work of Goemans and Bertsimas, described below, and in our work, the edge-
connectivity requirement is allowed to be satisfied in part by duplicating edges of the input
graph. This corresponds to "buying" multiple communication links of the same cost and with
the same endpoints.

2.3. Survivable networks. In recent work, Goemans and Bertsimas [14] considered a

special case of the generalized Steiner problem in networks. Instead of arbitrary require-
ment values, the input includes an assignment of integers ri to nodes. The goal is to find a
minimum-cost network satisfying requirements rij min(ri, rJ)- They propose a simple but
powerful approach which involves solving a series of ordinary Steiner tree problems using
a standard heuristic. They show that this approach yields solutions that are within a factor
of 2 min(log R, p) of optimal, where R is the maximum ri and p is the number of distinct
nonzero values ri in the input. Moreover, they show that their analysis is tight in the worst

case.
Goemans and Bertsimas restricted their attention to edge-connectivity requirements of

the special form ri.i min(ri, rj) so that each subproblem has essentially the form of an (un-
generalized) Steiner tree problem. That enabled them to solve each subproblem approximately,
using one of the known approximation algorithms for the Steiner tree. By providing an ap-
proximation algorithm for the case of rij {0, }, we make it possible to handle requirements
rij not of that special form.
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2.4. Subsequent work. Building on our result, Goemans and Williamson 16] simplified
and generalized our algorithm. They describe a framework in which to formulate and find
approximately optimal solutions for many constrainedforestproblems, ofwhich the minimum-
cost R-join problem is an example. Their approximation algorithm uses an approach similar
to ours and achieves the same performance guarantee. Goemans and Williamson describe an
implementation of their algorithm that runs in O (n2 log n) time on graphs with n nodes.

In work building on that of Goemans and Williamson, we showed [32] how to obtain
approximately optimal solutions to 2-edge-connected versions of the problems addressed in
16]. In these problems, one needs to achieve 2-connectivity without duplicating links. Finally,

several subsequent papers [15], [23], [40] extended these methods to give approximation
algorithms for the generalized Steiner problem without link duplication.

3. Background. An instance of the generalized Steiner problem consists of a graph G
with edge-costs c, together with a collection R1 Rb} of requirements: each requirement
Ri consists of a site pair {si, ti }, a pair of nodes of G, and a requirement value ri, a positive
integer. A feasible network is a multiset N consisting of edges of G, such that for every
requirement Ri ({si, ti }, ri), there are at least ri edge-disjoint paths between si to ti in the
multigraph with edges N.

3.1. The unweighted ease. To prove performance guarantees for our algorithm, we ex-
ploit an approximate duality between feasible networks and packings of cuts. Fix some
instance of the generalized Steiner problem, where all costs and requirement values are 1.
Thus the instance consists of a graph G and a collection of site pairs {si, ti }. Let k denote the
cardinality of the set of sites, i.e., the set of nodes appearing in site pairs. Note that the number
of sites may be significantly smaller than the total number of nodes. Afeasible network is a
subgraph in which, for every site pair {si, ti }, there is a path between si and ti.

Let N be any feasible solution for this instance. Observe that if N is minimal, then it is
just a forest. Let S be any subset of nodesof G such that for some site pair {si, ti }, one of the
sites is in S and one is not. In this case, the set of edges A with exactly one endpoint in S is
called a requirement cut. There must be a path between si and t; in N, so N intersects A in at

least one edge. Thus we have the following lemmao
LEMMA 3.1. Everyfeasible network and every requirement cut have at least one edge in

common.
Suppose A At are (not necessarily distinct) requirement cuts such that each edge

of G occurs in at most two cuts. We call such a collection of cuts a 2-packing. Then we have
the following easy lower bound on the minimum size of a network design.

LEMMA 3.2. The minimum size of a feasible network is at least one-half the maximum
size ofa 2-packing ofrequirement cuts.

Proof Let N be a feasible network and let A A
requirement cuts. We have

(1) IN[ >Z-l{i’e
eN

because each IAi fq NI is at least one.
For comparison, Edmonds and Johnson [10] show that T-joins and T-cuts satisfy an

analogous inequality, and, more importantly, they satisfy it with equality.
Instead of showing equality, we show approximate equality, to within a factor of 2(1

/ k). This is the content of Theorem 1.3.
Our proof of Theorem 1.3 is algorithmic. We give an algorithm that constructs a feasible

network and a 2-packing, such that the first has size at most (1 / k) times the second. It fol-
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lows that the feasible network is approximately minimum and the 2-packing is approximately
maximum, to within a factor of 2(1 ! k).

The first step is to transform the original graph Go into a bipartite graph G by replacing
each edge uv of Go with two edges ux and xv in series, where x is a new node. The resulting
graph G has the following properties:

Any minimal feasible network in G corresponds to a feasible network in Go of half
the size.
Any packing of edge-disjoint requirement cuts in G corresponds to a 2-packing of
requirement cuts in Go of the same size.

Consequently, in order to prove Theorem 1.3 for Go, it is sufficient to show the following for
.G:

we can find a feasible network N and a packing of edge-disjoint
(2) requirement cuts A1 A such that N < 2(1 / k)/, where

k is the total number of sites.

We show (2) in 4 and 5.

3.2. The weighted case. Now we consider the case in which the costs of edges may
vary, but the requirement values are still all one. It turns out that, like Edmonds and Johnson’s
theorem, Lemma 3.2 and Theorem 1.3 are self-refining. For nonnegative integer edge-costs
c, we simply replace each edge e by a path of length c(e). We say a collection of requirement
cuts is a 2e-packing if each edge e appears at most 2c(e) times. Using this transformation, we
obtain the following theorem from Theorem 1.3.

THEOREM 3.3. The minimum-cost ofa feasible network is at least one-half the size ofa
2c-packing ofrequirement cuts, and at most (1 / k) times this size.

To actually compute an approximately minimum feasible network, we use a more direct
approach, which we describe in 4.2.1.

3.3. Arbitrary integral requirements. So far we have dealt with the case in which each
site pair need only be connected in the final feasible network. As discussed in the introduction
and 2, a client may also require that there be at least rij edge-disjoint paths between her pair
of sites? Thus the case dealt with up to now requires each l’ij to be either 0 or 1.

In order to obtain an approximation algorithm for this generalized problem from our

algorithm for the case of 0-1 requirements, we make use of a heuristic technique due to
Goemans and Bertsimas [14]. They propose a technique they call the tree heuristic, which
consists essentially of decomposing a problem with many different requirement values into a
series of simpler problems in which only two requirement values appear. As we mentioned in
.2, they use the technique for solving only a special case of the generalized Steiner problem.
In conjunction with our new algorithms for the 0-1 case, however, the technique can be easily
adapted to apply to the general case.

Let the different values of rij be 0 P0 < pl < p2 < < P,-. For each 0 < d _< s,
consider the transformed problem

Pd Pd- if ri,j >_ Pd,
r/- 0 otherwise,

which is essentially Pd Pd- copies of a 0-1 problem. Use a standard heuristic to find an

approximately optimal solution, and combine the solutions to the s transformed problems to

2In this case, the feasbile network is allowed to use multiple copies of edges of the input graph; each copy of a

given edge costs the same.
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get a solution to the original problem. The resulting performance guarantee is (R)(s). By
using a similar approach, if each ri is an integer b bits long, then the original problem can be
decomposed into b problems, and the resulting performance bound is 2(1 1/k)b. This is
how we get the performance bound stated in Theorem 1.2.

The obvious question is whether one can do better than this. Goemans and Bertsimas can
show that their analysis is tight, so another approach is needed, one that can deal simultaneously
with widely varying requirement values.

3.4. Reliability estimation. In the introduction, we described a heuristic for estimation
of network reliability in a probabilistic network. In order to use this heuristic effectively,
we want to find a maximum collection of edge-disjoint requirement cuts. This problem is
NP-complete for general graphs. Moreover, an approximation algorithm for this cut-packing
problem would yield an approximation algorithm for maximum independent set [9], an unlikely
outcome in view of recent results [3], [4], [12]. We instead show how to make use of a cut-

packing in bipartite graphs. We apply the transformation described in 3.1 to turn an arbitrary
graph into a bipartite graph with all sites on one side of the bipartition: replace an edge having
failure probability p with two series edges each having failure probability v/-. We
do not change the probability of reliability in carrying out this transformation, and we can
apply the algorithm of 4 to find an approximately maximum set of edge-disjoint cuts in the
resulting graph,

Thus we propose a four-step recipe fbr estimating network reliability. Transform the
network into a bipartite network, find an approximately maximum cut-packing, compute for
each cut the probability that at least one edge survives, and multiply these probabilities to get
an upper bound on the probability that all clients can continue to communicate.

4. The algorithm. In this section, we describe an algorithm for finding a cut-packing
and an R-join. In 4.2, we describe how to find a cut-packing in the case of unit edge-weights
In 4.2.1 we describe the modification needed to handle arbitrary edge-weights. The algorithm
for finding an R-join is the same in the two cases.

4.1. Overview. We start by providing an overview of the algorithm for the case of unit

edge-weights. The algorithm grows breadth-first search trees from the sites, accumulating
cuts as it proceeds. The algorithm employs a notion of timesteps. At each timestep, each
of the breadth-first trees grows by an additional level. Each tree grows until all the sites it

contains have found their mates. When trees collide, they are merged. As the algorithm grows
trees, it builds networks spanning the sites in each of these trees. Using a charging scheme,
we show that the size of each network in a tree is about twice the number of cuts accumulated
while growing the tree

4.2. Finding a cut-packing. Assume the input graph has unit edge-weights; we briefly
address the more general case at the end of this subsection. Let G be a bipartite graph with
all sites on the same side of the bipartition. (We can obtain such a graph from an arbitrary
graph as described in 3.1. All subsequent references to the ’original graph" refer to G.) We
are given a collection of site pairs {s, t }, {s2, t2} {Sb, t,}. We refer to the nodes s;, ti as
sites. We say that two sites in the same site pair are mates of each other.

The algorithm for constructing the cut-packing is quite intuitive. (A summary is given
at the end of this subsection.) We grow disjoint breadth-first search trees from all sites s

simultaneously. We call the edges connecting one level to the next in a breadth-first search
tree a level cut. Each level cut in a breadth-first search tree rooted at s is a requirement

3More specifically, Goemans and Bertsimas show the performance bound is 2( / k) (ct= (p,/- pt-1 p, ).
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CUt because its edges separate s from its mate. Thus at each timestep, we accumulate one
additional requirement cut for each tree being grown.

When multiple trees collide, we merge them into a single tree and continue growing from
its boundary. Thus in general a tree may contain many sites. As soon as every site in a tree
has its mate in the same tree, we can no longer guarantee that subsequent level cuts of the
tree are requirement cuts, so we call the tree inactive, and we contract all its nodes into a
single supernode. A tree that is still in the process of being grown is said to be active. The
algorithm terminates when there are no active trees. At this point, every site pair’s two nodes
are contained in the same tree. More precisely, since each tree has become inactive, and has
hence been contracted to a supernode, there are no sites remaining in the graph.

Because of contractions, the graph on which we are working evolves during the course
of the algorithm. We use G to denote the graph after timesteps. When we refer to a graph,
unless we explicitly call it the "original graph," we will mean the contracted graph G at a
certain point in the algorithm.

It is important to the analysis that all active trees grow at the same rate. The algorithm
takes place over a series of timesteps. In each timestep, each active tree grows by one level.
Thus after timesteps, active trees that have not participated in any collisions all have radius
(as measured in the contracted graph Gt). More generally, let the boundary of a tree be the

set of nodes at the most recent level of the tree. We have the following proposition.
PROPOSITION 4.1. After timesteps, each node in the boundary ofan active tree is distance

from some site internal to the tree.

In the initial bipartite graph, all the sites are on the same side of the bipartition. We show
that this property continues to hold throughout the algorithm.

LEMMA 4.2. After timesteps, the graph is still bipartite, with all sites on the same side

ofthe bipartition.

Proof The proof is by induction on t. The basis 0 is trivial. We must show that the
bipartition property described in the lemma is preserved by contractions. Suppose that Gt-
obeys the property, and that after timesteps, some tree T has just become inactive and is
about to be contracted. By Proposition 4.1, all the nodes in the boundary of T have distance
from some site. Hence they all belong in the same side of Gt-I’S bipartition. It follows that

after the nodes of T are contracted to a single node, the bipartition property still holds. [

We can use Lemma 4.2 to show that all the cuts found by the algorithm are edge-disjoint.
COROLLARY 4.3. No edge belongs to a level cut ofmore than one tree.

Proof By Proposition 4.1 and Lemma 4.2, all the nodes in boundaries of all active trees
are in the same side of the bipartition of the graph. Hence no edge is incident to two active
trees. [3

Thus trees collide by reaching the same node in a given step. Below we summarize the
cut-packing algorithm. In anticipation of the analysis of the algorithm, we "assign" cuts found
to particular trees.

Initialize each site to be an active tree. Repeat the following steps until every tree is
inactive.

2 Grow each tree by one level. Assign the corresponding level cut to the tree.
3 Contract each tree that has just become inactive
4 Repeat
5 Take two distinct trees sharing a boundary node, and merge them into a single

tree. (For the cut-packing algorithm, merging trees consists merely of taking the
union of their nodes and of the cuts assigned to them.)

6 Until no more trees can be merged.
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Because trees are merged immediately after they collide, we can claim the following.
Just before the trees are grown, they are node-disjoint. Just after the trees are grown, they are
internally node-disjoint: only their boundaries can share nodes. We make use of this property
in the next subsection.

4.2.1. The cut-packing algorithm for weighted edges. The cut-packing algorithm in
the case of weighted edges is only slightly more elaborate. We describe it in this subsection.
The algorithm to find a feasible network based on the cut-packing, described in the next
section, remains unchanged.

The key is to carry out many timesteps in a single iteration. It is useful to imagine that
in each iteration, the growing trees continuously "consume" all their incident edges at the
same rate until some edge is completely consumed, at which time things must be updated,
We assume for simplicity that the edge-weights are integral. For each edge, we maintain a
variable indicating how much of that edge remains to be consumed. To determine the amount
by which to grow active trees in an iteration, we compute two minima:

(3) ) min amount of e yet to be consumed,

where the min is over edges e that have one endpoint in an active tree, and

(4) )2 min amount of e yet to be consumed,
e

where the rain is over edges e that have both endpoints in distinct active tree,

.2}.Finally, we let min{,,
To grow the trees by ), we update the variables associated with edges: each edge having

one endpoint in an active tree has its variable decreased by , and each edge having its
endpoints in distinct active trees has its variable decreased by 2)v (because each such edge
is being consumed from both sides). Then we execute steps 3 through 6 of the unweighted
algorithm. It follows by the definition of ) that at least one edge is wholly consumed in an
iteration, hence at least one tree grows by at least one node. For a tree T, let tT be the number
of nodes in To It follows that the potential function T tv (number of trees) goes up by at
least one in each iteration, and hence that the number of iterations is at most the number of
nodes in the graph. Thus the cut-packing algorithm requires only polynomial time.

4.3. The network-design algorithm. The basic approach to building a feasible network
is also quite intuitive. For each tree, we maintain a connected network connecting together
all sites in the tree. This is easy: start with each site being a network in itself, and, whenever
trees merge, use simple paths to join up their two networks.

It is possible to show that for each tree, the size of a network for that tree is no more than
twice the number of cuts assigned to the tree. Such an analysis, however, is insufficient: the
networks formed in this way are not connected in the original graph, because ofthe contractions
we have performed along the way. A path that contains a supernode is not in general a path
in the original graph. Therefore, we must be more careful in joining networks, and must not

forget to include edges between nodes within inactive trees. Note that such edges do not even
appear in the contracted graph G,.

We introduce some terminology to help us relate various contracted graphs to each other
and to the original graph, We call a node a real node if it appears in the original graph, in

4Using a heap to organize the edges incident to each tree, one can implement the algorithm to run in O0l log n)
time [1]. Using a more sophisticated two-level heap structure, one can implement it in O(nv@ log n) time [21].
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Nv

NT

FIG. 2. The network Nr corresponds in a natural way to a subgraph N ofthe original graph. To obtain N
from Nr, replace each supernode v in N7r with the subgraph Nv and recurse on the supernodes in Nv, like v above.

order to distinguish such nodes from supernodes. If the tree T was contracted to form the
supernode v, we say T corresponds to v, and vice versa. We say v immediately encloses v’ if
v is a supernode corresponding to a tree T containing v’. Note that each node is immediately
enclosed by at most one node. A node enclosed by another node does not appear in the current
graph, but we cannot simply forget about it since it continues to play a role in the algorithm.

We define the relation encloses to be the reflexive and transitive closure of the relation
immediately encloses. That is, v encloses v’ if by some series of contractions, v’ was identified
with other nodes to form v.

For an edge e incident to a node v in a contracted graph, there is a real node v enclosed
in v such that e is incident to v’ in the original graph. We say that v’ is the real node by which
e is incident to v.

For each tree T, we maintain a network Nr, a subgraph of T. We maintain the following
site-inclusion invariant:

For each T, the network NT includes all sites that are nodes of T.
We specifically mean to exclude those sites strictly enclosed by supernodes belonging to T.
The site-inclusion invariant speaks only of those sites that are themselves nodes of T. If v is
a supernode corresponding to an (inactive) tree T, we use To to denote T, and we use No to
denote Nr. We say a node is free if it is not contained in any network Nr.

Each network Nr corresponds in a natural way to a subgraph N. of the original graph.
Namely, to get N. from NT, replace each supernode v in NT with the subgraph No, and recurse
on the supernodes in No (see Fig. 2).

We want each network NT to correspond to a connected subgraph in the original graph.
We therefore maintain the following connectivity invariant:

Each subgraph N. is connected.
At any stage in the algorithm, the networks NT induce a subgraph of the original graph,

namely the subgraph induced by the edges in [,.,IT Nr where the union is over all trees active
and inactive. Let us call this subgraph N. Note that each induced subgraph N. is a subgraph
of N.
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We now observe that when the algorithm terminates, the invariants imply that N is indeed
a feasible network--for each site pair {sl, s2}, there is a path in N between sl and s2. Let T be
the tree containing s. Once the algorithm terminates, T must be inactive, and hence contains
s’s mate s2 as well. By the site-inclusion invariant, s and s2 are nodes of NT. Since they are
original nodes, they are also nodes of the induced subgraph N., which is a subgraph of N.
Finally, by the connectivity invariant, N is connected, so the required path exists.

Now we give the algorithm for network design. We run the cut-packing algorithm of
the last subsection and, whenever a "merge" of trees occurs, we update the Nr’s in order to
maintain the invariants. Initially, when every active tree T consists of a single site, N- consists
also of this site. For each tree T not yet formed. Nr is empty. Thus trivially the invariants
hold initially.

In step 5 of the cut-packing algorithm, we merge a pair of distinct trees T and T2 sharing a
common boundary node v. By simply taking the union of their networks Nr/, we get a network
that obeys the site-inclusion invariant. However, this network does not obey the connectivity
invariant. We must therefore connect up these networks. To do this, we add paths from the
common node v to each of the networks N,.. This involves some care when v is a supernode.
However, in this description of the algorithm, we postpone discussion of this case until 4.4.
Assume therefore that v is a real node. We call a procedure CONNECTTONETWORK (v, Ti) for

1,2.
The goal of CONNECTTONETWORK (v, T) is to augment various networks Nr, until v is

connected to N. To do this, the procedure first finds a shortest path P0 in T from v to a site in
T, identifies the shortest initial subpath P of P0 that ends on a node of Nr, and adds the edges
of P to N. We are not done yet; P does not necessarily correspond to a connected subgraph
of the original graph because it may contain supernodes. Moreover, we have just added such
supernodes u to NT, so the networks N, corresponding to these supernodes belong to N..
In order to maintain the connectivity invariant, therefore, we must connect the networks N,
to N.. We make these connections recursively using a procedure EXPANDPATH (u, P). This
procedure expands P into a real path (i.e. a path in the original graph) by replacing each
supernode u in the path with a subpath within Tu that connects a boundary node of T, to u’s
network, goes through that network, and comes out again to the boundary of Tu. For technical
reasons, EXPANDPATH does not replace the last node of P, so if this last node is a supernode.
we use a recursive call to CONNECTTONETWORK to make this part of the path real. Making a
path real using EXPANDPATH and CONNECTTONETWORK is illustrated in Fig. 3.

Now we give the procedure for CONNECTTONETWORK (v, T). Once again, the basic idea
is to find a short path P in T from v to the network Nr, then introduce additional edges to

make P correspond to a real path, i.e., a path among the real nodes.

CONNECTTONETWORK(v, T)
Assumption: The node v is a real node enclosed by some node v0 in the boundary of T.
C1
C2

C3
C4

C5
C6
C7
C8
C9

Let v0 be the node in T that encloses v.
Let P0 be a shortest path in T from v0 to a site s. Let vr be the first node of P0
belonging to N-, and let P be the subpath of P0 from v0 to yr.
Add P to N-.
Call EXPANDPATH(v, P) to make a real path out of P, except possibly for the last
connection.
If the last node Vr in P is a real node, then stop.
Else,
Let T’ be the (inactive) tree corresponding to the supernode yr.
Let v’ be the real node by which the last edge of P is incident to yr.
RecUrsively call CONNECTTONETWORK(v’, T’).
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N
Vr

FIG. 3. After identifying a path P of 131 13 to connect v to T, any supernode u in P is expanded by
EXPANDPATH(v, P) into a connection via the network tree of u. Nu. If the last node in P, v,. is a supernode,
it is recursively expanded to a path in the original graph by identifying a vertex v on its boundary and calling
CONNECTTONETWORK(v, Tot) recursively to connect v to the network Nvro

The procedure CONNECTTONETWORK uses a subprocedure EXPANDPATH(v, P) to make
a real path out of P. For each node v of P except the last, if v is a supernode, we may have
to add edges to No.
EXPANDPATH(v, P)
Assumption: P is a path in some tree T, whose first node encloses v, which is assumed to be
a real node.
E1
E2
E3
E4
E5
E6
E7
E8
E9
El0

Write P l)oeovlel er-l Vr.
Fori:=0tor-ldo

Let o’ be the real node by which ei is incident to
Comment: We must make a real path in N from v to
If vi is a supernode then
Let T be the tree corresponding to vi.
Call CONNECTTONETWORK(v, T).
Call CONNECTTONETWORK(v’, T).
Comment: Now there is a real path from v to T’s network to v’.

Let v be the real node by which ei is incident to vi+t.

To prove that by using these procedures in the merge we maintain the connectivity invari-
ant, we would use induction to show the following two statements. The call
CONNECTTONETWORK(I), T) introduces edges in N, to connect the real node v to N.. The
call EXPANDPATH(v, aP) introduces edges, in the networks Nv; (for each supernode vi P
except the last) so that the edges of P are connected up in N.

4.4. Merging trees whose common node is a supernode. To complete the description
of the algorithm, we consider the case in which the node at which trees collide is a supernode
rather than a real node. Let v be a supernode and suppose trees T1 Tk collide at v at time
t. We describe how to merge these trees.
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To initialize, let T T. For 2 to k, we merge T into T as follows. Since v is on
the boundary of Ti, Proposition 4.1 ensures a path of length from v to a site of Ti. Let e
be the first edge on this path and let vi be the real node by which e is incident to v. We then
call CONNECTTONETWORK(oi, T) and CONNECTTONETWORK(oi, T.). These calls establish a
path going through v between the network of T and the network of T,.. We then let T be the
resulting merged tree, i.e., T := T t_J T/. This completes the merge of Ti into T.

The second invocation, CONNECTTONETWORK(oi, T/), needs some elaboration. As we
shall see in the next section, the analysis of the algorithm requires that steps E7 and E8 of
EXPANDPATH be executed at most once for a given tree T during the course of the algorithm.
The first invocation of CONNECTTONETWORK(I)i, T) executes these two steps for the tree

To corresponding to the supernode v. We must therefore avoid executing these steps in
subsequent invocations of CONNECTTONETWORK. Fortunately, the choice of vi enables us to
avoid executing these steps, as we now explain.

Step C2 of CONNECTTONETWORK selects a path P0 from the supernode v to a site in T.
By choice of vi, we can select the path P0 so that its first edge is incident to the real node
vi in G. P is an initial subpath of P0. Therefore, when we call EXPANDPATH(vi, P) in step
C4, we omit the iteration 0 in EXPANDPATH in which P’s connection to v,,. is made a real
connection. This omission avoids reexecution of steps E7 and E8 of EXPANDPATH on the tree

To.
5. Proving the performance guarantee of the R-join algorithm. To prove (2) of 3.1,

we shall show that the cost of the feasible network produced by the algorithm is small relative
to the number of cuts produced.

At any point in the execution of the algorithm, the age of a tree is the number of timesteps
the tree grew. Thus the age of an active tree is the current number of elapsed timesteps, while
the age of an inactive tree is the number of timesteps that had elapsed when the tree became
inactive. We denote the age of a tree T byage(T). We define the connect-cost of a call to the
subroutine CONNECTTONETWORK as the number of edges added to the network by the routine
not including any calls to the routine EXPANDPATH. That is, the cost for a call is the number
of edges added in step C3, plus the cost of the recursive call in C9. We recursively define the
height of a node to be 0 if it is a real node and one more than the maximum height of any node
it encloses if it is a supernode.

LEMMA 5.1. Steps E7 and E8 ofEXPANDPATH are executed at most oncefor a given tree
T through the course of the algorithm.

Proof Suppose we are about to begin the merging process for a given timestep. Through
a series of calls to CONNECTTONETWORK, we build paths P that connect up some trees’
networks. The key observation is that for every such path P, constructed in step C2 of
CONNECTTONETWORK, every node of P except the last was previously free. (Recall that a

free node is one that is not contained in any network Nr.) Moreover, since the edges of P are
added to the network in step C3, such nodes are subsequently not free. Consequently, each
node appears as a nonfinal node of a path P at most once during the course of the algorithm.

To complete the proof of the lemma, we need only add that a tree T for which steps
E7 and E8 of EXPANDPATH(V, P) are executed corresponds to a nonfinal node v; of the
path P. U

LEMMA 5.2. The connect-cost ofa tree T is at most age(T).
Proof. We prove it by induction on the height of the nodes on the path from v to Nr. The

statement trivially holds if all nodes have height 0, because by Proposition 4.1, v is at distance
age(T) from Nr.

Assume that the statement is true for nodes of height at most l. Let P be the path added
in step C3, and let or be P’s final node. By Proposition 4.1, P has at most age(T) edges.
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T

age(T) t

Cage(T)

c < age(T’) < t

FIG. 4. ProofofLemma 5.2 that the cost ofa call to CONNECTTONETWORK in the construction ofthe solution

for the tree T is at most age(T).

Therefore, if o is a real node, we are through. Otherwise, vr corresponds to an inactive tree
T’. The proof for this case is illustrated in Fig. 4. Let c be the cost of the recursive call
CONNECTTONETWORK(v’, T’) in step C9. By the inductive hypothesis, c is at most age(T’),
since no node in T’ has height more than 1. Suppose or was added to T after timesteps.
It follows that the number of edges in P is age(T) t. Moreover, age(T’) is at most t,

since T’ was already inactive when vr was added to T. Hence the total cost of the call to
CONNECTTONETWOP,K which is IPI + c, is at most age(T) + age(T’), which in turn is at

mostage(T).
Define the expand-cost of a tree T as the cost of the calls CONNECTTO-NETWORK(v, T)

and CONNnCTTONTWORK(v’, T) in steps E7 and E8. By Lemmas 5.1 and 5.2, the expand-cost
of T is at most 2. age(T). Moreover, by the proof of Lemma 5.1, if the node v corresponding
to T remains forever free, then these calls are never made, so the expand-cost of T is zero.
We use ExpandCost(T) to denote the expand-cost of T.

When trees T Tr merge, the network Nr for the resulting tree T is constructed by tak-
ing the union ofthe networks for the T ’s, and then making some calls to CONNECTTONETWORK.
We recursively define the cost of T as the sum of the costs of the trees merged to form T,
plus the costs of the calls to CONNECTTONETWORK, Thus the cost of a tree T is the number
of edges added to create N., not including edges added in steps E7 and E8 of nX’ANDP,TH.
We denote the cost of T by Cost(T).

We will charge the cost ofa tree against the number ofcuts assigned to the tree. Recall from
the cut-packing algorithm that in each timestep we grow each tree, and assign the corresponding
level cut to the tree. Moreover, when trees are merged, their cuts are assigned to the resulting
tree. We denote the number of cuts assigned to a tree by C P(T).
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LEMMA 5.3. After timesteps have elapsed, the cost ofa tree T is at most 2. CP(T)
2.age(T).

Proof We shall prove this statement by induction on the number of elapsed timesteps.
When is 0, the lemma holds trivially. Assume that the statement holds for t. During the +
1st timestep, each active tree T, is grown by one level, so C P(T) goes up by one, while its age
also increases by one. So far, so good. Next, trees are merged. The additional cost incurred
in merging T Tr to form a tree T is the cost of 2(r 1) calls to CONNECTTONETWORK,
each at cost at most age(T) by Lemma 5.2. Hence the total cost of T is

2(r 1)age(T) + Cost (Ti)
i=1

which, by the inductive hypothesis, is at at most 2(CP(T) age(T)). [3

Now we can bound the size of the feasible network output by our algorithm. The size is
the sum, over all inactive trees T of the cost of T plus the expand-cost of T. For any tree T
whose node remains free, the expand-cost is zero. Let us call a tree free if its corresponding
supernode is free. Thus we have

size of feasible network

< Cost(T) + ExpandCost(T)
T

< Cost(T) + E (Cost(T) + ExpandCost(T))
free T unfree T

(5) _< 2( CP(T) E age(T)),
T free T

where the last inequality follows from Lemma 5.3 and our remarks about expand-cost.
Since CP(T) is the total number of cuts assigned by the cut-packing algorithm, we

have proved a version of (2) with a factor of 2 instead of 2(1 / k). To get the smaller factor,
we prove a lower bound on the second sum in (5).

For a tree T, let k- denote the number of sites that are nodes of T. Define k. -]{kr,
T encloses T’}. Similarly, let CP*(T) {CP(T’) T encloses T’}.

LEMMA 5.4. For any tree T, age(T) is at least CP*(T)/k.
Proof. The key observation is that for any tree T’, C P (T’) is at most kr, times age(T’),

since each of the k(TI) sites is assigned a maximum of one cut per timestep until age(T’)
timesteps. If T’ is enclosed by T, then age(T’) is at most age(T), so we have

CP*(T) E{CP(T’) T encloses T’}

<_ {kT, T encloses T’}age(T) kage(T).

We use Lemma 5.4 to get our lower bound on {age(T) T free}. Let k* max{k.
T free}. Then by Lemma 5.4, for each free tree T, age(T) > CP*(T)/k*. Since each tree
is enclosed by some free tree, {CP*(T) T free} is the total number CP of cuts assigned.
Hence

E{age(T) T free} > CP/k*.(6)

Substituting into (5) and replacing k* by k, the total number of sites, gives (2) and completes
the proof of Theorem 1.3.
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6. Further directions for research. Two important variants of the basic Steiner tree

problem in networks are the node Steiner problem [34], in which nodes are assigned costs,
and the directed Steiner tree problem, in which the input graph is directed and one seeks a
directed tree as the solution. It is an open problem to find good approximation algorithms for
either problem. It was observed by Berman [5] that the set cover problem is reducible to the
node Steiner problem via an approximation-preserving transformation. Khuller [20] made
an analogous observation concerning the directed Steiner tree problem. In fact, Segev [34]
gave an approximation-preserving reduction from the node Steiner problem to the directed
Steiner problem. In view of Lund and Yannakakis’ recent result showing that the set cover
problem cannot be approximated by a factor smaller than logarithmic [28], it is natural to
ask whether there are logarithmic-factor approximation algorithms for the node and directed
Steiner problems. We have recently discovered such an algorithm for the former problem
[24].
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RECTILINEAR PATH PROBLEMS AMONG RECTILINEAR OBSTACLES
REVISITED*

CHUNG-DO YANGt. D, T. LEE, AND C. K. WONG

Abstract. Efficient algorithms are presented for finding rectilinear collision-free paths between two given points
among a set of rectilinear obstacles. The results improve the time complexity of previous results for finding the
shortest rectilinear path the minimum-bend shortest rectilinear path, the shortest minimum-bend rectilinear path and
the minimum-cost rectilinear path. For finding the shortest rectilinear path, a graph-theoretic approach is used and
an algorithm is obtained with O(m log + log3/2 t) running time. where is the number of extreme edges of given
obstacles and m is the number ofobstacle edges. Based on this result an O(N log N+ (m +N) log + (t + N) log (t +
N)) running time algorithm for computing the L minimum spanning tree of given N terminals among rectilinear
obstacles is obtained. For finding the minimum-bend shortest path, the shortest minimum-bend rectilinear path, and
the minimum-cost rectilinear path, we devise a new dynamic-searching approach and derive algorithms that run in
O(m log m) time using O(m logm) space or run in O(m log3/2 m) time and space.

Key words, rectilinear shortest path. minimum-bend path, path preserving graph, computational geometry,
rectilinear obstacles

AMS subject classifications. 68U05, 68Q25.68P05.68R10

1. Introduction. The problem of finding paths among obstacles has been extensively
studied in the past. As the integrated circuits draw more research interest, finding rectilinear
paths using different criteria has become an important variation of the traditional shortest path
problem in automated circuit design. Both measures, the number ofbends and the length of
a rectilinear path, are two important fac.tors while routing between two points among a set of
rectilinear obstacles. Many efficient algorithms about finding rectilinear paths with respect to
these two factors separately or jointly have been obtained [3], [4], [8], [10]-[14], [16], [18].
There are two particularly good results for finding shortest path (SP). The first, due to Clarkson,

Kapoor, and Vaidya [3], runs in O(m log3/2 m) time, where rn is the number of obstacle edges.
The second, due to Wu et al. [16], runs in O(m logt + 2 logt) time, where is the number of
extreme edges of given obstacles. Mitchell [11] proposed a wave-front approach to find the
shortest rectilinear path in O(m log2 rn) time, which is later reported to run in O(m log m) time
after some modifications 12]. An edge on the boundary of an obstacle is an extreme edge if its
two adjacent edges lie on the same side of the line containing the edge. Results from [3], 11 ],
12] are also applicable to any polygonal obstacles. Here we only focus on rectilinear paths.

In this paper we shall present an O(m log + log3/2 t)-time algorithm that combines features
of both results to find a shortest path. Finding the minimum spanning tree (MST) among N
terminals can also be solved in O(N log N + (m + N) log + (t + N) log2(t + N)) time based
on the same method, which improves the O(N log N + (m + 2) log t)-time algorithm due to
Wu et al. [16].

With regard to the number of bends, Ohtsuki [13] proposed an O(m log2 m)-time and
O(m)-space algorithm for finding a minimum-bend path (MBP). By combining their algo-
rithms with the data structure from Imai and Asano [6], finding a minimum-bend path can be
solved in O(m log rn) time and space.
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When both measures are considered jointly one may define problems by assigning differ-
ent optimization priorities to length and bends. Recently, Yang, Lee, and Wong 17] presented
algorithms to find a minimum-bend shortest path (MBSP), a shortest minimum-bend path
(SMBP) and also a minimum-cost path (MCP) in O(mt + m log m) time, where is the num-
ber of the extreme edges. We shall show below that this class of problems can be solved
in O(m log3/2 m) time by applying a hybrid approach, called dynamic-searching, which is
a combination of the graph-theoretic approach and the continuous-search (e.g., wave-front)
approach. We first generate a graph just for guidance purposes and then by traversing the
graph construct the corresponding rectilinear paths on the fly, thereby obtaining our goal path.

In the following, we first define our problems and give some preliminaries in 2. In 3,
we show the faster algorithm for SP and MST. In 4, we focus on solving MBSP, SMBP, and
MCP. We introduce the dynamic-searching approach and the guidance graph and then present
our algorithms. The conclusion follows in the last section.

2. Preliminaries. A rectilinearpath I-lpq is a path connecting two points p and q, which
consists of only horizontal and vertical line segments.

Given two terminals s and d and a set of rectilinear obstacles, we define the following
problems.

Problem SP is to find a path with the shortest distance. Such a path is called the shortest
path, denoted sp.

Problem MBSP is to find a path with a minimum number ofbends among all the shortest
paths from s to d. Such a path is called the minimum-bend shortest path, denoted
mbsp.

Problem SMBP is to find the shortest one among all the minimum-bend paths from s

to d. Such a path is called the shortest minimum-bend path, denoted smbp.
Problem MCP is to find the minimum-cost path from s to d where the cost is a nonde-

creasing function f of the number of bends and the length of a path. Denote such a
path mcp.

Each of the input obstacles is specified by a sequence of edges in clockwise order. An
extreme edge is an obstacle edge with both of its adjacent edges lying on the same side of the
line containing it. An extreme point is an endpoint of an extreme edge. Let m be the number
of obstacle edges and be the number of extreme edges. Let EXTM be the set of extreme

points and let V be the set of obstacle vertices. Note that for a convex rectilinear polygon,
there are only four extreme edges and eight extreme points. Much of the following discussion
will be on a point set, {s, d} [,.J EXTM, which will be denoted as EXTMSD.

We now define a basic graph generated by Clarkson, Kapoor, and Vaidya [3], which will
be used in both of our algorithms for SP and for MBSP, SMBP and MCP.

DEFINITION 1. Let gpq denote the closed rectangle with segment pq as its diagonal.
Given a set ofpoints S, a point q S is a staircase point ofa point p S ifand only if Rpq
does not contain any point in S other than p and q. Let SC(p denote the set of staircase
points ofpoint p.

We recall an important property employed by Clarkson, Kapoor, and Vaidya [3] and
refer to their algorithm as Algorithm C in what follows. That is, a shortest path from one
point p to some other point q can always be replaced by subpaths going from p to one of its
staircase points and the same holds for subsequent subpaths. With this property, Algorithm C
obtains a graph on the vertex set, V [,.J{s, d}, by adding all the edges between points and their
staircase points. Such a graph, which preserves shortest paths, may contain O (m2) edges and
O (m) vertices, which yields a basic O (m2)-time path-finding algorithm. Then by introducing
Steiner points to the graph, they reduce the graph to have O(m log m) vertices and edges,
referred to as Algorithm C1. Algorithm C1 constructs the graph in a recursive manner. A
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cutting line that divides the vertices in two halves is introduced first. Then all the vertices are
projected onto this line, creating Steiner points. Edges are added between vertices and their
corresponding Steiner points, and between consecutive Steiner points. Recursively perform
the cutting, projecting and adding edges on the subsets of vertices that lie on both sides of
the cutting line. Since each vertex can create at most O(log m) Steiner points, the number of
vertices of the graph is O(m log m). The edges, which are either horizontal or vertical, are
also added during the creation of Steiner points. Therefore, it is not difficult to see that there
are O(m log m) edges. The time complexity to search this graph for a shortest path is thus
O(m log2 m).

To further improve the time complexity, they use a grouping technique to generate more
edges but fewer vertices, i.e., O(m log3/2 m) edges and O(m log/2 m) vertices, for the graph
and are able to reduce the time complexity of the searching to O(m log3/2 m). This algorithm
is referred to as Algorithm C2. The grouping technique is to virtually cut the space into

strips before they generate Steiner points such that each strip contains only O (v/log m) points.
In each strip, only two Steiner points are created (the highest and the lowest) to provide
connections across strips. Inside a strip, an edge is created for each pair of vertices that lie on
different sides of the cutting line. It can be proved that such a graph still preserves the shortest
path. Note that this refined graph contains some oblique edges due to the direct connections
inside each strip. This property makes this graph different from the previous one when we
use it in our algorithm later. We refer the reader to [3] or 10] for details of these algorithms.

By applying Fredman and Tarjan’s O(IEI + IVI log IVI) shortest path algorithm [5] on
the final graph, they obtain the shortest path in O (m log3/2 m) time.

On the other hand, the algorithm of Wu et al. [16], referred to as Algorithm W, finds the
rectilinear shortest path among rectilinear obstacles by first constructing a so-called "’track
graph" based on the extreme edges. Horizontal and vertical tracks, which are projected from
extreme edges, are the edges and the intersections of these tracks are the vertices of the track
graph. The graph plus the graph representing the obstacle vertices and edges, is of size
O(m + t2), hence yielding an O(m log + 2 log t) time algorithm.

Depending on the values of and m, Algorithm W may be asymptotically more efficient
than Algorithm C2 and vice versa.

Before we present our algorithm, which is better than both, let us give some preliminary
results.

DEFINITION 2. A U-shaped subpath (or U-subpathj’br short) consists ofthree segments.
s l, s2, and s3 such that s and s3 lie on the same side of the line containing s2; segment s2
is referred to as the U-segment of the U-subpath. A staircase path is a path containing no
U-subpath.

LEMMA 2.1 (see Fig. 1). Any sp, mbsp, smbp, or mcp, Fl,,a, from s to d can be divided
into a sequence of subpaths rci, m, such that all 7 ’S are staircase paths and the
start and endpoints ofall 7l" are points in EXTMSD.

Proof. If the U-segments of all the U-subpaths of Fls,a contain extreme points, then each
U-subpath can be cut into subpaths at these extreme points and each subpath will satisfy the
property as claimed. Consider now a U-subpath of I’IL,a denoted as s, s2, and s3, such that
its U-segment does not contain any extreme point (as in Fig. 1). We can always shorten the
U-subpath by shrinking s and s3 and moving s2 accordingly without incurring any bends. A
strictly better sp, smbp, mbsp, or mcp can therefore be obtained, which yields a contradiction.
That is, any sp, mbsp, smbp, or mcp can be represented by a sequence of staircase subpaths
starting and ending at points in EXTMSD. D

The above lemma implies that it is sufficient tojust consider staircase paths while deriving
efficient algorithms.
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FIG. 1. Divide a path into staircase subpaths.

3. A faster algorithm for SP.

3.1. A smaller path-preserving graph. Our algorithm is based on the following obser-
vation that it is sufficient to generate a shortest-path-preserving graph by just considering the
extreme points and their projection points when using Algorithm C1 or C2.

DEFINITION 3. Given a set of obstacles, define the projection point set 79(p) ofa point
p to be {qlq is on some obstacle boundary and is a horizontal or vertical collision-free
segment}.

Let PJ {qlq 79(P), P EXTMSD} and I EXTMSD PJ denote the set of
essential points, which are used in the construction of the backbone of the shortest-path-
preserving graph. They are not, however, the only vertices in the final graph.

DEFINITION 4. Define the graph SPGO to be a graph with vertex set equal to I and edge
set equal to {(a, b)[ a, b I, a SC(b)}. The cost ofedge (a, b) is the rectilinear distance
between points a and b.

The graph SPGO is the backbone of the graphs that we generate later. SPGO contains
in the worst case O([ll) (or O(t)) vertices and O(1112) (or O(t2)) edges. We adopt the graph
reduction method used in Algorithm C1 by introducing Steiner points. Let SPGr denote the
reduced graph we generate. Let SPGr denote the refined, reduced graph when the method
of Algorithm C2 is used. We have the following lemma whose proof is similar to that given
in [3], [10], [14].

LEMMA 3.1. SPGr has O([llloglll) vertices and edges, and can be computed in
O(m log Ill 4- ili log II!) time. SPGrr has O(lll log/2 III) vertices and O(lll log3/2 III)
edges, and can be computed in O(m log III / ill log3/2 III) time.

DEFINITION 5. Define the boundary graph BG to be a graph with vertex set equal to

EXTM P J and edge set equal to the set ofedges connecting p and q in the vertex set that
lie consecutively on the boundary of an obstacle. The cost of the edge (p, q) is defined to

be the shorter rectilinear path length along the boundary of the obstacle connecting points
p and q.

Let SPG be the union of SPGrr and BG. The following lemma is easily established.
LEMMA 3.2. SPG contains O(t log/2 t) vertices and O(t log3/2 t) edges.
We now prove that SPG is a shortest-path-preserving graph. Since the extreme points

are in SPG, from Lemma 2.1 it is sufficient to show that for any shortest path all its subpaths
connecting points in EXTMSD are embedded in SPG.

LEMMA 3.3. If there exists a shortest staircase path RP connecting two points p, q
EXTMSD, then there is a path P in SPG connecting p and q with the same length as R P.

Proof Denote the abscissa and ordinate of a point p as p.x and p.y, respectively. Without
loss of generality, let p.x <_ q.x and p.y <_ q.y, as shown in Fig. 2(a). Let the sequence of
adjacent segments in RP be denoted as h, v, h2, 1)2 hg, vu, where h’s are horizontal
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FIG. 2. Situations while dragging paths.

segments and vi’s are vertical segments, hi and og can be empty, respectively. Apparently,
the path is in Rpq. If there is no obstacle intersecting Rpq, then p and q are staircase points of
each other, and P is an edge in SPG. Suppose that there are obstacles in Rpq. We perform
the following dragging operations to hi from to g"

(1) Drag hi downward until it either is as low as p, hits some obstacle, or is as low as
hi-l. In the last case, merge hi and hi-i to be one horizontal edge.

(2) If hi (a, b), a.x < b.x, hits some obstacle on edge (r, u) but r a, then break
hi into two segments, (a, r) and (r, b) and perform dragging operations on (a. r)

(Fig. 2(b)).
(3) At each dragging, the adjacent vertical segments are adjusted accordingly.

We then perform the same dragging operations to the vertical segments on RP except that we
drag them rightward and adjust horizontal segments accordingly.

Denote as P the resultant path (Fig. 2(c)) after performing these operations. It is not hard
to see that P has the following properties: first, it has the same length as R P" second, it is
a staircase path; third, all the turning points between hi and oi-1 (after re-ordering segments
on P as {hi, vl hg, v,}) will be an upper-left corner of an obstacle. Since we focus
only on paths between points in EXTMSD, we may assume that there is no extreme point on
P.. Otherwise, those subpaths formed by cutting P at those extreme points can be considered
respectively.

Consider a horizontal edge hi (a, b), < <_ m’ (treat all the other horizontal segments
similarly and all vertical ones symmetrically). As in Fig. 2(d), point a is either p or a corner
vertex of an obstacle as shown before. Let (a, r) be the edge of obstacle o containing a.

(1) If the boundary of o turns downward at r and r.x < b.x, then r is an extreme point
on (a, b), which violates our assumption.

(2) If it turns upward at r, r b is a vertex of o.
(3) If it turns upward or downward at r where r.x > b.x and hi+l exists, then vi must

align with an extreme edge y (due to the rightward dragging we performed on vi)
of a possibly different obstacle and b is its projection on o. If hi+l does not exist in
this case, then vi must connect q, which also makes b a projection point. Thus, b is
a projection point on o. Therefore hi is part of an edge in the boundary graph.
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All edges in P satisfying (2)-(3) are either connecting extreme points to the projections
or connecting points in EXTM PJ along the boundary of obstacles. The first kind of edges
are all in SPGrr, and the second kind of edges are in BG and thus also included in SPG. Note
that the dragging operations may be performed symmetrically by shifting horizontal segments
upwards and vertical segments leftward. Since all the edges or subpaths of P are embedded
by SPG, the lemma is proved.

We conclude with the following theorem.
THEOREM 3.4. SPG is a shortest-path-preserving graph.
Now we summarize the algorithm to construct SPG and find the shortest rectilinear path.

Algorithm FindSRP.
1. Sort all the obstacle edges on their X and Y coordinates
2. By plane-sweeping horizontally and vertically, find the projection set P J. Projection

points are recorded in order in lists associated with every obstacle edge. Each such list can be
implemented as a balanced binary search tree [1 ].

3. Find the boundary graph BG along all obstacle boundaries by using EXTM and PJ
as its vertex set. This is done by traversing the obstacle boundary and linking up all the extreme
points and the projection points in lists associated with obstacle edges.

4. Find SPGrr as in Algorithm C2 using EXTMSD [,.J PJ as the vertex set.
5. Merge SPGrr and BG to obtain SPG.
6. Find the shortest path from s to d on the graph SPG using Fredman and Tarjan’s

algorithm [5].

THEOREM 3.5. The Algorithm FindSRP finds the shortest rectilinear path from s to d
among rectilinear obstacles in O(m log + log3/2 t) time using O(m + log3/2 t) space.

Proof Steps and 2 take O(m log t) time. For step 3, computing BG can be done in
O (m) time by traversing along the obstacle boundaries. For step 4, construction of SPGrr

can be computed in O(m logt + log3/2 t) time. The reader is referred to [3], [10], [14].
Since SPGrr contains O(t log3/2 t) edges and O(t log1/2 t) vertices, and BG contains O(t)
edges and vertices, the combined SPG can be computed in time linear in the size of SPG.
Finally, in step 6, applying Fredman and Tarjan’s shortest path algorithm on SPG that runs in
O(IEI + IVI log IVI) time, we are able to find the shortest rectilinear path in O(t log3/2 t) time.
Overall, the time needed is of O (m log + log3/2 t). The space needed is O (m + log3/2 t).
The correctness of the algorithm follows immediately. [2

3.2. Finding MST among obstacles. With the same approach, one can handle multiple
input points and generate a similar graph where the minimum spanning tree (MST) is preserved.
Given N terminals. Wu et al. 16] obtained the MST in O(N log N + (m + 2) log time based
on the track graph. Here we simply let the essential point set be the same as we used before
with all the N input terminals included. As mentioned earlier, based on Algorithm C 1. we can
generate SPG,. containing only O(1II log III) edges and vertices for the essential point set I.
Combining this graph with the boundary graph we have a different shortest-path-preserving
graph, denoted SPGm, with O((t + N) log(t + N)) edges and vertices.

Since the pairwise shortest paths are all retained in SPGm, the MST is also retained. We
then adopt the algorithm presented by Wu et al. [15], [16] that runs in O(IEGI log IVGI) time
for finding an MST among a set of points S on a graph G (V, E) with S V.

THEOREM 3.6. The minimum spanning tree of N terminals among obstacles can be
computed in O(N log N + (m + N) log + (t + N) log2(t + N)) time, where m is the number

ofobstacle edges and is the number ofthe extreme edges ofobstacles.
4. Faster algorithms for MBSP, SMBP, andMCE We now deal with problems, MBSE

SMBE and MCE We shall refer to any of mbsp, smbp, or mcp as an optimal path.
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FIG. 3. The corridor ofa path.

DEFINITION 6. A point p is said to 1-dominate a point q if the X- and Y-coordinates

of p and q satisfy the condition p,x > q.x and p.y >_ q.y. In other words, point p lies in
thefirst quadrant when point q is placed at the origin. 2,3,4-dominating relations are defined
symmetrically.

Redefining the essential point set in Definition 3.1 to be V [,.J{s, d}, and using Algorithm
C1, we obtain a graph, referred to as guidance graph, and denoted as GG. The guidance
graph will be used to guide our path finding algorithm. The graph was also exploited by Lee,
Yang, and Chen [10] to solve shortest path problems when the obstacles are weighted. We
summarize some properties of GG as follows.

LEMMA 4.1 ([3], [10], [14]). GG has thefollowing properties:
(1) It has O (m log m) edges and vertices.
(2) V is a subset of the vertex set of GG.
(3) All edges in GG are horizontal or vertical.
(4) For any two points p and q in V, if Rpq is empty, then there is a shortest path between

p and q in GG.
(5) It can be constructed in O(m logm) time using O(m logm) space.
We show below that the guidance graph contains at least a path that is homotopic to an

optimal path. Lemma 2.1 implies that if for any staircase subpath zr of an optimal path
between two points p and q in V, we can find a path in GG between p and q that is homotopic
to zr, then there is always a path in GG that is homotopic to the optimal path. We introduce the
corridor of a staircase path between two points p and q in V. We consider only the staircase
(first type) where point q 1-dominates point p. The corridor of a staircase (second type) where
q 2-dominates p is defined similarly. Without loss of generality, a staircase in the following
discussions refers to the first type. The second type of staircase can be treated similarly. Let
7rpq denote the staircase path in Rpq for p, q V and q 1-dominates p. Let D(Trpq) and
U (Zrpq) denote the sets of vertices in V that lie in Rpq and below and above 7rpq, respectively.

DEFINITION 7 (see Fig. 3). Given two points p, q V, with q 1-dominating p, and
a staircase path rr from p to q, define corridor(p, q, re) to be the open rectilinear region
enclosed by two staircase paths from p to q, denoted P and P2, where P1 and P2 satis
the following: PI passes through and makes upward turns at points in U (7pq that are not

4-dominated by any other point in U (pq) and P2 passes through and makes rightward turns

at points in D(7pq) that are not 2-dominated by any other point in O(Trpq).
One can see that the corridor(p, q, re) does not contain any points of V and all staircase

paths between p and q in corridor(p, q, 7r) are homotopic to each other.
LEMMA 4.2. There exists a path 7r from s to d in GG such that zr is homotopic to an

optimal path from s to d.

Two paths are homotopic to each other if one can be continuously dragged to become the other without crossing
any points in V.
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FIG. 4. A path in the corridor and GG.

shed paths

FIG. 5. Two pushed pathsfrom p in a corridor.

Proof. From Lemma 2.1, we can focus on a staircase subpath between two points p and
q in V. Let 7rpq denote a staircase subpath from p to q of an optimal path. Let ui,i=l k and

* ), respectivelyvi,,=l represent the points in V on PI and P2 that define corridor(p q Yrpq
(Fig. 4). vi 1-dominates vj if > j and uk 1-dominates ut if k > I. Now let zi,i=l be
any maximal sequence such that zi is in ui,i=l or in vi,i=l t, and zi 1-dominates zj if
> j. Apparently, all zi’s are in V and for every two consecutive elements zi and zi+, there

is no other point in Rz, zi+l. According to the definition of GG, GG provides the connection
between zi and zi+ and thus there is a path in GG connecting p and q through zi,i= We
therefore conclude that there is a path from s to d embedded in GG that is homotopic to any
optimal path from s to d. 1

DEFINITION 8 (see Fig. 5). Define apushedstaircasepathfrom p to q in corridor(p, q, zr
to be a staircase path from p to q, sttch that the path only makes turns alternately at points
on PI. and P. Any two-segment sttbpath, connecting a horizontal and a vertical segment, is
called an L-subpath. A canonical pathfrom s to d is a concatenation ofpushed staircase paths
connecting two points p and q with the last segment of each staircase path overlapping the
leading segment ofthe next pushed staircase path.

LEMMA 4.3. There are at mostfour different kinds ofpushed staircase pathsfrom p to q
in the corridor between p and q for any p, q V.

Proof (see Fig. 5) Starting from either p or q, there are at most two pushed staircase
paths, one starting horizontally and the other starting vertically. Once we decide on the first
segment of the pushed path from either p or q, the rest of it is unique. Cl

LEMMA 4.4. There exists an optimalpathfrom s to d such that any ofits staircase subpaths
between two consecutive points p, q

_
EXTMSD is a pttshed path.

Proof Consider a subpath between p and q of an assumed optimal path. Let it be I-I*pq"
Without loss of generality, let q 1-dominate p. Consider corridor(p, q, l"lpq) as a polygon
containing I’Ipq. Since there are no points in V inside the corridor, we can, starting from p, drag
all the horizonlal segments of l"Iq upward and vertical segments rightward until they hit the
boundary of the corridor without increasing the length or the number of bends. Consequently
we obtain a pushed path from p to q with the same length and number of bends as Flq. This
applies to all such subpaths in an optimal path. ’/’he lemma is proved.
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FIG. 6. An L-subpath.

This lemma implies that there exists an optimal path which is a canonical path.
LEMMA 4.5. For a pushed staircase path I-I from p to q, there is a path P6 in GG

from p to q passing through all the essential points on FI.
Proof According to the definition ofpushed path, FI is a sequence ofhorizontal or vertical

segments or L-subpaths connecting points in V. Since every horizontal or vertical segment
between two points, u and v in V on path FI, is obviously an edge in GG, we can focus on
proving that each L-subpath is also supported in GG.

Without loss of generality (Fig. 6), consider an L-subpath that goes from r D(I-Ipq)
upward and then turns rightward to v U(llpq) without containing any other points in
V. If Rrv is empty, then we are sure that the connection between r and v is supported
in GG. Otherwise, there are some essential points on P2 falling in Rrv. Order them as
hi, {i k} such that Rr.h, Rhi,hi+ and Rh,v are all empty. Based on the properties
of GG, between every two consecutive points of {r, hi, h2 h, w} there exists a path
in GG. Therefore, the L-subpath between r and v is also supported. This completes the
proof.

We call the path P66 described in Lemma 4.5 a target path. We intend to search on GG a
target path and convert it to a canonical path by some dragging operations. Since GG contains
only vertical or horizontal edges, we always append a vertical or horizontal segment to the
end of the computed pushed path when we advance in the graph searching process. The last
segment of a pushed path may be subject to dragging operation. When we reach d, we have
a pushed path, which will be an optimal path. By focusing only on dragging the target path,
we define the dragging operations applied to segments of a path.

DEFINITION 9. Let last(zr) be the last staircase subpath of rr from p to v, where p,
v V. A segment w oflast(yr) isfixedifeither

(1) w is horizontal (respectively, vertical) and cannot be dragged anyfurther vertically
(respectively, horizontally) without crossing any point in V, or

(2) it is the first segment oflast(rr).
It is floating otherwise.

When we advance along a target path on GG, the fixed portion of the path remains fixed
thereafter and need not be considered again. Only the floating segment of the path needs to
be considered for possible dragging, as defined below.

DEFINITION 10. Let yrsp be a pushed pathfrom s to p, and let yrsq be the pathformed by
concatenating to rest, an edge e Ea6 from p to q, where e is either horizontal or vertical
(Fig. 7). Let yr..q be thepushedpath draggedfrom tsq by thefollowing dragging operations. Let
w and Wnew be the last segments ofyrsp and yrsq, respectively, and assume they are horizontal.
The vertical case can be defined similarly. Define the dragging operations on Yrsq asfollows:

(1) q is to the right of p (e is horizontal) (Fig. 7(a)): W,,e, wile is of the same type

(fixed orfloating) as w, where "11" denotes path concatenation. Note that w isfixed
if it borders an obstacle above.
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(a) (b)

FIG. 7. Dragging operations while advancing on e.

(2) q is to the left of p: Since w is horizontal, this is not possible.
(3) q is above p (e is vertical):

(3.1) w is fixed: Let W,ew be e. W,ew is fixed if it borders an obstacle to the right.
(3.2) to is floating: (Fig. 7(b)) Drag w upward and adjust rr accordingly:

(3.2.1) Ifw can be dragged to q without hitting a point in V, then wneu, is the
dragged w.

(3.2.2) Otherwise. we ignore this advancing step.
(4) q is below p (e is vertical): (Fig. 7(c))

(4.1) If w borders an obstacle below it, we have a U-subpath here. We now have a
new staircase subpath (of the second type) with to being the leading segment,
which is fixed, and last(rrsq) voile.

(4.2) Otherwise, we ignore it.
LEMMA 4.6. A target path in GG can be successfully transformed by the dragging

operations defined above to be a canonical path which is an optimal path.
Proof We can follow Lemma 4.5 and just focus on an L-subpath of an optimal path

between two points in V. If each L-subpath from u to v can be formed by dragging a
corresponding subpath on the target path from u to v, then the lemma is proved. According
to Lemma 4.5 the corresponding subpath on the target path consists of horizontal and vertical
edges which form a staircase path from u to v. There is no point of V in the area between
this subpath and our L-shaped optimal subpath from u to v. Clearly, we will not hit any point
in V when we do the dragging. Operations (1) and (3) are sufficient to drag edges in such a
staircase path to form the L-subpath. Operation (3.2.2) ignores the case when we hit some
point during dragging. Step (4.1) is just for making turns around a boundary edge and forming
a U-subpath. Step (4.2) ignores the cases not belonging to the target path.

4.1. The Algorithm and Its Complexity. Now we are ready to describe our algorithm:
we apply Dijkstra’s shortest path searching algorithm on the graph GG to find the optimal
path. While searching on GG and computing the pushed path, more than one pushed path
may be generated when we reach a vertex from different edges. The information of the pushed
paths leading to a vertex will be computed, and compared. Only the best path(s) obtained
thus far will be retained at each vertex. We discuss below only the algorithm for MBSP.
Modifications to the algorithms for solving SMBP or MCP are straightforward.

Algorithm MBSP.
1. Construct the guidance graph GG, and preprocess V for the dragging operations.

This can be done using method in [2], which supports O(log m) query time using
O (m log m) preprocessing time and linear space.

2. Apply Dijkstra’s algorithm to find the optimal path according to metric vector v
(d (rr), b(rr)), where d(zr) and b(rr) denote the length and the number of bends of
respectively. Let 7r, be a pushed path obtained so far from s to a vertex u on GG.
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FIG. 8. One path subsumes the other.

There may be other pushed paths computed while reaching u from other edges and
have been stored in u. We thus store at u the type of staircase of the last staircase
subpath. Do the following:
2.1. If ru is strictly worse than any other stored in u, discard
2.2. If zr, is strictly better (with lexicographically smaller metric) than some of the

pushed paths stored in u, we discard the worse ones and store zr, at u.
2.3. If two have the same metric and the same type, compare their last segments. If

their last segments overlap, then discard the one with the longer last segment.
Otherwise (If they are not of the same type), keep both of them in u.

2.4. Calculate the metric vector of a pushed path advancing to each neighbor v of
u via edge (u, v) in GG and put that into the queue used by the Dijkstra’s
algorithm. Note that there are at most eight pushed paths stored at each vertex
u. That is, for each type ofpath there are two pushed paths, with the last segment
leading to u either horizontally or vertically.

When we reach a vertex u, we ignore a pushed path if there exists one with smaller metric.
When two pushed paths have the same metric, yet reaching u in different directions, we simply
keep them all in u and proceed with the next advancing. We are able to compare and ignore
some of those pushed paths that are of the same type and reach u in the same direction. See
Lemma 4.7 below. The number of pushed paths that need to be stored in each vertex u is
therefore at most eight, i.e., four pushed paths from vertex v that/-dominates u, 1, 2, 3, 4,
and the last segment to u can be either vertical or horizontal.

LEMMA 4.7. Consider two pushed staircase paths zrl and zr2 with the same metric vector

from s to some vertex u in GG. If the last segment, wl, of rr is longer than the last segment,
1,02, of2 and w contains 1102 (Fig. 8), then any pushed path generated using r will not be
better than the pushed path generated using rr2. The same holdsfor other types ofpaths.

Proof Without loss of generality, let w and w2 be horizontal. Let the other endpoint
of w2 be m (u is the other endpoint). If w. is fixed, then obviously 7/"2 can replace rr in any
further case. If Wl is floating, then we may obtain a pushed path from zr. by dragging w
upward. Wherever w goes, the area swept over by it is empty. Since w2 is shorter, it can also
be dragged to the same position as w with the same vertical distance offset. The dragging
adds the same vertical distance offset to both paths and yet incurs no extra bend to either path.
That is, any pushed path rr can grow to is no better than the best pushed path grown from rr2.
The lemma is proved.

THEOREM 4.8. The problems MBSP, SMBP, andMCP can be solved in O(m log2 m) time,

using 0 (m log m) space.
Proof. According to Lemma4.6, while traversing the target path and applying the dragging

operations on the way, we can get an optimal path from s to d. Lemma 4.7 guarantees that
when a path is discarded, there must be some other path that subsumes it. This ensures that
the final path is an optimal path. As to the running time, according to Lemma 4.1, the time
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FIG. 9. The Z-substitute.

needed to generate the graph GG is O (m log m). The time used for searching on GG from
s to d follows the complexity of Dijkstra’s algorithm which is O([EI log [El) on a graph
G(V, E). The time for searching on GG is therefore O(m log2 m). When we advance on
GG through an edge, we perform dragging operations on at most eight pushed paths. Since
each dragging operation can be done in O(logm) time [2] with O(m logm) time and O(m)
space preprocessing, the time complexity of the algorithm is O (m log2 rn). We need space
for storing the guidance graph O (m log m)) and the pushed paths. Each pushed path has size
less than that of its corresponding target path on GG and an edge of GG can be traversed
(appended and dragged) by at most eight pushed paths from one of its end points. Therefore,
the size of all the pushed paths kept while searching will be O(Ec) or O (m log m).

4.2. Solving MBSP, SMBP and MCP in O(m log3/2 m) time. The algorithm can be
modified to run in O(m log3/2 m) time as follows. First, we find a more suitable guidance
graph and a more efficient searching algorithm. Algorithm C2, as mentioned, can construct a
refined, reduced graph, SPGrr, providing the same connections as GG, with O(m log3/2 m)
edges and O(m log 1/2 m) vertices in O(rn log3/2 m) time. We adopt this graph as the new
guidance graph, denoted GG’, and use the shortest path searching algorithm of Fredman
and Tarjan [5], which runs in time O(IEI + IVI log IVI). The algorithm thus spends only
O(m log3/2 rn) time on graph searching. However, one of the properties in Lemma 4.1 does
not hold any more, that is, the edges in GG’ are not necessarily horizontal and vertical. This
has effects on our dragging operations since we can only deal with horizontal and vertical
segments in our dragging. We thus do some adjustments to the graph and compute substitutes
for all such oblique edges.

From [3], each oblique edge in GG’ is constructed from a set of horizontal and vertical
edges in GG, which forms a Z-shaped subpath consisting of three segments where the first
and the third lie on the different sides of the line containing the second one (Fig. 9). We call
these three segments the Z-substitute of the original oblique edge. We can perform dragging
similarly on these three segments when we encounter an oblique edge while searching on the
new guidance graph and transform the target path to a pushed path.

To handle oblique edges, we add one dragging operation to the previous definition.
DEFINITION 11. Define dragging operations as follows (asslme last(rr) is a staircase

path):
(1)-(4) The same as operations (1)-(4) in Definition 10.
(5) For an oblique edge, replace it by the three segments of the corresponding Z-

substitute. Apply the same operations as (1)-(4) to each ofthem in seqttence.
Besides reducing searching time on the guidance graph GG’, we must devise a better

way to perform dragging, since spending O (log rn) time for each dragging consumes overall
O([EGG’[ 1ogm) time, which becomes O(m log5/2 m).
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In the following, we compute the hit vertices for each edge (at most one in each direction)
when we generate the the graph GG’ in O(m log3/2 m) time. Thereafter, while searching
and computing the path, we are able to obtain in O (1) time the hit vertex for each dragging
operation, thus realizing a total of O (m log3/2 m) time. Note that the dragging operations are
applied to the last segment of a pushed path (i.e., the W,,ew in the dragging definition) which
may consist of several edges of the graph GG’. For example, consider that we form W,,ew by
concatenating a horizontal last segment w with a horizontal edge e on GG. We simply let the
hit vertex of W,,eo be the lower one of the hit vertices of w and e when we drag Wneo upward.
Dragging horizontal segments downward or dragging vertical segments can be done similarly.

DEFINITION 12. An upward (respectively, downward) hit vertex h ofa horizontal edge e

in GG is thefarthest ofall the obstacle vertices that e can be dragged upward (respectively,
downward) to hit without crossing the interior of any obstacle. A leftward or rightward hit
vertex ofa vertical edge in GG is defined symmetrically. The hit vertex ofan edge e in GG’
is defined asfollows.

(1) lf e is also in GG then e inherits all its hit vertices in GG.
(2) If e is not in GG, then it is an oblique edge. The hit vertices of e are defined to be

the hit vertices of the three segments of the Z-substitute of e. For each vertical segment g the
hit vertex in each direction is the nearest hit vertex ofall the edges in GG that compose g.

Note that a hit vertex of an edge can be undefined if the edge cannot be dragged to hit any
vertex or can only be dragged to hit a portion of the obstacle boundary that does not contain
any vertex. We attempt to store the Z-substitute for each oblique edge in GG’ and compute its
hit vertices when we construct GG’. We will embed the computation of the hit vertices of all
the edges on GG’ in the recursive steps where the edges of GG’ are constructed. Following is
the algorithm for constructing GG’ including the computation of hit vertices.. Graph GG and
the hit vertices of its edges are generated as intermediate products. The reader is referred to

[3], [14] for details of the original algorithm. Here we only put emphasis on how we compute
the hit vertices.

Algorithm FindGG’.
1. Sort all vertices in V’ V I..J{s, d} vertically and horizontally.
2. Find the median vertical cut line L that divides V’ in halves.
3. Find the projection points, if visible, from all the vertices to the cut line L. Call those

projection points the potential Steiner points. Call the edges connecting vertices to
their projections the potential horizontal edges. An obstacle edge that is cut by L is
marked as a potential horizontal edge with a distinction as to whether it borders the
obstacle below or above. For two vertices on the same side of L and with the same
ordinate, we only generate one potential Steiner point and one potential horizontal
edge from the one nearer to L, if it exists. (Note that these potential points and edges
are in GG. They are called potential since not all of them will be inserted into GG’.)

4. (Find the hit vertices of the potential horizontal edges.)
Initialize an empty stack for storing those potential horizontal edges that are to the
left of L. Scanning these edges from top to bottom, we compute the downward hit
vertices. Let the edge we encounter be e and let ve be the vertex that produces e

(Fig. 10(a)). Let the edge at the top of the stack be re.
(a) e is longer than te:

(a.1) If e borders an obstacle boundary below it, then pop all the edges off from
the stack leaving the hit vertices of them undefined, and let ve be the
downward hit vertex of e.

(ao2) Otherwise, push e onto the stack,
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FIG. 10. Finding the hit verticesfor the potential edges.

(b) e is not longer than te:
(b.1) Ife borders an obstacle boundary below it, then keep popping an edge te off

from the stack until the stack is empty. Let ve be the downward hit vertex
of te if te is not shorter than e and let the hit vertex of te be undefined,
otherwise. Let the downward hit vertex of e be re.

(b.2) Otherwise, keep popping an edge te off from the stack as long as te is
longer than e, and let the hit vertex of e be re. Push e onto the stack.

Find the upward hit vertices in a similar way. Do the same for the potential horizontal
edges on the right of L. Call the edges connecting those consecutive potential Steiner
points on L the potential vertical edges.

5. (Find the hit vertices of the potential vertical edges.)
At each recursive step, we compute the hit vertices of all the potential vertical edges
generated on the cut lines. Let L be the cut line under consideration. We look at the
two nearest existing cut lines on each side of L, which were generated in previous
recursive steps. Let them be LL and LR which are on the left side and right side of
L, respectively (Fig. 10(b)).
(a) If there is no previous cut line on either side, i.e., the first cut line and those

leftmost and rightmost cut lines during the recursive cutting process, then we
simply scan over all the points on that side and find the leftward or rightward
hit vertices directly. Otherwise, do the following.

(b) The leftward hit vertices of the edges on L are obtained either from vertices
between L and L/, if it exists, or from the leftward hit vertices on the potential
vertical edges on L/, if there is no vertex between L and LL. The rightward hit
vertices of all the potential vertical edges on L can be found in a similar way
(from the vertices between L and L R and those rightward hit vertices on L.)

6. (Find the hit vertices of the edges in GG’.)
Cut the plane into horizontal strips of size O (v/log m each and decide which potential
Steiner points and which potential edges are added to GG’ (see [3], [14]). For those
potential edges that are added to GG’, let them have the same hit vertices. Some
oblique edges which connect pairs of points on different sides of L are generated
in each recursive step. We record with each oblique edge, its Z-substitute which
consists of three segments: two potential horizontal edges from its end points to
L and one vertical segment which is composed of all consecutive potential vertical
edges between the potential Steiner points on L of the two end points. We regard the
three segments in a Z-substitute as three edges while dragging and thus we need to
compute the hit vertices of them respectively. The hit vertices of the two horizontal
edges are those computed in step 4. The hit vertex of the vertical segment is obtained
by comparing the hit vertex of each individual potential vertical edge obtained in
step 5 and selecting the nearest.
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7. Do steps 2-6 recursively to the vertex sets on the left side and the right side of L,
respectively.

Algorithm FindGG’ generates the same graph structure as in [3]. In addition, the hit
vertices of all the horizontal and vertical edges on GG’ and of the Z-substitutes of all the
oblique edges are computed.

LEMMA 4.9. Algorithm FindGG’ runs in O(m log3/2 m) time and space and the hit
vertices ofall the edges in GG’ are correctly computed.

Proof The complexity is the same as Algorithm C2 since in each recursive step we
compute the hit vertices in time linear in the number of points processed. The only step we
need to address is the computation ofZ-substitutes and their hit vertices for each pair of vertices
inside a strip. Inside each strip, as the accumulated distances are computed [3], [14], 10], we
construct a hit vertex table recording the nearest hit vertex in each direction between every pair
(not necessarily consecutive.) of potential Steiner vertices on L in the strip. This information
can later be used for computing the hit vertices of a vertical segment in a Z-substitute. The time
complexity therefore is still kept within the same bound. For the correctness of computing the
hit vertices, we distinguish two cases as follows:

(1) When a vertex h is the downward hit vertex of a potential horizontal edge e:

If there is any other potential horizontal edge e’ between h and e, it must not be shorter than
e. If e is as long as e then it must not border an obstacle below. According to the algorithm,
for these cases, e will be pushed onto a stack. When h is scanned, we pop all edges on top of
the stack before we meet an edge shorter than the edge from h to L, which certainly includes
e. The case when h is the upward hit vertex of e is proved similarly.

(2) When a vertex h is the leftward hit vertex of a potential vertical edge e:

Let e be on a cut line L. If h falls between L and L/, then we can certainly find it during the
scan. If h falls to the left of L/, then h must be a hit vertex of some potential vertical edge on

L/. We can assume that h has been recorded as the leftward hit vertex of this potential vertical
edge. The reason is that since e can be dragged over L/ to hit h, the two vertices that have
projections on the endpoints of e must have projections on L/ as well. These two projections
are two potential Steiner points on L/ (denoted as a and b in Fig. 10(b)). Therefore, there
must be one or more potential vertical edges on LL between a and b, and one of them will hit
h when dragged leftward. Hence by scanning all the hit vertices on Lt and vertices between

LL and L, we can correctly compute the hit vertices of edges on L. The proof for computing
the rightward hit vertices is similar.

After we have computed all the hit vertices of all the edges of the new guidance graph.
the dragging operations can be redefined as follows.

DEFINITION 13. The dragging operations are defined to be those specified in Defini-
tions 10 and 11 and thefollowing corresponding operations:

(1) The upward hit vertex of W,,eo, is the lower one ofthe upward hit vertices ofw and e.

(’2) The same as in Definition 10.
(3.1) The upward hit vertex of W,,ew is the upward hit vertex of e.

(3.2.1) If the upward hit vertex of h is higher than q then we drag w to q and let it be
W,,eo,. The up’ard hit vertex of W,,e,, is that of w.

(3.2.2) Tte same as in Definition 10.

(4) and (5) are the same as in Definition 11.

One can see that such dragging operations have the same effects as do the previously
defined ones. However, we do not perform segment dragging queries any more. The algorithm
is the same except the dragging operations are modified. The space needed is O(IEGG’I) for
storing GG’.
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THEOREM 4.10. Problems MBSP, SMBP, and MCP can be solved in 0 (m log3/2 m) time
and space.

5. Conclusion. In this paper, we have presented two results improving on previous ones
on finding rectilinear paths among obstacles. We have shown that a smaller shortest-path-
preserving graph for shortest rectilinear paths among rectilinear obstacles is sufficient and
thus obtained a more efficient algorithm for problem sp. As a by-product, a faster algorithm
for finding the minimum spanning tree of a set of terminals among obstacles is also obtained.
Furthermore we have presented a dynamic-searching approach which computes optimal paths
dynamically while searching on a guidance graph. Problems MBSP, SMBP, and MCP can be
solved efficiently using this approach. It is not clear whether a better guidance graph can be
obtained to yield a more efficient algorithm for these problems. The problems of how one
can improve the time complexities of these algorithms remain open. The results of this paper
cannot be extended to non-rectilinear cases in an obvious way.
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binary fixed-point representation. To illustrate that it is nonasymptotically useful as well, the new algorithm is shown
to reduce the time for syndrome calculation for binary Bose-Chaudhuri-Hocquenghem (BCH) codes of practical
interest.
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1. Introduction. This paper is concerned with the evaluation of polynomials

p(X) cn Xn +... + Cl X + cO

whose coefficients C belong to a field .T" when the argument X assumes a value x in a field ,f,
which in general is an extension of.T’. Three different problems can be distinguished, namely,

1. Evaluate p(X) with specified coefficients co c,, at an arbitrary argument x.
2. Evaluate p(X) with arbitrary coefficients co c,, at a specified argument x.
3. Evaluate p(X) with arbitrary coefficients co cn at an arbitrary argument x.

The "specified" items are those known in advance and can be used to design an appropriate
algorithm, whereas the "arbitrary" items are the actual input to the algorithm. The well-known
Horner’s rule (cf. [3, p. 467])

p X) (... cn X + Cn_l X .qt_ ....qt_ c1 X + co

suggests an algorithm that solves the third problem with 2n operations. Ofcourse this algorithm
solves the first and second problem as well when the "specified" items are included within the
algorithm rather than given as inputs. Horner’s rule is easy to implement and needs no storage
beyond an accumulator.

In many applications some specified polynomial has to be evaluated many times, which
corresponds to the first problem. Here it may be worthwhile to do some precomputation to
devise an algorithm suited for that polynomial. The concept of a straight-line algorithm (SLA)
has been introduced to study this problem (see also [4] or [3, p. 475] where an SLA is called
a polynomial chain). An SLA is defined as follows:

The input x, which can be any element of ’, is assigned as the "result" of step 0
of the algorithm. At each step i, for 1, 2 k, the algorithm performs one
operation on two operands. The operation must be either addition or multiplication.
One of the two operands at step must be the result of the operation at step j for
some 0 < j < i. The other operand at step must be either a fixed specified element
of .T" (and these specified elements will be called the constants of the SLA) or the
result of the operation at step h for some 0 < h < j.
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Note that the choice of operands at each step in an SLA is independent of the values of the
input and of the values computed in previous steps. An SLA evaluates a polynomial p(X) if
for some i, 0 < <_ k, and for every input x 6 g, the result of step is p(x). Note that the
same SLA can evaluate many different polynomials.

There have been several suggestions for devising SLAs to evaluate polynomials with
no restrictions on the coefficients. But the resultant SLAs do not significantly improve on
Horner’s rule. In fact, it has been shown that there are polynomials such that every SLA that
evaluates them needs at least about n additions and } multiplications; cf. [3, pp. 475-479] for
more details.

In applications where the field g is a proper extension of .f’, i.e., g -- .Y’, a nonscalar
multiplication, i.e., a multiplication with both operands in g, is typically more complex than a
scalar multiplication, i.e., a multiplication with one operand in .Y" and one operand in g. Thus,
SLAs that minimize the number of nonscalar multiplications are of interest. Some SLAs have
been proposed that need only about Vrfi nonscalar multiplications, but the total number of
operations is still about 2n (cf. [6]).

A quite different approach has been taken by Savage [7], who gave an SLA that out-
performs previous SLAs when the number s of different coefficients is much smaller than
the degree of the polynomial n. Under this condition, Savage showed that the number of
nonscalar multiplications needed is not larger than 2x/n + 2 and that this can be achieved
with a total of only (n/logs n) (2 + o(1)) operations, where o(1) denotes a function that
is negligible compared to for n large. It is possible to choose the parameters of Savage’s
algorithm differently so as to minimize the total number of operations. This minimization
leads to a version of Savage’s algorithm that needs only a total of (n/logs n) (1 + o(1))
operations if s is much smaller than n.

In this paper we extend Savage’s result by allowing coefficients ci from a subset of ,
which can be much larger than in the original approach. These coefficients ci are constrained
to be a linear combination of some specified generators fl m , where all scalars of
the linear combination are in a specified set ,A

__
." with cardinality 141 a. Equivalently,

the coefficients ci are constrained to lie in the set

$ { .a +’"+tim "am [aj 4)c_. ’.

Such coefficient sets occur frequently in practical applications. We will also assume with
no real loss of generality that ,A contains at least the two neutral elements 0 and of the

atnfield .T’. There are at most s > ISI different coefficients of the above form. The new
SLA given in 2 will evaluate polynomials of degree n with such coefficients using a total of
(n/logsn) (1 + o(1)) operations under only the restriction that a i.AI is much smaller
than mn. Alternatively, the number of nonscalar multiplications can be upper-bounded by
2x/n + 2 together with a total of (n ! log n) (2 + o(1)) operations under the restriction
that a is much smaller than man. These are the same asymptotic forms as for Savage’s
algorithm except that the upper bound s am on the number of different coefficients has
replaced the number $ of different coefficients in Savage’s formulas and, more importantly,
that the range of validity of the result is now determined by a instead of by s. It follows that
the new SLA algorithm outperforms all previous SLAs for all s < n + and n sufficiently
large compared to a. Note that the case s n + is that of polynomials whose coefficients
are all different. Further, note that although we demanded that the coefficients must be chosen
from a finite set $, we did not restrict the field g itself to be finite.

In 3, we use counting arguments to show that there are polynomials of degree n with
coefficients from any set S of size s < n+ that cannot be evaluated with (n/ log. n ). -o( ))
operations by an SLA using at most s constants. This shows the optimality ofthe new algorithm
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in certain circumstances. For evaluating arbitrary functions in a finite field GF(pm) (with p
prime), the new algorithm is shown to be asymptotically optimum as m gets large. Furthermore,
the new algorithm is shown to be well suited for evaluating polynomials with real coefficients
restricted to a binary fixed-point representation, which is a case of considerable practical
interest.

In 4, the new algorithm is applied to the third polynomial-evaluation problem in which
both the argument and the coefficients are inputs. It has been shown that Horner’s rule is

optimum among SLAs with n + 2 inputs for solving this third problem, cf. [3, p. 479]. Never-
theless, it is shown that the new algorithm can be "extended" by allowing indirect addressing
ofoperands by inputs and will then outperform Horner’s rule when the coefficients are from
the set S defined above. With a simple adaptation, the new extended algorithm also solves the
second polynomial-evaluation problem. This has interesting practical consequences because
the computation of a single component of the discrete Fourier transform (DFT) at a fixed
frequency x for an arbitrary time sequence of the form co cn corresponds exactly to this
second problem. Finally, an application in decoding binary Bose-Chaudhuri-Hocquenghem
(BCH) codes is given that shows that the new extended algorithm improves upon known
methods of syndrome calculation for parameters far away from asymptotics (e.g., for the
7-error-correcting binary BCH code with block length 127).

In the last section, the similarities and differences between the new algorithm and the one
due to Savage are discussed. Some possible generalizations of the new algorithm are also
given.

2. The new algorithm. In this section, we propose a new SLA to solve the first poly-
nomial-evaluation problem. Assume with no real loss of generality that n q p 1, so
that the polynomial p(X) of degree n with coefficients in S can be written as

(1) p(X) go(X) + gl(X) Xpl
-at-... + gq-l(X) X(q-1)pl.

where gk (X) is a polynomial of degree less than pl with coefficients in $. Let the equation

(2) gk(X) 1" hk, (X) +... + ,,, ht,,,,(X)

define the polynomials h, (X) h,m(X), which are polynomials of degree less than pl
with coefficients in e4, and similarly let

(3) hk,j(X) tk,j,o(X) -t- tk,j,l(X)" X q-""-t- tk,j,p-l(X)" X(p-l)l

define the polynomials tk,j,o(X) tk,j,p-I(X) with coefficients in ,A and degree less
than I.

Given the input x 6 g, the algorithm comprises the tbllowing four steps"
Step 1. Form p lists containing all possible tk,j.i(X) X il and compute x pt"

a) Form list 0 of the values of all a polynomials of degree less than
with coefficients in .,4 evaluated at x. (This requires 2 nonscalar
multiplications to formx2, x xt- together with (l- 1) (a-2) scalar
multiplications to evaluate the monomials with coefficients not 1, together
with a (a 1)l additions to evaluate the binomials, trinomials,
etc., by summing values already computed, since each addition can be
designed to evaluate a new polynomial in the manner that the value of a
trinomial is the sum of the value of a monomial and a binomial, etc.)

b) For 1,2 p 1, form list consisting of the values in list 0 each
multiplied with xit. (This requires, for each value of i, nonscalar multi-
plications starting fromxit- x (i-1)l+l-I to formxit, Xil+l Xit+l-1
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Step 2.

Step 3.

Step 4.

together with (a 2) scalar multiplications to evaluate the monomials,
together with a (a 1)l additions to evaluate the binomials, tri-
nomials, etc., by summing values already computed in a way similar to
that in Step a.)

c) Compute the value of xPt. (This requires only one nonscalar multiplica-
tion because xpt- x (p-1)l+l-1 is already available in list p 1.)

(The whole of Step requires a total of less then p a operations, of which
pl- are nonscalar multiplications.)
Compute hk,j(x) for 0 < k < q and < j < rn by adding according to (3)
the values t.,j,i (x) x it from list for 0, p 1. (This takes at most
p additions for each of the qm values of k and j.)
Compute gk(x) for 0 _< k < q by first multiplying hk,j(x) by the scalar/3
and then summing for j 1, 2 m according to (2). (This takes m scalar
multiplications and rn additions for each of the q values of k.)
Compute p(x) according to (1) in the manner (reminiscent of Horner’s rule)

p(x) (... (gq-1 (x) x pI -k- gq_2(x)) x pl "k- + go(x).

(This takes q nonscalar multiplications and q additions.)
The entire algorithm requires

Clot < p a + q m (p -1) + q (2m -1) + 2 (q -1)

p.at+q.tn.p+q.m+q-2

operations, of which

C,,s=p.l+q-2

are nonscalar multiplications. We optimize these numbers by the following choices of the
parameters"

1. The bound on the total number of operations Clot is approximately minimized by choosing

n+l
pl
, [loga(mn) 3. loga loga(mn)], p [log,(mn)].

When a is much smaller than mn, this gives

m?/ //
C,ot < (1 + o(1)) < (1 + o(1)),

loga (mn) log n

where o(1) is negligible compared to for n large. This total computation is less than
that of Hornet’s algorithm if the set ,9 of allowed coefficients satisfies

ISI < s -a" <_ n + 1.

Note that this restriction still permits all n + coefficients of the polynomial to be different.
This removes the severe restriction that the number of different coefficients must be much
smaller than the degree n of the polynomial, which is needed to make Savage’s algorithm
[7] superior to Horner’s.

2. The number of nonscalar multiplications C,,s is minimized by choosing

q pl =,n + l.
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Independently of a and m, this gives

C,,s =2/n+ 1-2.

Fixing this choice of q, the bound on the total number of operations is then approximately
minimized by the choice

I loga(m2n) log,, loga(m2n)-I.

For a small compared to m2n, this yields

mn n
C,o, < (2 + o(1)) < (2 + o(1)),

loga(mZn) log n

which again is superior to other SLAs when ISI < s < n + 1.
For software implementations of the algorithm, we consider briefly the amount of storage

needed when the total number of operations is optimized. The necessary storage is determined
by Step and, for the optimizing choice of parameters, equals storage for

mn n
p a ,, <

(logc(mn))2 m. (log n)z

elements of ’. On the average, each of these elements is used

qm
log,,(mn) m. log n

times in Step 2.
Note that Steps 3 and 4 can essentially be executed in reverse order as follows:
Step 3’. Compute g (x) for < j < m in the manner

gj(x) (... (hq-l,j(x) x pl + hq_z,j(x)) xpl -+- + ho.j(x).

(These are polynomials with coefficients in 4 and degree at most n. The
computation takes q nonscalar multiplications and q additions for each
of the rn values of j.)

Step 4’. Compute p(x) by first multiplying g(x) by the scalar/j and then summing
for j 1,2 m. (This takes m scalar multiplications and m additions.)

This exchange reduces the total number of operations by q, but has no effect on the asymptotics
and significantly increases the number of nonscalar multiplications.

Finally, we want to stress that we designed an SLA that uses as constants the elements
/31 /3,, and the elements of . The specific coefficients of the polynomial determine the
exact structure of the algorithm.

3. Optimality ot" the new algorithm. In this section, it is shown for ISI s that the
new algorithm is asymptotically optimum among all SLAs that use constants from a set of
size s 1,91 (which need not be the set S itself). First, we count the number of different
polynomials that can be evaluated by SLAs of length k that use constants from a set of size s.
For this purpose, consider a gate network having as input signals x and the constants ?,1
and containing k gates, each of which performs the operation of addition or multiplication,
cf. Fig. 1.

We now specify that the first input to each gate is either the input signal x or the output
of another gate and that the second input to each gate is either an input signal (i.e., x or a
constant ’i) or the output of another gate. For each gate there are 2 choices for its type, k
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FIG. 1. The components ofthe gate networks used to bound the length ofSLAs.

choices for its first input, and k/s choices for its second input. This gives exactly (2.k. (k+s))k
gate networks as defined here.

We will call a gate network irredundant if it does not contain two gates of the same type
with identical inputs. We will say that two gate networks are essentially the same if they
differ only by a permutation of the gate labels. There are exactly k! gate networks that are
essentially the same as a given irredundant gate network. Thus the number of essentially
different irredundant gate networks is upper-bounded by the total number of gate networks
divided by k!, i.e., there are at most (2. k. (k + s))k/k! essentially different irredundant gate
networks. A gate network performs a well-defined computation only if its connections are
loop free, but we do not need to exploit this fact.

Every SLA corresponds to a unique gate network in the manner that gate implements
step of the SLA. We will call an SLA irredundant if its corresponding gate network is
irredundant, i.e., if it contains no step that merely repeats the computation of a previous step.
Similarly, we will call two SLAs essentially different if their corresponding gate networks are
essentially different, it follows that there are at most (2. k. (k + s))k! k! essentially different
irredundant SLAs of length k. (It is important to note that the k irredundant gate networks that
are essentially the same as the gate network corresponding to some irredundant SLA do not all
correspond to SLAs because some permutations of the gate labels may require that a gate with
label operates on the output of a gate with label j where j > i, so that the corresponding
"algorithm" would not be an SLA. Thus, in general there are fewer than k! irredundant SLAs
of length k that are essentially the same.)

Every SLA of length k evaluates at most k different polynomials, one at each step. More-
over, every polynomial that can be evaluated by an SLA of length k can trivially also be
evaluated by an irredundant SLA of length k. Because SLAs that are essentially the same
evaluate the same set of polynomials, it now follows that the number P, of polynomials that
can be evaluated by SLAs of length k satisfies

Pk <_ k (2. k (k + s))k/k!
(4) < (k + s)k. (2e) /.

where we have used Stirling’s bound on the factorial [2, pp. 52-54].
For all of the s"+ polynomials of degree n > s with coefficients in a set of size s to

be evaluated by SLAs of length k would require that

or, equivalently, that

(5)

Suppose that k satisfies

PI >_ sn+l

log P, > n + 1.

n ((6) k <
log n

logs 4e
< n,

log n
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where we note that there exists an no such that the middle member in these inequalities is
greater than for all n > no and any s satisfying 2 < s < n + 1. Taking the logarithm of both
sides in (4), upperbounding k + s by 2n, and then replacing k by its tighter upperbound in (6)
gives

log. P, < k (log n + log 4e) + log k

((lgs4e)2),,n
lgs n< n l.O.s

for n > no, which contradicts (5). We conclude that, for large enough n and any set of size s
with 2 < s < n + 1, there are polynomials of degree n and coefficients in this set that cannot
be evaluated by an SLA with constants from a set of size s that uses

n
k .(1 o())

log n

or fewer operations (where o(1) is negligible compared to for n large). It follows that the new
algorithmdesigned for certain sets of coefficients of size sis asymptotically optimum.

Counting arguments similar to those above were used for similar applications by Savage
[8, pp. 114-115] and Wegener 10, pp. 87-90]. These authors did not introduce the concept
of irredundant gate networks but simply claimed that the number of essentially different
gate networks is upper-bounded by the total number of gate networks divided by k!, which
is in fact not true. The counting argument given here shows, however, that the bounds in
[8, pp. 114-115] and [10, pp. 87-90] on the required number of gates are nonetheless correct.

Application 1: Finite fields. Consider the finite field GF(pm) with p prime. It is well
known that every function f GF(pm) GF(pm) may be represented by a polynomial
of degree n less than pm with coefficients in GF(pm). Therefore, the number of operations
needed to evaluate any function can be upper-bounded by that needed for the evaluation of
polynomials with degree n pm 1. The new algorithm can be applied with #t GF(p)
and fl tim forming a basis for GF(pm) over GF(p); thus S .7" GF(pm). The
condition that 1,41 p is much smaller than mn rn (pro 1) is certainly fulfilled for large
enough m. It follows that, for large m, every such function f may be evaluated with at most

Ctot < pro. (1 + o(1))

operations in GF(pm), where o(1) is negligible compared to 1.
On the other hand, because s ],SI pro, the previous arguments showed that there are

functions (i.e., polynomials of degree less than pro) that require more than

pm. (1 0(1))

operations to be evaluated in GF(pm) (see also [4] where this same bound is shown to apply
when subtraction and division are also allowed as operations). We conclude that the new
algorithm is asymptotically optimum for evaluating arbitrary functions in GF(pm) when m is
large.

Application 2: Binary fixed-point representation. Many practical computations use a

binary fixed-point representation of real numbers. This representation can be described in our
notation by

A {0. and fli 2’ +o.J]iet
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for m, where rn gives the precision and offset determines the binary point of the
representation. This defines the set of coefficients that are allowed. The operations may
be realized with greater precision, or even in floating point, in order to achieve the desired
precision of the result. Considering the results of 2, we see that the new algorithm may
be preferable for polynomials of degree 2m with coefficients in this representation, and it
certainly outperforms other known SLAs for large degrees. In fact, for the total number of
operations, the new algorithm is asymptotically optimum among all SLAs using constants in
this representation.

4. Adaptation to variable coefficients. The new SLA of 2 evaluates a polynomial
p(X) with the argument x as input. We now adapt this algorithm to the case where the values
of the coefficients co cn are additional inputs. The new algorithm can be adapted to solve
this third polynomial-evaluation problem when the following conditions are fulfilled:

1. The coefficients co c,, lie in a set S for which/ /m and the elements of 4
are known in advance. (This allows one to perform the calculations of Steps and 3 in
exactly the same way as before.)

2. Given a coefficient ci t .ai.1 -Jr-. + [3,n "ai,m, it must be easy to compute its components
ai, ai,m (or, as would generally be the case in practice, these components are the
actual inputs to the algorithm)

3. The components ai,j of the coefficients ci, which are the inputs to the algorithm, are
allowed to determine the operands in Step 2 of the previous algorithm. (This means that
the new algorithm is not in fact an SLA, but is rather the result of extending the notion of
an SLA to allow indirect addressing ofoperands by inputs.)
The third condition prevents a hard-wired implementation of the new extended algorithm.

Nevertheless, this extension is well suited for a software implementation of the algorithm be-
cause indirect addressing is easy to realize. In fact, most software implementations of the SLA
of 2, in which the components ai,j are constants, would probably also use indirect address-
ing for convenience. Therefore it makes no great difference in a software implementation
whether the components ai,j are constants or inputs. If the implementation is on a general-
purpose single-processor computer, then the number of field operations needed essentially
determines the performance of the algorithm. In this case, all the counting and optimizing of
the number of operations for the SLA of 2 are still valid for the extension. This also includes
the computation of the amount of storage needed, which was determined at the end of 2.
it follows that the extended new algorithm can outperform Homer’s rule even for the third
polynomial-evaluation problem.

There are also applications where the argument x is fixed and only the coefficients c
are inputs. To adapt our algorithm to this case, which is the second polynomial-evaluation
problem, all the above conditions still must be observed, but there is now the possibility
to precompute all the lists of Step because both x and the elements of 4 are known in
advance. Adapting the new algorithm, we find that the performance strongly depends on
the storage D available for the lists of Step 1. With the same parameters as in 2, we find
that

D=p.a

storage locations are needed together with

Cto q(pm + m + 1) 2

operations to perform Steps 2, 3, and 4. Again assuming without real loss of generality that
n p q 1, we see that the number of operations can be well approximated even for
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moderate n as

Ctot " +

Choosing now p log, D, the storage requirement is equivalent to log, D log,, log, D
and the number of operations becomes

mn n
Cto ,

log,, D log, D

for D large compared to a. This shows that the adaptation of the new algorithm to the second
polynomial-evaluation problem yields an algorithm that outperforms Horner’s rule if storage
on the order of the number of possibly different coefficients s is available. Note that at the
same time the number of operations needed for the precomputation (which is less than D) and
the number of nonscalar multiplications needed in Step 4 (Cns q 1) are quite small. But
the minimizing of Cns is preferablydone with a simple algorithm that first precomputes the
powers of the argument x. As an example, if D n storage locations are available, then all
needed powers of x can be precomputed and, with n scalar multiplications and n additions,
every polynomial can be computed.

Application 3: Decoding binary BCI-I codes. Binary BCH codes are widely used for
error correction or detection; a detailed treatment can be found in 1, Chap. 7]. For a primitive
binary BCH code ofblock length N 2M and design distance d 2t+ 1, the received block
[Cu-1, "’, cl CO] can be identified with the polynomial p(X) CN- Xu- +.. + c X + co
with binary coefficients ci. There exists a decoding algorithm that computes which coefficients
are incorrect, provided that at most errors occurred in transmission. The most commonly
used algorithm consists of computing syndromes, finding the error locator polynomial, and
calculating its zeros (see [1, pp. 183-193] for all details). In this application we focus on
the first part of this decoding algorithm, namely, computing the syndromes S./ p(J) for
j 1, 3 2t 1, where ot is a primitive element in GF(2M).

Consider now an implementation of such a decoding algorithm on a general-purpose
single-processor computer. Assume that procedures for executing field operations in GF(2M)
are available. Obviously, the number of field operations required determines the running time
of the decoding algorithm. The syndrome calculation consists of evaluating the polynomial
p(X) for values of its argument. This can be done by Horner’s rule with 2t (N- 1) operations.
The additions in Horner’s rule call for adding a coefficient that is either 0 or 1, and hence these
additions can be skipped or easily implemented. In general, however, the Cs t(N 1)
multiplications in Horner’s rule must be performed. Indeed, this is a substantial part of the
whole decoding computation.

We propose an algorithm to reduce the number of field operations needed to calculate the
syndromes. The syndrome calculation requires the evaluation of a polynomial p(X) of degree
N with binary coefficients ci for values x of X. This corresponds exactly to the second
polynomial-evaluation problem. Because the coefficients are binary, we have rn in the
definition of the set S of coefficients. Thus, Step 3 of the algorithm in 2 can be omitted.
Therefore, it suffices to perform the following calculations for j 1, 3 2t 1:

Step 1. Precompute the lists To, T. Tp_ containing the values

Ti[a] (at- (orJ)t- +... + a ot + ao) (orJ) il

for all a_ [at_ a0] 6 {0, }t, Additionally compute oJpt cJ
Tp_[[1, 0 0]] a (cJ)p-)+t-. (This can be done in the manner
of Step in 2 with less than p 2 operations, of which pl are multipli-
cations. The storage needed is equal to the total number of operations.)
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Step 2. For the binary inputs co CN-1, compute

hk(ot)) Tp_l[C__k,p_l] q- q- To[ck.o],

where c,.i [Ckpl+il+l-1 Ckpl+il+l, cpl+il] for k 0 q 1. (This
can be done with q (p 1) additions..)

Step 3. Finally, compute

p(otj) (’’" (hq-1 (otJ) ot jpl -1
t- hq-2(otJ)) ot jpt q- nt- ho(otj)

by Horner’s rule. (This requires 2(q 1) operations (half of which are multi-
plications) where q [N/pl].)

There is no additional storage needed for the computation in Steps 2 and 3 if the h are
computed as they are used in Step 3. Table lists the operations required for calculating
syndromes for the binary BCH code (N 127, 7) by this new method. For the chosen
values, which are of practical interest, using Horner’s rule to compute the syndromes requires
Cs t(N 1) 882 multiplications and 882 trivial additions; the new method requires
only 98 multiplications and 308 (nontrivial) additions. The improvement is especially great
for the usual implementation of field operations in which multiplication is much more time-
consuming than addition. This shows that the use ofa small amount of storage can significantly
simplify syndrome calculation for practical applications.

The optimum choice of the parameters is highly dependent on the actual implementation
of the field operations and on the trade-off between storage and time that is suited to the
application. The new algorithm gives an efficient way to use a certain amount of storage to
minimize the number of field operations required to calculate the syndromes. If only a very
small amount of storage is available, then there is the possibility of doing the precomputation
with every computation. For this case, it is sufficient to store the lists To Ip_ for one j,
which amounts to p2 storage locations. The number of field operations is then the sum ofthose
in the precomputation and the computation, which is still small. For the above parameters, 24
storage locations together with 546 field operations (154 multiplications) suffice.

5. Generalizations and remarks. The new polynomial-evaluation algorithm of 2 uses
some ideas from an algorithm of Lupanov [5] (see also 10, pp. 91-92]) for evaluating Boolean
functions in many variables. Strassen [9] extended Lupanov’s ideas to an algorithm evaluating
a multivariable polynomial p(X1 Xr) U[X1 Xr], having degree less than n in each
variable, at a value [xl Xr] r. Strassen showed that if I.T’[ is much smaller than nr,
then at most (nr/logl-i(nr)) (1 + o(1)) operations in ,5’ are needed. For r 1, this result
is very similar to Savage’s [7]; both results hold if the number of different coefficients is
much smaller than the degree of the polynomial. But Strassen’s result is stated with only a
small finite field as the coefficient set, whereas Savage’s result holds for any small set. The
crucial new idea exploited in this paper is to extend the set of allowed coefficients to the set
of restricted linear combinations of specified generators, the restriction being that the scalars

TABLE
Computation countfor calculating syndromesfor the binary BCH code (N 127, 7) by the new method.

(The precomputation requires t(pl 1) 56 tnultiplications and t(p(2 I)) 84 additions.)

Parameters Precomputation Computation
and storage [#Additions #Mult. #Operations

N tp2 t(qp_l) t(q_l) t(qp.fq_2P q=
,’ ’98 4063 3 15 168 308
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come from a small set. This makes it possible to improve on Horner’s algorithm even in cases
where all the coefficients of the polynomial are distinct. This extension can be applied to
polynomials in many variables as well.

The specific similarities and differences between the new algorithm and the one due to
Savage [7] are the following. Steps and 2 correspond to Savage’s "computation of linear
forms" and are only slightly refined compared to the steps used in the polynomial-evaluation
application of his algorithm. Step 3 exploits our assumed structure of the coefficients, while
Step 4 is exactly the same as Savage’s final step. For the case where rn (i.e., 4 S), Step
3 is not required and the new algorithm virtually reduces to Savage’s because our refinements
in Step and 2 are asymptotically negligible.

In all of the above, we have never actually used the fact that .T" or g are fields so that
division by nonzero elements is well defined. In fact, we have not even used the commutativity
of multiplication. Therefore our proposed algorithm works even if .Y" and g are distinct
noncommutative rings related by a ring-homomorphism 4 9r ------> ,Y with q (1) 1, where
the l’s are the neutral elements of the multiplication operations in the respective rings. As an
example f" could be the ring of 2 x 2 real matrices, g the ring of 4 x 4 real matrices, and 4
the ring-homomorphism

where M 6 f" and 0 is the neutral element for addition in br.
Finally, our new algorithm can be easily generalized to handle polynomials with coeffi-

cients from a set

,5’ {ill ai.1 +... + tim ai.m ai.j .Aj },

where the finite sets .A1 ft,,, are all different. It is possible to show the same asymptotics
as before if the cardinalities of the sets are bounded by I[jl _< a. We do not carry out this
generalization in detail because we do not see a practical application for it at the moment.

Acknowledgments. The author is grateful to J. L. Massey, who significantly improved
the presentation of this paper, and to A. Hiltgen for many constructive discussions.
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WHEN IS THE ASSIGNMENT BOUND TIGHT FOR THE ASYMMETRIC
TRAVELING-SALESMAN PROBLEM?*

ALAN FRIEZEt, RICHARD M. KARP, AND BRUCE REED
Abstract. We consider the probabilistic relationship between the value of a random asymmetric traveling

salesman problem ATSP(M) and the value of its assignment relaxation A P(M). We assume here that the costs are
given by an n x n matrix M whose entries are independently and identically distributed. We focus on the relationship
between Pr(ATSP(M) AP(M)) and the probability Pn that any particular entry is zero. If npn o with n
then we prove that ATSP(M) A P(M) with probability 1-o(1). This is shown to be best possible in the sense
that if rip(n) c, c > 0 and constant, then Pr(ATSP(M) AP(M)) < q(c) for some positive function 4.
Finally, ifnpn 0then Pr(ATSP(M) AP(M)) O.

Key words, traveling salesman, probabilistic analysis

AMS subject classifications. 05C80, 90C27

1. Introduction. The assignment problem (AP) is the problem of finding a minimum-
weight perfect matching in an edge-weighted bipartite graph. An instance of the AP can be
specified by an n x n matrix M (mij); here mij represents the weight of the edge between

xi and yj, where X {Xl, x2 x,,} is the set of "left vertices" in the bipartite graph and
Y {yl, Y2 y,, is the set of "right vertices." The AP can be stated in terms of the matrix
M as follows" find a permutation cr of 1, 2 n} that minimizes -’=l mi,(i). Let A P(M)
be the optimal value of the instance of the AP specified by M.

The asymmetric traveling-salesman problem (ATSP) is the problem of finding a Hamil-
tonian circuit of minimum weight in an edge-weighted directed graph. An instance of the
ATSP can be specified by an n x n matrix M (mij) in which mij denotes the weight of
edge < i, j >. The ATSP can be stated in terms of the matrix M as follows: find a cyclic
permutation zr of 1, 2 n} that minimizes ET=l mi.rr(i)’, here a cyclic permutation is one
whose cycle structure consists of a single cycle. Let ATSP(M) be the optimal value of the
instance of the ATSP specified by M.

It is evident from the parallelism between the above two definitions that A P(M) <_
ATSP(M). The ATSP is NP hard, whereas the AP is solvable in time O(n3). Several authors
(for a recent survey see [BaTo]) have investigated whether the AP can be used effectively in
a branch-and-bound method to solve the ATSP.

The most striking evidence of the power of this approach is given by the recent work of
Miller and Pekny [MiPe]. Among many other computational results, they obtained optimal
solutions to random instances with up to 500,000 cities, in which the mij were drawn inde-
pendently from the integers in the range [0, n], Miller and Pekny noticed that A P(M) was
often equal to AT SP (M), and they exploited this observation by developing a special method
to search for a cyclic permutation among the optimal solutions to the AP.

Motivated by the computational experience of Miller and Pekny, we have investigated
the following question: when the mij are drawn independently from a common distribution
(over, say, the nonnegative reals), what is the probability that AP(M) ATSP(M)7 The
answer depends on the probability that an entry is zero. We show-that, if the expected number
of zeros in a row of M tends to infinity as n -- oo then the probability that A P(M)
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ATSP(M) tends to 1, and we give an O(n3)-time algorithm for finding an optimal solution
to the ATSP with high probability. Conversely, if the underlying distribution is uniform over
the range of integers [0..I.c,,n_l], where c,, tends to infinity with n, then the probability that
A P(M) ATSP(M) tends to 0. Finally, we show that if the underlying distribution is
uniform over the range of integers [0.. [cn.i where c is a positive constant, then the probability
that AP(M) ATSP(M) does not tend to 1. We conjecture that for distributions of this
type, the probability that A P(M) AT SP(M) tends to some positive constant less than
which depends on c.

The results of this paper are closely related to some earlier results of Karp [K], Karp
and Steele [KS], and Dyer and Frieze [DF]. Here the mi.j are drawn independently from the
uniform distribution over [0,1]. Karp showed that ATSP(M)/AP(M) -o(1) (whp) (we
use the notation (whp) as shorthand for "with probability tending to as n tends to infinity").
Later, Karp and Steele and then Dyer and Frieze strengthened this result in several ways. For
example, the latter paper shows that the error term is o((log n)4/n).

2. The theorems.
THEOREM 2.1. Let Xn be a sequence of random variables over the nonnegative reals.

Let p, Pr[X, 0] and let w(n) np,,. Let M M(n) be an n x n matrix whose entries
are drawn independently from the same distribution as Xn. If w(n) cx as n cxz then
AP(M) ATSP(M) (whp).

(Examination of the proof of Theorem 2.1 reveals that the distribution of nonzeros can
be more complicated than actually stated. Indeed one can allow the costs to be generated as
follows: start with an arbitrary real nonnegative n x n matrix M. Randomly permute its rows
and columns. Then for each i, j [n] replace Mi,j with zero, with probability p,,. There is
also the proviso that the probability of two identical columns should tend to zero with n.)

Frieze [Fr] has shown that, if w(n) Inn + t(n), where t(n) tends to infinity, then
ATSP(M) 0 (whp), and so AP(M) ATSP(M) (whp). Thus, we restrict attention to
the case where w(n) O(lnn). The case where X,z has the uniform distribution over the
range of integers [0..N (n)] is particularly relevant to the Miller-Pekny computations. In this
case. Theorem 2.1 tells us that AP(M) ATSP(M) (whp) provided that N(n) o(n).

THEOREM 2.2. Let M M n be an n x n matrix whose entries are drawn independently
from the uniform distribution over {0, lcnj }, where c is a positive constant. Then the
probabilty that AP(M) 5/: ATSP(M) does not tend to zero as n tends to infinity.

THEOREM 2.3. Let M M(n) be an n x n matrix whose entries are drawn independently
from the uniform distribution over {0, ]cnn }, where c,, tends to infinity with n. Then
the probability that AP M) AT SP M) tends to as n tends to infinity.

3. Proof of Theorem 2.1. We begin with some conventions and definitions.When n is
understood from context we abbreviate p,, by p, to(n) by to and M(n) by M; also, "permuta-
tion" will mean "permutation of 1, 2 n }."

Let H be the weighted bipartite graph with vertex set X U Y, where X {x, x2 x,,
and Y {y, Y2 y,, }, and with an edge of weight mij between xi and yj. Let G be the
complete digraph on vertex set 1, 2 n }, in which each edge < i, j > has weight mij. A
cycle cover is a subgraph of G in which each of the n vertices has in-degree and out-degree
1. The AP can be stated in any of the following equivalent forms:

s find a perfect matching of minimum weight in H;
s find a cycle cover of minimum weight in G"
s find a permutation cr to minimize -= ni.cr(i).

Let the indicator variable zij be if mij 0 and 0 otherwise. Then the Zij are independent,
and each zij is equal to with probability p. Emulating a useful trick due to Walkup [Wal ], we
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view the Zij as being generated in the following way. Let h be defined by the equation p
(1 h)5 and let zj, for 1, 2 n, j 1, 2 n and k 1, 2, 3, 4, 5, be independent
indicator variables, each of which is equal to with probability h. Let zij max= zj. Then
the zij are independent and each is equal to with probability p. For k 1, 2, let Hk be the
bipartite graph with vertex set X t3 Y and an edge between xi and yj if and only if z 1.
For k 3, 4, 5, let Gk be the digraph with vertex set 1, 2 n and an edge from to j
if and only if z. 1. The edges of G3, G4, and Gs, respectively, will be called out-edges,
in-edges, and patch edges. Each type of edge will play a special role in the construction of a
Hamiltonian circuit of weight A P(M). It will be important that the random graphs H1 and H2
and the random digraphs G3, G4, and G5 are completely independent. Also, let s(n) nh(n);
s(n) is the expected degree of a vertex in HI or H2, and the expected out-degree of a vertex in

w(n)G3, G4 or Gs. Clearly, s(n) > -3-, and thus s(n) tends to infinity if w(n) does.
The construction of the desired Hamiltonian circuit proceeds in the following stages:

(Identification of "troublesome vertices.") By considering the edges of H t3 H2
identify a set A C X and a set B C Y. The cardinality of A t3 B is small (whp). The
set A t3 B contains the vertices ofexceptionally small degree plus certain other vertices
that are likely to be incident with edges of nonzero weight in an optimal assignment.
At the sametime construct a matching in H which is of minimum weight, subject to
the condition that it covers the vertices in A t3 B and no other vertices.
Consider the subgraph of H t3 H2 induced by (X \ A) t3 (Y \ B). This bipartite graph
has a perfect matching (whp). Combining that perfect matching with the matching
constructed in the previous step, obtain an optimal assignment for H in which every
nonzero-weight edge is incident with a vertex in A t3 B.
The optimal assignment just constructed has the properties of a random permutation.
Using the out-edges and in-edges, attempt to convert the original optimal assignment
into a permutation with no short cycles. This process succeeds (whp).
Using the patch edges, patch the long cycles together into a single cycle, thus solving
the AT SP. The patching process succeeds (whp).

The overall strategy of the proof is to construct an optimal assignment while keeping
the in-edges, out-edges, and patch edges (except those incident with A t3 B) in reserve for
use in converting the optimal assignment to a tour. In the following sections we describe the
algorithm in greater detail and give the proofs of the main assertions.

4. Identification of the sets A and B. Consider the directed bipartite graph D with
vertex set X U Y. The edges of D are those of H directed from X to Y plus those of He
directed from Y to X. The expected out-degree of a vertex in D is s(n), which we abbreviate
by s. Let d(v) be the out-degree of vertex v, let N(v) be the set of out-neighbors of v, and,
for any set of vertices S, let N (S) be the set of vertices adjacent from vertices in S.

We give an iterative construction for identifying a small set A U B of vertices that are
likely to be incident with edges of nonzero weight in an optimal assignment.

Let W_ {x X t Yld(x) <_ s/2}. Let F0 be a minimum weight matching in H
which covers the vertices of W_. Let W0 denote the set of vertices covered by F0. Define
a maximal sequence (Wo, Fo), (W, F) (Wr, Fr) (W, F) where (Wi, Fi) is obtained
from (Wi_, Fi-) as follows: suppose there exists x ’ Wi- such that IN(x) N Wi-ll >_ s/4.
Fi is then a minimum weight matching in H which covers Wi- and x and, necessarily, one
other vertex y. We then take Wi Wi-1 I...j {X, y }. Fi is obtained by constructing a least cost

augmenting path from x w.r.t. Fi-1.)
LEMMA 4.1. IWI < 3ne- (whp).
Proof. The proof follows from two simple claims. They can easily be justified by the first

moment method" the calculations are omitted.
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CLAIM 1. W-ll ne-s/5 (whp).
CLAIM 2. S

_
X tO Y, Sl 3ne-s/5 implies that (whp), in Hi U H2, S contains fewer

than 21SI edges.
Assume the conditions of the above two claims. Then [W0[ < 2IW-1[ < 2he-s/5. Now

IWil IWol + 2i and Wi contains at least is edges. If IW] > 3he-s/5 then r, the number
of pairs of vertices adjoined to W0 in constructing the set W, is greater than or equal to

ro Lne-’/5/2]. But then Wro has at most 3he-s/5 vertices and contains at least ros/4 edges,
contradicting Claim 2.

We then take A W f3 X and B W C’l Y. The subprocess of constructing A involves
counting the edges directed into Y \ B from each vertex x 6 X \ A, but does not depend
at all on which particular vertices in Y \ B are adjacent to x. Thus, N(x) C) (Y \ B) is of
cardinality at least s/4 and it is a random set in the sense that the probability that it is equal to
a given subset of Y \ B depends only on the cardinality of that subset’ moreover, there is no
dependency among the distinct sets N(x) f3 (Y \ B) as x ranges over X \ A. Similar statements
can be made about the sets N (y) (X \ A), for y 6 Y \ B. There are also no dependencies
between these two collections of sets. Furthermore, in constructing W using the augmenting
path approach, we did not need to consider the cost of any edge with both its endpoints in
H W. Thus, each such edge is still an in, out, or patch edge with probability h.

5. Construction of an optimal assignment.
LEMMA 5.1. The subgraph ofH1 k) H2 induced by (X \ A) U (Y \ B) has a perfect matching

(whp).
Proof Recall that a random k-out bipartite graph on the vertex set X Y, where X and

Y are disjoint n-element sets, is constructed by having each vertex in X choose k random
neighbors in and each vertex in Y choose k random neighbors in X. The proof follows
immediately from Walkup’s result [Wal2] that a random k-out bipartite graph has a perfect
matching (whp) for any k > 2. 1

Thus, we can obtain an optimal assignment (whp) by combining an optimal matching
covering A tO B with a perfect matching in the subgraph ofH tO H2 induced by (X \ A) tO Y \ B).

6. Structure of the optimal assignment. In this section we show that, if M is a random
instance of the AP, then, with suitable implementation, the construction of an optimal assign-
ment based on Lemma 5.1 yields a random permutation. Define the equivalence class of a
matrix M as the set of all matrices obtained by permuting the columns of M. A typical member
of this equivalence class, corresponding to the permutation 7r, is the matrix Mr defined by
mi,r(j) mi.i. Except for a negligible fraction of the matrices in UnN (namely, those with two
equal columns), the equivalence class of M consists of n! distinct and equiprobable matrices.
Let cr be the optimal assignment for M obtained by the algorithm described above. Then
rc is an optimal assignment for Mr. Moreover, the algorithm for constructing the optimal
assignment can be implemented so that the following hold:

If a is the optimal assignment constructed for M, then 7rcr is the optimal assignment
constructed for M’r;
A, the set of troublesome rows for M, is also the set of troublesome rows for Mr.

One way to ensure this is to permute the columns of M into lexicographic order, find the
set of troublesome rows and an optimal assignment in the resulting matrix, and then permute
the columns back. For any fixed a, as 7r ranges over all permutations of {1,2 n}, 7rcr

also ranges over all permutations of 1, 2 n }. Since all the matrices in [M] are equally
likely, we have established that the permutation produced by the optimal assignment algorithm
described above is equally likely to be any permutation

We note some facts about random permutations. Let cr be drawn at random from the set
of permutations of 1, 2 n }. Then the following are true:
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cr has at most 2 In n cycles (whp)"
For all k,there are fewer than w(n)k cycles of length k (whp)"
There are at most vertices on cycles of length at most (whp).

Now let cr be the optimal assignment selected by our algorithm. Then we have the
following lemma.

LEMMA 6.1. No cycle of or has more than one-tenth of its vertices in W (whp).
Proof. Conditioning on the event that M lies in a particular equivalence class, cr is

equally likely to be any permutation, while A is a fixed set of very small cardinality (whp).
A straightforward calculation shows that no cycle has more than one-twentieth of its vertices
in A (whp). Indeed, given IAI a < 3he-s/5, the expected number of cycles containing so
many members of A is at most

(n-a
k=

k- Fk/20] [k/20]
(k- 1)!n-k

a

k=l

o(1).

A similar argument applies to B.

7. Elimination of small cycles. Call a cycle in a permutation small if it contains fewer
than - vertices. We now show how the out-edges and in-edges are used to convert the original
optimal assignment into an optimal assignment in which no cycle is small. Our procedure
is to take each small cycle of the original optimal assignment tr in turn and try to remove it
without creating any new small cycles. During its execution our algorithm will designate a
vertex as dirty when its out-edges or in-edges have been observed, so that they may no longer
be considered random. The initial set of dirty vertices is the set W defined above. A vertex
that is not dirty will be called clean. If is clean then, independently for each j, < i, j >

and < j, > is an in-edge with probability 7,. Throughoutis an out-edge with probability
the computation, we will maintain the property that at least nine-tenths of the vertices in any
remaining short cycle are clean.

We now describe the rotation-closure algorithm that is used to eliminate one small
cycle. Let C be a small cycle of length k in the current optimal assignment. Let /
min([-9T6], [.ln Innj). Choose/ clean vertices on C. We make up to/ separate attempts to

remove C. The ith attempt consists of an out phase and an in phase. Let vi be the ith of the/
clean vertices selected from C, and let ui be the predecessor of vi on C.

7,1. The out phase. Define a near-cycle-cover as a digraph 0 consisting of a directed
path Po ending at a clean vertex plus a set of vertex-disjoint directed cycles covering the
vertices not in Po. We obtain an initial near-cycle-cover by deleting edge < ui, v,: > from
the current optimal assignment, thus converting the small cycle C into a path from vi to ui.
We then attempt to obtain many near-cycle-covers by a rotation process. The state of this
process is described by a rooted tree whose nodes are near-cycle-covers, with the original
near-cycle-cover at the root. Consider a typical node 0 consisting of a path Po directed from

ao to bo plus a cycle cover of the remaining vertices. We obtain descendants of 0 by looking
at out-edges directed from bo. Consider an edge that is directed from bo to a vertex y whose
predecessor x is clean. Such an edge is successful if either y lies on a large cycle or y lies on

Po and the subpaths of Po from ao to x and from y to bo are both of length at least v’-" In
such cases a descendant of 0 is created by deleting < x, y > and inserting < bo, y >. Once
node 0 has been examined, bo is permanently marked dirty. The tree of near-cycle-covers is
grown in a breadth-first manner until the number of leaves reaches m /n In n.

We shall show later that the number of vertices marked dirty throughout the entire al-
gorithm is o(n) (whp). Assuming this, noting that each path Po ends in a clean vertex
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bo, and assuming that the number of vertices on short cycles is less than (this is true

(whp)) the number of descendants of node (9 is a random variable whose distribution is
B IN0MIAL (n o(n), s / n), and the random variables associated with distinct nodes are
independent. Suppose that level of the rooted tree describing the out phase has a vertices.
Then, applying a Chernoffbound on the tails of the binomial distribution, the number of nodes
at level + lies between and 2as, with probability greater than or equal to -e-0. Hence
the probability that the out phase fails to produce m leaves is (quite conservatively) at most

e-kS/l < e-S20.
k=l

7.2. The in phase. The tree produced by an out phase has m terminal nodes. Each of
these is a near-cycle-cover in which the directed path begins at vi. Let the jth terminal node
be denoted Gj, and let the directed path in Gj run from vi to xj. During the in phase we

grow rooted trees independently from all the Gj, j 1.2 m. The process is like the out

phase except that, in computing the descendants of a node (9. we fan backward along in-edges
rather than forward along out-edges. For example, if a node (9 with a path Po from ao to Xi is
encountered, then we look for in-edges of the form < x, ao > such that x does not lie on a
short cycle and y, the successor of x in Go, is clean. We then create a descendant by deleting
< x, y > and inserting < x, ao >, provided that this substitution does not create a path or

cycle of length less than 5" Once the descendants of 0 have been computed, the node ao is

permanently marked dirty.
Suppose that S1, $2 Sm are the near-cycle-covers produced by the out phase. We

describe a two-stage process for producing the near-cycle-covers of the in phase which is

equivalent to that described in the previous paragraph. In the first stage, imagine that we grow
the trees ensuring only that edges from clean vertices are used and that y is not on a small
cycle. Thus we allow new small cycles to be produced. Each tree is grown to a depth where
(w/2) - m. The following is true (whp): for each tree, and each depth < , the ratio
between the number of nodes of depth + and the number of nodes of depth lies between

w/2 and 2w. The parameter is chosen so that even if each nonleaf has only w/2 descendants,
the tree will still have at least m leaves. Let "]j denote the set of initial vertices of the paths
of the near-cycle-covers created from Sj in this way. We show that

,-,t) denote the set of start vertices of the paths at level in the jth tree. ClearlyIn fact let
c0) J =E for somet >0. ButEj {vi} for all j and so assume inductively that we have E t)

then the clean vertices Ej(.t+l) whose in-edges are directed into j are the same as the clean

vertices Elt+l) whose in-edges are directed into E(1t). This completes the inductive step. We
see also that from this construction the number of vertices marked dirty by this stage is at most

(2w) and then it is easy to see that the total number of dirty vertices produced is O(n5+)).
It follows from our analysis of the out phase that if ,5’ denotes the event "we fail to produce m
trees in the first stage," then

(1) Pr() <_ e-w/20.

We do not have to multiply the right-hand side of (1) by m because the construction above
succeeds for all Sj if and only if it succeeds for S1. In the second stage we prune the m trees

we have produced by deleting any edge which involved the construction of a small cycle. For
j 1, 2 m, let Tj be the pruned tree grown from root Gj during the two stages. Thus

T.. is what we would get from G if we had followed the procedure described in the second
paragraph of this section.
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Let us call Tj good if it has m leaves and bad otherwise. Since the number of vertices
marked dirty during the entire computation is o(n), by the same analysis that was applied to
the out phase, the probability that an individualTj is bad is less than or equal to e-. Thus the
expected number of bad trees is at most me- and, by Markov’s inequality, the probability
that the number of bad trees is at least rn/2 is bounded above by 2e-. Thus,

( m ) ( m )Pr :l >_ - good trees >_ Pr(e)- Pr :t > - bad trees

> 1 3e-w/E.

Assuming that the out phase succeeds in creating a rooted tree with m leaves, and that at
least half of the m trees Tj created during the in phase are good, we now have at least m/2
sets, each consisting of m near-cycle-covers. In the set associated with T., each near-cycle-
cover consists of a path ending at xj, together with a cycle cover of the remaining vertices.
The m paths have distinct starting points. Since the out-edges from xj are unconditioned, the

m )m2/2 <probability that none ofthe - paths is closed by an out-edge is bounded above by (1
n-. Thus, with probability at least 1 n-, one of these paths can be closed with an out-
edge, and doing so creates an optimal assignment with one short cycle less than the optimal
assignment that existed at the beginning of the out phase.

Thus the probability that the tth attempt at removing C fails given that the first
attempts have also failed can be bounded by, say, e- for some absolute constant A > 0.
Since we make/ attempts, the probability that we fail to remove all short cycles is at most

LlnlnnJ

E wke-:Aw "-I- 2 lnne-Awlnlnn o(1).
k=l

8. The patching process. At the start of the patching process we have an optimal as-
signment without small cycles, and the patch edges are unobserved, and thus unconditioned,
except for those incident with the set of vertices W {i Ixi c: A} t_J {j lYj B}. Suppose we

nstart with cycles C1, C2 Cr, each of which contains at least vertices. We describe

a procedure that attempts to patch these cycles together to form a tour. The basic operation
of patching together two cycles C and C’ is as follows. Suppose cycle C contains an edge
< al, a2 > and cycle C’ contains an edge < bl, bE >. If < al, bE > and < bl, a2 > are both
patch edges then we can combine C and C’ into a single cycle by deleting < al, a2 > and
< bl, b > and inserting < al, bE > and < b, a2 >.

We attempt to create a tour by repeatedly patching cycles together in this way. We describe
a generic step in which, having patched C1, C2 C-I together to form a cycle C, we try
to patch Cs and C together. There are at most 3ne- vertices in W on C tO C. Independently,
for each pair consisting of an unconditioned vertex on C and an unconditioned vertex on C, a
patch edge is present with probability s/n. Thus, the probability that there is no pair of edges
that will patch Cs and C together is bounded above by (1 (-)-)2)(ICI-3ne-s/5)(ICsl-3ne-‘/5)

This is less than or equal to e-w+(l). Hence the probability that the patching process fails is
bounded above by /’-e-w+(1) o(1).

We have now completed the entire proof of Theorem 2.1.

9. The proofs of Theorems 2.2 and 2.3. In proving Theorems 2.2 and 2.3, we shall
describe the generation of our matrix M, the corresponding bipartite graph H, and the directed
graph G in a slightly different manner.

We first generate a random n x n matrix N where each entry is drawn uniformly
from {0, LcnnJ} and these choices are independent (note that in order to combine
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Theorems 2.2 and 2.3 we insist only that c,, is either constant or goes to infinity with n ). We
then randomly choose a permutation FI of {1 n} with each permutation equally likely.
We obtain M by setting mitt(j) nij (where nij is the entry in the ith row and jth column of
N). Proceeding in this fashion rather than choosing the elements of M directly makes certain
assertions about the independence of events obvious. We let H’ be the bipartite graph which
corresponds to N in the same way that H corresponds to M. We note that if we choose some
optimal matching in H’ then the corresponding matching in M will have the cycle cover of a
random permutation.

We now need some definitions. So, consider an arbitrary matrix N and corresponding
bipartite subgraph H’. By a forced edge of H’ we mean an edge which is in every optimal
matching in H’. By an active edge we mean an edge which is in some optimal matching
of H’ and has weight at least one. The first step in proving Theorems 2.2 and 2.3 is to

note that if a particular weighting has a lot of forced edges then probably it will not satisfy
A P(M) ATSP(M). In particular if all the edges are forced then the probability that
ATSP(M) AP(M) is !.

The precise result we will need is that if for some weighting the corresponding H’ has s

forced edges then the probability that the corresponding cycle cover has a non-Hamiltonian
cycle made up only of forced edges aforced cycle is the same as it would be if we took
a random cycle cover and then chose s edges at random and called them forced. This follows
from the manner in which we generate M. It is convenient now to give a lower bound for
the probability n’t,,, that a random cycle cover has a cycle of length at most (more precise
esitmates are available, see for example Bollobfis [B]). We will use zrt.,, > t-i" To see
this use induction on

2t- q- Yrt. In,Yrt.n
i=t+l

which is a consequence ofthe fact that the size ofthe cycle containing is uniformly distributed.
The following lemma then follows easily.

LEMMA 9.1. For any weighting of N such that H’ has s forced edges, the probability
that the corresponding weighting of M has a .forced cycle of size at most n and hence
AP(M) 7 ATSP(M) is at least

+ n(n- 1) (n- + 1)

The second step in the proof is to note that most weightings will have many active edges
because many vertices of G will not be the tail of any arc of cost zero. In fact since the
probability that x is such a vertex is (1 1)n we obtain the following lemma./c,,n/

LEMMA 9.2. The. expected number of.active edgesfor a random weighting is at least

(1 + o(1))ne-/c’’

The key to the proof is the following lemma which links these two results.
LEMMA 9.3. The expected number offorced edges in a random weighting is at least the

expected number ofactive edges.
Combining Lemmas 9.2 and 9.3, we obtain that the expected number of forced edges is

at least (1 + o( 1))he-/c,,. Theorem 2.2 then follows immediately from Lemma 9.1, on taking
2, i.e.,
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Pr(AP(M) :/: ATSP(M)) >_ Pr (forced cycle of length at most 2)

2s(s 1) )>E
3n(n 1)

2E(s)(E(s)- 1)
3n(n- 1)

2e-2/c
( o())

3

by Jensen’s inequality

Again combining Lemmas 9.1, 9.2, and 9.3 we see that if c,, tends to infinity with n then
Theorem 2.3 follows from

Pr(AP(M) :/: ATSP(M)) >_ Pr (forced cycle of length at most t)

>(1 t-t-l) (1-n) (1-O
o()

if -- cxz, o(c,, +
One can tighten Theorem 2.2 slightly by insisting that the solution to A P(M) contains

no 1-cycles. Thus let D(M) denote problem AP(M) with the added constraint that the
permutation should contain no 1-cycles, i.e., be a derangement. If the solution to A P(M) is
a derangement then it also solves D(M) and the probability of this tends to e-I Since forced
edges occur independently of the cycle structure we can see that

(2 ) e_2/c.Pr(D(M) :/: ATSP(M)) > (1 -o(1)) . -(1 -e-

The question of whether or not Theorem 2.3 can be similarly strengthened remains open. The
answer is almost certainly yes, but how do we prove it?

It remains only to prove Lemma 9.3.
To prove Lemma 9.3, we give an injective mapping from the (weighting, active-edge)

pairs to the (weighting, forced-edge) pairs. This implies the result. Indeed, let m [c,,l +
and f2e (respectively, f2’e) denote the set of weightings in which e is an active (respectively,
forced) edge. Then

E(s) in
-n If2el

>- m- Ie as will be shown

E (number of active edges).

It only remains to show that Iel g2’el for all edges e. Now, given an active edge e in a
weighting W, we obtain a new weighting W’ by reducing the weight on e by and leaving
all other weights the same. We note that the cost of an optimal matching with respect to W’
is one less than the cost of an optimal matching with respect to W and any optimal matching
with respect to W’ must use e. In our mapping, we map (W, e) to (W’, e). Clearly, this gives
the desired injection. This completes the proof of Lemma 9.3 and the two theorems. We note
that our injection is almost a bijection because adding one to a forced edge yields an active
edge in a new matching unless the forced edge has weight [c,,nl, which is a rare occurrence.
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SCALING ALGORITHMS FOR THE SHORTEST PATHS PROBLEM*
ANDREW V. GOLDBERG

Abstract. We describe a new method for designing scaling algorithms for the single-source shortest paths
problem and use this method to obtain an O (Vcfftn log N) algorithm for the problem. (Here n and m are the number
of nodes and arcs in the input network and N is essentially the absolute value of the most negative arc length; arc
lengths are assumed to be integral.) This improves previous bounds for the problem. The method extends to related
problems.

Key words, shortest paths problem, graph theory, networks, scaling
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1. Introduction. In this paper we study the shortest paths problem where arc lengths can
be both positive and negative. This is a fundamental combinatorial optimization problem that
often comes up in applications and as a subproblem in algorithms for many network problems.
We assume that the length function is integral, as is the case in most applications.

We describe a framework for designing scaling algorithms for the shortest paths prob-
lem and derive several algorithms within this framework. Our fastest algorithm runs in
O(/-m log N) time, Where n and rn are the number of nodes and arcs of the input network,
respectively, and the arc costs are at least -N. Our approach is related to the cost-scaling
approach to the minimum-cost flow problem [2], [14], [18], [21 ].

Previously known algorithms for the problem are as follows. The classical Bellman-Ford
algorithm [1], [8] runs in O(nm) time. Our bound is better than this bound for N o(2").
Scaling algorithms ofGabow [12] and Gabow and Tarjan [13] are dominated by an assignment
subroutine. The former algorithm runs in O(n3/am log N) time; the latter algorithm runs in
O(/-m log(nN)) time. Our bound dominates these bounds. The fastest shortest paths
algorithm currently known for planar graphs [9], [19] runs in O(n 1"5) time. Our algorithm
runs in O (n 1.5 log N) time on planar graphs and is competitive for small values of N.

Our framework is very flexible. In 8 and 9 we describe two variations of the
O(v/-m log N) algorithm. The first variation seems more practical and the second varia-
tion shows the relationship between our method and Dijkstra’s shortest path algorithm [6].
The flexibility of our method may lead to better running time bounds.

The shortest paths problem is closely related to other problems, such as the minimum-cost
flow, assignment, and minimum-mean length cycle problems. Our method for the shortest
paths problem extends to these problems. In 10 we sketch extensions to the minimum-cost
flow and assignment problems. McCormick [20] shows an extension to the minimum-mean
cycle problem. The resulting algorithms achieve bounds that are competitive with those of
the fastest known algorithms, but are somewhat simpler.

2. Preliminaries. The input to the single-source shortest paths problem is (G, s,/),
where G (V, E) is a directed graph, E R is a length function, and s V is the

*Received by the editors May 28, 1992; accepted for publication (in revised form) November 22, 1993.
’Computer Science Department, Stanford University, Stanford, California 94305. This research was supported

in part by the Office of Naval Research Young Investigator award N00014-9 l-J-1855’ National Science Foundation
Presidential Young Investigator grant CCR-8858097 with matching funds from AT&T, DEC, and 3M; Powell Foun-
dation grant: and a Mitsubishi Electric Laboratories grant. Part of this work was done while the author was visiting
IBM Almaden Research Center and supported by Office of Naval Research contract N00014-91-C-0026.

1We assume that N > 2 so that log N > 0.
2In [12], [13] these bounds are stated in terms of C, the maximum absolute value of arc costs. As noted by an

anonymous referee, it is easy to see that C can be replaced by N.
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source node (see, e.g., [4], [23]). The goal is to find shortest paths distances from s to all other
nodes of G or to find a negative length cycle in G. If G has a negative length cycle, we say
that the problem is infeasible. We assume that the length function is integral. We also assume.
without loss of generality, that all nodes are reachable from s in G and that G has no multiple
arcs. The latter assumption allows us to refer to an arc by its endpoints without ambiguity.

We denote VI by n and EI by m. Let M be the smallest arc length. Define N -M if
M < -1 and N 2 otherwise. Note that N > 2 and l(a) > -N for all a E.

A pricefunction is a real-valued function on nodes. Given a price function p, we define
a reduced costfunction lp E R by

lp(V, W) --/(1), W) "q- p(v) p(w).

We say that a price function p is feasible if

(1) lp(a) >_ 0 Ya E.

For an e > 0, we say that a price function is e-feasible if

(2) Ip(a) > -e Ya E.

Given a price function p, we say that an arc a is admissible if lp (a) <_ 0, and denote the
set of admissible arcs by Ep. The admissible graph is defined by Up (V, Ep).

If the length function is nonnegative, the shortest paths problem can be solved in
O (m + n log n) time 10], or in O (m + n log n/log log n) time 11 in a random access
machine computation model that allows certain word operations. We call such a problem
Dijkstra’s shortest paths problem [6]. Given a feasible price function p, the shortest paths
problem can be solved as follows. Let d be a solution to the Dijkstra’s shortest paths problem
(G, s, lp). Then the distance function d’ defined by d’(v) d(v) + p(v) p(s) is the solution
to the input problem.

We restrict our attention to the problem of computing a feasible price function or finding
a negative length cycle in G.

3. Successive approximation and bit scaling frameworks. Our method computes a

sequence of e-feasible price functions with e decreasing by a factor of two at each iteration.
Initially, all the prices are zero and e is the smallest power of two that is greater than N. The
method maintains integral prices. At each iteration, the method halves e and applies the REFINE
subroutine, which takes as input a (2e)-feasible price function and returns an e-feasible price
function or discovers a negative length cycle. In the latter case, the computation halts.

LEMMA 3.1. Suppose a pricefunction p is integral and 1-feasible. Thenfor every a E.
lp(a) >_ O.

Proof The lemma follows from the fact that lp(a) is integral and lp(a) > -1.
Bit scaling, first applied to the shortest paths problem by Gabow 12], can be used instead

of successive approximation in all algorithms described in this paper. The bit scaling version
of our method rounds lengths up to a certain precision, initially the smallest power of two
that is greater than N. The lengths and prices are expressed in the units determined by the
precision. Note that since the lengths are rounded up, a negative cycle with respect to the
rounded lengths is also negative with respect to the input lengths.

Each iteration of the algorithm starts with a price function that is feasible with respect
to the current (rounded) lengths. Note that this is true initially because of the choice of the
initial unit. At the beginning of an iteration, the lengths and prices are multiplied by two.

and one is subtracted from the arc lengths as appropriate to obtain the higher precision. The
resulting price function is 1-feasible with respect to the current length function; the feasibility
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is restored using REFINE. The method terminates when the precision unit becomes 1, which
happens in O(log N) iterations. Note that the basic problem solved at each iteration of the
bit scaling method is a special version of the shortest paths problem where the arc lengths are
integers greater or equal to -1.

The following lemma is obvious.
LEMMA 3.2. Both the successive approximation and the bit scaling methods terminate in

O (’log N) iterations.
Note that if the current unit in the bit scaling method is U and the current price function

is feasible with respect to the rounded length function, then the price function is U-feasible
with respect to the input length function. Thus bit scaling can be viewed as a special case
of successive approximation. The work on the minimum-cost flow problem 18] shows that
successive approximation is more general than bit scaling; in particular, the former can be
easily used to obtain strongly polynomial algorithms.

We describe bit scaling version in the algorithms. This allows us to avoid certain technical
details and slightly simplifies the presentation. However, all algorithms can be restated in the
successive approximation framework in a straightforward way.

When describing bit scaling implementations of REFINE, we denote the current rounded
length function by I. We also use the following definitions. We call an arc (v, w) improvable
if lp (v, W) 1, and we call a node w improvable if there is an improvable arc entering w.

4. Dealing with admissible cycles. Suppose that Gp has a cycle F. Since the reduced
cost of a cycle is equal to the length of the cycle, I(F) _< 0.

If I(F) < 0, or/(F) 0 and there is an arc (v, w) such that Ip(v, w) < 0 and both v
and w are on 1-’, then the input problem is infeasible and the method terminates. Otherwise,
we contract F and remove self-loops adjacent to the contracted node. A feasible price func-
tion on the contracted graph extends to a feasible price function on the original graph in a
straightforward way.

Our algorithm uses an O(m)-time subroutine DECYCLE(Gp) that works as follows. Find
strongly connected components of Gp (see, e.g., [22]); if a component contains a negative
reduced cost arc, G has a negative length cycle; otherwise contract each component. (Note
that the prices of nodes in each contracted component change by the same amount, so the
reduced costs of arcs with both ends in the same component do not change.)

Suppose Gp is acyclic. Then Gp defines a partial order on V and on the subset of
improvable nodes. This motivates the following definitions. A set of nodes S is closed if
every node reachable in Gp from a node in S belongs to S. A set of nodes (arcs) S is a chain
if there is a path in Gp containing every element of S.

5. Cut-relabel operation. In this section we study the CUT-RELABEL operation which
is used by our method to transform a 1-feasible price function into a feasible one. The CUT-

RELABEL operation takes a closed set S and decreases prices of all nodes in S by 1.3 Note
that the operation preserves integrality of the prices (and therefore integrality of the reduced
costs).

LEMMA 5.1. The CUT-RELABEL operation does not create any improvable arcs.

Proof. The only arcs whose reduced cost is decreased by CUT-RELABEL are the arcs leaving
S. Let a be such an arc. The relabeling decreases lp (a) by 1. Before the relabeling, S is closed
and therefore lp(a) > 0. By integrality, lp(a) >_ 1. After the relabeling, lp(a) > O.

The above lemma implies that CUT-RELABEL does not create improvable nodes. The next
emma shows how to use this operation to reduce the number of improvable nodes.

Alternatively, the operation can decrease prices of all nodes of S by the maximum amount e’ such that Lemma 5.1
holds.
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LEMMA 5.2. Let p be a 1-feasible price function. Let S be a closed set of nodes, and
let X c_ S be a set of improvable nodes such that every improvable arc entering a node ofX
crosses the cut defined by S. After the set S is relabeled, nodes in X are no longer improvable.

Proof Let p’ be the price function after the relabeling. Let w X and let (v, w) be an
improvable arc with respect to p. By the statement of the lemma, v ’ S. Thus the relabeling
increases Ip by 1, and, by 1-feasibility of p, lp,

A simple algorithm based on CUT-RELABEL applies the following procedure to every
improvable node v.

1. DECYCLE(Gp).
2. S +-- set of nodes reachable from {v} in Gp.
3. CUT-RELABEL(S).

It is easy to see that given a 1-feasible price function, this algorithm computes a feasible one
in O (rim) time.

6. Faster algorithm. In this section we introduce an O (x/Cm log N) algorithm for find-
ing a feasible price function. Let k denote the number of improvable nodes. At each iteration,
the algorithm either finds a closed set S such that applying CUT-RELABEL to S reduces the
number of improvable nodes by at least x/, or a chain S such that applying ELIMINATE-CHAIN
to S reduces the number of improvable nodes by at least x/. (The ELIMINATE-CHAIN op-
eration is described in the next section.) An iteration takes linear time and is based on the
results of 5 and 7 and the following lemma, which is related to Dilworth’s theorem (see,
e.g., [7]).

LEMMA 6.1. Suppose Gp is acyclic. Then there exists a chain S c_ E such that S contains

at least improvable arcs or a closed set S cc_ V such that relabeling S reduces the number

ofimprovable nodes by at least x/. Furthermore, such an S can befound in 0 (m) time.

Proof. Construct a graph G’ by adding a source node r to Gp and arcs from r to all nodes
in V. Note that G is acyclic. Define l(a) lp(a) for all a Ep and l’(a) 0 for the
newly added arcs a. The absolute value of the path length with respect to l’ is equal to the
number of improvable arcs on the path. Let d’ V -- R give the shortest paths distances
from r with respect to l’ in G’. Since G’ is acyclic, d’ can be computed in linear time. Define
D maxv Id’[.

If D >_ /, then a shortest path from r to a node v with d’(v) -D contains a chain
with at least .v/ improvable arcs.

If D < /-, then the partitioning of the set of improvable nodes according to the value
of d’ on these nodes contains at most nonempty subsets. Let X be a subset containing
the maximum number of improvable nodes and let be the value of d’ on X. Observe that X
contains at least x/ improvable nodes. Define S {v 6 V Id’(v) _< i}.

Clearly X c_ S. Also, S is closed. This is because if v 6 S and there is a path from v to
w in Gp, then the length of this path with respect to l’ is nonpositive, so d’(w) <_ d’(v) <_
and therefore w 6 S.

We show that after CUT-RELABEL is applied to S, nodes in X are no longer improvable.
Let x 6 X and let (v, x) be an improvable arc. Then l’(v, x) -1 and therefore d’(v) >
d’(x) i. Thus v S and (v, w) is not improvable after relabeling of S.

The efficient implementation ofREFINE is described in Fig. 1. The implementation reduces
the number of improvable nodes k by at least at each iteration by eliminating cycles in Gp,
finding S as in Lemma 6.1, and eliminating at least improvable nodes in S using techniques
of 4, 5, and 7. In 7 below we describe a linear time implementation of ELIMINATE-CHAIN.
This implies that an iteration REFINE runs in linear time.

LEMMA 6.2. The implementation of REFINE described in this section runs in O(/-fim
time.
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procedure REFINE(p);
k the number of improvable nodes;
repeat

DECYCLE(Gt,);
S *-- a chain’or a set as in Lemma 6.1;
if S is a chain then
ELIMINATE-CHAIN(S);

else
CUT-RELABEL(S);

k -- the number of improvable nodes;
until k 0:
return(p);

end.

FIG. 1. An efficient implementation of REFINE.

Proof. We need to bound the number of iterations of REFINE. Each iteration reduces k by
at least x/, and O (x/) iterations reduce k by at least a factor of two. The total number of
iterations is bounded by

i=0

Lemmas 3.2 and 6.2 imply the following result.
THEOREM 6.3. The shortest paths algorithm with REFINE implemented as described in

this section runs in O(,m log N) time.

7. Eliminate-chain subroutine. Suppose that Gp is acyclic and let F be a path in Gp. Let
(vl, wl) (vt, wt be the collection of all improvable arcs on F suchthat for < < j _<
the path visits vj before vi (i.e., v is visited last). By definition, nodes w w are
improvable. In this section we describe a subroutine ELIMINATE-CHAIN that modifies p so that
the nodes w w are no longer improvable and no new improvable nodes are created, or
finds a negative length cycle in G. The subroutine runs in O (m) time.

At iteration i, ELIMINATE-CHAIN finds the set S of all nodes reachable from w in the
admissible graph and applies CUT-RELABEL tO Si. If w is improvable after the relabeling, the
algorithm concludes that the problem is infeasible.

LEMMA 7.1. The path F is always admissible. If wi is improvable after iteration i, then
the problem is infeasible.

Proof. The price function is modified only by CUT-RELAEL. At iteration i, Si contains
w, all its successors on F, and no other nodes of F (by induction on i). Therefore lp (vi, wi)
changes exactly once during iteration i, when it increases by 1. The arc (vi, wi) is improvable
before the change, and admissible after the change. Reduced costs of other arcs on F do not

change during the execution of ELIMINATE-CHAIN.
Suppose w,. is improvable immediately after iteration i. Then there must be a node v such

that (v, wi) is improvable and v Si. By construction of S, there must be an admissible path
from w to v. This path together with the arc (v, w) forms a negative length cycle.

Lemmas 5.1 and 7.1 imply that the implementation of ELIMINATE-CHAIN is correct. Next
we show how to refine this implementation to achieve O(m) running time. The key fact that
allows such an implementation is that the sets Si are nested.

First, we contract the set of nodes Si at every iteration. The reason for contracting is
to allow us to change the prices of nodes in Si efficiently (these prices change by the same
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amount). The CONTRACT(Si) operation collapses all nodes of Si into one node si and assigns
the price of the new node to be zero. (The price of si is actually an increment to the prices
of the nodes in Si.) Reduced costs of the arcs adjacent to the new node remain the same as
immediately before CONTRACT. Note that we have at most one contracted node at any point
during ELIMINATE-CHAIN, but contracted nodes can be nested.

The UNCONTRACT(si) operation, applied to a contracted node si, restores the graph as it
was just before the corresponding CONTRACT operation and adds p(si) to prices of all nodes
in Si. At the end of the chain elimination process, we apply UNCONTRACT until the original
graph is restored.

Contraction is used for efficiency only and does not change the price function computed
by ELIMINATE-CHAIN, because by Lemma 7.1 Si (- Sj for < < j < t.

Second, we implement the search for the nodes reachable from wi’s in the admissible graph
in a way similar to Dial’s implementation [5] of Dijkstra’s algorithm. Our implementation
uses a priority queue that holds items with integer key values in the range [0 2n]; the
amortized cost of the priority queue operations is constant. We assume the following queue
operations.

enqueue(v, Q)" add a node v to a priority queue Q.
min(Q)" return the minimum key value of elements on Q.
extract-min(Q)" remove a node with the minimum key value from Q.
decrease-key(v, x)" decrease the value of key(v) to x.
shift(Q, 3)" add 3 to the key values of all elements of Q.

All of these operations except shift are standard; a constant time implementation of shift is
trivial.

Note that if p is 1-feasible and lp(a) > 2n, then a can be deleted from the graph. This is
because in the current iteration, the reduced cost of an arc can decrease by at most n" at the
next iteration, by at most n/2 (measured in the current units), and so on. Thus the reduced
cost of a will remain nonnegative from now on. We assume that such arcs are deleted as soon
as their reduced costs become large enough.

We define the key assignment function h that maps reduced costs into integers as follows.

if x<0
otherwise.

During the chain elimination computation, each node is unlabeled, labeled, or scanned.
Unlabeled nodes have infinite keys" other nodes have finite keys. The priority queue Q contains
labeled nodes. Initially all nodes are unlabeled. At the beginning of iteration i, key(wi) is set
to zero and w; is added to Q. While Q is not empty and the minimum key value of the queue
nodes is zero, a node with the minimum key value is extracted from the queue and scanned
as in Dijkstra’s algorithm except that h(lp(a)) is used instead of Ip(a) (see Fig. 2). When
this process stops, the scanned nodes are contracted, the new node is marked as scanned, and
its key is set to zero. Then the price of the new node is decreased by and shift(Q, -1) is
executed. This concludes iteration i.

Next we prove correctness of the implementation.
LEMMA 7.2. The sets Si are computed correctlyfor every
Proof For convenience we define So 0. Consider an iteration i. It is enough to show

that Si is correct if _< _< and Si-1 is correct.
Let v be a node on Q with the zero key value. We claim that v is reachable from wi in the

current admissible graph. To see this, consider two cases. If v was a node on Q with zero key

4In 9 we show that Dial’s implementation can be used directly. The implementation described in this section,
however, gives a better insight into the method.
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procedure SCAN(v);
for all (v, w) do

if key(w) cx then
mark w as labeled;
key(w) lp(v, w);
insert(w, Q);

else if w is labeled and key(w) < h(Ip(v, w)) then
decrease-key(w, Ip(v, w));

mark v as scanned:
end.

FIG. 2. The scan operation.

value at the beginning of the iteration, then v is reachable from W by Lemma 7.1. Otherwise,
key of v became zero when an arc (u, v) was scanned. We can make an inductive assumption
that u is reachable from wi. By definition of h, h(u, v) 0 implies that l,(u, v) < O, and
therefore v is reachable from wi.

Let F be an admissible path originating at wi. It is easy to see by induction on the number
of arcs on F that all nodes on F are scanned and added to Si.

It follows that at the end of iteration i, Si contains all nodes reachable from wg in the
admissible graph. V1

LEMMA 7.3. ELIMINATE-CHAIN runs in O(m) time.

Proof. Each node is scanned at most once because a scanned node is marked as such and
never added to Q. A contracted node is never scanned. The time to scan a (noncontracted)
node is proportional to degree of the node, so the total scan time is O(m).

The time of a CONTRACT operation is O (1 + n’), where n’ is the number of nodes being
contracted. The number of CONTRACT operations is at most n and the sum of n’ values over
all CONTRACT operations is at most 2n. Thus the total cost of contract operations is O (n).

The cost of an UNCONTRACT operation is O(1 -4- nr), where n is the same as in the
corresponding CONTRACT operation. Thus the total time for these operations is O (2n). C]

8. Alternative chain elimination. In this section we describe an algorithm based on an
alternative implementation of REFINE. We call this implementation REFINE-P. The algorithm
runs in O(/rm log N) time.

REFINE-P works in iterations, which we call passes. At the beginning of every pass we
check for negative cycles and eliminate zero length admissible cycles using DECYCLE. Then
we compute distances d" defined in the proof of Lemma 6.1. Given a nonnegative integer M.
we define the keyfunction

(v) min(-d’(v), M) Yv V.

(We discuss the choice of initial value of M later.) Sometimes we refer to 3(v) as the key of v.
Let VM denote the set of nodes with key value M. At each iteration of a pass, CUT-RELABEL is
applied to VM. Then keys of nodes in VM and all nodes reachable from VM in the admissible
graph are changed to M and M is decreased by one. This process is repeated until M
reaches zero; at this point the pass terminates. A pass can be implemented to run in linear
time; the implementation is similar to that of ELIMINATE-CHAIN. We leave the details to the
reader.

The next lemma implies that CUT-RELABEL in used correctly in a pass.
LEMMA 8.1. Immediately before a CUT-RELABEL operation is applied by a pass, VM is

closed with respect to the current admissible graph.
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Proof. Before the first CUT-RELABEL operation, Va4 is closed by of the definition of 3.
The admissible graph is changed only by the CUT-RELABEL operations, and after every such
operation a search is done to enforce the closeness of Vm. [3

Note that the function d’ is well defined if the admissible graph does not have negative
cycles.

LEMMA 8.2. Ifat the beginning ofan iteration ofa pass the admissible graph is acyclic,
then

(v) min(-d’(v), M) Yv V.

Proof The proof is by induction on the number of iterations. Keys are initialized so that
the statement of the lemma holds before the first iteration. Suppose that the statement is true

immediately before iteration i, and show that it holds immediately after the iteration.
The d’ value of nodes in Vu increases by one, and the keys of these nodes are decreased

by one at the end of the iteration. The d’ values of a node outside Vu changes only if this
node becomes reachable from Vu in the admissible graph, in which case the new d’ value of
this node is -(M 1) or less. The keys of the nodes that become reachable are correctly set

toM- 1.
Recall that D maxv Id’l.
LEMMA 8.3. Suppose that the value ofM at the beginning ofa pass is equal to such that

0 < <_ D, and the admissible graph does not contain negative cycles throughout the pass.
Then the pass decreases the number ofimprovable nodes by at least t.

Proof Given v, w V, we say that v >- w if there is a negative reduced cost path from
v to w in the admissible graph. If the admissible graph does not contain negative cycles, then
">-" defines a partial order on V.

Consider the beginning ofan iteration of a pass, Let v be a maximum element (with respect
to ">-") of the set of nodes with key value M. By the previous lemma, v is an improvable
node. By the choice of v, if (u, v) is an improvable arc then u 9 VM. Therefore v is no longer
improvable at the end of the iteration.

Each iteration of the pass reduces the number of improvable nodes, and the number of
iterations is t.

Next we discuss the choice of initial value of M. Define d; to be the number of improvable
nodes with d’ value of -i (in the beginning of a pass). If the initial value ofM is i, 0 < < D,
and there are no negative cycles, the number of improvable nodes is reduced by at least d by
the first application of CUT-RELABEL. Combining this observation with the above lemma, we

conclude that the pass reduces the number of improvable nodes by max(i, d). A more careful
analysis shows that the improvement is at least / di 1, since all improvable nodes with an
initial d’ value of and at least one improvable node for each value of j, 0 < j < i, are no

longer improvable after a pass. Define ki + di 1, and set M to the index that maximizes

ki. By an argument of Lemma 6.1, ku f2 (x/-ff). This implies the following theorem.
THEOREM 8.4. With the above choice ofthe initial value ofM, the alternative implemen-

tation ofREFINE runs in 0 (/-m time.
We would like to note that in practice, a pass is likely to reduce the number of improvable

nodes by more then ki, and it may be more advantageous to chose higer initial values for M.
The algorithm performance is likely to be better than the above worst-case bound suggests.

9, Chain elimination using Dijkstra’s algorithm. In this section we show yet another

implementation of ELIMINATE-CHAIN. This implementation uses Dial’s implementation of
Dijkstra’s algorithm [5], and does not use the CUT-RELABEL operation explicitly.

Let F be a path in Gp. An auxiliary network A is defined as follows.
Let d’ be the distance function on 1-’ with respect to lp from the beginning of 1-" to all
nodes on 1".
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Define l’(a) max(0, Ip(a)).
Define d’(v) 0 for v not on F.
Add a source node t, connect to all v 6 V and define l’(t, v) n + d’(v).

ELIMINATE-CHAIN works as follows.
1. Construct the auxiliary network A.
2. Compute shortest paths distances d in A with respect to l’.
3. Yv V, p’(v) p(v) + d(v) n.
4. Replace p by p’.
LEMMA 9.1. The above version ofELIMINATE-CHAIN can be implemented to run in linear

time.

Proof The fact that all steps of ELIMINATE-CHAIN except for the shortest paths compu-
tation take linear time is obvious. The shortest paths computation takes linear time if Dial’s
implementation [5] of Dijkstra’s algorithm is used. This is because l’ is nonnegative and the
source is connected to the other nodes by arcs of length at most n. [-I

LEMMA 9.2.
1. p’ is integral.
2. VaEE, lp, >_--1.
3. ELIMINATE-CHAIN does not create improvable arcs.

Proof The first claim follows from the fact that l’ is integral. The last two claims follow
from the observation that/} is nonnegative and, for a E, l’d(a)--Ip,(a) ifa is improvable
and 0 otherwise. [3

LEMMA 9.3. If the problem is feasible, then Yv on F if(v) p(v) + d’(v).
Proof Clearly p’(v) < p(v) / d’(v).. Assume for contradiction that for some node v on

F, p’(v) < p(v) +d’(v). For the shortest path P in A fromt to v, we have/’(P) < n +d’(v)
and therefore Ip(e) < n + d’(v). Let (t, w) be the first arc of P, and let Q be P with (t, w)
deleted. We have

lp(Q) Ip(P) n d’(w) < d’(v) d’(w).

Note that since l’ is nonnegative, w must be a successor of v on F. Let R be the part of
F between v and w. By the definition of dt,

Ip(R) d’(w) d’(v).

Thus lp(Q) + lp(R) < 0. This is a contradiction because the paths Q and R form a
cycle. [3

LEMMA 9.4. If the problem isfeasible and v is an improvable node on I" with respect to

p, then v is not improvable with respect to p’.
Proof Assume for contradiction l(u, v) E Ip,(U, V) < 0. Let P be the shortest path

in A from to u, let (t. w) be the first arc on P, and let Q be P with (t, w) deleted. Note that
d(u) <_ d(v), because otherwise lp,(U, v) cannot be negative. Therefore to must be a successor
of v on 1". Let R be the portion of 1-’ between v and w.

Since Q is a shortest path, we have la(Q) 0. This implies lp,(Q) <_ O. By the previous
lemma lp,(R) 0. Therefore the cycle formed by R, Q, and (u, v) has a negative reduced
cost with respect to p’. This is a contradiction. [3

Remark. Implications ofLemma 9.4 are stronger than those ofLemma 7.1: if the problem
is feasible, the former lemma guarantees that all improvable nodes on F are "fixed," and the
latter guarantees only that the nodes that are heads of the improvable arcs on 1" are "fixed."

10. Extensions to the minimum-cost circulation and assignment problems. Our short-
est path method extends to the minimum-cost circulation problem. The intuitive difference is
that when a shortest path algorithm finds a negative cycle, it terminates; when the correspond-
ing minimum-cost circulation algorithm finds a negative cycle, it increases the flow around the
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cycle so that an arc on the cycle becomes saturated, and continues. In our discussion below,
we assume that the reader is familiar with [17], [18]. We denote the reduced costs by Cp and
the residual graph by Gf.

We define admissible arcs to be residual arcs with negative reduced costs, as in [17],
[18]. Without loss of generality, we assume that a feasible initial circulation is available. A
simple algorithm based on the CUT-RELABEL operation does the following at each iteration.
First, it cancels admissible cycles; this can be done in O(m log n) time (see, e.g., [17]).
Next, the algorithm picks an improvable node v, finds the set S of nodes reachable from
v in the admissible graph, and executes CUT-RELABEL(S). The resulting algorithm runs in
O(nm log n log(nC)) time (note that the initial flow may have residual arcs with reduced cost
of -C with respect to the zero price function). We can also use the TIGHTEN operation to
obtain a minimum-cost flow algorithm with the same running time. These algorithms are
variations of the tighten-and-cancel algorithms of 17].

In the above minimum-cost flow algorithms, the admissible graph changes due to flow
augmentations in addition to price changes. Because of this fact, our analysis of the improved
algorithms for the shortest paths problem does not seem to extend to the minimum-cost flow
problem. In the special case of the assignment problem, the analysis of the improved shortest
path algorithm can be extended to obtain an O(/-m log(nC)) time algorithm. This bound
matches the fastest known scaling bound [13], but the algorithm is different. The idea is to
define the admissible graph and improvable arcs so that an improvable node has exactly one
improvable arc going into it and the residual capacity ofthis arc is one. This is possible because
of the special structure of the assignment problem. When an admissible cycle is canceled, all
improvable arcs on this cycle are saturated and there are no improvable nodes on the cycle
after the cancellation.

11. Concluding remarks. We described a framework for designing scaling algorithms.
The CUT-RELABEL operation can be used to design algorithms within this framework. The
framework is very flexible and can be used to design numerous algorithms for the problem.
Using these results, we improved the time bound for the problem. We believe that further
investigation of this framework is a promising research direction.

One can apply the version of ELIMINATE-CHAIN described in .9 without using scaling. It
can be shown that in this case if the problem is feasible, all negative reduced costs of arcs
on F are changed to nonnegative ones, and reduced costs of other arcs do not become more
negative. This suggests a possibility of solving the general shortest paths problem in O
Dijkstra shortest paths computations. The problem, however, is that our way of dealing with
the first case of Lemma 6.1 does not work without scaling.

Our definition of e-feasibility corresponds to that of e-optimality for minimum cost flows
[14], [18]. If one follows [14], [18] faithfully, however, one would define e-feasibility using
l,(a) >_ - instead of (2) and not consider arcs with zero reduced costs admissible. Under
these definitions, the admissible graph cannot have zero length cycles, so there is no need for
DECYCLE. However, these definitions seem to lead to an O (log(nN)) bound on the number of
iterations of the scaling loop of the method. The tighten operation described in 17] also leads
to an implementation of the method that runs in O (log(n N)) iterations of the scaling loop.

The techniques introduced in this paper have a practical impact. In particular, the tech-
niques of 8 proved to be crucial in our implementation of price update computation in a
minimum-cost flow algorithm [15], which resulted in a significant improvement of perfor-
mance.

Preliminary experiments with the algorithm of this paper, conducted as a part of the
experimental study described in [3], suggest that the algorithm is not the best one to use in
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practice. Although on some problem families the algorithm significantly outperformed the
classical methods, it was dominated by the algorithm of [16] on all problem classes studied.

The algorithms we discussed scale e by a factor of two. Any factor greater than one can
be used instead without affecting the asymptotic time bounds. The method can be modified to
maintain a tentative shortest path tree. When the algorithm terminates, this tree is the shortest
path tree. This eliminates the need for the Dijkstra computation at the end of the algorithm.
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COUNTEREXAMPLES FOR DIRECTED AND NODE
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Abstract. We show that there is no cut-tree for various connectivity concepts, hence pointing out errors in the
papers of Schnorr [SIAM J. Comput., 8 (1979), pp. 265-275] and Gusfield and Naor [Networks, 21 (1991), pp. 505-
520]. Gomory and Hu [SIAM J. Appl. Math., 9 (1961), pp. 551-560] constructed a cut-tree for undirected graphs
which compactly represents a minimum cut for each pair of vertices. This has a straightforward generalization to

directed Eulerian graphs, cf. Gupta [SIAM J. Appl. Math., 15 (1967), pp. 168-171]. A generalization for arbitrary
directed graphs was given by Schnorr. There is a well-known transformation of vertex connectivity to directed edge
connectivity; directed edge cuts correspond to vertex cuts in some weak sense. The result of Schnorr was later applied
by Gusfield and Naor for such a cut-tree construction. In this paper counterexamples are described to show that for
directed graphs there is no cut-tree and therefore the cut-tree results of Schnorr and Gusfield and Naor are incorrect.
Our final example shows that, without weakening the notion of vertex connectivity, it is impossible to construct vertex

cut-trees for undirected graphs in general.

Key words. Gomory-Hu trees, minimum cuts, graph connectivity
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1. Introduction. A theorem of Gomory and Hu [5] states that the minimum edge cuts
between all pairs of vertices in an undirected edge capacitated graph G can be represented by
a tree as follows. First, the value of a minimum cut between s, G is equal to the smallest
of the capacities of the edges on the unique s-t path in the tree. Second, the removal of any
edge of capacity c from the tree separates the vertices of the tree into two classes, in which
the cut in G given by this partition has capacity c as well.

Trees satisfying both conditions are called cut-equivalent trees or, in short, cut-trees;
when only the first condition is satisfied we call them flow-equivalent trees. Note that both
flow-equivalent and cut-trees can be computed by n max-flow computations [5] and they
encode all the () minimum cut values. By looking at a cut-tree we can also find one such
minimum cut for any pair of nodes.

It is important to note that while a cut-equivalent tree is always flow equivalent by defi-
nition, the converse does not hold. In general, the number of different flow-equivalent trees

corresponding to a graph is considerably more than that of the cut-trees; for example, it is true
that each graph has a flow-equivalent tree which is a path (see [4]).

As a generalization of the Gomory-Hu theorem, Cheng and Hu [2] proved the existence
of flow (but not cut) equivalent trees for the case when an arbitrary value is assigned to the
(undirected) cuts of the graph. The resulting tree represents all the minimum cuts of pairs of
vertices with respect to this weight.

A natural question arises: can we construct equivalent trees for directed graphs? As a
simple instance, the problem for directed Euler graphs easily reduces to undirected graphs
and hence a cut-tree exists (cf. Gupta [7]). in general, however, we cannot ask for a compact
representation of all the n(n 1) directed cuts, since there can be (n + 2)(n 1)/2 different
values among them; see [3].

Not everything is lost, however. For a given pair of vertices, there are two different
maximum flow values depending on which direction we choose. Let us consider the smaller
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one only. For each cut, the smaller of the capacities of the cut itself and the cut directed the
other way are assigned. Then this assignment is symmetric, i.e., the values correspond to
the undirected cuts of the graph. Hence the result of Cheng and Hu [2] can be applied to this
symmetric directed case to construct flow-equivalent trees.

What about the existence of cut-trees for the above symmetric directed case? Schnorr
presented an algorithm for generating such cut-trees in [10]. One aim of this paper is to show
that Schnorr’s result was incorrect, since there is no cut-tree for this case in general. (We
note here that Schnorr also presented a flow-equivalent tree algorithm for this case and that is
correct, but it is less efficient than the Cheng-Hu algorithm.)

Another possible task is to find a compact representation of minimum vertex cuts or cut
values. One possible way to deal with vertex cuts is to transform the original graph to a
directed graph (see 3). There a pair of vertices corresponds to each vertex of the original
graph. Note that the connectivity properties of the transformed graph are different from the
original vertex connectivities. The two inconvenient differences are the following. First,
it is possible that the minimum u-v cut is u itself; this means that in the original graph
u and v are separated by removing u. Second, we can get no information about vertex

connectivity between vertices connected by an edge. Furthermore, while a vertex cut can have
an arbitrary large number of disconnected components, a corresponding edge cut has always
two components. (Consequently there may be several corresponding edge cuts.) To emphasize
the difference of this notion from that of the vertex cuts, we call the former separations (for
precise definition see 3).

The result of Cheng and Hu can be applied then to construct a flow-equivalent tree for
separations in the transformed directed graphs (as noted in [8]). Following this approach, we
may ask if cut-trees for these directed graphs exist. Applying the incorrect result of Schnorr
[10], Gusfield and Naor [8] immediately got a cut-tree construction for minimum separations
(on the duplicated vertex set). The existence of such a cut-tree will also be disproved in this

paper.
Even for separations, it is probably more natural to construct equivalent trees with vertices

from the original (and not the duplicated) vertex set of the graph. Granot and Hassin [6] have
such a construction for (in our terms) undirected flow-equivalent trees and Benczfir has
one for cut-trees. There, as for the Gomory-Hu trees, the minimum separation value is the
least of the capacities among edges of the tree on the path connecting the vertices investigated.

In contrast to separations, let us consider vertex cuts. Using the Cheng-Hu [2] result we
can construct flow-equivalent trees by transforming the vertex-capacitated graph to a directed
edge-capacitated one and assigning infinite cut-values to the trivial single-point cuts. Con-
versely, we show an example in which we cannot represent minimum vertex cuts by a cut-tree.
(There are a lot of hard minimum vertex cut structures; for example, two K’-s joined by n
edges forming a matching is n-connected and has 2" minimum capacity cuts.)

Finally, we note that the paper of Benczfir is a counterpart to this paper; it proposes a
graph connectivity model (separations in mixed edge- and vertex-capacitated graphs) where
cut-trees exist. This model contains both undirected edge cuts and vertex separations where
one may construct cut-trees.

2. Directed edge cuts. First we give some notation and the definitions of crossing edge
cuts and laminar set systems. The latter is necessary only as background, since the counterex-
amples can be verified without knowledge of these simple facts.

2.1. Edge cuts. Let G (V, E) be a graph. For U C V let (U) and p(U) denote
the set of edges leaving (respectively, entering) U. For V1 C V, (V1) is a directed edge
cut separating V and V2 V V1. We denote this cut by (VIlV2). Two cuts (VIIV2) and
(W IW2) are crossing if the four sets of form Vi A Wj are all nonempty.
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.,3

FG. 1. Left: directed graph with no cut-equivalent tree. Right: the four flow-equivalent trees of the graph,
neither ofwhich is cut equivalent.

2.2. Set systems. We call a set system laminar if for any two nondisjoint members, V
and V2, either V c__ V2 or V V2. We need two well-known and simple facts. First, for a
system of cuts {(vi)lv2i))" < n} we can build a laminar system by selecting either Vi) or

V2i) for all < n if and only if it contains no crossing pairs. Second, the laminar systems are
those which can be represented as labels of a rooted tree such that the label of a descendant is
a subset of that of its ancestor. (This is exactly the case for the Gomory-Hu trees of undirected
edge cuts, cf. [9].)

2.3. Counterexamples. Now we give the counterexamples for the erroneous theorems.
C.P. Schnorr in 10] claims that it is possible to construct a cut-tree in the directed case. We
give the counterexample for this theorem in Fig. 1. The graph contains four vertices, hence
seven possible cuts. It is easy to find that among them the unique minimum cuts for vertex
pairs are C (AIBCD), C2 (ABICD), and C3 (ADIBC)of Fig. 1. Since C2 and C3
are crossing, there cannot be a cut-tree for this graph.

Let us discuss the error in Schnorr’s paper. His Theorem 3.4 [10, p. 272] is stated as
follows. (F,,.o is the max-flow value from u to v. 1 is the tree constructed by the algorithm.)

THEOREM 3.4 OF [10]. min{F,,o, F_.,,} equals the minimum capacity of the edges on
the path that connects {u} and {v} in N. If among the minimum capacity edges on the
undirected path connecting u and v in N some edge e is directed from {u} to {v},
then F,,.o min{F,,o, Fo,,,} and the weak components of 1 {e} yield a minimum
(u, v)-cut.

His algorithm does the following. It picks the minimum possible value cut of the graph,
on Fig. C. Then, as Lemma 3.1 [10, p. 270] states, we can always select minimum value
cuts in both components of the previous cut so that they do not cross each other. This is true
inside {B, C, D} since then C2 (BICD) and C3 (DIBC) do not cross. However, they do
cross in the entire graph, which is not recognized in the rest of 10].

Gusfield and Naor have incorrect theorems in [8] because they use the above result of
[10]. Their cut-tree construction for the same case as in 10] certainly cannot work. Their
other directed cut-tree construction deals with cuts directed into afixed vertex. Adding edges
of infinite capacity directed from this fixed vertex to each other vertex makes this equivalent
to the original directed problem. Figure with "root" C is a counterexample, because the
minimum cuts separating C from the other vertices directed into C are exactly the minimum
cuts CI, C2, and C3, where 12 and C3 cross each other.
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FIG. 2. Left: vertex-capacitated graph. Right: its transformed digraph.

3. Undirected vertex cuts. Another application for directed connectivity is to find a
compact representation of minimum vertex cuts or cut values: one possible way to deal with
vertex cuts is to transform the original graph to a directed graph. In [8] a vertex cut-tree (which
is in our terms a cut-tree for separations) algorithm is also presented by transforming the graph
to a directed one. Before giving a counterexample to this algorithm, we discuss the method of
transforming vertex connectivity in a more general form for mixed cuts as well. Let us start
with definitions. Let G (V, E) be a graph with a positive vertex capacity function c.

DEFINITION OFCUTS. A vertex cut is a minimal C C V(G) such that G-C is disconnected.
(The number of components can be arbitrarily large.) For a given T C V(G), a mixed cut
(C, D) is a minimal set of vertices C C T and edges D C E(G) such that erasing them
from the graph makes it disconnected. (This is a generalization of vertex cuts, where simply
T V(G) and the edge capacities are infinite.)

DEFINITION OF SEPARATIONS. A separation denoted by C (Hi CIH2) is a partition of
the vertex set V (G) into three (possibly empty) subsets H, H2, and C. C is called the cutset;
the edges connecting H and H2 are the cut edges. In vertex separations there are no edges
connecting H and H2. The capacity ofthe separation is just c(C).

We introduce the standard technique (which can be found in [4]) to transform mixed
(or vertex) connectivity to directed edge connectivity in another graph G’(V’, E’) with edge-
capacity function er. Let G’ consist of vertices v, v2 for all v 6 V. We shall denote an edge
directed from s to by (s, t). Then let (tl, t2) E’ with e’(h, t2) c(t) if tl -: t2. And for
all edges (u, v) of G, let (u2, v) and (v2, u) be edges of E’ with the same capacity as (u, v)
in G. (An example is given in Fig. 2.)

The correspondence of separations and edge cuts is the following. Assume a separation
(H ICIH2) is given. Then Hj {tj C} U {v, V2 1) Hj} for j 1, 2 is a partition of
V’ where the cut directed from H to H2’ has the capacity of the separation. Note that we may
choose an arbitrary component of the cut for H and let H2 V (G) C H. Thus there
are always at least two different edge cuts corresponding to the original cut. And conversely,
for s :/= let (H;IH) be an s- t2 cut of Gt. By defining Hi {v 1)1, I)2 H’} (i 1,2)
and C V(G) (H tO H2), (HllClg2) is a separation with the same capacity as (H;IH).

Note that in the transformed directed graph there are cuts with a single vertex on one side.
If we transform them back to the vertex-capacitated graph, a one-vertex "cut" corresponds
to these cuts, which "cuts" itself from the rest of the vertices. For vertex pairs connected by
an edge, obviously this is the only possibility for a minimum cut. This is why we need the
weaker notion of separations: the transformed graph contains information on separations, not
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FIG. 3. Two-vertex-connected graph with two crossing minimum cuts AE and CG.

cuts. Note that both the (incorrect) result of Gusfield and Naor [8] and the flow-equivalent
result of Granot and Hassin [6] deal with separations and not cuts.

Now we discuss a counterexample for the existence of cut-trees for separations in trans-

formed vertex-capacitated graphs. Gusfield and Naor [8] simply use the incorrect result of
Schnorr [10] to construct such a tree. Although we have presented a counterexample for
Schnorr’s result, it is not a transformed graph. Hence we give a special counterexample for
this case. Also, it can happen that there is no cut-tree containing a minimum cut for all
pairs of vertices of the directed graph, but if we restrict our attention to a set of edge cuts
corresponding to a set of minimum vertex separations for all pairs of vertices, we can build
a cut-tree consisting of these cuts. This can happen, since in general there are at least two

edge cuts corresponding to vertex cuts and one of them is always redundant. Thus we have
an aim which is even stronger than showing that the result of [8] is incorrect: we shall give an
example where we cannot select a set of minimum vertex separations for all pairs of nodes and
corresponding edge cuts in the transformed graph such that this set of edge cuts bears with a
cut-tree representation.

Let us consider the example of Fig. 2. The three cuts of this graph A JC, AJG, and
E JG should all be listed to separate vertices B, D, F, and H. Let us see if this is possible on
the transformed graph. The two possibilities to select the cut corresponding to the separation
ACJ on the transformed graph are (A B B2C1J) and p (A2 Bl B2C2 J2). Let us consider
the case when we pick the first one; the analysis of the second case is similar. Then from
the two-two possibilities of the cuts corresponding to A JG and EJG, those not crossing the
selected one are p(A2G2H1H2J2) and p(E2FF2G2J2), respectively. But these cuts cross
each other. So the necessary directed cuts cannot be represented by a tree, contradicting the
claim of [8].

Finally, we give an example to show that it is impossible to construct cut-trees for (original)
vertex cuts. Let the graph of Fig. 3 have four vertices A, C, E, and G of capacity one; the other
vertices are either of large capacity or, if we want unit capacities, they represent large cliques.
A cut-tree must contain the two minimum cuts AE and CG to separate C from G (respectively,
A from E). If we forget about the four vertices of capacity one, the above two cuts can be
considered as edge cuts (BHIDF) and (BDIHF). Since these cuts are crossing each other,
there is no cut-tree representing them, i.e., there is no tree which has edges corresponding to
both of these two vertex cuts and contains B, D, F, and H as required.
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TREE RECONSTRUCTION FROM PARTIAL ORDERS*
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Abstract. The problem of constructing trees given a matrix of interleaf distances is motivated by applications in
computational evolutionary biology and linguistics. The general problem is to find an edge-weighted tree which most

closely approximates (under some norm) the distance matrix. Although the construction problem is easy when the
tree exactly fits the distance matrix, optimization problems under all popular criteria are either known or conjectured
to be NP-complete. In this paper we consider the related problem where we are given a partial order on the pairwise
distances and wish to construct (if possible) an edge-weighted tree realizing the partial order. We are particularly
interested in partial orders which arise from experiments on triples of species. We will show that the consistency
problem is NP-hard in general, but that for certain special cases the construction problem can be solved in polynomial
time,
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1. Introduction. Constructing edge-weighted trees from distance data is a classical prob-
lem motivated by applications in molecular biology, computational linguistics, and other areas.
Here we are given an n-by-n distance matrix M and asked to find a tree T with leaves 1,2 n
such that the path distance d/ in the tree closely approximates the matrix M. When di Mij
the matrix is said to be additive and efficient algorithms exist for constructing trees from addi-
tive distance data (see [8], [5], [1 ], and others). Various optimization criteria for the problem
were proposed and many NP-hardness results were published ([2], [3], and others). In fact, in
[3] it is shown that for one of the standard optimization criteria (finding a minimum sized tree
T such that d > Mij, where the size of the tree is the sum of the edge weights in the tree),
there is a constant e > 0 such that no polynomial time algorithm can approximate the optimal
solution within a ratio of n unless P=NP. Thus, constructing trees from distance data is a
hard problem and the usual heuristic approaches are unlikely to lead to reasonable solutions.

However, for many applications, the actual numeric data is quite unreliable (see [3], [4]
for discussions of how interspecies distances are derived in computational molecular biology
and why the data is unreliable). One way of handling this unreliability is to assume that
distances are given with error bars. This approach was taken by Farach. Kannan, and Warnow
in [3]. In this paper, we will take a different approach and assume that we have confidence
only in relative information, so that our input will be given in the form of a partial order on
the pairwise distances. We are particularly interested in the problem where the partial order
is constructed from experiments on triples of species, where these experiments are of one of
the following two types.

Total order model (TOM). A TOM experiment on i, j, k determines the total order of
the three pairwise distances d(i, j), d(j, k), d(i, k), with equality or strict inequality
indicated.

Partial order model (POM). A POM experiment on i, j, k determines the minimum
elements of d(i, j), d(j, k), d(i, k).
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These models are inspired by the model of Kannan, Lawler, and Warnow [6], in which
rooted trees are constructed using experiments which determine the rooted topology for any
three species.

We study the following problems under these models.

Consistency. Given a partial order on a set of distances, does there exist an edge-
weighted tree which realizes this partial order?

Construction. Given the ability to perform an experiment, how quickly can we construct

an edge-weighted tree realizing the experiments (here we assume the experiments
are consistent)?

The essential difference between the consistency problem and the construction problem
is that we are not allowed to perform additional experiments to determine the consistency
of a given set of experiments. This makes a substantial difference in complexity, with the
consequence that determining consistency is NP-complete for some of the models below
where construction can be done efficiently.

We present the following results:
1. The problem of determining whether a set ofPOM orTOM experiments is consistent

with some tree is NP-complete, whether the tree is constrained to be unweighted and
without degree-two nodes, or can be arbitrary. This result is described in 2.

2. We can construct unweighted binary trees in O(n3) time from TOM experiments and
in O(n4) time from POM experiments. These results are described in 3 and 4,
respectively.

Constructing unweighted binary trees is motivated by the work of Winkler [9], who
considered the related discrete metric realization problem, in which one is given an n-by-n
distance matrix M and an integer k and the task is to create a graph G with n distinguished
vertices and at most k edges such that the shortest path in the graph G between xi and a) is

exactly equal to Mij. Winkler showed that this problem is strongly NP-complete for general
graphs and for unweighted graphs without nodes of degree two.

2. Consistency ofTOMorPOM experiments. In this section we show that determining
whether a set of either TOM or POM experiments is consistent with a tree is NP-complete
for weighted trees as well as for unweighted trees without nodes of degree two. We begin by
considering a related problem of constructing trees using unrooted quartets, where a quartet
is an unrooted tree on four leaves, i, j, k, 1. Each quartet q is constrained to contain an edge
e so that q {e} describes a partition of the four leaves into two sets of two leaves each. We
indicate this by writing q (ij, kl). Thus, q indicates that the topology on leaves i, j, k, is
as shown in Fig. 1.

The unrooted quartet consistency (UQC) problem is as follows.
Problem: Unrooted quartet consistency.
Input: A set Q of quartets on the species set S {s, s_ s,, }.
Question: Does there exist a tree T with leaves labeled by the species of S such that if

q (ij, kl) Q, then there is an edge e in T such that i, j are on one side of e and
k, are on the other side.

The UQC problem was shown NP-complete by Steel in [7].
We can now prove that determining consistency of TOM experiments is NP-complete.
THEOREM 2.1. TOM consistency is NP-complete.
Proof. The reduction is from the UQC problem. Let I be an instance of the UQC problem

and let (ab, cd) be one of the topology constraints.
We create two new leaves x and y and write down total order constraints for the triples

(x, y, a), (x, y, b), (x, y, C) and (x, y, d) as follows:
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FIG. 1.

d(x, a) < d(y, a) < d(x, y),
d(x, b) < d(y, b) < d(x, y),
d(y, c) < d(x, c) < d(x, y),
d(y, d) < d(x, d) < d(x, y ).

It is not hard to see that any edge-weighted tree satisfying each of the four constraints
above also satisfies the topology constraint imposed by the quartet. Thus any tree that is
consistent with the constraints of the TOM problem is consistent with the constraints of the
UQC problem.

Conversely, suppose there is a tree that is consistent with the constraints of the UQC
problem. We augment this tree with the addition of the newly defined leaves such as x and
y as follows. For each quartet (ab, cd), let e (u, v) be an edge in the tree separating ab
from cd, with u on the a, b side, and v on the c, d side. In the TOM problem we introduced
dummy species x and y such that a, b are closer to x than to y, and c, d are closer to y than
to x. Attach these leaves x and y to u and v, respectively and set w(x, u) w(y, v) n
All edges in the original tree are left at unit weight. It is then clear that the augmented tree
satisfies all the constraints of the derived instance. Hence we have a valid reduction showing
the NP-completeness of the consistency problem for TOM experiments.

It is easy to see that this proof implies that the consistency of POM experiments is also
an NP-complete problem, and for both cases the weights on the edges are integers between
and n2. What is not quite as obvious is that consistency of TOM and POM experiments is

still NP-complete when we restrict ourselves to trees of unit weight and without degree-two
nodes. We now prove this forTOM experiments, since the proof for POM experiments follows
along the same lines.

THEOREM 2.2. Determining consistency of TOM experiments with unit weight trees is

NP-complete.
Proof. That the problem is in NP is trivial; thus we need only show that it is NP-hard. By

the above proof, determining whether a set of TOM experiments is consistent with a tree in
which every edge has integer weight bounded by n2 is NP-complete. We will show that this
problem (bounded integer weight TOM experiment consistency) reduces to unit weight TOM
experiment consistency.

Let S {s, s2 s,,} be a set of leaves and ,5’ a set of k TOM experiments. Let
S’ S tA {Xl, x2 x2n3} be another set of leaves. We will show that S, ,5’ is consistent
with a weighted tree T if and only if S’, g is consistent with an unweighted tree T without
degree-two nodes. It is clear that we can assume that T contains no nodes of degree two. So
suppose T realizes the TOM experiments. By our construction, we can assume that T has
only integer weights on the edges and that these integer weights are bounded by n2. For each
edge e in T with weight w(e) > 1, we introduce w(e) additional internal nodes to that
edge and w(e) new leaves hanging off those new internal nodes. We then set the weight
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of the newly created edges to be 1. It is clear that this new tree T’ still satisfies the original set
of experiments ,5’ and that it contains at most 2n additional leaves. Setting S’= leaves(T’),
we note that S’, S is realized by T’.

For the converse, if the experiments in E can be realized by a unit-weighted tree T on leaf
set S and at most 2n2 additional leaves, since E does not contain any constraints involving the
additional leaves, E is realized by the tree T with the additional leaves stripped off. [3

As a consequence, we have the following corollary.
COROLLARY 2.3. Let <e be a partial order defined on the set ofpairwise distances, dij.

Then determining whether <_e is compatible with an edge-weighted (or unweighted) tree is
NP-complete.

3. An O(n3) algorithm for constructing unweighted trees from TOM experiments.
We examine the problem of constructing a tree T with unweighted edges (equivalently,
w(e) for all edges e 6 E(T)) and no nodes of degree two. We will assume here the
ability to perform an experiment on any triple of species i, j, k, where the output of the exper-
iment on the triple i, j, k will be a linear ordering on the three pairwise distances, with either
equality or strict inequality indicated.

3.1. Sibling sets. The general structure of the algorithm is to discover a pair of sibling
supernodes and connect them, making a new supernode. A supernode represents a subtree
induced by an edge-deletion of T. Note that any tree where each internal node has degree
three must have at least two pairs of sibling nodes. Once we locate a sibling pair i, i2 we
"’collapse" the nodes representing l, i2 into a supernode. We therefore need to show how to
determine siblinghood of pairs of supernodes.

We will always maintain the following invariants: we will always know the exact tree that
any particular supernode represents and each supernode will represent a portion of the overall
tree which is connected to the rest of the tree by exactly one edge. We will abuse the notation
slightly and use "supernode" to represent not only a collection of the original vertices, but
also the tree structure that we have computed on them. The root of a supernode V is defined
to be the node r(V) in V at which the rest of the tree is attached to V. For each supernode V
we choose a "representative" v which is a leaf of the original tree that is contained in V and is
nearest to the root of V. We denote the representative of a supernode V by rep(V). We define
d(V) d(rep(V), r(V)). Initially, the supernodes are singleton sets and d(V) 0 for all
supernodes V. We will also say that V1 and V2 are siblings if d(r(V), r(V2)) 2.

We will clarify each step of the algorithm in what follows. It is particularly important to
note that a "collapse" of a set of nodes does not mean throwing away any of the individual
nodes" in fact, even after we collapse a set of nodes we will need to refer to experiments
involving individual nodes in the set that has been collapsed. Also note that the recursive
application of the algorithm is not straightforward since after a single collapse we are not
allowed to perform experiments on the new leaf that is created.

3.2. Determining sibling pairs. We have three techniques for determining whether V
and V2 are siblings, depending on how large Id(V) d(V2)I is.

Given two supernodes V and V2 with representatives i and i2, and given any leaf j ’V tO V2, we can determine whether j is closer to i or i2 and use this information to determine
whether V and V2 are siblings. We therefore make the following definitions:

LT: (V, V2) 6 LT if and only if there exists leaf j 6 T (V t3 V2) such that d(j, i) <
d(j, i2).

GT: (V1, V2) 6 GT if and only if there exists leaf j 6 T (V U V2) such that d(i2, j) <
d(j,i).

EQ ("equals"): (V1, V2) 6 E Q if and only if there exists leaf j 6 T (V U V2) such
that d(i, j) d(i2, j).
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We now describe the details of how we determine whether two supernodes are siblings.
We begin with the case where d(V) d(V2).

Suppose that d(V) d(V2) and i and i2 are the representatives of V and V2, respectively.
If V and V2 are siblings, then for all j q[ V to V2, d(i, j) d(i2, j). Thus, we will find that
(V, V2) 6 EQ and (V, V2) ’ LT tO GT. On the other hand, if V and V2 are not siblings,
then there is an internal node v closer to the root of V than to V2, and if j is a leaf in the
subtree rooted at v on the path from V to V2, then d(i, j) < d(i2, j). Thus, (V, V2) 6 LT.
We therefore can characterize the pairs of supernodes V, V2 such that d(V) d(V2), which
must be siblings as explained in the following lemma.

LEMMA 3.1. Let V and V2 be supernodes with d(V) d(V2). Then V and V2 are
siblings if and only if (V, V2) ’ LT to GT. This can be determined in O(n) time.

Equally simple is the case where d(V) d(V2) + 1. For this case we have the following
lemma, the proof of which is omitted.

LEMMA 3.2. Let V and V2 be supernodes such that d(V) d(V2) -+- 1. Then V and V2
are siblings if and only if (V, V2) EQ to L T. This can be determined in 0 (n) time.

In the case where d(V1) > d(V2) + 2, once again let i and i2 be the representatives of
V and V2, respectively. If (V, V2) 6 E Q to LT we can conclude immediately that V and
V2 are not sibling supernodes. However, the converse does not hold since if the roots of V
and V2 are connected by a path of length three we would still have (V, V2) ’ EQ to L T. We
need a different technique to handle this case.

We assume that V and V2 are siblings and derive either a contradiction or confirmation
of this assumption. Since we know the entire structure of V and V2 under our assumption
above, we know the length of the path P from i to i2. We have two cases. If P is of even
length, let x be the midpoint of P. Because of our assumption, we can identify the above
node x which lies within V. Since x has degree greater than two we can find a leaf y which
lies in a branch of x other than the ones containing i or i2 (y lies within V as well and we
can identify such a y quickly). Then V and V2 are siblings if and only if d(i, y) d(i2, y).
If P is of odd length, the proof is similar- we identify the two middle nodes w and x in
P and check that for leaves y and y2 hanging off third branches of w and x, respectively,
d(y, i) < d(y, i2) and d(y2, il) > d(y2, i2). Again these conditions will hold if and only
if V and V2 are actually siblings. We summarize the above in the following lemma.

LEMMA 3.3. Let V and V2 be supernodes with d(V) > d(V2) + 2. We can determine
whether V and V2 are siblings in O(n) time.

Remark 1. It is possible using clever data structures for maintaining the structure of
supernodes to reduce the time to check siblinghood in this case to sublinear. However, we
don’t do this, since in the other cases we do need linear time to check siblinghood.

3.3. Implementation and running time. It is clear that the invariants will be maintained
after the detection of sibling pairs and the merger of the constituent supernodes into a bigger
supernode. When we have only three supernodes left we stop and construct the tree. We then
have to check that this tree is in fact consistent with all of the experiments that have been
performed.

In order to see that the running time is O(n3), note that we perform O(n2) tests of
siblinghood initially (between every pair of given species). Since each test of siblinghood
takes O(n) time, this initial step costs O(n3). Now suppose we determine that two supernodes
I and J are siblings. We then need to look at the remaining supernodes to see if any of these
are also siblings to I (and hence to J). Hence, to determine the sibling set containing I will
cost us O(n) sibling tests, for a total cost of O (n2). This cost is only incurred by a new sibling
pair, and since there are at most O (n) sibling pairs, this only occurs O (n) times. Hence, the
overall cost is O(n3).
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Note that the algorithm above is optimal since we have to check that the tree is correct
with respect to f2 (n 3) experiments. However, we might consider a related promise problem
where the task is to construct a tree under the promise that such a tree exists. In this case, the
lower bound does not hold and the problem of whether there is a more efficient algorithm is
open.

4. An O(n4) algorithm for constructing unweighted binary trees from POM exper-
iments. The algorithm we use for constructing unweighted binary trees from POM ex-
periments uses some of the same techniques as in the previous section. Here, an experi-
ment on i, j, k only returns pair(s) which have minimum distance, and does not totally order
that set. We indicate this experimental outcome by O (i, j, k), and understand this to be a set
of pairs.

As in the previous algorithm, we work with supernodes and determine siblinghood pairs.

4.1. Determining sibling pairs. We again have techniques for determining siblinghood
of supernodes V and V, which depend on Id(V) d(V_)l. Since we do not obtain a total
order on distances, we use different definitions of the sets EQ, LZ and GT, in which we may
combine information from different experiments in order to infer the existence of internal
nodes v for which we can determine the relative proximity of v to the leaves i and i, where

i V and i V.
LT: (V, V) LT if and only if there exists leaf j T (V t2 V) such that (i, j)

O(i, i, j) but (i, j) q O(i, i, j), or there exist leaves j, k in T (V U Vg_) such
that (i, j) O(i, j, k) and (i, j) . O(i, j, k). Membership in this set indicates
the existence ofan internal node v so that d(i, v) < d(i, v).

GT: (V, V) GT if and only if there exists leaf j T (V V) such that (i, j) 6

O(i, i, j) but (i, j) O(i, i, j), or there eist leaves j, k in T (V V) such
that (i, j) O(i, j, k) and (i, j) . O(i, j, k). Membership in this set indicates
the existence ofan internal node v so that d(i, v) > d(i, v).

EQ ("equals")" (V, V) EQ if and only if there exists leaf j T (V t_J V) such
that {(i, j), (i:, j)} C O(i, i:, j). Membership in this set indicates the existence

ofan internal node v so that d(i, v) d(i, v).
In order to be able to use membership or nonmembership in these sets EQ, GT, and LT,

we need two more lemmas. First we make the following definition.
DEFINITION 1. Let be a leaf, v an internal node and c be a variable or a constant whose

value is a positive integer Suppose it is known that d(i, v) > c. An experiment on i, r, s
is said to be (c, i, v) critical iffrom the outcome of the experiment on (i. r, s) and previous
experiments, it is possible to deduce whether d(i, v) c. In other words, an experiment i, r, s
is (c, i, v) critical if its outcome can be predictedfrom the assumption that d(i, o) c and if
the predicted outcome will equal the true outcome ifand only ifd(i, v) c.

We can now prove the following lemma.
LEMMA 4.1. Let v be an internal node separating T into three subtrees, T, T, and T3.

Let be a node in T with d(i, v) > k where k is a constant or a variable whose value is a

positive integer and minxz:-.) d(x, v) > k + 2. Then there exist leaves r, s T such
that i, r, s is a k, i, v )-critical experiment.

Proof. Define th distance function d*(i, r) d(v, r) + k. Trivially, d(i, r) > d*(i, r)
for all r 6 T with equality if and only if d(i, v) k. Let x be the leaf in T of shortest
d*-distance from i, and let d*(i, x) L. By construction, L > 2k + 2. In the path from to

x let c be the node which is at d*-distance from i. Since L >_ 2k + 2, c T. As before,
the removal of c from the tree splits the leaves into three sets, S(c), S(c), and $3(c). Let

S (c) and x S(c), and let y be the node closest to in $3(c). The d*-distance from y to
c is at least equal to because of the way that x was chosen. If the d*-distance from y to
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c is less than or equal to L+I
2 ]’ then the experiment i, x, y is a (k, i, v)-critical experiment.

Suppose on the other hand that the d*-distance from y to c is greater than ]. Then let the
path from to y be of length L’ and let c’ be the node along this path of d*-distance - from
i. Then c lies strictly between and c’ and we can repeat the argument by considering and
y and the third branch out of c’. Ultimately this procedure has to terminate since the tree is
finite. At this point we will have found suitable x and y so that (i, x, y) is a (k, i, v)-critical
experiment. 1,1

Note that in general it is not possible to make the above proof constructive in the obvious
manner since we do not know the structure of the overall tree. Thus finding suitable x and y
could take O (n2) time in the worst case.

If V and V2 were siblings, since we already know the structure of V and V2 we can
predict the outcome of every experiment involving leaves only in V to V2. It is thus clear that
a necessary condition for V and V2 to be siblings is that the predicted outcome 790(i, j, k)
must equal the actual outcome of the experiment, O(i, j, k), for every {i, j, k} C V

We also need the following lemma.
LEMMA 4.2. Let V and V2 be supernodes with representatives and i2, and let v

_
V tO V2

be a node on the path between i and i2. Let v separate T into the subtrees St(v), 1, 2, 3
with i S (v), i2 S2(v), and let j be the leafin S3(v) closest to v. Then there exist leaves
k, T (V to V2) such that the experiments on il, i2, k and indicate that

(V, V2) LT ifd(i, v) < d(i2, v),
(V, V2) GT ifd(i, v) > d(i2, v).

Proof If d(i, v) < d(i2, v), then O(i, i2, j) {(il, i2} or else (il, j) O(i, i2, j).
If (i, j) O(i,i2, j) then (i2, j) q O(i,i_,j) so that (V, V2) LT. On the other
hand, if (i, j) q[ O(i, i2, j) then we can deduce that d(j, v) > d(i2, v) > d(i, v) so that
d(j, v) > d(i, v) + 2. We can therefore apply Lemma 4.1 and deduce the existence of leaves
r, s in T (V to V2) so that the experiment on (i, r, s) is (d(i, v), i, v)-critical, it is then
easy to see that the experiments on i, i2, r, and s determine that d(i2, v) > d(i, v) so that
(VI, V2) LT. A similar analysis shows that (V, V2) GT if d(il, v) > d(i2, v). [3

Determining siblinghood when d(V1) d(V2). We can now prove the following lemma.
LEMMA 4.3. Let V1 and V2 be supernodes with d(V) d(V2). Then V and V2 are

siblings ifand only ifthe ordered pair (V, V2) ’ GT to LT.
Proof. The necessity is obvious. For the sufficiency, apply Lemma 4.2. [3

Determining siblinghood when [d(V1) d(V2)l 1.
LEMMA 4.4. Let V and V2 be supernodes with d(Vt) d(V2) + 1, with representatives

and i2, respectively, and assume that the path P between the roots of the supernodes has
length at leastfour. Then there exist experiments indicating that (Vt, V2) LT.

Proof Let v be the node on P adjacent to the root of V. Then d(v, i) d(Vl) +
d(V2) + 2 < d(i2, v). By Lemma 4.2, there exist leaves a, b T (VI t.J V2) such that the
experiments on a, b, i, i2 indicate that (V, V2) LT.

However, we still need to be able to determine that V and V2 are not siblings when the
distance between their roots is exactly three. For this case we have a different technique.

As noted before, if V1 and V2 are siblings, then d(v, il) d(v, i2) "q- for all nodes
v 6 T (V t V2). In particular, the parity of the distances d(v, il) and d(v, i2) will be
different for every node v 6 T (Vt tO V2). Let P be the path from the root r of V to the root

r2 of V2. Suppose that P has length exactly three. Let v be the node adjacent to r in P and
let x be a leaf in the subtree below v. Then d(x, il) d(x, i2), so that the parities of d(x, i)
and d(x, i2) are identical. We will show that we can determine the existence of a leaf x so that
d(x, i) and d(x, i2) have the same parity, when V and V2 have distance exactly three apart.
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LEMMA 4.5. Let V1 and V2 be supernodes of distance three apart and with d(V1)
d(V2) + 1. Then there exists an experiment indicating that (V, V2) E Q or there exist
experiments indicating that parity(il, x) parity(i2, x) for a leafx T (Vl tO V2).

Proof Let v be the node closest to r in the path from V to V2. As indicated betbre,
every leaf x in the subtree Q rooted at v is equidistant to i and i2. Suppose for some
x 6 Q, (il,x) O(il, i2, x). Then {(i,x), (i2, x)} C O(il, i2, x) so that (V, V2) G EQ.
Otherwise, for all x 6 Q, (il, i2) O(il, i2, x), so that d(i, i2) < d(il, x) d(i2, x). Let
y be the node of longest distance from within Q. We will show that we can determine the
parity of the distance from to y.

If the distance d(i, y) is even, then the node z halfway along the path from to y is
an element of Q. For any leaf in the subtree Q’ rooted at z not containing either i or y,
O(i, y, t) {(i, t), (y, t)}. This indicates that d(i, y) is even. On the other hand, if the
distance d(i, y) is odd, then for all t, {(il, t), (y, t)} O(il, y, t). Thus, we can determine
the parity of d(i, y) for y the leaf furthest from i in Q. However, by construction, y is also
the leaf of longest distance to i2 in Q, so that the parity of d(i2, y) can also be determined. By
our construction, d(i2, y) d(il, y), so that the parity is the same.

We summarize our findings in the following theorem.
THEOREM 4.6. Let V, V2 be supernodes with d(V) d(V2) + 1. Then we can determine

in O(n2) time whether V and V2 are siblings.
Proof We first check whether (V1, V2) 6 LT tO EQ by examining O(n2) experiments

involving at least one of i and i2. If (V, V2) 6 LT t3 EQ then we know immediately
that V and V2 cannot be siblings. However, if (V, V2) ’ LT t3 E Q, it is still possible
that they are not siblings but have a path of distance exactly three between them. By the
previous lemma, if the distance between V1 and V2 were exactly three, we would be able
to determine that (V, V2) 6 E Q or else that d (x, i) and d(x, i2) have the same parity, for
some x 6 T (V tO V2), by examining O(n2) experiments. Should we find such an x we
know that V and V2 are not siblings. Otherwise the only possibility is that they are in fact
siblings.

Determining siblinghood when Id(V1) d(V2) 2. Determining siblinghood in this
case is a straightforw.ard application of Lemma 4.1. More precisely, suppose, without loss of
generality that d(V) >_ d(V2) + 2. Then we know that d(r(Vl), ie) >_ d(Ve) + 2 with equality
if and only if V and Ve are siblings. Thus we can find x and y (within VI in this case) which
confirm or refute the assumption of siblinghood of V and V.

THEOREM 4.7. Let V and V2 be supernodes such that d(V2) d(V) >_ 2, and let

i rep(Vl). Then V and V2 are siblings ifandonly i]forall leaves j, k V2, 790(i, j, k)
O(i, j, k). Furthermore, we can determine whether 790(i, j, k) O(il, j, k) for all j, k
V2 in O(IV21) time, only knowing the structures of V and V2. The proof follows that for the
case where the experiments are TOM experiments.

4.2. Implementation and running time. At the top level the construction algorithm for
the POM model is identical to the algorithm for the TOM model. The difference is only in
the procedure for testing siblinghood of two supernodes. In the POM model this takes O (n2)
time leading to an overall running time of O (ha).

5. Conclusions and open problems. The models presented in this paper strictly gener-
alize any distance-based models of tree reconstruction since we can infer order information
given actual distances. It may even be possible to incorporate some tolerance in the distance
values by considering d(i, j) to be less than d(k, l) only if d(k, l) d(i, j) > B for some
tolerance parameter B.
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There are obvious optimization questions related to the construction questions we have
considered; for example, for a given set,5’ ofexperiments (TOM or POM), what is the maximum
cardinality subset of g which is consistent with a tree? Since consistency of TOM and POM
experiments is an NP-complete problem, whether the tree is weighted or unweighted, these
problems are NP-hard.

The major open question is whether there are polynomial time algorithms to reconstruct
weighted trees in the TOM and POM models.
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A GENERALIZATION OF THE SUFFIX TREE TO SQUARE MATRICES, WITH
APPLICATIONS*

RAFFAELE GIANCARLO

Abstract. We describe a new data structure, the Lsuffix tree, which generalizes McCreight’s suffix tree for a
string [J. Assoc. Comput. Mach., 23 (1976), pp. 262-272] to a square matrix. All matrices have entries from a totally
ordered alphabet E. Base! on the Lsuffix tree, we give efficient algorithms for the static versions of the following
dual problems that arise in low-level image processing and visual databases.

Two-dimensional pattern retrieval. We have a library of texts S {TEXT TEXT"}, where TEXT is
an ni x ni matrix, < _< r. We may preprocess the library. Then, given an m x m, m < ni, < < r, pattern
matrix PAT, we want to find all occurrences of PAT in TEXT, for all TEXT S. Let t(S) :E n be thei=1
size of the library. The preprocessing step builds the Lsuffix tree for the matrices in S and then transforms it into an

index (a trie defined over E ). It takes O (t (S) (log IEI + log (S))) time and O (t (S)) space. The index can be queried
directly in O(m log IEI + totocc) time, where totocc is the total number of occurrences of PAT in TEXT, for all
TEXT S.

Two-dimensional dictionary matching. We have a dictionary of patterns DC PA TI PATs}, where

PATi is of dimension mi mi, < < s. We may preprocess the dictionary. Then, given an n x n text matrix
TEXT, we want to search for all occurrences of patterns in the dictionary in the text. Let t(DC) Esi=m be the
size of the dictionary and let-i(DC) be the sum of the mi ’s. The preprocessing consists of building the Lsuffix tree for
the matrices in DC. It takes 0 (t (DC) log IEI +7(DC) log (DC))) time and 0 (t (DC)) space. The search step takes
O(n2(log [El / log i(DC)) + totocc) time, where totocc is the total number of occurrences of patterns in the text.

Both problems have a dynamic version in which the library and the dictionary, respectively, can be updated by
insertion or deletion of’ square matrices in them. In a companion paper we will provide algorithms for the dynamic
version.

Key words, image processing, two-dimensional intbrmation retrieval, dictionary matching, data structures,

pattern matching

AMS subject classifications. 68Q20, 68Q25, 68U 15

1. Introduction, String matching is one of the most widely studied areas in computer
science, since it is interesting from a combinatorial point of view and has applications as
well. It consists of finding all occurrences of a length m string pat in a length n string text.
m _< n, where both strings are defined over an alphabet E. Aho gives an excellent survey of
pattern matching algorithms ]. Such algorithms are in roughly two complementary classes,
with each class satisfying complementary performance criteria and requirements arising in
applications.

Dictionary matching algorithms. These algorithms preprocess a dictionary D
{pat1 parr of string patterns, each of length mi" then one can look for the occurrences of
patterns of the dictionary into the text. They are appropriate in applications where the dictio-
nary does not change much over time and one can afford slow search times. Aho and Corasick
[2] designed the most general algorithms for this class: the dictionary D is preprocessed in

O((}]=lmi) log IEI) time and then one can search for all the occurrences of patterns of D
into a text in O(n log IEI + totocc) time, where totocc is the number of such occurrences and
n is the length of the text.

Pattern retrieval algorithms. These algorithms preprocess the text to build an index data
structure that represents all substrings of the text. The index supports a wide variety of queries
The most basic one is occurrence(pat): report all occurrences of string pat in the text. One
can also define more sophisticated queries that ask for statistical information about the structure
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of the text, e.g., find the longest repeated substring of the text. Such indices are appropriate
in applications where we have time to preprocess the text, but we need fast response times to
our queries. The best known representative of this class is the suffix tree by McCreight [22]
(see also [26] and [10]). It can be built in O(n log IEI) time and in O(n) space. The query
occurrence(pat) takes O(m log IE] + totocc) time. Moreover, it also supports fast answers
to statistical queries about the text.

In recent years, there has been growing interest in pattern matching in higher dimensions,
due to its relevance to low-level image processing [23] and to the advent of visual databases in
multimedia systems [19]. We need the following notation. All matrices have entries defined
from a totally ordered alphabet E. An n x m matrix A has height n and width m.

1.1. Two-dimensional pattern matching: State of the art.
Dictionary matching algorithms. The model is similar to that used for strings except that

all patterns in the dictionary and the text are matrices. We discuss first the case in which the
dictionary is composed of one pattern PAT of dimension rnl hi. Let the text be an n x w
matrix. The first such algorithms, independently discovered by Baker [8] and Bird [9], need
O ((m h +n x w) log E l) time. Amir, Benson, and Farach [3] made the first substantial step
toward alphabet independence for this problem by devising an O((ml x h) log I:l + n w)
time algorithm. Recently, Galil and Park 12] closed the gap by improving the time bound to
O (rn h + n x w). All of these algorithms have the drawback that they can preprocess only
one pattern at a time or a dictionary of patterns that can have different widths but the same
height. Algorithms for the special case in which the patterns in the dictionary are squares,
each of arbitrary height=width, are given by Amir et al. [4], [6] and in this paper (see also
[15]). The results have been obtained independently and with different approaches (see 1.2
for technical discussion). Finally, Idury and Schaffer 18] have recently devised data structures
and algorithms that preprocess a dictionary of pattern matrices D PAT PA Tr }, each
of dimension m hi, < <_ r; the patterns can be searched for in a text of dimension
n x w. The preprocessing step takes O ((E.rt=lmi x hi)polylog(E=lm hi)) time and the
search step takes O((n x w)polylog(E=lmi x hi)) time.

Pattern retrieval algorithms. The model is similar to that used for strings, but the text is a
matrix TEXT. Therefore, we want an index that represents all submatrices of TEXT and that
at least supports the query occurrence(PA T), i.e., report all occurrences of the pattern matrix
PAT in the text matrix. For a long time only straightforward data structures and algorithms
were known. Indeed, using a spiral representation of square matrices, Gonnet [16] claims
that, for the special case of square matrices, it is possible to build a patricia tree (referred to as
PAT-Tree 16]) representing all submatrices of an n x n TEXT matrix in O (n2 log n) expected
time. However, in the worst case, that data structure can be built in O(n4) time. Then, using
the PAT-Tree, Gonnet 16] claims that one can find all occurrences of a square matrix PAT,
of height m, in O(log n) expected time independent of the number of occurrences. Again,
in the worst case, the time bound to find all such occurrences is O (m log IEI + occ). Here
we are interested in the design of data structures that can be efficiently built according to the
worst case time analysis. As it will be clear from the results of the next subsection, our data
structure guarantees nearly two orders of magnitude speed-up with respect to the solution
proposed in [16]. This paper provides the first data structure, the Lsuffix tree, that can be
efficiently built and that represents all square submatrices of an n x n TEXT [15]. Therefore,
here we provide a two-dimensional analog of the suffix tree for the special case of square
matrices. For completeness, we report that the author has also devised an index data structure
that represents all submatrices of a general matrix TEXT [14]. However, it is also shown
that the problem of building an index data structure that represents all square submatrices of
a square matrix is computationally easier than building an index data structure that represents
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all submatrices of a general matrix [14].. Thus the special case we are dealing with here is
interesting. Moreover, the algorithmic techniques needed here seem to be interesting in their
own right (see 1.2 for technical discussion).

From now on we restrict attention to square matrices.

1.2. Our results. As implied by the above discussion, there was no efficient algorithm
known that builds a two-dimensional analog of the suffix tree for square text matrices. The
main contribution of this paper is to provide efficient algorithms that build and query such
a two-dimensional suffix tree for square matrices, which we call the Lsuffix tree (the name
Lsuffix will become clear later). Based on such a data structure, we obtain efficient algorithms
for the static version of the following problems that arise in low-level image processing [23]
and visual databases [19]. In a companion paper [13], we will provide algorithms for the
dynamic version. We show the dependence of the time bound on the alphabet size.

Two-dimensionalpattern retrieval. We have a library oftexts S TEXT TEXT },
where TEXT" is an ni ni matrix, _< < r. We may preprocess the library. Then, given
an m m, m < ni, <_ < r, pattern matrix PAT, we want to find all occurrences of PAT
in TEXT (query), for all TEXT S. Let (S) r=ln2 be the size of the library.

(i) The preprocessing step builds the Lsuffix tree for the matrices in S and then transforms
it into an index (a trie defined over E). It takes O(t(S)(log IEI + log t(S))) time and
O (t (S)) space. Based on the index and in the same time bound, we can precompute
three tables which are a space-economical representation of the index taking only a
total of 5t (S) memory locations.

(ii) The index can be queried directly in O(m2 log IEI / totocc) time, where totocc is
the total number of occurrences of PAT in TEXT, for all TEXT S. The query
procedure is simple and likely to perform well in practice.

(iii) The tables support a query procedure, with an O(m2 +log t(S)+totocc) time bound,
which is similar to the one devised by Manber and Myers for suffix arrays [21 ]. This
procedure is also simple and likely to perform well in practice. It beats the one in
(ii) when it is costly to store the index or when EI is large compared to (S).

Two-dimensional dictionary matching. We are given a dictionary of patterns DC
PAT1 PATs }, where PAT. is of dimension m mi, <_ < s. We may preprocess

the dictionary. Then, given an n x n text matrix TEXT, we want to search for all occurrences
E m2 be the size of theof patterns in the dictionary in the text (search step). Let t(DC) i=

dictionary and let -i(DC) be the sum of the mi’s.
(iv) The preprocessing consists ofbuilding the Lsuffix tree for the matrices in DC. It takes

O(t(DC) log IEI +-i(DC) log(DC))) time and O(t(DC)) space. Based on it, the
search step simulates a finite state automaton in O (n2 (log IE +log-i(DC))+totocc)
time, where totocc is the total number of occurrences of patterns in the text. Such a
simulation is different from the query procedures in (ii) and (iii).

Amir et al. [4], [6] have independently obtained data structures and algorithms for the
two-dimensional dictionary matching problem. In the static version, we have the same time
bounds as the ones reported in [6], but the dynamic version of their algorithms is better (see
[6], [15]). The algorithms reported in [4] seem to be efficient for the static case only and
their time bound is slightly better than the ones obtained here. The algorithmic techniques
used in [4], [6] and the data structures they build are different from ours. They build what
can be considered the two-dimensional analog of the Aho-Corasick one-dimensional pattern
matching machine [2] while we build the two-dimensional analog of the suffix tree [22]. It is
an interesting open problem to establish whether their techniques and data structures extend
to the efficient construction and query of the Lsuffix tree, so that we can obtain alternative
solutions to the two-dimensional pattern retrieval problem.
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For the construction of the Lsuffix tree, we introduce Lstrings, a linear representation of
square matrices (thus, L stands for linear). Using a different formalism, Amir and Farach
[4] introduced such a linearization. We define suffix and prefix relations for Lstrings that are
generalizations of the usual ones for strings and that seem to capture the intuitive idea of what
a suffix and prefix of a square matrix should be.

The Lsuffix tree is for an Lstring what the suffix tree is for a string. However, because of
the new suffix relation, the algorithm that builds the Lsuffix tree is a nonobvious generalization
of McCreight’s suffix tree algorithm (MC for short) for a string [22]. Indeed, the rescanning
phase, the key component of MC, breaks down for Lstrings due to the fact that a key property
that holds for strings does not hold for Lstrings. Using terminology introduced by Baker [7],
we refer to this property as the distinct right context property and we will discuss it in 5. Thus
we need new ideas for the design of an efficient algorithm that builds a suffix tree for Lstrings.
Another problem is how to label the Lsuffix tree so that it concisely represents all the suffixes
of an Lstring (essential to keep the size of the data structures in the pattern retrieval problem
bounded by (S)) and how to extract information from those labels (essential to get a fast
query algorithm for the pattern retrieval problem). For strings and suffix trees, the problem is
easy to solve: a label (i, j) represents the string from position to j [22]. For Lstrings and
their suffixes, it is more complicated since it turns out that it is not convenient to represent
Lstrings explicitly as strings in

The algorithmic techniques presented in this paper have already proved useful in other
contexts and seem to be able to deal with a general problem that might have other applications
as well. Indeed, in a study on the design of tools to detect code duplication in large software
systems, Baker [7] has developed a theory for p-strings, a generalization of ordinary strings,
and she has defined a p-suffix tree, a generalization of the suffix tree to p-strings. Although far
apart in terms of both application areas and definitions, p-strings and Lstrings share the lack
of the distinct right context property. Thus the construction of the p-suffix tree uses some of
the techniques devised here for the construction of the Lsuffix tree. In general, the techniques
presented here are useful when we need to build a suffix-tree-like data structure for objects
that are similar to strings except for the fact that the distinct right context property does not
hold for them.

We anticipate that the technical presentation of our results will be confined to one ma-
trix. The definitions and algorithms generalize easily to a set of matrices. The remainder
of this paper is organized as follows. Section 2 contains some preliminary notation needed
in the rest of the paper. In 3 we define Lstrings and point out their relation to matrices.
We also define compacted tries for Lstrings and finally the suffix tree for a square matrix
A. We briefly discuss the use of such a data structure for pattern matching. In 5 and
6 we give the algorithm that builds the Lsuffix tree for one Lstring and discuss why the
algorithm by McCreight [22] will not work for Lstrings. Then in 7 we generalize the con-
struction to a set of Lstrings and from it we obtain an algorithm to build the suffix tree of
a square matrix. In 8 we show how to transform compacted tries for Lstrings into com-
pacted tries for strings, which is needed to obtain fast response times for the pattern retrieval
problem. The last three sections deal with applications, concluding remarks, and open prob-
lems.

2. Preliminaries. In this section we introduce some notation and the basic data structures
needed in the rest of the paper. Given an n x n matrix A, we denote by A[i k, j l] the
submatrix of A with corners in (i, j), (k, j), (i, 1), (k, 1). When k or j l, we omit one
of the repeated indices. Let I2 be an alphabet and assume that there is a total order < defined
on it. Let $ be a special symbol not part of the alphabet E and let us make the convention that
it does not match itself, i.e., each instance of $ is different from the others.
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I\

FIG. 1. Suffix treefor string caabab$.

FIG. 2. Labeled version of suffix tree in Fig. 1.

Let x$ be a string. The suffix tree Tx for the string x$ [22] is a compacted patricia tree

(see [20] for a definition of patricia trees) that satisfies the following conditions. Each edge
from parent to offspring is labeled with a substring of x$ and, for each suffix x[i, Ixl]$, there
is a path from the root to a leaf whose concatenation of labels gives x[i, Ixl]$. Because the
$ does not match any character of E, all suffixes of x$ are distinct. So, there is a one-to-one

correspondence between the leaves of Tx and the suffixes of x. We remark that each substring
on each edge of the suffix tree can be represented in constant space (see Figs. and 2).

The suffix tree was proposed by McCreight [22] as a space-efficient alternative to Weiner’s
position tree [26]. It can be built in O(Ixl log IEI) time and it has O(Ixl) nodes. The algorithm
by McCreight can also be extended to build the suffix tree for a set of strings X xk by
building the suffix tree for X x$x2$... $x$, where now $ is a separator. The time
complexity is O(IXI log IEI).

Let F be a forest of rooted directed trees. We are interested in performing the following
operations on nodes and edges of F:

newnode(v): create a new node v, which is also root of a new tree.
link(w, v): Combine the trees containing v and w by adding the edge (w; v). This
operation assumes that v and w are in different trees and that v is a tree root.
cu (v): Divide the tree containing v into two trees by deleting the edge (paren (v), v ).
This operation assumes that v is not a tree root.
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FIG. 3. A tree partitioned into solid paths. Path t, q, p, n, h, d has head and tail d.
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FIG. 4. A path and a binary tree representing it. Path with head a and tail e. Leaves are labeled with

corresponding vertices, internal nodes with corresponding edges.

Sleator and Tarjan [25] designed a data structure that supports the three operations just
defined, among others. Each operation can be implemented to take O (log g) time in the worst
case, where g is the number of nodes in the tree involved in the operation. A tree in the
forest is represented as a collection of disjoint solid paths connected by dashed edges (see

Figz 3). Each solid path has a tail and a head, the node further away and closest to the root

of T, respectively (see Fig. 3). What is important for our purposes is that each solid path is
represented as a binary search tree such that its leaves, from left to right, give the nodes on the
solid path from tail to head. Moreover, the internal nodes represent the edges on the path in
such a way that a symmetric order traversal gives the edges on the pathfrom tail to head and,
therefore, the nodes in decreasing order of distance from the root of T (see Fig. 4). Sleator
and Tarjan [25] define the operation expose(v) that returns the path from v to the root of its
tree T in the forest represented as a solid path. That operation takes O(log g) time, where g
is the number of nodes of T. For further details, the reader is referred to [25].

We also need the data structures and algorithms of Harel and Tarjan [17] (see also [24])
to compute the lowest common ancestor (LCA for short) of two nodes in a static tree. They
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preprocess the tree in time linear in its size. Then, each LCA query can be answered in
constant time.

3. From the suffix tree to the Lsuffix tree. In this section we give the definition of
Lsuffix tree. We proceed as follows. In 3.1 we discuss at an informal level what such a
data structure should represent and how it should represent it. We provide the definition of
Lstring and discuss the correspondence between Lstrings and matrices. In 3.2 we formalize
the requirements of 3.1. There we first introduce the notion of compacted trie for Lstrings,
then give a formal definition of Lsuffix tree for one Lstring. Then we generalize it to a set of
Lstrings so that it will represent all square submatrices of a given matrix A and briefly discuss
its use for pattern matching.

3.1. Requirements. Let us start with an obvious observation about Tx, the suffix tree of
a string x$. As a trie, it represents the set of all suffixes of x in such a way that suffixes with
common prefixes share a path in Ti. Since each substring ofx is prefix of some suffix of x, for
each substring of x there is a path in Tx that corresponds to that substring. That is the reason
why Tx is useful for string matching purposes.

Informally, given a square matrix A[1 n, n], we want a tree data structure such that
for each square submatrix of A there is a path in our tree that "corresponds" to that submatrix,
so that we can use it for pattern matching purposes (patterns are square matrices). The tree
shape of our data structure seems to impose the constraint that square submatrices of A that
have common "prefixes" (whatever the definition of "prefix" is) must share the same path
on the tree. Informally, we call it the common prefix constraint. If we want a data structure
analog to Tx, each submatrix of A must be a "prefix" of some "suffix" of A (whatever the
definition of "suffix" is), so that we can build the "correspondence" between all submatrices
of A and the paths of our tree by considering only the "suffixes" of A. Informally, we call such
correspondence the completeness constraint. Our data structure must satisfy both constraints
simultaneously.

Keeping those two constraints in mind, let us consider the following definitions of prefix
and suffix of a square matrix. For <_ j <_ n, A[j n, j n] is the j th suffix of A and

All j, j] is the jth prefix of A (see Fig. 5). Note that any square submatrix of A whose
upper left corner lies on the main diagonal of A can be described as a prefix of a suffix of
A (see Fig. 5). Let us number each diagonal (not necessarily the main one) of A by d if its
elements are A[i, j] with j d, 0 <_ Idl < n 1. Let Aa be the square submatrix of A
whose main diagonal is the dth diagonal of A. Since every element of A is on a diagonal of
A, it is easy to see that each square submatrix of A is described as the prefix of a suffix of A,
for some d, 0 _< Idl _< n (see Fig. 5). Thus the completeness constraint can be satisfied
provided that our data structure represents all suffixes of A,, 0 _< Idl _< n 1.

To satisfy the common prefix constraint, we adopt a linear representation of a matrix
A, which we call Lstring. The same representation, with a different formalism, has been
introduced by Amir and Farach [4]. We discuss it informally first. Given A[ n, n] and
with reference to Fig. 6, notice that we can divide it into n "L-shaped characters", the ith being
composed of row A[i, 1] and column A[1 i, i]. Let us "write down" those L-shaped
characters in one dimension and in the order given by their top-down appearence in A (see

Fig. 6). We get a representation of A in terms of a string of L-shaped characters which we call
Lstring. We also need the notion of a chunk, which is the analog of the notion of substring
for strings. Informally, we obtain a chunk if we write down the L-shaped characters of A in
one dimension, in the order given by their top-down appearence in A and starting at row k and
ending at row j (see Fig. 6). As it should be clear from the figure, Lstrings are intended to

represent matrices while chunks are intended to represent pieces of matrices centered along
the main diagonal.
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(a) (b)

(c) (d)

FIG. 5. (a) The shaded region is thefiflh suffix ofA. (b) The shaded region is thefourthprefix ofA. (c) The shaded
submatrix ofA, with upper left corner on the main diagonal ofA, is the third prefix ofthefourth suffix ofA (the one
with bold boundaries). (d) A-3 is shown in bold boundaries. The shaded submatrix ofA is the second prefix of the
second suffix ofA-3.

(b)

FIt3. 6. (a) A matrix divided into "L-shaped characters." Entries with the same shading are part of the same
"character." (b) A linear representation ofthe matrix in (a) in terms of"L-shaped characters." (c) A chunk composed
oftwo "L-shaped characters," and (d) its linear representation.

More formally, let LE Ul 2i-1. We refer to the strings of LE as Lcharacters and
we consider each of them as an "atomic" item (composed of "subatomic" parts, which are the
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FIG. 7. (b) Representation of the matrix in (a), referred to as A, as at+ Lstring La. Vertical lines separate
Lcharacters. Each letter has on top of it the matrix ento, it has beet+ taken from. $ not shown (c) A matrix equal to

the second prefix ofA and its corresponding Lstring equal to the second Lprefix of La. (d)-(f) The second, third.

andfourth Lsuffix ofLa, respectively. $ not shown. (g) A matrix equal to the third suffix ofA and its corresponding
Lstring equal to the third Lsuffix ofLa. $ not shown.

characters of E). We refer to LE as the alphabet o.fLcharacters. Two Lcharacters are equal
if and only if they are equal as strings over E. Moreover, given two Lcharacters Lw and Lu
of equal length as strings of E*, Lw _<Lu if and only if Lw as a string is lexicographically
smaller than or equal to Lu as a string. Two Lcharacters can be concatenated by concatenating
the strings corresponding to them; however, we have the following restriction: an Lcharacter
in E 2i-1 can precede only an Lcharacter in ]2(i+1)-1 and succeed only one in E2(i-1)-1 Any
number of Lcharacters whose concatenation satisfies the above restriction is a chunk. An
Lstring is a chunk such that the first Lcharacter is in E. However, the definition of Lstring is
most easily understood in terms of their natural correspondence to matrices.

For any matrix A[1 n, n], consider the concatenation of strings al a,, such that
ai is a string of length 2i equal to A[i, 1]A[1 i, i] (see Fig. 7). Since ai

it can be seen as an Lcharacter and, since a 6 E, the concatenation of strings al a,, is an
Lstring La naturally corresponding to A. We denote the ith Lcharacter of La as La[i]. The
length of La is n, i.e., the number of Lcharacters in the Lstring.

Throughout this paper, when we write down a matrix as an Lstring Lb, the first
characters in row will always correspond to the first characters of Lb[i] and the first
characters of column will always correspond to the last characters of Lb[i ]. Conversely,

the first characters of Lb[i] will always correspond to the first characters of
row and the last characters of Lb[i] will always correspond to the first characters
of column of a matrix. With such convention, Lb uniquely identifies a square matrix B
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and vice versa. A chunk starting at the ith Lcharacter and ending at the jth Lcharacter of Lb
is denoted Lb[i, j]. Through the correspondence between Lstrings and matrices, it is easy to

see that Lb[i, j] corresponds to a piece of matrix B centered on the main diagonal of B (see

Fig. 6).
The jth Lprefix ofLa, denoted Lprefj (La), is the Lstring corresponding to A[ j, j ],

the jth prefix of A. Given A, Lprefj(La) is easy to obtain since we can take
A[1 j, j] and write it down as an Lstring. Notice that Lb is an Lprefix of La
if and only if the matrix B corresponding to Lb is equal to a prefix of A (see Fig. 7). The
jth Lsuffix of La, denoted Lsufj(La), is the Lstring corresponding to A[j n, j n],
the jth suffix of A. Given A, Lsufj(La) is easy to obtain since we can take A[j n, j n]
and write it down as .an Lstring. Notice that Lb is Lsuffix of La if and only if the matrix B
corresponding to Lb is equal to a suffix of A (see Fig. 7).

Let Last be the Lstring corresponding to A,. By definition of the prefix and suffix of a
matrix, every square submatrix ofA is a prefix of some suffix of A,t for some d, 0 < Idl < n- 1.
Thus, using the correspondence between Laa and Aa and, in general, the correspondence
between matrices and Lstrings, we have the following fact.

FACT 1. Let B be a square matrix and Lb be the Lstring corresponding to it. B is a
submatrix ofA ifand only ifLb is Lprefix ofsome Lsuffix ofLaa, for 0 <_ Idl _< n 1.

Intuitively and drawing an analogy from strings, our data structure needs to be a compacted
trie over the alphabet LE (whatever such a trie is) that "represents" all Lsuffixes of Laa for
all d, Idl _< n 1. That is, for each Lsuffix of Laa, 0 < Idl _< n 1, there is a path from the
root to a leaf "spelling out" that Lsuffix. Using Fact and the fact that matrices with common
prefixes are represented by Lstrings with common Lprefixes, that data structure can satisfy
both the completeness and the common prefix constraint.

3.2. Definition. We now give a formal definition of our data structure, the Lsuffix tree,

and show that it satisfies what we have informally called the completeness and common prefix
constraint in the previous section. In 3.2.1 we introduce the notion of trie over the alphabet
LE. In 3.2.2 we define the Lsuffix tree for one Lstring La and discuss some technical
issues related to its representation. Then, in 3.2.3 we generalize it to the set of Lstrings
corresponding to Aa, 0 < Idl < n. That data structure will be the Lsuffix tree of matrix A.

3.2.1. Tries over the alphabet L E. We start with an example. Consider three matrices
X, Y, and Z and their corresponding Lstrings Lx, Ly, and Lz (see Fig. 8). We can represent
such Lstrings (and therefore the matrices) with a tree by letting Lstrings that have Lprefixes
in common share the same path in the tree (see Fig. 8). We can label the edges of such tree

with Lcharacters and require that the Lcharacters on two edges, one incoming and the other
outgoing the same node, be compatible for concatenation since each of Lx, Ly and Lz must

be obtained as the concatenation of the labels on the path from the root to a leaf.
In general, a trie over the alphabet LE, representing a set of Lstrings C, is defined in a way

analogous to a trie for strings. That is, it is a tree with each edge labeled with an Lcharacter
and that satisfies the following:

1. For each Lstring Lx in C there is a leaf v such that the concatenation (according to

the rule for Lcharacters) of the labels on the path from the root to v gives Lx.
2. For each node u and w, u is ancestor of w if and only if Lz is the Lprefix of Ly.

where Lz and Ly are the Lstrings obtained by concatenating the labels of the edges
on the paths from the root to u and w, respectively.

3. All edges outgoing the same node are labeled with a different Lcharacter.
Tries for Lstrings can have nodes of outdegree one, just like tries for strings can have

nodes of’ outdegree one (see Fig. 8). We compact tries for Lstrings by compacting chains of
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FIG. 8. (b) The tree over the alphabet L, representing the Lstrings corresponding to matrices in (a). (c) The
compacted version ofthe tree in (b). Notice chunks on the edges.

nodes with outdegree one into a single edge. The label on that new edge is the concatenation of
the Lcharacters on the edges of the chain, i.e., it is a chunk. So, we can define a compacted trie
representing a set of Lstrings as a trie representing the same set of Lstrings in which chains of
nodes of outdegree one are compressed into one edge and the edges of the compacted trie are
labeled with chunks (see Fig. 8). Notice that there is no loss of information in going from a trie
representing a set of Lstrings to a compacted trie representing the same set. Moreover, sibling
edges in the compacted trie are labeled with chunks that start with different Lcharacters. We
need the following fact.

FACT 2. Let C be a set ofLstrings represented by a compacted trie LTc. Let Lz be the
Lstring oflength b obtained by concatenating the chunks on the edgesfrom the root ofLTc to

some node v in LTc. Thefirst Lcharacter on the label ofeach edge outgoing v is a string in
E2b-1.

Proof. Notice that in the uncompacted version LT ofLTc, the Lcharacter on the incoming
edge of a node u’ LT at depth must be in E2;-1 (see Fig. 8). This follows from the fact
that the path from the root ofLT to u’ LT gives an Lstring of length and the concatenation
rule for Lcharacters. Now Fact 2 follows because in LTc the depth of the nonunary nodes of
LT changes but the length of the Lstring they represent is the same.

We need the following notation. Given a compacted trie LT over the alphabet LE, a
node u is the locus of an Lstring Lot if and only if the concatenation of the labels on the path
from the root of LT to u is equal to Lot. The extension of Lot is any Lstring of which Lot is
an Lprefix. The extended locus of Lot is the locus of the shortest extension of Lot whose locus
is defined in LT. The contracted locus of Lot is the locus of the longest Lprefix of Lot whose
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lOCUS is defined in L T. Using the definitions just given and the definition of a compacted trie
over the alphabet L E, the locus, extended locus, and contracted locus of an Lstring are unique
nodes in L T. Moreover, when an Lstring has a locus defined in LT then its contracted and
extended locuses are the same as its locus. Similar definitions of locus, extended locus, and
contracted locus can be defined for a string and a compacted trie over the alphabet E.

FACT 3. Let C be a set of Lstrings and let LTc be the compacted trie representing the
Lstrings in the set. Lstring Ly has an extended locus in LTc ifand only if it is Lprefix ofsome
Lstring in the set C.

Proof. Assume that Ly has an extended locus u in L Tc. Thus Ly is Lprefix of Lz, the
Lstring of which u is a locus. But Lz is the Lprefix of some Lstring in C by definition of trie
over the alphabet LE and the way we compact it. So, Ly is the Lprefix of some Lstring in C.

Assume that Lx is the Lstring in C of which Ly is the Lprefix and let be the length of
Ly, i.e., it is composed of Lcharacters. Consider the node o on the path from the root to the
leaf associated to Lx that is closest to the root and such that the concatenation of the labels
on the path p from the root to o gives an Lprefix Lz of Lx of length at least i. Notice that
there is no other node w o that is the locus of Lz (otherwise two edges outgoing the same
node have labels that start with equal Lcharacters). Therefore v is the extended locus of Ly
because Lz is the shortest extension of Ly having a locus defined in LTc. [3

3.2.2. The Lsuffix tree of one Lstring. Intuitively, the Lsuffix tree for one Lstring is
like the suffix tree for a string. That is, the Lsuffix tree for an Lstring La is a compacted
trie over the alphabet LE representing the set of all Lsuffixes of La (suffixes of A). Just like
the last character of a string is required to be unique for ordinary suffix trees, we require that
the last Lcharacter of an Lstring be unique for Lsuffix trees. Given a matrix A, we augment
it with a bottom row and rightmost column of $’s (see Fig. 7a for a matrix so augmented).
That bottom row and rightmost column corresponds naturally to an Lcharacter that we denote. The Lstring that corresponds to A is La. Since $ does not match anything, no Lsuffix

of a given Lstring with endmarker is an Lprefix of any other Lsuffix of any other Lstring.
Formally, the Lsuffix tree LTa for La is a compacted trie over the alphabet LE, satisfying the
following constraints (see Fig. 9 for an example):

1. There is no internal node of outdegree one.
2. Each edge is labeled with a chunk
3. Chunks assigned to sibling edges start with different Lcharacters, which are of the

same length as strings in
4. The concatenation of the chunks labeling the edges on the path from the root to a

leaf gives exactly one Lsuffix of La, say Lsuf(La) (the Lstring corresponding to

A[l n, n]). That leaf is labeled with I.
What is important to note is that there is a one-to-one correspondence between the leaves

of LTa and the Lsuffixes of La (which are all distinct because does not match anything).
FACT 4. Given an n x n matrix A and its corresponding Lstring La, the Lsuffix tree for

La has 0 (n) nodes.
Proof It has exactly n + leaves (one per Lsuffix, including ) and each internal node

has outdegree at least two.
Notice that each chunk on the edges of LTa can be a long sequence of Lcharacters and

the sum of the lengths of such chunks might exceed O(n), the number of nodes of LT,. We
solve this potential problem by representing each chunk in constant space, independent of its

length. The idea is similar to the one used by McCreight in the suffix tree Tx for a string x$
[22], where the substring y on a given edge is represented by a pair (i, j) such that x[i, j] y.

Consider an edge (u, v) in LT,, and let ct be the chunk labeling that edge. Let f be any
arbitrary leaf in the subtree rooted at v and let be the label of that leaf. Recall from the
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FIG. 9. (a) The Lsuffix tree corresponding to the Lstring in Fig. 7b. (b) The same tree in (a) with chunks
substituted by triples.

definition of Lsuffix tree for La that the concatenation of the labels on the path from the root

to f must give LSUfl(La) (the Lstring corresponding to A[l n, n],). Since (u, v) is

on that path, its label oe must "appear" somewhere in Lsufi(La), i.e., there exist p and q,
p _< q, such that the chunk Lsuft(La)[p, q] corresponds to . So, oe can be represented in
constant space by the triple (p, q, l). In the next paragraph we will discuss how to recover
Lsuft(La$)[p, q] from the triple. We will address the issue on how to compute such triples
in 5 and 6, where we show how to build the Lsuffix tree for one Lstring. For the time being,
we assume that each chunk on the edges of LT, has been substituted by an appropriate triple.
See Fig. 9 for an example of an Lsuffix tree for one Lstring in which chunks are represented
by triples. From now on, we will make no distinction between chunks and their representation
as triples.

One last issue we have to address is how to explictly recover, in constant time, an occur-
rence in the matrix A of any Lcharacter of the chunk c, when that chunk is represented by
the triple (p, q, l). Recall that an Lcharacter is obtained as the concatenation of a subrow and
subcolumn of A. What we mean by occurrence of Lcharacter in A is the starting points of a
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subrow and subcolumn of A whose concatenation gives the Lcharacter. So, based on the triple,
we need to compute the coordinates of two entries of A. Rather than give explicit formulas,
we provide a high level description. The triple (p, q, l) corresponds to Lsuft(La)[p, q]. We
know that La represents A. Now, Lsuft(La) =Lc represents a matrix C A[l n, n]
and so c is Lsuft(La)[p, q] =Lc[p, q]. Thus we can compute in constant time where C
starts in A. Because of the correspondence between Lstrings and matrices and the definition
of chunk, we know that Lc[g], p < g < q, is equal to C[g, g 1]C[1 g, g]. But since
we know where C starts in A, we also know where C[g, g and C[1 g, g] start in A
and therefore where an occurrence of Lc[g] starts in A. Thus we can access, in constant time,
the starting point(s) in A of any Lcharacter in the chunk oe based only on the triple (p, q, l).
As a side effect of our representation of chunks, we do not need to know explicitly the Lstring
La or its Lsuffixes, since we can recover from the matrix A any chunk or Lcharacter in those
Lstrings. We obtain the following theorem.

THEOREM 1. Given an n n matrix A, let La be the Lstring corresponding to A. When
chunks on the edges of LTa are represented by triples, the total size of LTa, i.e., number of
nodes, edges, and triples, is 0 (n ). Moreover, given a triple, we can recover in constant time
the startingpoint(s) ofan occurrence in A ofany ofthe Lcharacters in the chunk corresponding
to the triple.

Proof The first part of the theorem comes from Fact 4 and the fact that each edge has
only one triple. The second part comes from the discussion preceding the theorem on how to

recover chunks from triples.

3.2.3. The Lsuffix tree for a matrix. Since we need to represent all submatrices of
A, we have to define the Lsuffix tree for a set of Lstrings. For notational convenience, we
introduce 2n special symbols $a, 0 < Idl < n. Each special symbol is unique and has the
same properties of $. ,a, 0 < Idl < n, is analogous to . Let D be the set of Lstrings Lada
corresponding to Add, 0 < Idl < n. Formally, the Lsuffix tree LTo for matrix A and set of
Lstrings D is a compacted trie defined on the alphabet LE satisfying constraints (1), (2) and
(3), of the definition of Lsuffix tree, except that (4) now becomes

4. The concatenation of the chunks labeling the edges on the path from the root to a

leaf gives exactly one Lsuffix of the Lstrings in the set, say Lsu)(Laii). That leaf
is labeled with (1, i).

See Fig. 10 for an example. Notice that the length of Lad, i.e., the number of Lcharacters
in Lad, is kd n idl since Lad represents the matrix Ad whose main diagonal is of length
n -Idl, 0 < Idl < n. Consider the last Lsuffix of Laded, i.e., Lsufe+l (Laded). It is $d
because $d is the last entry on the main diagonal of Aad. By our conventions about $a and

definition of equality of Lcharacters, the last Lsuffix of Ladgd is not equal to the last Lsuffix

of Laj,j, for any j. So, 2n ofthe leaves of LTo correspond to $d, for < Idl < n. Notice

also that there is a one-to-one correspondence between the Lsuffixes of La,lgd and the leaves
of LTo. Let t(D) d=l_n(kd + 1).

FACT 5. LTt has O(n2) nodes.
Proof It has exactly t(D) leaves (one per Lsuffix including $a’s) and each internal node

has outdegree at least two. Moreover t(D) O(n2).
We now prove formally that LTo satisfies what, in 3.1, we informally called the com-

pleteness and common prefix constraint for matrix A.
THEOREM 2. Let B be a square matrix and let Lb be the corresponding Lstring. B is

a submatrix of A if and only ifLb has an extended locus u in LTo. Moreover, let F be any
square submatrix of A having B as a prefix and let Lf be the Lstring corresponding to F.
The extended locus ofLf in LTo is a descendant of u.
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Fit3. 10. (b) The Lsuffix tree ofthe matrix A in (a). Only the suffixes ofAo and A2 are shown in full.

Proof. By Fact 1, B is a submatrix of A if and only if Lb is an Lprefix of some Lsuffix of
Lad, for 0 _< Idl _< n 1. By definition, LTo is a compacted trie representing the set C of all
Lsuffixes of Lstrings in D. So, by Fact 3 (applied to Lb and LTo) Lb has an extended locus
u in LTo if and only if Lb is an Lprefix of some Lsuffix of Lad, for 0 _< [d[ < n 1. This
proves the first part of the theorem.

For the second part, let Lz be the Lstring of which u is the locus. Let us assume that the
extended locus v of Lf is not in the subtree of LTo rooted at u. Since B is the prefix of F,
Lb is the Lprefix of Lf. Thus, on the path from the root of L To to v, there is a node w that
satisfies the definition of extended locus of Lb. w u because v is not a descendant of u.
Therefore Lb has two extended lotuses, which is a contradiction, since the extended locus of
an Lstring is unique. [3

Notice that each chunk on the edges ofLTo can be a long sequence of Lcharacters and the
sum of the lengths of such chunks might exceed O (n2), the number of nodes of the Lsuffix tree
for the chosen set D and matrix A. We represent each chunk in constant space, independent
of its length. The idea is similar to the one used in the case of one Lstring in 3.2.2. Indeed,
consider an edge (u, v) in LTo and let fl be the chunk labeling that edge. Let f be any arbitrary
leaf in the subtree rooted at v and let (l, i) be the label of that leaf. We can show that/3 is

part of Lsuft(Laii) by reasoning analogous to that used in 3.2.2 to show that is part of
Lsuft(La). Thus the quadruple (p, q, l, i) can represent/3, for some p < q. We will address
the issue on how to compute such quadruples in 7. where we show how to build LTo. For
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the time being, we assume that each chunk on the edges of LTo has been substituted by an
appropriate quadruple. From now on, we will make no distinction between chunks and their
representation as quadruples or triples when we are dealing with one Lstring).

Now we show how to explicitly recover, in constant time, the starting point of an occur-
rence in the matrix A of any Lcharacter of the chunk/3, when that chunk is represented by the
quadruple (p, q, l, i). The meaning of an occurrence of an Lcharacter in A is the same as the
one used for triples. Rather than giving explicit formulas, we provide a high-level description.
The quadruple (p, q, 1, i) corresponds to Lsuft(Laii)[p, q]. We know that Lai represents
Ai, the square submatrix of A whose main diagonal is the ith of A and we know where Ai
occurs in A. The remainder of the proof is analogous to the one used in 3.2.2 to show that we
can recover Lcharacters from triples. As a side effect of our representation of chunks, we do
not need to know explicitly the Lstrings Laa and their Lsuffixes, 0 < Idl < n, since we can
recover from the matrix A any chunk or Lcharacter in them. We obtain the following theorem.

THEOREM 3. Given an n n matrix A, let D be the set of Lstrings corresponding to

Aaa, 0 < Idl < n. When chunks on the edges ofLTo are represented by quadruples, the
total size ofLTo, i.e., number ofnodes, edges, and quadruples, is 0 (n2). Moreover, given a
quadruple, we can recover in constant time the starting point(s) ofan occurrence in A ofany
ofthe Lcharacters in the chunk corresponding to the quadruple.

Proof. The first part of the theorem comes from Fact 5 and the fact that each edge has
only one quadruple. The second part comes from the discussion preceding the theorem on
how to recover chunks from quadruples.

Theorems 2 and 3 can be generalized to hold for a set of matrices A 1, A2 AS }, each
of dimension ni x hi, < < s. Indeed, D can now be the set of Lstrings corresponding to

Aaj$."J 1 < j < s and 0 < Idjl < nj ($Jd. are special symbols as is $). Quadruples on each
of the edges of LTo can be trivially substituted by quintuples by adding an entry that keeps
track of in which matrix the chunk on that edge occurs (however, we can still use quadruples
by suitably renaming the Lstrings in D). The total space is O( i=

We now outline how "in principle" LTo can be used for pattern matching. Assume that
we want to find all occurrences of a matrix PAT in A. We write down PAT in terms of the
corresponding Lstring Lpat. Then, we search for the occurrence of Lpat in LTo in a way
analogous to how we search for the occurrence of a string y in Tx, the suffix tree of a string x$.
That is, we find the shortest path starting at the root of LTo such that the concatenation of the
labels on that path gives an Lstring having Lpat as Lprefix. Let v be the last node on that path,
i.e., v is the extended locus of Lpat in L To. By Theorem 2, PAT occurs in A. Moreover,
again by Theorem 2, PAT is the prefix of all suffixes of Aj, 0 < Idl < n, corresponding to

the leaves in the subtree of LTo rooted at v.
To make such approach work in time that is proportional to the size of PAT, we need

to reduce the outdegree of the nodes of LTo. (Given a node u 6LTo, selecting an edge
(u, v) whose label starts with a given Lcharacter takes O (log n) time, since the alphabet L
is infinite.) In 8 we define the refinement of an Lsuffix tree, the RLsuffix tree, which is a
compacted trie defined over E and therefore has outdegree at most E. Then, in 9 we will
show how, based on the search strategy outlined here, we can use the RLsuffix tree for pattern
matching.

4. Comparing Lcharacters efficiently. In order to get efficient algorithms for the con-

struction of the Lsuffix tree for a matrix A, we need to be able to compare efficiently two
Lcharacters (of equal length as strings in E*). We obtain that by a suitable preprocessing of
the matrix A, which we now describe.

Let rows (cols, respectively) be the string obtained by concatenating the rows (columns,
respectively) of A, in row (column, respectively) major order and separated by $. We build the
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suffix trees Tro,s and Tcots for strings rows and cols, respectively. That takes O(n2 log l2l)
time [22]. Each leaf of Troos (Tcols, respectively) is labeled with an entry (i, j) indicating
that the path from the root to that leaf spells out A[i, j n]$ (A[i n, j]$, respectively). We
augment both trees with LCA data structures. That takes O(n2) time and each LCA query
can be answered in constant time [17], [24].

Let us define the operation compare as follows. It takes in input the quadruples (p, q, l, i)
and (p, q’, g, j) and an integer e, p _< e < min(q, q’). It returns the result of the comparison
Lsufl(aii)[e] <Lsufg(ajj)[e] and the length of the longest prefix common to those two
Lcharacters when seen as strings over E. We remark that we can define a version of compare
that takes in input triples rather than quadruples. Its implementation is the same as the one
using quadruples. Given the preprocessing of matrix A described above, compare can be
implemented to take constant time. Let (r, c) and (r2, 2) be the starting points of the
subrow and subcolumn of A giving Lsufi(aii)[e], i.e., that Lcharacter is equal to A[rl, c
cl / e 2]a[r2 r2 / e 1, c2]. Let (r, c") and (r, c) be the same points for Lsufg (ajj)[e],
i.e., that Lcharacter is equal to A[r, c c + e 2]A[r r2 + e 1, c2]. Such starting
points can be computed in constant time, as pointed out in 3.2.3. Let f and f{ (g and g’,
respectively) be the leaves of Tro,,s (Tcots, respectively) that have label (r, c) and (r’, c’)
((r2, c2) and (r, c), respectively), respectively. We use the query LCA(f, f() (on Tro. to

compute the longest prefix common to A[r, c c + e 2] and A[rI, c cl + e 2] and the
query LCA(g, g’) (on Tots) to compute the longest prefix common to A[r2 r2 / e 1, c2]
and A[r r + e 1, c]. That also takes constant time. Given such information, it is easy
to compute the output of compare. We obtain the following lemma.

LEMMA 1. We can preprocess the matrix A in O(n2 log IEI) time, so that each compare
operation takes constant time.

Throughout the remainder of this paper, we assume that compare takes constant time.
We will charge the time complexity of the preprocessing only once to the algorithm of 7.

5. Construction of the Lsuffix tree for one Lstring: High-level description. We give
a high-level description of our algorithm for the construction of’ the Lsuffix tree br La;, an
Lstring of length n+ that corresponds to matrix AS. We do so by drawing an analogy between
MC and our algorithm pointing out the differences and presenting the general structure of the
latter.

5.1. MC algorithm: High-level description. Let y be a string of length n. MC inserts
the suffixes of y$, from longest to shortest, into a tree initially of one node. Let Ti be the
suffix tree after the ith insertion (iteration of MC) and let headi denote the longest prefix of
y[i, n + 1] y[i, n]$ that is also a prefix of y[j, n + 1], for some j < i. Since there is a
j < such that y[j, j + Iheadil- 1] headi y[i, + Iheadil 1] and y[j + Iheadil]
y[i + Iheadi I] and T/is a compacted trie that represents the first suffixes of y$, headi has a
locus in T. Notice that head may not have a locus defined in T._.

When we insert y[i, n + into T_I (to transform it into T), we can make it share" for
as long as possible a path in T/_ with the suffixes that Ti- represents. Since headi is the
longest prefix that y[i, n + 1] has in common with y[j, n + 1], <_ j < i, we can proceed as
follows.

MC--l-ligh-level description, iteration
Given Ti_, create a locus for headi in Ti_, if it does not exist, and make a new leaf
representing y[i, n + offspring of that locus. (The resulting tree is Ti.)

Unfortunately, at the time of the insertion of y[i, n / into T/_., headg is not known
and it is not known whether it has already a locus in Ti-i. MC cleverly computes where to
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possibly create a locus for headi in T/-1 based on headi_l and some additional information
computed during previous iterations. We outline the essential parts of such algorithm. For a
detailed description, proof of correctness, .and time analysis the reader is referred to [22].

Essential to the whole construction is the notion of suffix links with which the suffix tree
is augmented and that are incrementally computed by MC. For each internal node p of T_ 1,

there is a suffix link pointing to a node z if and only if p is the locus of a string aot, a 6 E and
c E*, and z T/_ is the locus of or. We now show that, with the exception of the locus
of headi_, for each internal node p of T/_ the node where the suffix link of p must point
exists in that tree. That will bring to light that the definition of suffix links implicitly uses the
distinct right context property for strings defined as follows.

Distinct right context propertyfor strings [7]. In a string x of length n, if the longest
prefix that the suffixes x[i, n] and x[j, n] have in common is of length k + 1, i.e.,
x[i, + k] x[j, j + k] and x[i, + k + x[j, j + k + ], then the longest prefix
that the suffixes x[i + 1, n] and x[j + 1, n] have in common is of length k > 1, i.e.,
x[i + 1, + k] x[j + 1, j + k] andx[i + 1, + k + 1] - x[j + 1, j + k + 1].

As we will see, such a property does not extend to matrices and Lstrings and therefore we
will not be able to define suffix links for the Lsuffix tree. Here is an outline of the proof that the
node where the suffix link of p must point exists in T/_I, p # locus of headi_. Since aot has
a locus p in T,._ and p - locus of headi_ 1, it occurs as prefix of at least two of the first 2
suffixes of y$ and in at least two of such occurrences it is followed by distinct letters (recall
the definition of T,._). So ac is the longest prefix that two such suffixes have in common.
Applying the distinct right context property to such suffixes (which are among the first 2
of y$), we get that there exist at least two suffixes (now among the first of y$) that have
c as the longest prefix. Thus, a must have a locus defined in T/-1, i.e, z exists in T/-1.

Notice that the high-level design of iteration requires creation of a locus for headi in
T_ when that locus does not exist. We can proceed in two ways. One consists of finding
headg by starting at the root of T/_I and traversing a path on that tree guided by the characters
of y[i, n + 1]. The other is to use the relationship between headi_l, headi and the nodes of
T/_ to skip as much as possible of a prefix of y[i, n / 1] and then look for the remainder of
headg by traversing a path of T/_I that starts at a descendant of the root. The second approach
will turn out to be more efficient and it is the one followed by MC. To this end, we need to
know where to create the locus of headi in Ti-1, when needed.

LEMMA 2 [22]. Assume that headi does not have a locus defined in Ti-1. The right place
in Ti_ to create that node is as an offspring ofthe contracted loctts of headi in that tree.

When headi has a locus defined in Ti-1, we need to find it because we need to create a
leaf offspring of that locus. Otherwise, by Lemma 2, we need to find the contracted locus of
head in T,._ 1, create a locus for that string, and then create a leaf as offspring of the new node.
Since we do not know whether headg has a locus in T/_I, we find the contracted locus of that
string. By definition of contracted locus and locus of a string, they will be the same node when

headi has a locus defined in T_ 1. Again, we want to find such contracted locus by skipping as
much as possible of a prefix of y[i, n + through the use of the relationship between headi_l,
headi, and the nodes of T/_. (As it turns out, all the information needed is already in the
tree.) We need the following fact, which can be used to prove the lemma following it. In turn,
the lemma tells us the "general neighborhood" in T/_ where the contracted locus of headi is.

FACT 6 [22]. Let t be the second suffix of headi-1. That is, it is the emp.’ string when
headi_ is the empty string and otherwise headi_l ai, a Z, and E*. / is a prefix of
headi.

LEMMA 3 [22]. The contracted locus ofheadi in Ti- is in the subtree rooted at it. where
u is the contracted locus oft3 in T,,._ and t3 is the second suffix ofheadi_l, as defined in Fact 6.
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MC searches for the contracted locus of headi in T/-1 using the strategy suggested by
Lemma 3. That is, it locates u and starts the search from u (that amounts to "skipping" a prefix
of length I/1 of headi, during the search for the contracted locus of head). Then, it modifies

Ti-1 according to the high level design of iteration i. It proceeds as follows.

MC---Skeleton iteration
If headi_l is the empty string, u := root(Ti_); skip rescanning.
Rescanning phase: find the locus u in T/_l of/3, where headi_l a, a E.
This is done as follows. Given the parent node v of the locus of headi_ (known
to the algorithm at the end of iteration 1), we get to the node w pointed to by
the suffix link of v. It can be shown that u is in the subtree of T_ rooted at w
and can be found in amortized constant time by a downward path traversal starting
at w. (Thus the suffix link is a shortcut used to find the locus of/J quickly. We
cannot use the suffix link of the locus of headi_ because it may not be defined in
_.)
Scanning: since/3 is a prefix of head,., find the rest of headi by traversing the down-
ward path from u in Ti-1 that "spells out" a prefix of y[i + 131, n + 1]. (Now, headi
is known and so is its contracted locus in Ti_.) We can create the locus for headi
in T/-1 and make a new leaf representing y[i, n + offspring of that locus. (Thus
Ti_ is transformed in T/.

$.2. Our algorithm: High-level description. Analogous to MC, our algorithm also

inserts the suffixes of All n + 1, n + 1] A, from longest to shortest, into a tree of
initially one node. Recall that such suffixes are A[ n + l, n + 1], _< _< n + 1. More
precisely, it inserts the Lsuffixes of La, from longest to shortest, into a tree initially of one
node. Let LT/be the tree at the end of the ith insertion (iteration). That is, LTd. is a compacted
trie over the alphabet L that represents the suffixes A[ n + l, ] n + 1], <_ ] <_ i, of

A as Lstrings, i.e., it represents the set of Lsuffixes Lu(La), <_ <_ i.
Let Lheadi be the Lstring corresponding to the longest prefix of A[i n + l, n + 1]

that is also prefix ofA[ n+ 1,j n+ 1], for some __< < i,i.e.., it is the longest
Lprefix of Lufi(La) that is also an Lprefix of Lu(La), for some < (see Fig. 11).
In the remainder of this paper, let li be the length, i.e.., number of Lcharacters, of Lheadi,

_< _< n + 1. Notice that Lheadi is an Lstring corresponding to a matrix equal to A[i
+ l l, + li ]. It is the empty Lstring if and only if l 0. Notice also the analogy

between Lheadi and head.
FACT 7. Lheadi ha a Iocu in LTi.
Proof. By definition, LT is a compacted trie over the alphabet LX that represents all

suffixes A[k n + l, k n + 1], _< k _< i, ofA as Lstrings, i.e., all Luk(La), <_ k <_ i.

By definition, Lheadi is the Lstring corresponding to the longest prefix of A[i n + 1, n +
that is also prefix of A[ n + 1, n + 1], for some < i, i.e., it is the longest Lprefix of

Lu(La) that is also an Lprefix of Lu.(La). for some ] < i. So, Lhead occurs at least

twice as an Lprefix of Lufk(La), <_ k <_ i. followed by distinct Lcharacters. Therefore.
it must have a locus defined in LTd. U

Note that Lheadi may not have a locus defined in LT/_. When we insert the Lstring
corresponding to A[i n + 1, n + 1], i.e., Lsu3(La>), into LT/_I (to transform it into

LT/), we can "make it share" for as long as possible a path in LT,._ with the Lsuffixes LT_I.
Since Lheadi is by definition the longest Lprefix that Lsu3](La) has in common with the
other Lsuffixes represented by LT/_, we can proceed as follows (notice the analogy with

MC--I-ligh-level description):
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FIG. 11. Lsuf (La$) corresponds to the suffix ofA with bold boundaries. Lsuf La$) corresponds to the one
with dashed boundaries. Lheadi corresponds to the gray areas. The Lcharacters succeeding the two occurrences of
Lheadi are different.

Lsuffix tree algorithm--High-level description, iteration i
Given LT/_, create a locus for Lheadi in L_, if it does not already exist, and

make a new leaf representing Lsuj(La), i.e, the suffix A[i n + 1, n + 1],
offspring of that locus. (The resulting tree is LTi.)

As in MC--High-level description, at the time of insertion of Lsu(La) into LT/_,
Lhead is not known and may not even have a locus defined in that tree. We can try to push the
analogy with MC and define suffix links for the nodes of LT/_. However, the distinct right
context propery does not exend to matrices and Lstrings. Indeed, it would be as follows.
(We state it for matrices but it can be immediately translated into an equivalent form for
Lstrings.)

Distinct right contextpropertyfor square matrices. In a square matrix A[ n, n ],
if the longest prefix that the suffixes A[i n, n] and A[j n, j n] have in
common is of length k + 1, i.e., A[i + k, + k] A[j j + k, j j + k] and
A[i + k + 1, + k + = A[j j + k + 1, j j + k + ], then the longest prefix
that the suffixes A[i + 1 n, + n] and A[j + n, j + n] have in common is
oflength k > 1, i.e., A[i + +k,i + +k] A[j + j +k, j + j +k]
andA[i + i-+-k+ 1, + +k+ 1] A[j + 1" j +k+ 1, j + j +k-t- 1].

Figure 12 provides a counterexample. The reader should convince himself or herself that
what the lack of such property implies is that if we try to define a suffix link for any node
of LT,._ in analogy with the definition by MC, we are not granted the existence in LTi_ of
the node where that suffix link should point to. Since suffix links are essential for an efficient
rescanning "i la McCreight," we need to come up with a new rescanning technique. For the
remainder of this section and for the next one, let v LT/_ denote the locus of Lheadi_.
Intuitively, our rescanning technique works as follows. We start from v, carefully pick a leaf q
in the subtree of L T/_ rooted at v and, from there, "move" to a leaf q’ that has the property that
the contracted locus of Lheadi in LTi_ is on the path from the root of L Ti_) to q’. Lemmas
4, 5, and 6 prove that such approach works.

Let the leaf g LTi_) be the locus of the Lstring corresponding to matrix A[i
n + 1, n + ], i.e., the locus of Lsufi_ (La). We define suffix links for all the leaves
of LT/_, except g, as follows.
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j+k+

FIG. 12. A counterexample to the distinct right context property for square matrices. The two submatrices in
bold boundaries are equal, whereas they would be different if the property were true.

DEFINITION 1. For each leafq L Ti-1 and q g, locus of the Lstring corresponding
to A[j n + 1, j n + 1], i.e., Lsufj(La), j < 1, there is a suffix link pointing to leaf
w, where w is the locus ofthe Lstring corresponding to A[j + n + 1, .j + n -!- ], i.e.,

Lsufj+l (La). We denote such suffix link as SL(q) w.
Note that the high-level design of iteration requires creation of a locus for Lheadi in

LT_ when that locus does not exist. As for strings, we can proceed in two ways. One consists
of finding Lheadi by starting at the root of LTi_ and traversing a path on that tree guided
by the Lcharacters of Lsuf,.(La). The other is to use the relationship between Lheadi_l,
Lheadi, and the nodes of LT/_ to skip as much as possible of an Lprefix of Lsufi(La) and
then look for the remainder of Lheadi by traversing a path of LT_ that starts at a descendant
of the root. The second approach will turn out to be more efficient and it is the one our
algorithm will follow. To this end, we need to know where to create the locus of Lheadi in
LTi_, when needed.

LEMMA 4. Assume that Lheadi does not have a locus defined in LTi_. The correct place
in L_ to create that node is as an offspring of the contracted locus ofLheadi in that tree.

The extended locus ofLheadi in LTi_ exists and it is an offspring of the contracted locus of
Lheadi in that tree.

Proof Since Lheadi does not have a locus defined in LT/_I, it cannot be the empty Lstring
(otherwiseroot(LTi_) would be its locus). Thus, the matrix E A[i +li- 1, +li- 1]
corresponding to it cannot be empty. By definition of Lhead, the correspondence between
Lstrings and matrices and the fact that $ does not match any character (including itself), there
exists a j < such that E is a proper prefix of W A[j n + 1, j n + 1]. Thus Lheadi
is a proper Lprefix of Lsufj (La$), j < i, the Lstring corresponding to a matrix equal to W.
By Fact 3 (applied to LT/_ and Lheadi), Lheadi has an extended locus t3 in LTi_I. Since
Lheadi does not have a locus defined in LT/_, the contracted locus v’ of Lheadi in L_
must be the parent of 3 (by the definition of contracted and extended locuses of an Lstring).
Thus the locus of Lheadi must be an offspring of v’ since the Lstring of which v’ is locus
is the longest Lprefix of Lhead that has a locus defined in LT/_I. We create such locus by
"splitting" the edge (v’, 3). 71
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When Lheadi has a locus defined in LT/_, we need to find it because we need to create
a leaf offspring of that locus. Otherwise, by Lemma 4, we need to find the contracted locus of
Lheadi in LT_I, create a locus for that Lstring, and then create a leaf as an offspring of the
new internal node. Since we do not know whether Lheadi has a locus in LT/_, we find the
contracted locus of that Lstring. When Lheadi has a locus defined in LT_, they will be the
same node by the definition of contracted locus and locus of an Lstring. Again in analogy with
MC, we want to find such a contracted locus by skipping as much as possible of an Lprefix
of Lsufi (La) through the use of the relationship between Lheadi_, Lheadi, and the nodes
of LT,._ (as it turns out, all the information needed is already in LTi_). In this section and
the next one, let h min(0, li-1 1). Notice that the matrix A[i + h 1, +h 1]
corresponds to Lsuf2(Lheadi_). It is empty if and only if Lsufz(Lheadi_) is the empty
Lstring, i.e., 0 < li-1 < 1. In the remainder of this paper, let Lot denote Lsuf2(Lheadi_).
We need the following lemma, which states some properties of Lot.

LEMMA 5. Lot, the Lstring corresponding to A[i + h 1, + h ], is such that
(a) it is an Lprefix ofLheadi, the Lstring corresponding to A[i + li 1, + li 1];
(b) it has an extended locus r’ in LT,._; (c) r’ is an ancestor ofany ieaf SL(q), where
q =fig is any leafdescendant of v; and (d) the contracted locus u ofl_ in LTi_ is the parent

ofr’, when Let does not have a locus defined in LTi_.

Proof. By the definition ofLheadi_, there is a suffix A[j n + 1, j n + ], j < 1, of

AsuchthatthelongestprefixcommontoA[j "n+l, j n+ and A[i-1 "n+l, i-1 "n+l]
is A[i + li- 2, + li- 2] (it may be empty). Let q be the leaf locus

of Lsufi(La). Since Lheadi_ is an Lprefix of Lsufj(La), q is in the subtree of LT/_

rooted at v. Moreover, it cannot be equal to g because that leaf is locus of Lsufi_ (La) and

j < 1. Let ff SL(q). By definition of a suffix link, t7 is the locus of Lsufj+ (La).
Sinceh min(O, li_-l),A[j+l n+l, j+l n+l]hasA[i i+h-l,i i+h-1]as

a prefix (it may be empty). So Lot, the Lstring that corresponds to A[i + h 1, + h ],
is an Lprefix of Lheadi by definition of Lheadi. That proves (a).

As for (b), (c), and (d), note that Lot is the Lprefix ofLsuJ)+ (La) (A[j + n+ 1, j +
n+ 1]hasA[i i+h- 1, i+h- 1] as a prefix). So, by Fact 3 (applied to Lot and
LTi_), Lot has an extended locus r’ in that tree. Moreover, r must be the locus of an Lstring
Lprefix of Lsufj+ (La) (otherwise it cannot be the extended locus of Lot). Therefore, r’ is
an ancestor of t3. The contracted locus u of Lot is either r’ or the parent of r’ in LT,._, by
definition of the contracted locus, extended locus, and locus of an Lstring. [3

Note that the contracted locus of an Lstring always exists in a compacted trie over the
alphabet LE since the root is the locus of the empty Lstring. In the remainder of this section
and in the next one, let u denote the contracted locus of Lot in LT/_ , Lb denote the string of
which u is locus, and r’ denote the extended locus of Lot in LT/_I. The following lemma tells
us the "general neighborhood" in LT/_ where the contracted locus of Lheadi is as given in
the following lemma.

LEMMA 6. The contracted locus ofLheadi, the Lstring corresponding to A[i +li 1,

+ li 1], in LTi_ is in the subtree rooted at u.

Proof. Lb is the Lstring obtained by concatenating the labels ofthe path from root (L Ti-l
to u. By definition of a contracted locus, Lb is an Lprefix of Lot and therefore an Lprefix of
Lheadi. (By Lemma 5, Lot is Lprefix of Lheadi.) But only the nodes in the subtree rooted at
u have Lb as Lprefix (by definition of compacted trie over the alphabet LE). Therefbre the
contracted locus of Lheadi must be in that subtree. U

In analogy with MC, we search for the contracted locus of Lheadi in LT/_ using the
strategy suggested by Lemma 6. That is, we locate u and start the search from u. We will
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show that, in such a way, we can "manage to skip" Lot, an Lprefix of Lheadi, when searching
for the contracted locus of Lheadi in LT/_. Then we modify LT/_ according to the high-
level design of iteration i. We also have a rescanning and scanning phase. As with MC, our
rescanning phase finds u. However, it is implemented differently than the one in MC because
we have suffix links defined at the leaves.of LTi_ whereas MC has suffix links defined for
the internal nodes of T_. In addition, we need to be careful with the management of the
labels on the edges of the Lsuffix tree, the comparisons of Lcharacters, and the update of our
auxiliary data structures. (We will deal with such issues in 6.)

We anticipate that our procedure will not do rescanning when Lheadi_ is the empty
Lstring because in that case Lsuf2(Lheadi_) Lot is the empty Lstring and its contracted
locus (and locus) is root(LTi_), so it is already known. The skeleton of the ith iteration of
STI, the procedure that inserts Lsuffixes into the Lsuffix tree, is given below. We assume,
and justify later, that it knows the locuses v and g in LT/_ of the Lstrings corresponding to

A[i + li-1 2, 1 + li- 2] and A[i n + 1, n + 1], i.e., Lheadi_
and Lsufi_ (La). For the first iteration, those two nodes are the same (the root of LT0).

Procedure STl--Skeleton iteration
1. If v root(LTi_) then u := root(LTi_) and skip rescanning.
2. Rescanning: find the contracted locus u of Lot, given the locus v 5/= root(L Ti_l) of

Lheadi_ and SL for all leaves in LT/_, except g.
3. Scanning: starting from u and skipping Lot, find the contracted locus of Lheadi. If

needed, create a locus for Lheadi and make a new leaf representing the Lsufi (La)
offspring of that locus. Compute SL for g.

6. Construction of the Lsuffix tree for one Lstring: Detailed description. In this
section we show how we proceed for the rescanning and scanning phase of the ith iteration
of our algorithm. We do so by assuming the following invariant, which will be maintained by
the algorithm and tells us which information we have available at the beginning of iteration
to perform the computation prescribed by the skeleton of STI. Before we state the invariant,
we recall that the leaf g LT/_, the locus of the Lstring corresponding to matrix A[i
n + 1, n + ], does not have a value of SL defined.

INVARIANT 1. At the beginning ofiteration i, STI knows the locus v ofLheadi_ and the

leaf g locus ofLsufi_(La$) in LTi_. The values of SL are known to STIfor all leaves in
LTi_, except g. For all nodes z ofLTi_, the length l(z) of the Lstring of which z is locus is
known to STI. Each internal node c LTi_ has a pointer to a leaf (arbitrarily chosen) in
the subtree ofLTi-1 rooted at c. Moreover, all edges outgoing any internal node ofLTi_ are
sorted according to the first Lcharacter on the chunk labeling that edges (we keep them in a
binary search tree).

Based on the information granted by Invariant we have to show the following:
1. How to find the contracted locus u of Lot. when v 5/= root(LT,._). (This corresponds

to rescanning.)
2. How to find, starting from u, the contracted locus of Lheadi. (This is part of scan-

ning.)
3. How to change LT/_ into LT/, computing, for the new nodes the length ofthe Lstrings

ofwhich they are locuses and, for the new edges, their labels. How to compute SL(g).
(This is part of scanning.)

6.1. Point one. We refer to the operation that finds the contracted locus u of Lot in LTi_
as findclocus. It takes in input v :/: root(LTi_), the locus of Lheadi_ in LT/_. We first
prove its correctness (Lemma 7) and then we discuss its implementation (Lemma 8).
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Procedurefindclocus
Select any offspring c of v not equal to the leaf g locus of Lsufi_ (La). Let q be
the leaf of LT/_ pointed to by c. On the path from the root of LTi_I to SL(q), u is
the deepest node such that (u) _< h.

LEMMA 7. Assume that v root(LTi_) and that bvariant holds at the beginning of
iteration i. findclocus correctly computes the contracted locus u ofl_ in LTi_1.

Proof Notice that by the definition of Lheadi_ and the fact that g is the locus of

Lsu3_ (La), g is an offspring of v, so the node c selected by findpath is not an ancestor
of g. By the invariant, c points to a leaf q in the subtree ofLT_ rooted at c. Since c is not an
ancestor of g, q g. Therefore, ff SL(q) is defined by the invariant and can be computed
by findclocus.

Since q - g is any arbitrary leaf in the subtree of LTi_ rooted at v, we have that the
extended locus r’ of Lot is an ancestor of t3 (by Lemma 5). By Lemma 5, u is an ancestor of
r’ and therefore an ancestor of t. Thus, by the definition of contracted locus, we have that u
must be the deepest node on the path from root(LT_) to such that l(u) <_ h. [3

In order to efficiently perform findclocus, we represent LT/_ as a dynamic tree [25].
That is, as a set of edge-disjoint solid paths. Expose is the dynamic tree operation of interest
to us for the implementation of findclocus. It has been described in 2. We implement
findclocus as follows. Let t SL(q). Since Invariant holds, we can get from v to t3 in
constant time. We do expose(): it returns the path/ from t to the root of LT/_1 in a search
tree. As pointed out in 2, a symmetric order traversal of that search tree gives the nodes of
/3 in decreasing order of distance from root(LTi_). Note that l(w) < l(y), when node w
is closer than y to the root. Moreover, by the invariant, for each node of/3, the length of the
Lstrings of which it is locus is known to STI. Thus we can use that binary search tree to find,

by binary search, the node u further away from root(LTi_) such that l(u) <_ h.
Since LT/_ has at most O(n) nodes (at most as many as the final Lsuffix tree for La),

expose takes O(logn) time on a dynamic tree of size at most O(n) [25]. Moreover, the
binary search is performed on a balanced search tree of at most O(n) nodes, so findclocus
takes O (log n) time. For later reference, we summarize the above discussion in the following
lemma.

LEMMA 8. Assume that the invariant holds at the beginning of iteration i. findclocus
can be implemented to take 0 (log n) time:

Ii.2. Point two. In what follows, let B denote the matrix corresponding to the Lstring Lb
whose locus is u, the contracted locus of Lot. B is of dimension l(u) l(u) because Lb is an
Lstring of that length. Before we discuss the second point, we need the following facts.

FACT 8. Assume that h l(u), i.e.. Lb and L are Lstrings of the same length. Then u
is the locus ofl_ implying that Lb =I_, i.e.. A[i + h 1, + h 1] B.

Proof. The fact is proven by the definition of a contracted locus and locus of an
Lstring. 0

FACT 9. Assume that u is not the locus of I_, i.e., Lb is shorter than Lot, the Lstring
corresponding to A[i + h 1, + h 1]. Lot is equal to the concatenation ofLb with
thefirst h l(u) Lcharacters ofthe chunk on the edge (u, r’), i.e., A[i + h 1, + h
has B as a proper prefix and its remaining rows and columns correspond to thefirst h (u)
Lcharacters ofthe chunk on the edge (u, r’).

Proof Since u is not the locus of Lot, its extended locus r’ is an offspring of u (by
Lemma 5). Let Lx be the Lstring of which r’ is locus. Lx is obtained by appending the chunk
on the edge (u, r) to Lb. But Lb is a proper Lprefix of Lot, which is a proper Lprefix of Lx.
Thus, Lot can be obtained from Lb by appending to it the first h l(u) Lcharacters of the
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chunk on the edge (u, r’), i.e., A[i + h 1, + h has B as a proper prefix and its
remaining rows and columns correspond to the first h l(u) Lcharacters of the chunk on the
edge (u, r’). ]

FACT 10. Assume that there is no offspring r ofu such that thefirst Lcharacter ofthe chunk
on the edge (u, r) is A[i +l(u), +l(u)- 1]All +l(u), +/(u)], i.e., the Lcharactercor-
respondingtoLsufi(La)[l(u)+ 1]. ThenLb =Lheadi, i.e., A[i +li- 1, +li- 1] B.

Proof u is the contracted locus of Lct, an Lstring whose corresponding matrix is equal
to A[i + h 1, + h 1]. Thus the Lstring of which u is locus corresponds to a matrix
equal to A[i + l(u) 1, + l(u) 1], which is a prefix of A[i n + 1, n + 1]. So,

Lb is an Lprefix of Lsu} (La). Since none of the chunks on the edges outgoing u starts with

Lsu}(La$)[l(u) + 1], i.e., A[i + l(u), + l(u) 1]A[1 + l(u), +/(u)], we have that
Lb is the longest Lprefix that Lsuj (La) has in common with Lsufj(La), for <L j < n
(by definition of LT/_I and of trie over the alphabet LE). By definition of Lheadi, we have
that Lb Lheadi. [3

For the sake of presentation on how we proceed for the second point, let us assume that f
is the extended locus of Lheadi in LT/_. We anticipate that we will find the contracted locus
of Lheadi by finding f and that we will establish the correctness of our approach while we
present it. We also remark that in such a discussion we make critical use of Lemmas 4 and 6,
as will be pointed out.

f must exist and it is in the subtree of LT_I rooted at u. Indeed, if Lheadi has a locus in
LTi-1 then f is that locus (by definition of a locus and extended locus of an Lstring). In such
a case, f is the node we are looking for and, by Lemma 6, it is in the subtree of LT_ rooted
at u. If Lheadi does not have a locus in LT/_I, its contracted locus is an internal node and f
is one of its offsprings (by Lemma 4). In such a case, parent (f) is the node we are looking
for and, again by Lemma 6, f is in the subtree of LT/_I rooted at u.

So, by finding f, we also find the contracted locus of Lheadi in LT_I. We start the search
from u. We refer to findpath(u, Lsu3(La,)) as the operation that, starting from u, locates

f in LTi-1. It returns parent(f) when f is not the locus of Lheadi in LT/_I. Otherwise, it
returns f. It can be described as follows.

Procedurefindpath
Select the only offspring r of u such that the first Lcharacter of the chunk on the edge
(u, r) is A[i + l(u), + l(u) 1]All + l(u), + l(u)], i.e., the Lcharacter
equal to Lsu.(La$)[l(u) + 1]. There are two cases to consider.
Case a. No such offspring exists. By Fact 10, u is the locus of Lheadi and must be
equal to f by definition of the extended locus of an Lstring. Exit.
Case b. r exists. Rather than trying to be formal, we explain how we find f
using Fig. 13. We need some preliminary observations. Fig. 13b gives the matrix
A[i n + 1, n + 1] divided up into a prefix equal to B (by Facts 8 and 9, B
is a prefix of A[i + h 1, + h 1]) and chunks/,/e /. /q.
Such chunks correspond, in an obvious way, to the chunks/’1,
on the edges of the path from u to f (shown in Fig. 13a). Note that ]e and/,

_< e _< q, have the same number of Lcharacters. Using such an observation and
Fact 2 (applied to LT 1), one can easily prove that/e and/’ < e < q start withe.
Lcharacters of the same length as strings in E*o Therefore by the concatenation rule
for Lcharacters the/th Lcharacter of/e is, as a string of E*, the same length as the
/th Lcharacter of/. Since e and e can both be expressed as triples we can use
compare to compare their/th Lcharacters (recall its definition from 4). findpath
skips the first h l(u) Lcharacters of the chunk on the edge (u r), i.e., they are
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A[i .i+ h- l,i. i+ h- 1]

,kipped

(a)

(b)

FIG. 13. (a) The pathfrom root L Ti-l to f (b) The matrix A n + 1, n + 1] divided up into the matrix

on the pathfrom root (L T,-I to u and chunks corresponding to the ones on the edges of the path from u to

not compared against the corresponding Lcharacters of the Lstring obtained from
A[i n+ 1, n+ 1]. By Facts8(caseh l(u)) and 9 (case h > l(u)),this
amounts to skipping A[i + h 1, + h 1], the matrix corresponding to Lc.
That is correct because by Lemma 5 such an Lstring is an Lprefix of Lheadi. Starting
with the Lcharacter of A[i n + 1, n + pointed to by the arrow start, findpath
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compares, one by one and from left to right, the Lcharacters of A[i n + 1, n +
with the corresponding ones on the edges of the path from u to f. A mismatch must

eventually be found because the last Lcharacter of A[i n + 1, n + 1] is and
it does not match any other Lcharacter. In Fig. 13, such a mismatch is between the
Lcharacters pointed to by the arrow end. Notice that we perform end start +
li h + comparisons of Lcharacters in the chunks /, 2 /s q and
fl’l, fl flJ ’q. findpath interleaves such comparisons with the "selection
of the node to visit next" (recall that the path from u to f is not known to findpath).
To this end, the Lcharacters in A[i n + 1, n / 1] between start and end with
bars in them are special: they are the first Lcharacters of/2 fls flq and are
used by findpath to go from u to f. Indeed, assume that findpath has reached
node z of the path from u to f. It selects the edge (z, y) whose label starts with an
Lcharacter that is equal to the first Lcharacter of the chunk fls of A[i n / 1, n -t- ].
The number of nodes visited is bounded by li h / 1. Notice that, once we get to
f, it is a simple matter to decide whether to return parent (f) or f. We omit the
details.

By Invariant 1, the edges outgoing each node of LT/_ are sorted according to the first
Lcharacter of the chunk outgoing each edge. So, the "selection of the node to visit next"
can be done in O(log n) comparisons of Lcharacters. Therefore, the total time spent by
findpath in comparisons of Lcharacters is bounded by O((li h + 1)logn)) (findpath
visits at most li h + nodes and performs li h + comparisons of Lcharacters in the
chunks ill, f12, fls ]q and fl’ fl’2 fls flq). The remainder of the procedure
takes O((li h + 1) logn) additional time.

Recall that h min(0, li- 1) and that compare takes constant time. For later reference,
we summarize the above discussion in the following lemma.

LEMMA 9. Startingfrom the contracted locus u ofLa, the procedure findpath correctly
returns the contracted locus of Lheadi in LTi_. It takes O((li h + 1) logn) O((li
rain(0, li- 1) + 1) log n) time.

6.2.1. Point three. Recall the following facts, findpath returns a node tb such that it is
the locus of Lheadi, if it exists in LTi-I. Otherwise, tb is its contracted locus. Moreover, (v)
is known to STI by the invariant and Lc is of length (v) 1. Thus the length of Lheadi is
easily computed knowing the length (v) of Lct and the number of Lcharacter comparisons
performed by findpath.

We refer to the procedure that actually transforms LT/_ into LT,.. as updatetree. It takes
in input

Procedure updatetree
Case a. u3 is the locus of Lheadi in LT,.._. A leaf g’ is created as offspring of
tb. It is labeled with i, since that leaf is the locus of the Lstring corresponding to

A[i n + 1, n + 1], i.e., Lsu3(La). The edge (tb, g’) is labeled with the triple
(l(tb) + 1, n + 1, i) that corresponds to the chunk obtained by deleting Lheadi from

Lsufi(La) (l() is known by the invariant because b is a node of LTi_l). The

labeling is correct because tb is locus of Lheadi, g’ is locus of Lsufi (La), and the
path from the root of LT to g’ must give that latter Lstring. tb is made point to g’.
Moreover, SL(g) is set to g’. That is correct by the definition of a suffix link and the

fact that g and g’ are the locuses of Lsufi_ (La) and Lsufi (La,), respectively.
Case b. tb is the contracted locus of Lheadi in LT_, but that Lstring does not have
a locus defined. Let f be its extended locus (it must exist by Lemma 4 and it is
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known to findpath). Let (Pl, P2, j) be the label on the edge (b, f) 6 LTi-I. A
new node w’ is created as a locus of Lheadi by splitting the edge (tb, f) (w’ is made
offspring of tb). The label on the edge (tb, w’) is set to (pl, p + li l(o) 1, j)
and the one on the edge (w’, f) to (Pl + li l(ff)), P2, j). The labeling is correct.
Indeed, the concatenation of the Lstring of which tb is locus with the first li (b)
Lcharacters of the chunk on the former edge (t, f) is equal to Lheadi. But the
concatenation of the chunks on the edges (b, w’) and (w’, f) gives the chunk on the
former edge (tb, f). Thus the way updatetree handles the split of the edge (tb, f)
does not change the set of Lstrings given by the paths of the Lsuffix tree before the
split, (w’) is correctly set to li since w’ is the locus of Lheadi. Then we proceed as
in Case a, with tb replaced by w’.

Note that the insertion of the new nodes in LT/_ to transform it in LTi can be done by a
constant number of link and cut operations (LT_ is a dynamic tree). Each such operation
costs O (log n) time [25]. Moreover, the insertion of the new edges can be done in the same
amount of time and in such a way that, for each node where they are inserted, the list of edges
outgoing that node is still sorted according to the first Lcharacter of the chunk outgoing each
edge. Using this fact and the invariant, we have that the edges outgoing each node of LTi are
still sorted according to the first Lcharacter of the chunk outgoing each edge. The remainder
of the procedure takes constant time. For later reference, we summarize the above discussion
into the following lemma.

LEMMA 10. Assume that the invariant holds at the beginning of iteration i. Let w and
g’ be the locuses ofLheadi and Lsufi(La) in LTi. updatetree correctly transforms LTi_I
into LTi, computing, for w and g’, the length of the Lstrings of which they are locuses and,

for the new edges, their labels. It correctly sets SL(g) to g’ and w to point to g’, a leaf in the
subtree of LTi rooted at w. It takes O(log n) time. Moreover, the edges outgoing each node

ofLTi are sorted according to thefirst Lcharacter ofthe chunk outgoing each edge.

6.3. Pseudocode, correctness, and time analysis. We now provide the pseudocode of
STI, expressed in terms of the procedures given in the previous subsections. Then we prove
its correctness and we analyze it.

Procedure STl----Pseudocode iteration
1. If v root(LT,._) then u := root(LTi_) and skip rescanning
2. rescanning: u := findclocus(v).
3. scanning: tb "= findpath(u, Lsufi(La)); updatetree(tb).

THEOREM 4. Given an Lstring La, corresponding to matrix All n, n], and an

initial Lsuffix tree LTo ofone node, STI correctly builds the Lsuffix treefor La by inserting,

from longest to shortest, the Lsuffixes ofLa into LTo. It takes O(n log n) time.

Proof The proofofcorrectness is by induction. During iteration i, STI inserts Lsufi (La),
the Lstring corresponding to A[i n + 1, n + 1], into LT/_, the Lsuffix tree corttaining
the Lstrings corresponding to the first suffixes of A. Our inductive hypothesis is that at
the beginning of the th iteration, LT/_ is known and that Invariant holds. We show that
during the ith iteration, procedure STI correctly transforms LTi_I into LT and maintains the
invariant. Therefore, our inductive hypothesis will be satisfied at the beginning of iteration

+ 1. That will prove that STI correctly builds LT,,, the Lsuffix tree for La,.
Note that for 1, LTi_I LT0 is known. It consists of one node v (the root) which

is the locus of Lheado, the empty Lstring. v is also a leaf locus of Lsufo(La), because that
Lstring is empty, l(v) 0 and there are no internal nodes. So, the invariant is satisfied for

1. Let us assume that it holds for > 1; we show that it holds for + 1. Recall that La is
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Lsuf2(Lheadi_). Let w and g’ be the locuses ofLheadi and Lsufi (La) in LT/, respectively.
We consider two cases corresponding to whether or not rescanning is performed.

When the contracted locus u of Lot is root (L Ti_l ), STI skips rescanning. By Lemma 9,
findpath correctly finds the contracted locus 6 LT/_ of Lheadi. By Lemma 10,
updatetree correctly transforms LT/_I into LT/, computing, for w and g’, the length of
the Lstrings of which such nodes are locuses. Since the length of the Lstrings of which the
nodes ofLTi_l are locuses is known by the invariant, we know (z), for all z L Ti. findpath
also correctly computes SL(g), where g is the only leaf in LT/_ that did not have a value of
SL defined (by the invariant). Therefore, g’ is the only leaf in LT/that does not have a value
of SL defined, w is made to point to g’, a leaf in the subtree of LT,. rooted at w. Since
is possibly the only internal node of LT,. not in LT_ and the invariant holds, we have that
each internal node c 6 L Ti has a pointer to a leaf (arbitrarily chosen) in the subtree of LTi
rooted at c. Finally, w and g’, the locuses of Lheadi and Lsu3(La) in LT/are known to the
algorithm. Thus the invariant is satisfied.

When the contracted locus u of La is not root (L 7-1), STI finds that node by calling
findclocus, which correctly returns u by Lemma 7. The proof that our inductive hypothesis
holds for + also in this case is now as in the preceding case.

As for the time analysis, note that there can be at most n calls to the procedures f ndclocus,
findpath, and updatetree. The cost of the ith iteration is given by adding the bounds in
Lemmas 8, 9, and 10. Thus it is bounded by O((li -min(0, li_ 1) + 1) logn) time. Adding
over all iterations, we get the claimed bounds because l < n + and 1,,+1 0 (, does not
match anything).

7. Construction of the Lsuffix tree for matrix A. Given an n n matrix A, recall from

3.2 that the Lsuffix tree for A is the Lsuffix tree for the set of Lstrings corresponding to A,ta,
0 <_ Idl < n, i.e., D {Laaa, 0 < Idl < n}. We build such a data structure by "reducing"
the problem to the one of building the Lsuffix tree of a single Lstring (which we know how
to do with the algorithm of the previous section). Indeed, let B be the matrix obtained from
A,ta, 0 <_ Idl < n, as shown in Fig. 14. Let n + 2n and LT be the Lsuffix tree

for Lb,. In the remainder of this section, let q be the leaf of LT that is the locus of the
Lstring corresponding to Bib + 1, + 1] $, i.e., the leaf that is the locus of the Lstring
corresponding to the last suffix of B. We need the following lemma.

LEMMA 11. The Lsuffixtree LToforthe Lstrings in D {Laad, 0 <_ idl < n} is isotnor-

phic to L To {q}, where LTo is the Lsuffix tree for Lstring Lb (the Lstring corresponding
to matrix B).

Proof We establish a one-to-one correspondence between the nodes of LTo and the ones

ofLT0 {q}.
We first establish a one-to-one correspondence between the leaves of LTo and the ones of

LT0 {q }. By definition of an Lsuffix tree of an Lstring (set of Lstrings, respectively), there is
a one-to-one correspondence between the leaves of L To (L To, respectively) and the suffixes

of B (Aaa, 0 < Idl < n, respectively). But there is a one-to-one correspondence between

the suffixes of B and the ones of Aaa (as shown in Fig. 14), which proves our claim.
We now show that there is a one-to-one correspondence between the internal nodes of

LTo and the ones of L To. Let C be a square submatrix of B along its main diagonal and such
that C has no rows and columns of special characters $a. Given the correspondence between
suffixes of B and suffixes of Aa, 0 < Idl < n, any such submatrix C of B is a prefix of some
suffix of B if and only if C is a prefix of some suffix of Aa, 0 < Idl < n. Using this fact, the
fact that ,a, 0 < Idl < n, does not match anything, and the correspondence between square
matrices and Lstrings, it is straightforward to prove that an Lstring has an internal node as a
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FiG. 14. Matrix B corresponding to Add, 0 <_ Idl < n. Entries of B outside Add, 0 < Idl < n, have dummy
symbols (not shown).

locus in LTb if and only if it has an internal node as a locus in L To. Since the internal nodes of
both trees are locuses of Lstrings, we have a one-to-one correspondence between the internal
nodes of LTo and the ones of L Tb.

Before we describe how to obtain LTo from LTb, we need a few preliminary obser-
vations. Note that B is an fix fi matrix such that each row (column, respectively) is ob-
tained from a given subrow (subcolumn, respectively) of A by adding dummy symbols to
the beginning and end of it. Thus, there is no need to build B explicitly. Moreover, we

point out that each chunk (and in particular Lcharacters) of Lb$ and its Lsuffixes is made
up of a dummy part covering subrows and subcolumns of B with dummy characters in
them and a relevant part covering subrows and subcolumns of B that correspond to sub-
rows and subcolumns of matrices Ad, 0 <_ Idl < n (for an example, see chunk (a) in
Fig. 14).
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We can compare Lcharacters from Lb and any of its Lsuffixes as follows. We preprocess
the matrix A as in 4. By Lemma 1, that takes O(n2 log IEI) time. Then, given two Lcharacters
from triples of chunks of Lb or of its Lsuffixes, we take only the starting points in B of an
occurrence of the relevant parts of those Lcharacters. Using the correspondence (shown in

Fig. 14) between the matrices Al, 0 < Idl < n, and the suffixes of B, such starting points can
be translated, in constant time, into the starting points in A of an occurrence oftwo Lcharacters
of Laaa, 0 < Idl < n, or one of its Lsuffixes. Then we can use compare as described in 4.
The bounds in Lemma still hold.

We can build the Lsuffix tree LTo of matrix A by building the Lsuffix tree L Tb for the

Lstring Lb (corresponding to matrix B). By Lemma 11, LTo is isomorphic to L T., {q }.
Then we have to transform LT, {q} into LTo by a suitable transformation of labels (which
will be outlined shortly). We proceed as follows. We use the procedure of 5 and 6 to
build L T6 with the following changes. Any time we need an Lcharacter from Lb or one of
its Lsuffixes, we recover its relevant part in matrix A through the correspondence (shown in

Fig. 14) between the matrices A,t, 0 _< Idl < n, and the suffixes of B. Such a translation

takes constant time. Moreover, when we need to compare Lcharacters from Lb or any of its
Lsuffixes, we use compare as described above. Notice that it still takes constant time. Using
the fact that fi O(n2).and Theorem 4, we can build LT in O(n2 logn) time.

Once we have L T,, we delete leaf q and translate the triples representing chunks of Lb
and its Lsuffixes into quadruples representing chunks of Lstrings La,td and their Lsuffixes.
0 _< Idl < n. Let (p, q, l) be a triple on an edge (u, v) of LTo {q}. It represents chunk

Lsuf(Lb). There are two cases to consider: one in which the relevant part of (p, q, l) is
fully within a suffix of some A,t (see chunk (b) in Fig. 14) and the other in which it is not (see

chunk (c) in Fig. 14). For the case depicted in Fig. 14b, we translate the triple (p, q, l) into

a quadruple that represents only the relevant part of Lsuft(Lb) and therefore corresponds
to the correct chunk of Lstrings Laaa and their Lsuffixes, 0 < [dl < n, that is to be placed
on the edge (u, v) of L To. In the other case, v 6 L T, is a leaf since $j occurs only once in
B and $j is in the relevant part of (p, q, l) (see Fig. 14c). We translate such a triple into the
correct quadruple to be placed on the edge (u, v) 6 LTo by keeping only the relevant part of
(p, q, l) (which is above the subrow and to the right of the subcolumn of $j’s in B). In both
cases, this transformation takes constant time. Since the size of LT is O(fi) (by Fact 4) and
since h O(n2), we get that we can transform LTb {q} into LTo in O(n2) time. Moreover,
the transformation is such that the edges outgoing each node of LTo are sorted according to

the first Lcharacter on the chunk of each edge. Recalling that preprocessing of the matrix A
takes O (n2 log lE I) time and that L T, can be built in O (n2 log n) time, we get the following
theorem.

THEOREM 5. Given an n n matrix A, we can build the Lsuffix tree for matrix A in

O(n2(logn + log lEI)) time. Moreover, the edges outgoing each node of LTo are sorted
according to the first Lcharacter on the chunk ofeach edge.

8. Refining the Lsuffix tree for matrix A. As pointed out at the end of 3.2.3, the
Lsuffix tree LTo for matrix A can be used to find all occurrences of a matrix PAT into A.
However, the outdegree of nodes in LTo may be large, resulting in a slow-down in the search
time. We can avoid such a slow-down by reducing the outdegree of the nodes in L To, i.e.. by
refining it. Indeed, the refinement of the Lsuffix tree for A, referred to as the RLsuffix tree for
A and denoted RLTo, is a compacted trie defined over E. Thus the outdegree of each node
of the Lsuffix tree is at most and we can "jump" from one node to another in O(log IE I)
time. Intuitively, it represents the same information as LTo but in a different format. Indeed,
L To represents Lstrings, which are "strings" defined over an alphabet of Lcharacters. Since
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FIG. 15. The refinement ofthe Lsuffix tree ofFig. 10. Only the part corresponding to the suffixes of Ao and A2
are shown.

Lcharacters are strings over E, we can represent Lstrings as strings in E*. In fact, RLTo
represents the same Lstrings as LTD but as strings in E*. (See Fig. 15 for an example.) Let
< denote the lexicographic order relation for strings of E*.

8.1. Construction ofRLTo: High-level description. We give a constructive definition
of RLTo by describing, at a high level, how it is obtained from L To. In what follows, for
a given internal node v LTo, let off(v) be the number of offsprings of v in LTo and let

w < < Woff<o) be the list of its offsprings sorted according to the first Lcharacter of the
chunks on the corresponding edges. Such a list can be easily obtained from LTo in O(off(v))
time, since we keep the edges outgoing v in the order w < < Woffo (see Theorem 5).

Let/i denote the string that corresponds to the chunk on the edge (v, wi), < <_ off(v),
when we write it down as a string in E*. For each internal node v LTo, we build a compacted
trie PT(v) defined over E. It represents, as strings in *, the chunks on the edges outgoing
v, i.e., it represents/ 6o#). So, each edge of PT(v) has a string assigned to it, which
is a substring of some/i. Since each chunk on the edges outgoing v starts with a different
Lcharacter (by definition of Lsuffix tree), no i can be a prefix of any other/j. Thus there is
a one-to-one correspondence between the leaves of PT(v) and the offsprings of v. We make
the root of PT (v) correspond to v. Once the PT(v)’s have been computed for each internal
node v LTo, we glue them together according to the parent-offspring relation in LTo. That
is, for each edge (v, f’) L To, the root of PT(f’) is coalesced with the leaf corresponding
to it in PT (v). The resulting tree is RLTo.

Note that with such a construction there is no loss ofinformation. That is, RLTo represents
the same information as LTo, but in a different format. Moreover, there is a one-to-one

correspondence between the leaves of L Tt and the ones of RLTo. Indeed, the leaf f’
LTo labeled (I, i) and such that the path from the root of LTo to f’ spells out the Lstring
Lsttfl(Laii) corresponds to the leaf f RLTo such that the path from the root of RLTo to

f spells out Lsufl(Laii) as a string of E*. The converse is also true. We assign the label
(I, i) to f. Note that’RLTo has O(n) leaves.
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In what follows we bound the size of RLTo. We start by describing how the strings on
its edges are represented. This involves discussing the representation of strings on the edges
of a single PT (v). Given a string ?, on an edge of PT (v), we represent it in constant space
with a sixtuple (p, q, l, i, bgn, end) which means the following. Let/ be the string obtained

by writing down the chunk Lsufl(Laii)[p, q] represented by quadruple (p, q, l, i) (which
is on some edge (v, wj) L To). Then ?, [bgn, end]. We need the following fact, which
will be useful in the next section.

FACT 11. Given the sixtuple (p, q, l, i, bgn, end), let ?, be the string it represents. A
prefix ) of?’ can be recoveredfrom the sixtuple in O(1)1) time.

Proof. (p, q, l, i, bgn, end) encodes ?’ [3[bgn, end], where/ corresponds to the chunk

Lsuft(Laii)[p, q] as a string of E*. Using the definition of chunk, we know that the tth,
p < < q, Lcharacter of that chunk has length 2t as a string of E*. Let k be the maximal
integer such that E’ k2i=0(2(p+i)- 1) +2p(k+ 1)- < bgn. It can be found in
constant time. In order to get to the starting point of ?’ and ) in , we need to skip the first

k + Lcharacters of Lsuf(Laii)[p, q]. Skipping the first bgn characters, we take the
subsequent end bgn + 1 characters out of the ones that compose the Lcharacters in the

chunk Lsufl(Laii)[p -t- k + 1, q]. They correspond to ). By Theorem 3, we can access the
starting points of an occurrence of any of those Lcharacters in A in constant time. So, using
the correspondence between Lcharacter and subrows and subcolumns of A, we can get ) in
time linear in its size.

FACT 12. The size of PT(v), i.e., number ofnodes, edges, and labels, is O(off(v)).
Proof. PT(v) is a compacted trie over the alphabet E that has O(off(v)) leaves. By the

definition of a compacted trie [20], each internal node of PTfv), except possibly the root, has
outdegree at least two. Thus the number of nodes, edges, and labels (one per edge) is bounded
by O(off(v)). [3

LEMMA 12. Given a node g in RL To, let f be the number ofleaves in the subtree Tg of
RLTo rooted at g. The number ofnodes in Tg is O(If).

Proof. Since each PT(v), v LTo and internal node, is a compacted trie, only its root
can have outdegree one. Moreover, since PT (v) represents at least two different strings (no
/i is prefix of any other/j and off(v) >_ 2), each leaf of PT(v) must descend from a parent
of outdegree at least two. Since RLTo is obtained by gluing all the PT(v)’s together, for
each internal node v LTo, the above properties of PT (v) imply the following properties
for RLTo" (a) the nodes of outdegree one in RLTz must be offsprings of nodes of outdegree
at least two; (b) all leaves of RLTo must be offsprings of internal nodes of outdegree at least
two.

Consider a tree T obtained from Tg by "contracting" the internal nodes of outdegree one
into their offsprings. Note that because of property (b) of RLTo, T has the same number of
leaves of Tg and, because of property (a) of RLTo, it is at least half the size of Tg. Since each
node in T has outdegree at least two, its size is O(lf), which proves the claimed bound on
the size of Tg.

LEMMA 13. The size of RLTo, i.e., number ofnodes, edges, and labels, is O(n2).
Proof The lemma follows from Lemma 12 (applied to the root of RLTo) and the fact

that RLTo has O(n2) leaves. 1
THEOREM 6. Let B be a square matrix and let Lb be the corresponding Lstring. B is

submatrix ofA ifand only ifthe string corresponding to Lb has an extended locus w in RL Tt).
Moreover, let F be any square submatrix ofA having B as a prefix and let Lf be the Lstring
corresponding to F. The extended locus of the string corresponding to Lf in RLTo is a
descendant of w.
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Proof. Given the way in which we obtain RLTz from LTo, the theorem is a simple
variation of Theorem 2. The proof is omitted. 0

8.2. Construction of RLTo: Low-level description. Let us assume that LTo has been
built and let us assume that the matrix A has been preprocessed so that compare takes constant
time. The main point in the construction of RLTo is the computation of PT (v), v L To,
which we now present,

Recall that Wl < < Woffv) is the list of offsprings of v in LTo sorted according to
the first Lcharacter of the chunks on the corresponding edges and that/i denotes the string
that corresponds to the chunk on the edge (v, wi), < < off(v), when we write it down as
a string in E*. Note that, for < j,/i < ]j because wi < wj. Moreover, the longest prefix
that i and j have in common is "confined" to the first Lcharacter of the chunks on the edges
(v, wi) and (v, wj) (no two such chunks can start with the same Lcharacter, by definition of
an Lsuffix tree). Since we have pointers to such Lcharacters (the quadruples representing the
chunks), we can compute the length of such a prefix by using compare (recall its definition
from 4). Note also that given a quadruple representing a chunk, we can compute the length of
the string corresponding to the chunk in constant time. Thus, we can assume that the lengths
of/ [3off,v) are known.

We build PT(v) incrementally by inserting into it the path representing/i, once the path
representing/r is already there, for _< r < i. Assume that we have P T/_ (v), the compacted
trie that represents/ < < i-1, and assume that the following invariant holds.

INVARIANT 2. The edges outgoing any node of PTi-I (v) are sorted according to the first
character ofthe string on each edge. The array PATH stores the nodes of, where is the
path representing i-1 in PTi_(v). Moreover, the nodes in PATH are sorted in increasing
order of the length of the strings of which they are locuses. For each node c , the length
fen(c) of the string ofwhich c is a locus is known,

Note that for 2, PT (v) is an edge representing/1 and/ is that edge (it can be stored
in PATH in constant time). Moreover, since we know the length of/ and root(PTi_(v))
is the locus of the empty string, we also know the length of the strings of which the nodes in

fi are locuses. Since PT (v) has only one edge, all edges outgoing the same internal node
are sorted according to the first character of the strings on those edges. Thus Invariant 2 is
satisfied for 2. Now we show how to transform P T,._ (v) into P. (v) and how to maintain
Invariant 2 for 2. We do not actually provide all details, since many of them are quite
standard operations in manipulating tries.

Transformation of PTi_(v) into PTi(v). Let len be the length of the longest prefix
common to fl,._l and/i. We can compute it in constant time using compare, as already
discussed. Since/r < /i-1, for r < 1, no/,, can have a prefix in common with/i of
length longer than len. This implies that we can create the path p representing/i by making
it "share"/i[1, len] with ft. Thus p is obtained from/3 by creating, if needed, a locus u for
/3/[1, len] on fi and then, as an offspring of u, a leaf f representing fli[len + 1, Iil]. This is
done as follows. We have the nodes of/3 in PATH, sorted in increasing order of the length
of the strings of which they are locuses. We find where to create u on/ by finding, through
a binary search on PATH, the maximal node c for which fen(c) < len. If fen(c) fen
then u c. Otherwise u is created by splitting the edge (c, c’) 6 P T/_ (v) whose label starts
with fli[len(c) -F 1] (u becomes an offspring of c and the parent of c’ in PTi(v)). Moreover,
len(u) len and fen(f) I/3ii. Note that the split of the edge (c, c’) 6 PT/_ causes the
split of the label on that edge into two. That can be done in constant time. We omit the details.
Moreover, the sixtuple that has to label the edge (u, f) PTi(v) can be obtained in constant
time from the quadruple labeling the edge (v, wi) L To and len. Again, we omit the details.
We also remark that the edge (u, f) and possibly the edges (c, u) and (u, c’) can be placed
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in such a way that all edges outgoing the same internal node of P Ti (v) are sorted according
to the first character of the strings on those edges. Again, we omit the details. The above
discussion proves that part of Invariant 2 will hold for PTi (o).

Update of PATH. We update PATH to contain p by throwing out all descendants of c
(which follow it in PATH) and appending to it u and the new leaf f. The descendants of c
can be deleted in constant time by moving the right boundary of PATH so that c is the last
element of PATH. The update of PATH establishes that the remainder of Invariant 2 will
hold for P T/(o).

LEMMA 14. PT(v) can be correctly built in O(off(o)(log IEI q- logn)) time and in such
a way that edges outgoing any node of PT(o) are sorted according to the first character of
the string on each edge.

Proof. The proof of correctness is by induction. It is given by the discussion preceding
the lemma. The most expensive step in the transformation of PTi_l(o) into PT/(o) is a
binary search on PATH. The rest of the work requires constant time (including the update
of PATH and calls to compare or O(log IEI) time (to insert the new edges so that the
list of edges outgoing any node of PT,. (o) is sorted according to the first character on those
edges). Since the size of PT(o) is bounded by O(off(o)) (by Fact 12) and IP’(o)l _<
IPT(o)I, j 1...off(v), PATH has at most off(v) < n2 nodes in it. Thus a binary search
takes O(off(o) logn) time. Summing the work for 2 off(v), we obtain the claimed
bound. [3

THEOREM 7. RLTo can be built in 0 (n (log IEI + log n time and in such a way that
the edges outgoing any node ofRLTo are sorted according to thefirst character ofthe string
on each edge.

Proof. For each internal node o L To, the edges outgoing any node of PT(o) are sorted
according to the first character of the string on each edge (by Lemma 14). RLTo is obtained
by gluing those trees together, so it has the same property. The work required to build P T(o)
for each internal node o LTo is bounded in Lemma 14. Since the sum of the off(o)’s over all
internal nodes o of LTo is bounded by O(n), we get that the total work to build the PT(o)’s
is bounded by O(n) calls to compare and O (ne(log IEI + log n)) additional time. The bound
of the theorem follows by noting that compare takes a constant time per call and that gluing
the PT(o)’s together can be done in O(n2) time. U

9. Application one: Pattern retrieval. In this section we apply the Lsuffix tree and its
refinement to derive efficient algorithms for the pattern retrieval problem. In order to simplify
the presentation, we limit our discussion to the case in which the library S has only one text,

an n x n matrix TEX7’. The results generalize easily to a set of texts.

9.1. Pattern retrieval through an index. We are interested in building an index repre-
senting all square submatrices of TEXT (preprocessing step). Then, given an m x m matrix
PAT, we want to use the index to find all occurrences of PAT in TEXT. Let TEXT,
be the square submatrix of TEXT whose main diagonal is the dth diagonal of TEXT,
0 < Idl _< n 1, and let Lta denote the Lstring corresponding to TEXTa, 0 < Idl < n 1.
Moreover, let D {Ltaa, 0 <_ Idl < n}.

The preprocessing step consists of building the Lsuffix tree LTo for matrix TEXT and
then refining it. By Theorems 5 and 7 that will take O (n (log EI + log n)) time.

Let Lpat be the Lstring corresponding to matrix PAT and let pat be Lpat, when we
write it down as a string of E*.

THEOREM 8. PAT occurs in TEXT ifandonly ifpat has an extended locus u in RLTo.
Moreover, all such occurrences areprefixes ofsuffixes ofTEXTa, 0 < Idl < n, corresponding
to the leaves ofthe subtree of RLTo rooted at u.
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Proof. PAT occurs in TEXT if and only if it is a square submatrix of TEXT and, by
Theorem 6, if and only if pat has an extended locus u in RLTD. That proves the first part of the
theorem. For the second part, note that PAT occurs in TEXT if and only if it is the prefix of
some suffix of TEXTa. Let C be one of these suffixes, Lc be the Lstring corresponding to
and c be the string obtained from Lc when we consider Lcharacters as strings. By Theorem
c has an extended locus in RLTo. That extended locus must be a leaf f (it follows from
the way we build RLTo from LTo and the fact that the extended locus of Lc in LTo is a
leaf). Again by Theorem 6, f must be in the subtree of RLTo rooted at u (PAT is a prefix
of C).

Given PAT, we can construct pat in O(m2) time using the correspondence between
matrices and Lstrings. Then the search for the extended locus of pat in RLTo is a nearly
standard search for the extended locus of a string in a compacted trie defined over E. However,
we have to be careful with the fact that there are sixtuples on the edges of RL To, rather than
actual strings. We give details only on how to traverse one edge of RLTo guided by pat.

Assume that we have reached a node g RLTo, locus of pat[ 1, s]. We select the edge to
traverse the next by finding the edge (g, h) whose label starts with pat[s + ]. That can be done
in O(log IE]) time because, by Theorem 7, the edges outgoing any node of RLTo are sorted
according to the first character of the string on each edge. Let (p, q, l, i, bgn, end) be the label
on the edge (g, h) and let ?’ be the string it represents. Let min(m2 s, end bgn + 1).
We extract from the sixtuple a prefix of , of length I. By Fact 11, this can be done in O(1)
time. Then we compare p with pat[s + 1, s -4- l]. This takes O(1) time. If they are equal, we
go on with the edge traversal starting from h and guided by pat[s / + 1, m2]. Otherwise,
there is no extended locus of pat in RL

Such an edge traversal costs O (l + log lE I) time. Since we never back up in reading the
input, the whole time bound for the search procedure is bounded by O(m2 log IEI) time.

Once we have reached the extended locus u of pat in RL To, we know, by Theorem 8,
that the occ occurrences of PAT in TEXT are given by the labels on the occ leaves of the
subtree T, of RLTo rooted at u. By Lemma 12, the size of Tu is O(occ), so we can visit its
leaves, starting from u, in O (occ) time. We summarize the above discussion in the following
theorem.

THEOREM 9. Finding all occurrences ofmatrix PAT in TEXT takes 0 (m2 log El+occ)
time, where occ is the number ofoccurrences of PAT in TEXT.

9.2. Pattern retrieval through a set of table. Here we outline how to convert the re-
fined Lsuffix tree RLTo for matrix TEXT into a set of tables, which can then be used to

perform pattern matching. We assume that the reader is throughly familiar with the notation
and approach of Manber and Myers to build suffix arrays for strings [21], which we briefly
summarize.

Given a text string, Manber and Myers define three tables that contain lexicographic
information about all suffixes of the text string and show how to compute such tables using
a doubling technique. Using the tables, they devise a simple binary search procedure that
finds all occurrences of a given pattern string in the text string. Such a procedure finds the
set of suffixes of text that have the pattern as a prefix. The time performance of the search
procedure depends on the size N of the tables and the length m of the pattern string: it is
O(m + log N / occ), where occ is the number of occurrences of the pattern in the text.

Let cl.a be the string corresponding to Lsuft(Lt,), 0 <_ Idl < n and < < n Idl.
Recall from 8 that the concatenation of the labels on the path from the root of RLTo to a
leaf labeled (/, d) gives Otl.a. Here we also define three tables, which are the same as the ones
of Manber and Myers, except that they contain lexicographic information about the n2 strings
o1,,. However, we do not use the doubling technique of Manber and Myers since we obtain
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such tables directly from RLTo. Then the procedure that searches for matrix PAT in TEXT
is the one of Manber and Myers, where the pattern string is pat. Thus such a procedure will
find the set of tt.a, 0 <__ Idl < n and < _< n Idl that has pat as prefix. Because of the
one-to-one correspondence between the c’s, the Lsuffixes of Lta and the suffixes of TEXTa,
this is equivalent to finding all suffixes of TEXTa, 0 < Idl < n, that have PAT as a prefix
(a proof of this fact is implicit in Theorem 8). In what follows, we give only an outline of our
construction since the rationale behind it is as in [21 ].

Let us assume that RLTo has been computed. By Theorem 7, it can be built in
O (n2 (log EI + log n)) time. As in [21 ], let us define an array P O S[0, n2 of pairs
such that ott, ostkl <_ ott, ostjl for k _< j. We use RLTo to compute PO S. We can compute
PO S by traversing RLTo alphabetically since such visit will give us the ct’s sorted lexico-
graphically. By Theorem 7, the edges outgoing any node of RLTo are sorted according to the
first character of the string on each edge, so such alphabetic visit can be done in O (n) time.

Given two strings/ and ,, let lcp(, ?’) be the length of the longest prefix common to/
and ,. Again as in [21], consider all the possible triples (L, M, R) that can arise in a binary
search on the interval [0, n (here L, M, and R denote the left point, middle point, and
right point of the interval that remains to be searched). There are exactly n 2 such triples.
each with a unique midpoint M [1. n 2] and for each triple 0 _< L < M < R _< n2 1.
Let (LM, M, RM) be the unique triple containing midpoint M. Let Llcp be an array of size
n2 2 such that Llcp[M] lcp(.t,OStLMj, eteostj). Moreover, let Rlcp be an array of size
n2 2 such that Rlcp[M] Icp(ot,OSRM, a’OSttl). These two arrays can be computed
in O(n) time as follows. We augment RLTo with LCA data structures [17], [24] in O(n)
time. Now each entry of Llcp and Rlcp can be computed in constant time by an LCA query,
for a total of O (n) time. We have the following theorem.

THEOREM 10. The tables POS, Llcp, and Rlcp can be built in O(n(log IEI + logn))
time.

Given a matrix PAT, we use the same search procedure of Manber and Myers [21] to
find the subset of the otl.a, 0 < Idl < n and < _< n Idl, that has pat as a prefix. As
already pointed out, that is equivalent to finding all suffixes of TEXTa, 0 <_ Idl < n, that
have pat as prefix. As in [21 ], such a procedure needs to compare characters of the ott./with
characters of pat. pat can be explicitly built from PAT in O(m) time. However, we do not

construct the ott.a explicitly. (It would be too costly.) Instead, we recover, when needed and
in constant time, each character Otl,d[i] through the correspondence between Otl.a, Lsuft (Ltd),
and the entries of TEXT. Thus, the time complexity of the procedure of Manber and Myers
is unchanged and will depend on the size n2 of our tables and the length m2 of pat.

THEOREM 11. Given that the arrays P 0 S, Llcp, and Rlcp have been computedfor the
matrix TEXT, finding all occurrences of PAT in TEXT takes O(m2 + logn + occ) time.
where occ is the number ofsuch occurrences.

10. Application two: Dictionary matching. We are given a dictionary of s distinct
square matrices PAT PATs, which we call patterns, where PAT/is of dimension m
m, < _< s. We are allowed to preprocess the dictionary (preprocessing step). Then we
are given a square matrix TEXT of dimension n x n, which we call text. We must report
all occurrences of patterns of the dictionary in the text (search step). The search step may be
repeated with different texts.

10.1. Preprocessing step. Our preprocessing step consists of building a compacted trie

LT over the alphabet LE that represents, as Lstrings, all suffixes of PAT PAT..
Let Lpat Lpats be the Lstrings corresponding to those matrices. Assume that an

edge of LT is labeled by chunk Lsu3(Lpat)[p, q]. We represent such chunk in constant
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space with a quadruple (p, q, i, j). Using the quadruple, we can recover the starting points in

PA Tj $j of each Lcharacter in the chunk. (The approach is the same as the one in 3.2.3, where
we have shown how, from quadruples, we can recover starting points in A of each Lcharacter
of chunks coming from the Lstrings corresponding to Ad, 0 <_ Idl < n, and its suffixes.)

In order to build LT, we use the same approach of as in 7, where we have shown
how to build the compacted trie L To representing, as Lstrings, all suffixes of matrices Ad,
< Idl < n. Indeed, we think of PAT PATss as being aligned, in that order, on

the main diagonal of a matrix B (see Fig. 16). B is of dimension Ei (mi + 1) and it has

dummy symbols in its entries not covered by any PATj $j. Note that we do not actually need to
build B explicitly since we can recover its entries from the pattern matrices. In what follows,
we omit the details and proofs since the analogy with the construction of 7 is obvious. (The
role played here by PAT., _< j < s, is the same as the role played by Ad, 0 <_ Idl < n, in
7.)

Let L T, be the Lsuffix tree for Lstring Lb, and let be the leaf of L To that is the locus of
the Lstring corresponding to B [h + 1, fi + $, i.e., the leaf that is the locus of the Lstring
corresponding to the last suffix of B,. Using exactly the same arguments as in Lemma 11, we
can show that LT is isomorphic to LTt, {}. Thus we can obtain LT by building LT, {}
and then transforming the triples on its edges into quadruples representing chunks of Lpatj,
< j _< s, or of its Lsuffixes. This latter step is similar to the transformation of LT, {q into

LTo described in 7 and we omit the details. We point out that in transforming LT, into LT,
we keep all the auxiliary data structures that are used in 5 and 6 to build LTz,. In particular,
for each leaf q LT, SL(q) is a suffix link defined exactly as for LT, and its value is known
at the end of the computation (because LT, satisfies Invariant 1). Moreover, LT is a dynamic
tree and each node of LT points to some arbitrary leaf in its subtree. Note also that the size
of LT is O(fi), since LT is the Lsuffix tree of an Lstring of length O(fi) and, by Theorem 1,
L T, has size O (h).
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As for the efficient construction of LT,, recall that we need to be able to compare, in

constant time, two Lcharacters of equal length as strings of E* and each coming from Lb,
or one of its Lsuffixes. Note that the chunks (and in particular the Lcharacters) of Lb and
of its Lsuffixes have a relevant part and a dummy part, which are defined as in 7 except that
the matrices Ad’s are replaced by the matrices PA Tj’s. Again as in 7, we consider only the
relevant parts of Lcharacters coming from Lb or one of its Lsuffixes. Thus the problem of

comparing two Lcharacters of equal length as strings of E* with each coming from Lb, or
one of its Lsuffixes boils down to the efficient comparison of two Lcharacters of equal length
as strings of E* and each coming from Lpatj, < j < s, or one of its Lsuffixes. In order to
compare two such Lcharacters in constant time, we proceed as in 4. However. the suffix tree

Troos (Tcots, respectively) is the suffix tree of the string obtained by concatenating (separated
by $’s) all rows (columns, respectively) of matrices P ATe, < j < s. Notice that there is a
unique leaf such that the concatenation of the labels on the path from root (Troo) (root (Tcots),
respectively) to that leaf gives PATjI[il, g mj] (PATj[il mji, g], respectively). Such
construction takes O( log IEI) time because rows and cols are strings of length O(h) [22].
We augment both Trows and Tcot with LCA data structures 17], [24]. As in 4, the comparison
of two Lcharacters, each coming from Lpatj, < j < s, or one of its Lsuffixes, reduces to
a constant number of LCA queries and therefore takes constant time. Thus the comparison
of two Lcharacters, each coming from Lb or one of its Lsuffixes, also takes constant time.
Now, by Theorem 4, we can build LTb in O(h log h) time.

We need to augment LT with additional data structures that will be useful during the
search step. We mark each node of LT that is a locus of some Lstring corresponding to some
PAT, _< g < s. For each node w L T. we set a prefix link to its lowest marked proper
ancestor. Such data structures can be computed in O(fi) time by a bottom up visit of LT.
We finally note that since LT is a compacted trie for the Lsuffixes of Lpatj$j, Lpatj may
not have a locus defined in L T. That happens only when PAT. is not a prefix of any other

PA Ti because j does not match ,i, # j. In that case Lpatj has an extended locus, which

corresponds to the leaf u, locus ofLpatjj. We assume that, in such a case, the length ofLpatj
is stored at u and that u is marked. The computation of this information can be easily done
during the computation of LT, leaving the time bounds unchanged. The above discussion
outlines the proof of the following theorem.

THEOREM 12. Given a set ofmatrices PAT1 PATs, each ofdimension mix mi, <

< s. the preprocessing stepfor the dictionary matching problem takes 0 (i (log fi + log E I))
time, where h E=I (mi + 1).

10.2. Search step. Given an n x n matrix TEXT, we want to use LT to find all oc-
currences of the patterns of the dictionary in the text. Let TEXTa and Lt,, 0 < Idl < n, be
defined as in 9.1.

For a fixed d, < < n-ldl, letk max(d+l,1),l max(1,-d+ 1),k’
min(n, n + d), and l’ min(n, n d). For n Idl, let Lhi.l be the longest Lprefix
of Lsufi(Lta) that has an extended locus w in LT. That is, Lhi., corresponds to the longest
prefix of TEXT[k / k’, + l’] that is also a prefix of some matrix represented
in LT as Lstring. Such matrices are all suffixes of patterns in the dictionary. In what follows,
let li,a be the length of Lhi.a.

We first show how to find all occurrences of patterns of the dictionary in position (k /
1, / 1) of the text, given Lhi.a. Then we address the problem of computing Lhi.d for

a fixed d and for n Idl. Finally, we put all the pieces together.

10.3. Finding occurrences in one position of TEXT. Fix and d, 0 < Idl < n and
< < n Idl, and let k, k’, 1, and 1’ be defined as above. We show how to compute all



A GENERALIZATION OF THE SUFFIX TREE 559

occurrences of patterns of the dictionary in position (k / 1, / 1) of TEXT, assuming
that we know Lhi,a and its extended locus to in L T. The following procedure takes in input
i, d, the length of Lhi,a and w. Its correctness and time analysis are addressed in Lemma 15.
(Since its proof is analogous to the one-dimensional case reported in [5], we omit it.)

Procedure occurrence
If to is a marked internal node and it is the locus of Lh/,a, or it is a marked leaf and
the length stored at that leaf is equal to the length of Lhi,d, then report an occurrence
at (k,

2 Starting from to and following the prefix links, visit all marked internal nodes on the
path from root(LT) to w. For each of them, report an occurrence at (k, l).

LEMMA 15. Given i, d, the length ofLhi,a, and to, procedure occurrence correctlyfinds
in O (occi.a q- 1) time, the occi.a occurrences ofpatterns ofthe dictionary that start at position
(k + 1, + 1) of TEXT.

10.4. Computing Lhi,d, d fixed and 1 n- Idl. The approach that we use in
computing Lhi,a, for 1... n Idl, is essentially the same that we used in 5 and 6
to compute Lheadi. Recalling the notation and definitions used in 5, the analogy is the
following. LTi_I can be seen as a compacted trie representing (as Lstrings) the first
suffixes of A[1 n + 1, n + 1]. Thus Lheadi corresponds to the longest prefix of
A[i n + 1, n + 1] that is also prefix of some matrix represented by LT/_I as Lstrings.
LT can be seen as a compacted trie representing (as Lstrings) all suffixes of patterns in the
dictionary. But Lhi.d is the longest Lprefix of Lsufi(Ltd) that has an extended locus in LT.
Thus Lhi,a corresponds to the longest prefix of TEXT[k + k’, + l’] that is
also prefix of some matrix represented in LT as Lstring.

Recall that the computation of Lheadi is done in order of increasing i. Moreover, it is
based on the relationship between Lheadi, Lheadi_, and the information stored in L T/_I.
Indeed, starting from the contracted locus of Lheadi_ in LT/_, we first find the contracted
locus of Let, which is the second suffix of Lheadi_l and a prefix of Lheadi. We do rescanning
only when the contracted locus of Lheadi_ is not root(LT_). Then. starting from the
contracted locus of Let. we find the rest of Lheadi. (This is scanning.)

Analogous to that, the computation of Lhi,a is also done in order of increasing i,

n -Idl. Moreover, it is based on the relationship between Lhi,, Lh_.a, and the informa-
tion stored in LT. Indeed, leth min(0, l_,a- 1) and let L?’ be the second Lsuffix ofLhi_l.a.
Since Lhi-,a corresponds to TEXT[k + 2 k + + li-,ct 3, + 2 + +li-.a 3],
Ly, correspondstoTEXT[k+i- k + + h 2,1+ + -+- h 2] and it is
the analog of Let above. Starting from the extended locus of Lhi_,a in LT, we first find the
contracted locus of L?’. Here there is also a rescanning phase (similar to the one of 5 and
6) which is done only when the extended locus of Lhi-l,a is not root(LT), i.e., when both
Lh_l,a and L?, are not empty. Then, from the contracted locus of L,, we find the rest of

Lhi,a. This is the scanning phase and it will be much simpler than the one in 5 and 6 since
there is no need to update either LT or any auxiliary data structure.

The procedure that we use to find Lhi,, is a stripped down version of STI. It takes in
input v, the extended locus of Lh_,a. For 1, it takes in input root(LT), which is the
extended locus of the empty Lstring Lh0,a. Scanning and rescanning are implemented as in
STI. Therefore, we omit here a detailed discussion of such implementations.

Procedure DSTl--Skeleton iteration
1. If v root(LT) then u := root(LT) and skip rescanning.
2. Rescanning: find the contracted locus u of L,, given the extended locus v :/:

root(LT) of Lhi-,a and SL for all leaves in LT.
3. Scanning: starting from u and skipping L)/, find the extended locus of Lhi..
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LEMMA 16. Fix d, < [d[ < n. Given the Lstring Lta, corresponding to matrix
TEXT[k k’, l’], and LT, the compacted trie over the alphabet LE representing (as
Lstrings) all suffixes of matrices in the dictionary, DSTI correctly computes Lhi,a, for
1...n -Idl. It takes O((n -[d])logh) time.

Proof. The proof of correctness is by induction. It is similar to the proof of correctness

reported in Theorem 4 and it is omitted. As for the time analysis, using the techniques of 6,
the cost of the ith iteration is bounded by O((li min(0, li-1 1) q- 1) logfi) time. Adding
over all iterations, we get the claimed bounds because l.a < n [d[ and ln-ldl.d < 1. [3

10.5. Putting the pieces together. In this subsection we first address the issue on how to
compare, in constant time, Lcharacters coming from Lstrings representing suffixes of patterns
in the dictionary with Lcharacters coming from Lstrings representing suffixes of TEXTd,
0 _< Idl < n. Then we derive the time complexity of the whole search procedure.

Again, we use quadruples to represent chunks coming from Lta, 0 < Idl < n. The
quadruple (p, q, i, d) represents the chunk Lsuf,. (Lt)[p, q ]. We can recover, in constant time,
the starting points in TEXT of an occurrence of any of the Lcharacters from such a chunk.
we use the same approach as in 3.2.3, where we have shown how, given a quadruple, we can
recover in constant time the starting points in A of an occurrence of any of the Lcharacters
from the chunk represented by the quadruple.

In order to achieve the desired time bound to compare two Lcharacters, one coming from
Lstrings representing patterns and the other coming from Lstrings representing submatrices of
TEXT, we need to express the rows (columns, respectively) of TEXT in function of the rows
(columns, respectively)of the patterns. Indeed, consider TEXT[g, f n] (TEXT[g n, f],
respectively). Among the rows (columns, respectively) of the pattern matrices, we compute
the subrow (subcolumn, respectively) that has a prefix of maximum length in common with
TEXT[g, f n] (TEXT[g n, f], respectively). In formulae, we compute a quadruple
(e, 3, r, j) such that PATj[e, ) ) + r 1] (PATj[e e + r 1, 3], respectively) is the
longest subrow (subcolumn, respectively) of patterns that is a prefix of TEXT[g, f n]
(TEXT[g n, f], respectively). For each entry (g, f) of TEXT, we store such quadruple
in an array WHERER (WHEREC, respectively). Given that during the preprocessing step
we have computed Trows (Tcots, respectively), the computation of WHERER (WHEREC,
respectively) is a standard string matching task [11 and it can be done in O (n2 log lE l) time.

Let us assume that we want to compare the Lcharacter Lsufi (Lpatj,)[q] 8 with the
LcharacterLsufi(Ltd)[q] . Notethat8 882,whereS PATj[i+q-1, i i+q-2]
andS2 PATj[il il +q- 1, i +q- 1]. Moreover, e. eez, where TEXT[k+i +
q-2,1+i-1 l+i+q-3]ande2 TEXT[k+i-1 k+i+q-2, t+i+q-2]. Using
the table WHERER (WHEREC, respectively), we know where the longest prefix o (o02,
respectively) of TEXT[k + + q 2 + n] (TEXT[k + n, + + q 2],
respectively) occurs as a subrow (subcolumn, respectively) of some pattern matrix. Say it
occurs in position (c, c2) of PATr. Using an LCA query involving the leaves of Troo,
(Tcots, respectively) associated with PAT,.[c, c2 mr] (PATr[c mr, c2], respectively) and

PAT.t[il + q- 1, il mj] (PATj[i mi,i + q- 1], respectively), we can compute in
constant time the longest prefix common to o (co2, respectively) and 8 (82, respectively).
Using such information, we can compute in constant time whether 8 (82, respectively) is equal
to el (e2, respectively), therefore establishing, in constant time, whether the two Lcharacters
are equal.

In order to find all occurrences ofpatterns ofthe dictionary in the text, we first compute the
arrays WHERER and WHEREC defined above. This will cost a total of O(n2 log [El) time.
Then we use the algorithm of 10.4 to compute Lhi,d, for ...n Idl and 0 _< Idl < n.

Summing the bound of Lemma 16 over all d’s, this will cost a total of O(n2 logfi) time.
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For each Lhi,d, we report all occurrences in the corresponding position of TEXT using the
procedure of 10.3. Summing the bound of Lemma 15, for n Idl and 0 < Idl < n,
this will cost a total of O(occ + n2) time, where occ is the number of occurrences of patterns
in the text. We obtain the following theorem.

THEOREM 13. Given LT, the compacted trie representing (as Lstrings) all suffixes of
matrices in the dictionary, it takes O(n2 log fi + occ) time to find the occ occurrences of
pattern matrices of the dictionary in an n n matrix TEXT.

11. Concluding remarks and open problems. We have shown how to efficiently build
the Lsuffix tree and its refinement for an n x n matrix A. We have then discussed applications
of this new data structure to the pattern retrieval problem and to dictionary matching. It
would be interesting to obtain algorithms for the construction of the Lsuffix tree and of the
RLsuffix tree with time complexity linear in the input size. That would provide solutions to
the pattern retrieval and dictionary matching problems with time complexities analogous to
the ones known for the one-dimensional problems.

Acknowledgments. I would like to thank Brenda Baker for many helpful discussions
and comments related to this paper.
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EFFICIENT ALGORITHMS FOR THE HITCHCOCK TRANSPORTATION
PROBLEM*

TAKESHI TOKUYAMA AND JUN NAKANO

Abstract. We consider the Hitchcock transportation problem on n supply points and k demand points when n is
much greater than k. The problem can be solved in O(kn logn + n log n) time if an efficient minimum-cost flow
algorithm is directly applied. Applying a geometric method named splitterfinding and a randomization technique, we
can improve the tme complexity when the ratio c of the maximum supply to the minimum supply is sufficiently small.

k, logc, )ifn > k410g2k, andO(kSlog2nlogcn)The expected running time of our randomized algorithm is O log,/t.4 og2 k)

if n < k log k. Ifn f2(k4+e) (6 > 0) and c poly(n), the problem is solved in O(kn) time, which is optimal.

Key words, transportation problem, computational geometry, randomized algorithm

AMS subject classifications. 68U05.90B06. 90B80. 90C08

1. Introduction. Consider a complete directed bipartite graph K(n, k) with n
source nodes s s, and k demand nodes t tk. The node si has a supply of size
wi for 1,2 n, and tj has a demand of size lj for j 1, 2 k. Each directed edge
(si, tj) has a cost Oli,j, which is charged for each unit of flow on it. The problem of finding the
minimum cost flow from supply points to demand points is called the Hitchcock transportation
problem [4]-[6] (Fig. 1.1).

For an intuitive example, imagine a distributed data system with k storage devices D.
D2 D and n data z, Z2 Zn. The sizes of Dj and zi are Xj and wi, respectively.
Each data is called by processors, and if data zi is placed in Dj, the (expected) communication
time for calling a unit of data zi is known to be ol,i, j. The problem of finding the allocation of
data that minimizes the communication cost is formulated into the Hitchcock transportation
problem. The Hitchcock transportation problem can be formulated as an instance of linear
programming. Its standard form is as follows:

(1.1) Minimize

subject to

k

Oli,j Yi,.)
i=1 j=l

(1.2) Yi,j lj (j 1, 2 k ),
i=!

k

(1.3) Yi,j 09i (i 1,2 n),
j=l

(1.4) Yi,j > 0 (i 1,2 n" j 1,2 k).

Because of the symmetry of the problem, we can assume that n > k without loss of generality.
The problem is feasible if and only if .= . i= wi. However, we can relax this

feasibility condition to =. j m and replace (1.2) with the inequalities

Y,j 1.2
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FIG. 1.1. The Hitchcock transportation problem.

since the relaxed problem is transformed into the standard form by defining a virtual demand
point tk+l such that ,kk+l i=1 coi =1 .j and oti,k+l 0 for 1, 2 n.

The Hitchcock transportation problem is a kind of capacitated minimum-cost flow prob-
lem, which is known to be soluble in strongly polynomial time [10], [11], [16], [18]. Indeed,
the problem is the minimum-cost flow problem on a network with N n + k nodes and
M kn edges. The best existing algorithm [16] for solving the uncapacitated minimum-cost
flow problem is O(N log N(M + N log N)), which solves the Hitchcock transportation prob-
lem in O (kn2 log n + n2 log2 n) time if n > k. This complexity is more than the square of n
even if k is very small.

In many applications, the number of supply points (n) is often much greater than that of
demand points (k), or vice versa. Indeed, in the example shown above, the number of data is
usually much greater than that of devices. Matsui 13] gives a linear-time algorithm for solving
the Hitchcock transportation problem with respect to n if k can be considered as a constant.
However, the time complexity of his algorithm is O(n(k!)2) if k is not a constant; thus it is
too expensive unless k is extremely small. Recently, Ahuja et al. [1] studied network flow
problems in unbalanced bipartite graphs (where k << n), and obtained an O (k2n log(nC)) time
algorithm for the Hitchcock transportation problem (where C max{Ioti.j l} is the maximum
edge cost of the associated bipartite graph).

If oi for all 1, 2 n, the problem is named the ,k-assignment problem.
Tokuyama and Nakano [20] gave a geometric approach called splitter finding to the
,k-assignment problem and solved it in O(nk + n5k3"5) expected time, which they have
recently improved to O(nk + k2’Sn’5 log5 n) expected time [19].

In this paper, we first give a geometric interpretation of the problem and show that Odin’s
algorithm can solve the Hitchcock transporlation problem in O(k2n log2 n) time if it is effi-
ciently implemented. The main result is that if there is a constant c such that _< o _< c for

_< _< n, we can design an efficient randomized algorithm with a new pruning technique,
whose running time is

O
log(n/k410g2k)

O (k5 log2 n log cn).

when n > k4 log2 k,

when n _< k4 log2 k,,

with a probability larger than n- for any positive constant ?,. If n f2 (k4+ (t > 0)
and c is polynomial in n, this algorithm runs in O(kn) time. which is optimal.
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FIG. 2.1. Geometric transformation in two-dimensional space.

2. Geometric interpretation. Given a Hitchcock transportation problem defined by
(1.1) 1.4), we consider the following geometric model. Foreach index (i 1, 2 n),
we define a point p(i) (oti.1 eti.k) in k-dimensional real space Rk. Let S
{p(1), p(2) p(n)}. We call wi the weight of p(i) (it is often called the supply of p(i) in
the literature).

In the bipartite graph , if an amount of . out of the weight of the supply node si flows
on the edge (i, j), we say that a portion of the point p(i) is assigned to the jth demand
point tj.

Before dealing with general cases, we first consider the very easy case where k 2 and
give an intuition of our idea. If k 2, S is a set of n points on a plane. If a portion of p(i)
is assigned to tl and wi . portion is assigned to t2, the cost for the point p(i), which is the
sum of the costs on the edges (i, 1) and (i, 2) on , is ci. + (wi .)L2. Therefore, if we
increase by a unit size, the cost increases by ai, -ai.2, which we call the reduced cost of the
edge (i, 1). Hence, the problem is solved by the following way: first we compute the reduced
costs of the edge (i, 1) for 1, 2 n. Then, we assign the points to t in smallest-first
fashion with respect to the reduced cost until the weight sum becomes ,k. Then, we assign
the other points to t2. Notice that there is at most one supply node that has positive flows to
both t and t2.

Geometrically, if we project the point p(i) orthogonally on the line x + y 0, we get a
point Proj(p(i)) ((oti, -cti.2)/2, (cti.2-cti.l )/2) (Fig. 2.1). The reduced cost is proportional
to the x-coordinate value of Proj(p(i)). We choose a point G on the line x + y 0 such that
satisfying the total weight of the points on the left of G is at most ,k, and that on the right of
it is at most )2. We call this point the ,k-splitter. Hence, the Hitchcock transportation problem
is equivalent to the problem of computing the splitter if k 2, which can be solved by the
randomized selection algorithm 17].

We generalize the idea to the higher-dimensional case. We project each point p(i)
(oti. oti..) orthogonally onto the hyperplane L defined by the equation x +x2 +... +x
0 (Fig. 2.2) and let G (gl, g2 g) be a point on L. For each j (j k), a closed
region satisfying xj gj <_ Xh gh for all h 76 j is called the jth region split by G, which is
denoted by T(G" j). The space subdivision of R into T(G; j) (j 1, 2,, k) is called a
splitting and G a splitter (Fig. 2.3). We project points of S onto L to obtain a point set that is
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FIG. 2.2. Geometric transformation in three-dimensional space.

also denoted by S, but it is clear from the context, otherwise stated. The following theorem
was originally proved by Numata and Tokuyama [15].

THEOREM 2.1 (existence of L-splitter). There exists a splitter G such that the sum of
the weights of the points of S in -J.iJ T(G; j) is greater than or equal to jj ;kj .[or any
J C {1,2 k}.

Note that each T(G; j) is a closed region containing its boundary. The splitter G defined
in the theorem is called a )-splitter of the point set S. The corresponding splitting is called a

,k-splitting, which is a generalization of that given by the authors [20]. In the next section we
show how to construct a ;k-splitter incrementally.

THEOREM 2.2. For a .-splitter G(g g), the Hitchcock transportation problem has
a solution satisfying Yi,j ooi ifp(i) is in the interior ofT(G; j), Yi,j 0 ifp(i) is outside
T(G; j), and Yi,j, + yi,j,. coi if p(i) is on the boundary between T(G" j) and T(G" j_) (if
p(i) is contained in more than two closed regions T(G; j) (t m), t=l yi,j, (Oi).
Conversely, any solution ofthe Hitchcock transportation problem satisfies the above condition

for a ;k-splitter
Proof It is easy to see that if we suitably divide the weights of boundary elements

between regions, we can find a solution of (1.2), (1.3), and (1.4) that satisfies the conditions of
the theorem. We will show that this solution minimizes the total cost. We define i,j Oli,.j
for/ 1, 2 n and j 1, 2 k. Since ,j [i,jYi,j i,j Oli,JYi,J Zj ;k./gj, the
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T(G;1) T(G;2)

boundary etmetS

T(G:3)

FIG. 2.3. Splitter and splitting ofpoint set projected onto the plane L tk 3 and the area of each circle

pictorially represents the weight of the corresponding point).

optimal solution does not change ifwe replace Oli, j with li,j for all and j. In the new problem,
the splitter coincides with the origin O. Since the region T(O" j) is defined by xj < Xh for
all h j, it is clear that the above solution minimizes the total cost. The converse statement
is obvious from the above argument.

For the readers familiar with the linear programming, we note that the splitter can be
defined by using the duality ofLP and Theorem 2.2 is proved by using the dual complementary
slackness condition [3], [12], [14]. Indeed, if we introduce variables ui (i 1,2 n) and
vj (j 1, 2 k) and define di,j wi,j ui vj, it is easy to see that the solution of
the Hitchcock transportation problem is stable if we replace wi.j by &i,j for all and j. The
dual-complementary slackness condition says that we can choose u and vj suitably so that

(2.1) i,j min {(Oi.l}
!=1,2 k

if the flow on the edge (i, j) of is nonzero. (We omit the proof.) Since equation (2.1)
is independent of ui, we can set ui (1/k) _,=1 w(i, j). Also, we can choose a solution

of equation (2.1) satisfying = vj 0. Then, a solution (v v) is a splitter, and
vice versa. Note that the above fact has been used in the classical method for solving the
Hitchcock transportation problem using transportation tableau [3], [14], where ui is chosen
as minj= k {tOi. j l)j }.

Theorem 2.2 implies that if we find a splitter, we can solve the Hitchcock transportation
problem by finding a transportation of the points on the boundaries between regions. We call
a L-splitting a X-transportation if we correctly assign the weights of the boundary elements.

Each region of a splitting has k boundary facets and there are k(k 1)/2 facets in
total. We say that S is simple if the number of incidence relations between the boundary facets
and points is at most k for any splitter. Since the degree of freedom of G is k l, we can
always make S simple by applying a small perturbation. For example, we may use the SOS
system of Edelsbrunner [7]. Furthermore, the algorithm in this paper can be easily applied to
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a nonsimple case almost directly without loss of time complexity. Thus, we assume from now
on that S is simple.

Although the splitter is not unique, we may make the following observation.
PROPOSITION 2.3. The solution ofthe Hitchcock transportation problem is unique if S is

simple.

3. Scaling algorithm. In this section, we give an efficient algorithm based on Orlin’s
minimum-cost flow algorithm [16]. Ours is an incremental algorithm that uses the scaling
method. The main theorem in this section is as follows.

THEOREM 3.1. The Hitchcock transportation problem is solvable in O(k2n log2 n) time.
In the rest of this section, which is devoted to proving the theorem, we assume that the

weights are integers. Let the maximum weight be U and define /log2 UI. First, we design
an O(kZnl log n) time algorithm, which resembles the Edmonds-Karp algorithm [8].

We decompose a point p into at most / points according to the 2-adic (binary)
decomposition of its weight op. The newly-created point with a weight 2h is denoted by plhl
if its origin is the point p. Thus, we have a set of at most n (l + 1) points, each of which has
a weight that is a power of 2. For a number a and an integer h, we define a h) 2h la/2hj,
and extend this notation to vectors" Lh) (.lh) ,kh)). We thus obtain an incremental
algorithm consisting of / stages.

HITCHCOCK
1. G origin;
2. W 0; {W is the total weight of the points inserted so far}
3. forh=0tol"

begin
3.1. SPLIT(h, G, W)"

end;
end;

SPLIT(h, G, W)
1. L list of all the points of weight 21-h;

(l-h).2. while L is not empty, and W <

begin
2.1. choose a point p from L"
2.2. add p in the region (say, T(G" s)) containing p in the current splitting;
2.3. if the total weight assigned to T(G" s) exceeds 1-h then
2.3. UPDATE(G);

end if;
2.4. W W + 2-"

end while;
3. split each remaining point in L into two points of weight
4. return"
end;

The subroutine UPDATE(G) updates the current transportation so that no region overflows.
Let the current splitter be G (g, g2 gk). Let yi be the total weight currently assigned
to T (G" j); that is, G is a y-splitter of the set of points added so far. Suppose that we are at the
hth stage (i.e., executing SPLIT(h, G, W)): a new point is inserted into T(G" s) and UPDATE is
called. We say that an element of T (G" j) is a proper element if some portion of its weight
is assigned to T(G" j) in the current transportation. Clearly, an interior element is a proper’
element.
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We first assume the following two properties and show later that these properties hold
throughout the algorithm.

PROPERTY 1. There exists a region T(G; t) such that ?’t < ,kt-h) 2I-’.
PROPERTY 2. For each proper element ofeach region, the portion of its weight assigned

to the region is an integer multiple of2t-ho
For each ordered pair of two regions T(G; a) and T(G: b), we compute a point q(a, b),

which is the nearest proper element in T(G; a) to the boundary between the two regions.
Note that q(a, b) may be a boundary element. We construct a complete directed graph 79 on
the node set {v, 1)2 1)k}. For each directed edge (v,,, 1)b), we give a (nonnegative) length
q(a. b)b q(a, b), (gb g,,), where q(a, b)j is the jth coordinate value of q(a, b).

Next, if the newly inserted point falls in the region T (G: s), we compute the shortest path
tree 7" of 79 rooted at v. Then, a new splitter G’ (g’ g,), which by definition satisfies

= gi 0, is defined by

(3.1) g, g q(a, b), q(a, b)

for all pairs (a, b) such that (v,,, v,) is a directed edge in the shortest path tree 7-.
Since there are k adjacent relations in the tree. G’ is uniquely determined. The

following is a key lemma.
LEMMA 3.2. A proper element ofT(G" j) is in T(G’; j).
Proo Consider a point x (x xk) located in the region T(G" a). What we have

to prove is that x, xb < q(a, b),, q(a, b) (for b a) implies xa x, < g,, g’,
or g, g’ > q(a, b),, q(a, b)o. If the edge (v,, vt,) is in the shortest path tree 7-, the
claim is obvious from (3.1). If (v,, v,) ’ 7-, we have dist(s, b) < dist(s, a) + length(a, b),
where dist(s, a) denotes the distance from the root vs to the node v, in 7". Since for an
edge (vi, vj) 7", length(i, j) q(i, j)j q(i, j)i (gj gi) gj g (gj gi).
we obtain length(a, b) >_ dist(s, b) -dist(s, a) g ga (g, g,), that is, g, g, >

q(a. b), q(a, b).
From this lemma, we are assured that we can find G’ by translating the boundary facets

without moving across any points in the current splitting as in Fig. 3.1.
COROLLAP.Y 3.3. G’ is a V-splitter of the point set before insertion.
We will show that there is such a transportation after the insertion that the weight assigned

to T (G; t) is E, + 2t-h for some region satisfying Property and that the weight assigned to
T(G" j) is j for j

We consider the shortest path from v to vt, and push a flow of size 2t-h along it. From
the definition of G, if the flow is pushed from 1), to the adjacent node v,, there exists a
proper boundary element of T(G’: a) on the boundary between T(G" a) and T(G" b). From
Property 2, we can move 2t-h ofthe weight ofthe boundary element from T (G’; a to T (G" b).
Thus, we can push the weight successively according to the shortest path so that the weight
of T (G" s) is diminished by 2

Hence, we can update the transportation so that no region overflows if Properties and 2
hold throughout the algorithm.

CLAIM 3.4. Property and Property 2 hold throughout the algorithm.
Proof Obviously, these properties hold initially. If Property 2 holds in one stage of

HITCHCOCK (i.e., for some h in step 3), then it clearly holds in the next stage. Thus, it suffices
to show that update procedure UPDATE(G) preserves Property 2. Since the weight of a point
assigned to a region is changed by 2t-’, UPDATE(G) preserves Property 2.

Because of the weight check in step 2 of SPLIT(h, G, W), the total weight assigned so far
i.(l-h) 2l-h(t-) and thus less than or equal to (Y= jis less than= .j Thus, Property

follows Property 2.
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FIG. 3.1. Update ofthe splitter.

Therefore, the algorithm correctly solves the transportation problem.
PROPOSITION 3.5. The scaling algorithm solves the Hitchcock transportation problem in

O(k2nllogn) time ahd O(kn) space.
Proof. Let G (gl, g2, gt) be the current splitter. Whenapoint p (p, p2 P,)

is inserted, we find an index s such that PL gs minj {pj gi }. Then, it is easy to see
that p is contained in T (G; s). This operation requires O (k) time. When UPDATE is called,
we must find k(k 1) points {q(a, b) a, b 1, 2 k; a # b}. If we provide k(k 1)
priority queues, these points can be found in O(k2 log n) time. The storage needed for these
priority queues is O(kn), and thus is asymptotically not more than the input size. The time
complexity for computing the shortest path tree of 79 is O(k2). Thus, the overall complexity
for an insertion is O(k2 log n). During each stage, at most k points are split. In conse-
quence, the total number of insertions is not more than n (l + 1) + kl. Thus, the proposition is
proven. q

The above algorithm is not strongly polynomial. To make it strongly polynomial, we apply
Orlin’s contraction technique [16]. We consider a point p in S with a weight o. Suppose
that p is decomposed into 79 {pihllh C {0, /}} of ,. Instead of adding all portions
of p in the procedure HITCHCOCK, we only take the first [log2 8nkq largest portions of 79 for
the input. We contract the other small portions to a point cont(p).

Suppose we have just inserted all portions of p except cont(p). The size of each point
which is or will be inserted during the current stage is at most og/8nk. Thus, the total weight
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of the remaining points of is at most n (1 + 1/2 + 1/4 +...)o/8nk < w/4k after this stage
has been completed.

Since at least (1 )o of the weight of p has been inserted at the end of the cur-
rent stage, there exists a region (which we denote as the f(p)th region) to which at least
w/2k of the weight of p is assigned. Thus, the portion of p assigned to the f(p)th region
is greater than twice of the total weight of the remaining points and we obtain the following
claim.

CLAIM 3.6. In thefinal splitting, at least w/4k ofthe weight ofp is assigned to the f(p)th
region.

Using the above claim, we modify the algorithm as follows. When the first [log 8nk]
portions of a point p have been inserted (we denote the current grain size by 2t-J’), we assign
cont(p) to the f(p)th region just after the insertion. Let w(cont(p)) be the weight of the
contracted portion. Apparently, w(cont(p)) < 2t-j. The assignment of cont(p) to f(p)
is algorithmically done by simply replacing L.f(p) by Lr(p w(cont(p)). Since the 2-adic
expansion of .f(p) is changed, it may happen that the f(p)th region overflows by 2t-’ after
this replacement. In this case, we remove a 2t-h portion of an arbitrary point in the f(p)th
region, put it in L, and go to step 2 of SPLIT(j, G, W).

Although we have modified the algorithm as above, Properties and 2 both hold. The
modified algorithm outputs a splitter of the points, each of which has a weight smaller than the
original weight by the weight of the contracted portion. The demands .j (j 1,2 k) are
also modified during the algorithm. The contracted portion cont(p) is assigned to f(p) for
each point p. It remains to show that the assignment of cont(p) to f(p) does not contradict
to the splitter output by the algorithm, which follows immediately from Claim 3.6. Hence,
the algorithm correctly computes the transportation.

We have reduced the number of insertions from O (nl) to O (n log nk). Note that although
we use the 2-adic expansions of cog and ..i, it is easy to see that it suffices to compute their first
O (log n) terms. Hence, we obtain Theorem 3.1.

We remark that the expected performance of the algorithm is much better than its worst
case complexity, since the number of updates of the splitter is usually much smaller than that
of insertions. An insertion without updating of the splitter is done in O (k) amortized time if
we use Fibonacci heaps [9] as priority queues in the algorithm.

4. Randomized algorithms for the c-grained case.

4.1. Simple randomized algorithm for small c. The scaling algorithm solves the Hitch-
cock transportation problem in O (k2n log2 n) time. However, in the special case where wi
for 1,2 n, the problem is known to be solvable in O(kn + k2"Sn’5 log’5 n) time by
a randomized algorithm [20], 19].

Let us try to use a randomization technique under more relaxed conditions.
DEFINITION 4.1. A Hitchcock transportation problem is called c-grainedfor a constant

c > if <_ wl < cfor all < < n. Here, wg (1 <_ < n) are real numbers.
In this section, we show that if n > c2k4 log ck, we can improve the performance of the

algorithm by pruning points using random sampling for a c-grained transportation problem.
THEOREM 4.2. The c-grained Hitchcock transportation problem is solvable in O(nk

+c2/3n/3k/3 log7/3 n) time with a probability larger than n- for any constant y.
In particular, if n > ck7 log7 ck, the problem can be solved in the optimal O(nk) time.

Note that we can often decompose some heavily weighted points into lighter weighted ones
to reduce c. Furthermore, we will see in the next section that it does not matter if there are a
small number of points whose weights are less than 1.

Let So be a subset of S consisting of m points chosen uniformly at random from S. Let
G be the Z-splitter that we want to find.
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LEMMA 4.3. The total weight of the points of So located in T (G; j) is less than mx__ff +
v/rbmxj/n with a probability larger than e-r/4.

Proof A random variable X denotes the sum of the weight of points of So located in
T (G; j). We define a random variable X (p) as follows. If the point p is in T (G" j), then
X (p) = w(p) (the weight of the point), otherwise X (p) 0. Thus, the expected value of X
is

pESo pET(G;j)
n

Here, for a c-grained case, the following Chernoff-like bounds hold (see the appendix for
proof)"

(4.1)
Pr(X > (1 + 3)E[X]) < exp {-E [X] 32/4c]

Pr(X < (1 -3)E[X]) < exp {-E [X] 32/2c}

(0 < 3 < 4.1),

(0<3<1).

The lemma is easily derived from them.
Let A .=, Xj and let W be the total weight of points in So. Then, the following

corollary holds.
COROLLARY 4.4. With a probability larger than e-m^:/4cn,

mA
W > (1-3)--

n

Here, we choose 3 /rcn/mA, which gives a probability of e-r/4 in the above
corollary, and hereafter we consider only the case where 3 < 1.

We define a vector #(1) (/z(1) #(1).) as follows:

(4.2) U(1)j

XjW rcXj---- + forj 1,

A
i=2 *

for.j 1.

We calculate the/z(1)-splitter G (1) of So, which satisfies the following lemma.
LEMMA 4.5. The probability that G(1) is located in T(G" 1) is greater than 1-

(k )e-r/4.
Proof If G(1) is located in the interior of T(G" j) for j -fi 1, then all the points in

T (G(1); j) are also in T (G; j). Thus, there are more than/z(1)j points in T(G; j) in this
case, which can occur with a probability less than e-r/a, as the previous lemma shows. [3

COROLLAI’,Y 4.6. The probability that all the points of S in. the interior of T(G )" lie
in the interior ofT(G" 1) is greater than (k 1)e-r/4.

For (i 2, 3 k), we have a slightly different definition of vectors/z(i)

(4.3)

Xj W-- + Aj for j : i.

t2(i)j X W E At for j i,
A

I<_e<k.ei
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Fro. 4.1. The set S(I).

where Aj v/rcmZ?i/n + . Let G(i) be the associated splitter of So with/z(i). Here, we
introduce an arbitrary small real number e > 0 to obtain the following lemma.

LEMMA 4.7. For all (i 2, 3 k), the splitter G(i) is contained in T(G(1); i).
Proof Suppose that G(i) C T(G(1); j) for some (2 < < k) and j :/: i. Obviously,

j - 1 (that is, T(G(i)" 1) T(G(1); 1)), because/z(i)l > >/z(1) For j & since

lz(i)j =/x(1)j +e, the property that T(G(i); j) C T(G(1); j) leads to a contradiction. Thus,
G(i) C T(G(I); i). U

Now, let S(i) (i 1, 2 k) be the set of points of S located in T(G(i); i) (Fig. 4.1)
and let ui be the total weight of points of S(i). The expected value of Vl is

(_ ki..2 ;r’c)i ) n ,/rciE[Vl] _n E[W] ,1

and v is more than

+ >_.-cn

with a probability greater than 1 ke-/ (see Corollaries 4.4 and 4.6). Similarly, we can
estimate u for 2 k.

Let us describe a simple randomized algorithm. Choose a sample of size m, set r
logk + g logn for a constant t’, and calculate G(1) G(k) using the scaling algorithm.
For each point p of S, we find a region containing p in the splitting with respect to G(1). If it
happens to be in T(G(1); 1), p is a point f 5’(1). If it is in T(G(1); i) and - 1, we check
whether it is contained in T (G(i); i). This operation needs O(k) time for each point (from
Lemma 4.7).
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Now we define a set S U. S(i) and let ,k v
PROPOSITION 4.8. A -splitter of is a ,k-splitter of S with a probability larger than
ke-r.
Thus, we can find the .-splitter of S using the scaling algorithm to compute the -splitter

of .
Let us analyze the complexity ofthe algorithm. The probability -ke becomes -n -r,

since we choose r logk + ?, logn. Since the weight of points in S is O(ckn/rk/m),
the number of point in , is also bounded by O(cknrk/m). Thus, it takes O(k log
n(cknkr/m)) time to compute the splitter of . On the other hand, it takes O(k3m log m)
time for the scaling algorithm to compute k splitters of the sample points. If we set m
c2/3rl/3ka/3n2/3, we obtain Theorem 4.2, and for this choice of m, the constraint <
becomes c < k4A3/n log2 n, which is always satisfied in the c-grained case.

REMARK 4.9. The above algorithm needs only O(mk) working space. Hence, if the
weights can be computedfrom 0 N)-space information, the space complexi ofthe algorithm
becomes O(N +mk). For example, N is O(n) in the geometric assignmentproblem [2] where
the weight is given by the Euclidean distance between supply and demand points.

4.2. Iterative randomized algorithm. In the previous randomized algorithm, we essen-
tially reduce the total weight ofpoints from O (cn) (corresponding to S) down to O (cnrk /m)
(corresponding to ) with a probability larger than ke-r/4. by sampling m points. In the
iterative randomized algorithm, we use this sampling method recursively to find a splitter
for the point set . Fuahermore, to simplify the problem, we use the following randomized
rounding technique 17].

For a point with real-valued weight i i + i (ai is an integer: 0 i < 1), we
randomly round w to i with the following probability:

r(i ai + 1) i,
Pr(i i) fli

Let X a, X 1 Xi, and B im= fl E[X]. Since X can be regarded as a
number of successes in a Bernoulli trial, from (4.1) we have

Pr(X > (1 + 3)B) < e-B2/4 (0 < 3 4.1),

Pr(X < (1 -3)B) < e-B2/2 (0 < 6 < 1).

By setting B62 r, we obtain the following lemma (note that B < m).
LEMMA 4.10. With a probabili larger than 2e-r/4, we have

i=1 i=1 i=1

Therefore, when we add the remaining (n m) points, the sum of the weights of each region
deviates by O(n/m) due to the randomized rounding, which is fairly small compared to
the term cnrk/m in (4.4), and we can legitimately neglect this deviation hereafter.

For an integer-valued Hitchcock transportation problem, we modify the sampling method
as follows. Each point p(j) (j 1, 2 n) with integral weight j will be chosen with a
probability proportional to &y, and when selected, it will contribute to the sampling with a unit
amount and &i will be reduced by 1. In this case. all the m sample points have a unit weight
and the problem for these sample points is essentially a minimum-cost assignment problem
and can be solved in O(km + k2"Sm5 log5 m) time in the same framework of splitter finding
[e0].
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RANDOM_ HITCHCOCK
1. S {input points} {p(1) p(n)};
2. while SI >_ m"

begin
2.1. S0 0; (Set of sample points)
2.2. generate a random sequence r = (tr tr,n) according to the rounded

weights o3; (1 < < n)
2.3. for to m;

begin
2.3.1. add to So a point with the same location as p(cri) and with a unit weight;
2.3.2. 05,,, oS,r- 1;

end’..
2.4. for j to k;

begin
2.4.1. calculate the/x (j )-splitter G (j) for So deterministically;

(see equations (4.2) and (4.3))
2.4.2. S(j) = {points of S in T(G(j); j)};
2.4.3. vj total weight of points of S(j);

end;
2.5. S S- Ujk.=l S(j);
2.6. ) .- v;

end while;
3. calculate .-splitter G of S deterministically;
end;

Since the total weight of points whose assignments have not yet been decided is reduced
by a factor of v/m/rk3 in each iteration, we need O(log(cn)/log(m/rk3)) iterations in total.
Considering that the time complexity of this algorithm is O((kn + k3"5m0"5 log’5 n) log(cn)/
log(m/rk3) +k2m log- n) and that rn (rk3), we obtain the following theorem.

THEOREM 4.11. The c-grained Hitchcock transportation problem is solved in

I (knlgcn)time, whenn>k410g2k,O
log(n/k4 log2 k)

O (k5 log2 n log cn) time, when n < k4 log2 k,

with a probability larger than n- for any positive constant ?,.

Proof. Since the number of iterations is O (log cn) and the probability that we fail to find
the splitter is O (ke-r/4 log cn), we choose r = 4(?’ log n+log k+log log cn) O (log n) to get
a success probability of -n-r, and therefore m = f2 (k3 log n). If we set m (R)(n/k log k)
when n > k4 log2 k, and m (R)(k3 log n) when n < k4 log2 k, we get the above result. VI

COROLLARY 4.12. Ifn (k4+) (e > 0) andc poly(n), then witha high probability,
the iterative randomized algorithm solves the Hitchcock transportation problem in. O(kn)
time, which is optimal.

Both of the randomized algorithms are of Monte Carlo type, since they may output a

wrong answer. However, we can easily judge whether the output is a correct splitter or not,

so the algorithms can be transformed into Las Vegas type if we repeat them until we get the
correct answer.

5. Incremental method, In this section, we consider an incremental version of the trans-

portation problem, where the number of demand points is fixed and the supply points are
inserted in a nonincreasing order of weight.
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Given a minimum cost transportation on a complete directed bipartite graph with n supply
and k demand points, we either increase the supply of a point by co, or create a new supply
point with supply co. In the latter case, we assume that the cost of the edges between the
new supply point and the demand points are also given. The demand of each demand point is
increased so that the total demand is increased by co.

If we solve the minimum cost transportation of the incremented network efficiently, we
can design an incremental algorithm for the transportation problem, where the supply points
are given in a nonincreasing order of weight and the demands are adjusted according to the
total supply.

THEOREM 5.1. Suppose that G is a v-splitter ofa point set S (I SI < n). We insert a point
p with weight co. Let Jk satisfy j Vj and E= )j co + .=1 vj. The,,, if no point of S
has a weight less than co, we canfind a )-splitter in O(k log n) time, ifwe permit O(nk log n)
preprocessing time.

Proof We first prepare k(k 1) priority queues in O(nk logn) time. (Note that each
point is stored in k priority queues.) Each region T(G; i) (1 < < k) has generally such
k interior points that are closest to one of the k boundaries of T (G" i). Let us call these
points nearest-boundary points. Since there is no point in S that has a smaller weight than p,
at most k(k- 1) nearest-boundary points, which can be found in O(k2 log n) time, and at most
k boundary points will possibly be reassigned to different regions due to the insertion of
the point p. To update the assignment of the points, we solve the following minimum-cost
flow problem.

The node set is {vl, v2 v}, where each v,.. corresponds to the region T(G
(g g)" i) (or, the ith demand point). For each pair of and j (1 _< i, j _< k; - j)
suppose that x (x x) and y (y y,) are the closest interior points in T(G" i)
and T(G; j), respectively, to the boundary B{i,j} between these two regions. Then we have
two uncapacitated edges between vi and vj" (vi, vj) with cost (xj xi) (gj gi)(> 0) and
(Vj, Vi) with cost (Yi-Yj)-(gi--gj)(> 0). Moreover, ifthere is a boundary point on B{i,j}, let
bi and bj be the portion of its weight assigned to T(G" i) and T(G; j), respectively. Then we
add two more edges with zero cost but finite capacity: (v,.., v)2 with capacity b and (v, vi)2
with capacity b2. If the inserted point p is in T(G; g.), the node ve has a supply co (,k; re)
and node vi (i =/: g.) has a demand ,k,.. vi. Orlin [16] showed that the minimum-cost flow
on a network with N nodes and M edges, where M’ of them have finite capacities, can be
computed in O ((N + M’) log N(M + N log N)) time. Hence, we can find the minimum-cost
flow in O(k3 log k) time and obtain the theorem. [3

In the above formulation of incremental problem, the total supply must be equal to the
total demand. However, as shown in the introduction, this condition can be removed. For
example, if the total supply is greater than the total demand, we put a virtual demand point
of the size of tle exceeded supply so that the exceeded supply is transported to it free. If we
apply Theorem 5.1 by considering the virtual demand point and the virtual supply point, we
can solve the incremental problem under the condition that each demand is increased so that
the total increase r of the demand is at most co. We can apply the algorithm of Theorem 5.1
with the modification that we either increase the demand of the virtual demand point by co r
or decrease the supply of the virtual supply point by co r. The only concern is that the weight
of the virtual supply point might be less than co. In such a case, we remove the virtual supply
point and insert it after inserting the current point.

Using the algorithm ofTheorem 5.1, we obtain an O (k3n log n) time algorithm for solving
a Hitchcock transportation problem by inserting the supply points in the largest-first fashion.
Moreover, for the c-grained case, we can design a dynamic algorithm by using Theorem 5.1.
When we insert a point with weight a, we decompose it into [aq points with weight less



TRANSPORTATION PROBLEM 577

than or equal to 1, and apply Theorem 5.1. Then a point is inserted in O(ck logn) time.
Furthermore, we can generalize Theorem 4.11 as follows.

COROLLARY 5.2. Suppose that there are h o(n) points with weight less than and
that the other n h points satisfy a c-grained conditionfor c poly(n); then the Hitchcock
transportation problem can be solved in O(nk + k5 log3 n + hk log n) time with a probability
larger than n

Proof. First, calculate the splitter for the n h points by running the procedure
RANDOM_HITCHCOCK. Then sort the remaining h points and add them in largest-first
fashion.

Appendix: Proof of inequality (4.1). We estimate the total weight of the sample points
that fall in the region T (G; 1) (G is the k-splitter). For the sake of convenience, we index the
n points with integers 1, 2 n so that T (G" 1) contains points with indices nl. Let
Zi (1 < < m) be random variables that take on the index of the ith sample point and define

Xi and X as follows:

X=Xi.
i=1

if <Zi <_nl
otherwise (1 < < m),

nl

E[X] mE[Xi] m . wzi Pr(Zi j)
.]--1

m.l
=#.

We now proceed to prove the analogues of Chernoff’s bound.

Pr(X > (1 + 3)/z) Pr(e’x > e’(l+’)u) (t > 0)

E[etx

et(l+)u
(Markov’s inequality)

H E[etX]
i=1

et(l+,)u

Since we have the constraints wj < c (1 <_ j <_ n ),

n -hiE[eX erW-+

< -1)+1 <exp -1)
tlC IC

Hence for an arbitrary > 0,

exp [ # (etc 1)]cPr(X > (1 + 3)#)< et(l+,)u

The random variable X represents the total weight of the sample points selected from T (G" 1)
whose expectation is
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To minimize the right-hand side of this inequality, we set etc + 3, and obtain

Pr X> (1+3)# <
(1+6) +a

u/c

For 0 < 3 < 4.1, this becomes

/22,Pr(X > (1 + 3)#) < exp ---c J
The other bound can be proved in the same manner.
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APPROXIMATE MAX-FLOW ON SMALL DEPTH NETWORKS*
EDITH COHEN

Abstract. We consider the maximum flow problem on directed acyclic networks with rn edges and depth r
(length of the longest s-t path). Our main result is a new deterministic algorithm for solving the relaxed problem of
computing an s-t flow of value at least (1 6) of the maximum flow. For instances when r and 6-1 are small (i.e.,
O(polylog(m))), this algorithm is in A/’C and uses only O(m) processors, which is a significant improvement over
existing parallel algorithms. As one consequence, we obtain an A/’C O(m) processor algorithm to find a bipartite
matching of cardinality (1 6) of the maximum (for e-I O(polylog(m))). We use a novel approach based on
path-counts to compute blocking flows in parallel. This approach produces fractional flow even when capacities are
integral. For this case we provide a rounding algorithm that is of independent interest. In polylogarithmic time using
O(m) processors, the algorithm rounds any fractional flow on a network with integral capacities to an integral flow.
The rounding technique extends to networks with costs.

Key words, maximum flow, parallel algorithms, blocking flow. bipartite matching

AMS subject classifications. 90B 10, 68Q22, 68Q25, 90c27, 05C85

1. Introduction. A flow network is modeled by a directed acyclic graph G (V, E)
with capacities Ue > 0 (e E) associated with the edges, a designated source vertex s V,
and a designated sink vertex V. We use the parameter r to denote the depth of the network,
which we define to be the length of the longest s-t path in G. For a vertex v V, we denote
by in(v) (resp., out(v)) the set of edges directed into (resp., out of) v. An s-t flow f on G is
an assignment of flow values fe (e E) to edges such that the capacity constraints are not

violated (for all e E, 0 <_ fe < Ue), and flow is conserved at every vertex other than the
source or the sink, that is, for all v V \ {s, }, ]ein(v) f eout(v) fe. The value of an
s-t flow is the amount of excess flow at (i.e., ]ein(/) fe -eout(t) fe). A maximum flow
(max-flow) is an s-t flow of maximum value. We use M* to denote the value of the max-flow.

Finding a max-flow is one of the classic problems in combinatorial optimization. The
fastest known sequential algorithms for the problem have time bounds close to O (mn) (see ],
[2], 13]). The known parallel algorithms for the problem are less satisfactory. The max-flow
problem with general capacities is known to be 79-complete 16] and hence not likely to have
an A/’C algorithm. The fastest known deterministic parallel algorithm solves the problem (on
a CRCW PRAM) in O(n2 log n) time using O(n) processors (an algorithm by Shiloach and
Vishkin [25] uses O (n2) space and a later algorithm by Goldberg and Tarjan 13] uses O (m)
space). Ahuja and Orlin [1] presented an O(n2 log U log(m/n)) time O(m/n) processor
EREW PRAM algorithm, where U is the maximum capacity. When the capacities are poly-
nomial in m, the problem seems easier: it is not known to be P-complete, and furthermore, it
is in gA/’C by a standard logspace reduction to the maximum cardinality bipartite matching
problem. The bipartite matching problem was first shown to be in gA/’C by Karp, Upfal,
and Wigderson [20], who gave an algorithm that uses O(n6"5) processors. Later algorithms
(see 10], [23]) use fewer processors; the best current bound is O(nM(n)) by Galil and Pan 10].
When capacities are in {0, }, the max-flow problem can be solved within the same bounds as
maximum cardinality bipartite matching. If the capacities are polynomial in m, an additional
factor of O (m) is added to the processor bound. (When capacities are general a factor of log U
is added to the running time, and hence the algorithm is not in gA/’C.) To summarize, we note
that max-flow with polynomial capacities can be solved sequentially using (mn) work, in
parallel in (n) time using (n3) work, and in A/’C using expected )(mnM(n)) work.

*Received by the editors August 31, 1992; accepted for publication (in revised form) December 29, 1993.
AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (cOS. th@resetrch, at. corn).
1We use the notation (f) O(f polylog f polylog n).
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We present a max-flow algorithm with the following bounds.
THEOREM 1.1. A flow ofvalue M such that

M > (1- e)M*

can be computed deterministically on an EREWPRAM in
1. O(r3E -3 log2 m log(mE-I)) time using O(m/r) processors and O(m) space, or
2. O(r2E-2 log m log(rE -l) log(mE-l)) time using M(n) processors and O(M(n))

space.
Observe that when the depth r and e-1 are small (e.g., O(polylog(m))), the resource

bounds obtained here are significantly better than known bounds given for general exact max-
flow algorithms.

Our max-flow algorithm consists of iterating calls to a subproblem of finding approximate
blocking flows, and is based on a novel parallel blocking flow algorithm. A blocking flow is
an s-t flow which cannot be augmented without pushing flow "backward" through at least one
edge. Dinic’s algorithm [4] introduced a scheme to solve the max-flow problem by reducing it
to blocking flow computations. Dinic’s algorithm computes a max-flow in O (n) phases, where
each phase amounts to a blocking flow computation on a directed acyclic layered network. The
depth of the layered network increases at each phase. The fastest known sequential blocking
flow algorithm is due to Goldberg and Tarjan 15] and has an almost optimal time bound of
O(m log(n2/m)). The fastest known (polynomial-work) deterministic parallel algorithm for
computing blocking flows was given by Goldberg and Tarjan 14] and runs in O (n log n) time,
using O (m) processors. When capacities are polynomial in m, the problem is in R.A/’C since
this is true for the more general max-flow problem. Unlike the more general P-complete
max-flow problem, there is no "hard evidence" that the blocking flow problem is not in ./V’C.

We give an overview of the ideas used and the structure of the paper. In 2 we review
commonly used terminology for network flow algorithms, sketch Dinic’s max-flow algorithm,
and discuss the blocking flow problem. In 3 we examine the use of Dinic’s algorithm to obtain
near-maximum flows. We show that in order to obtain a flow of value at least (1 E)M*, it
suffices to run Dinic’s algorithm for at most O(re-) phases (until the length of the layered
networks exceeds O(rE-)). Furthermore, we show that when only a near-maximum flow is
desired, it is not necessary to find an exact blocking flow at each phase. We define a notion of
an approximate blocking flow and prove that we can use a relaxed variant of Dinic’s algorithm
where exact blocking flow computations are replaced by approximate ones.

In 3 we shall see that the blocking flow instances that arise when running the approximate
version of Dinic’s algorithm involve networks of depth at most O (rE-l). This fact does not
benefit us when considering sequential algorithms since blocking flows can be found almost
optimally regardless ofthe depth ofthe network 15]. We can gain in the parallel case, however.
The worst-case behavior of the O(n log n) time Goldberg-Tarjan [14] parallel blocking flow
algorithm does not improve when instances are limited to networks of small depth. In 4
we present a novel parallel approximate blocking flow algorithm that is significantly more
efficient on small depth networks than existing exact blocking flow algorithms. The algorithm
uses O (m) processors and is in A/’C when r O (polylog m). If the capacities are polynomial
in m, the algorithm computes an exact blocking flow within the same resource bounds.

Our parallel blocking flow algorithm is based on a notion ofpath counts of a network. We
define the path count of an acyclic network to be the sum over all s-t paths of the product of
all edge capacities along the path. The path count of an edge e E is the same sum restricted
to paths that contain e. Observe that when the network has unit capacities, the path count
reduces to the number of different s-t paths. The algorithm is fairly simple and we sketch it
here. We make use of the property that path counts of edges are conserved at all vertices other
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than the source and the sink. That is, for each vertex v V \ {s, }, the sum of path counts of
edges entering v equals the sum of path counts of edges exiting v. Hence, an assignment of
flow values to edges where the values are proportional (with a small enough proportion factor)
to the respective path counts constitutes a legal flow. The blocking flow algorithm repeatedly
computes the path counts at edges, finds the largest proportional flow augmentation that does
not violate the current capacities, and updates the current flow. The following iteration is
applied to the network with the recent augmentation being subtracted from the capacities. The
algorithm terminates when the current flow is approximately blocking. We will show that the
path counts computations, and hence each iteration, can be implemented efficiently in parallel.

The crucial property of the algorithm is that the number of iterations is small (namely,
0 (r)). We give some reasons why this is indeed the case. Consider, for simplicity, a network
with unit capacities. A maximal independent set of s-t paths corresponds to a blocking
flow. A general approach to find, in parallel, a maximal independent set in a graph is to use
iterations, where in each iteration we find some independent set. In the following iteration
this independent set and its neighbors are removed from the graph. To obtain a small number
of iterations, we need to use independent sets with large neighborhoods. In the blocking flow
setting, such an independent set corresponds to a flow augmentation that significantly reduces
the path count of the network. The flow augmentation used by the algorithm achieves that by
assigning more flow to edges with a large path count (those that have many s-t paths going
through them).

The blocking flow algorithm of 4 conceivably terminates with a fractional flow, even
when capacities are integral. In 5 we describe an A/’C "rounding" algorithm that uses O(m)
processors. For a given fractional flow of value M on any network with integral capacities, the
algorithm computes an integral flow of value at least M 1/poly(n)q. We also describe how
to obtain an integral blocking flow by combining the fractional approximate-blocking flow
algorithm of 4 with the rounding technique, and how to round a fractional circulation in a
network with costs, with at most a small increase in cost. Our rounding algorithm generalizes
a similar algorithm for bipartite matching networks given by Goldberg et al. 11 ].

in 6 we discuss parallel exact max-flow algorithms for zero-one and unit networks.
Zero-one networks are networks where all capacities are in {0, }. A unit network is a zero-
one network where each vertex has either at most one incident outgoing edge or at most one
incident ingoing edge. We give algorithms that use balancing techniques similar to the ones
used by Goldberg, Plotkin, and Vaidya in [12], and combine the blocking flow algorithm of

4 and a parallel version of the Ford-Fulkerson algorithm [7]. We obtain sublinear parallel
running times that are comparable to the running times given in [12].

Section 7 is concerned with the maximum cardinality bipartite matching problem. By
a standard reduction, an instance of the problem can be reduced to an integral max-flow
problem on a zero-one network of depth r 3. The corresponding max-flow instance is
such that an integral flow of some value M yields a matching of cardinality M in the original
problem. Hence, the results of previous sections imply an O (log3 m) time O (m) processor
deterministic parallel algorithm for finding a bipartite matching of cardinality at least (1 e)
of the cardinality of the maximum matching when e-1 O(1). Note that the algorithm
remains in A/’C and uses O (m) processors even when - O(polylog rn).

2. Preliminaries. The parallel running times and processor use mentioned in this paper
are for the EREW PRAM model. The routines used are limited to standard ones (e.g., list
rankings, breadth-first search (BFS), shortest path computations, finding Eulerian partitions)
and hence running times on other models can be deduced easily (see, e.g., the survey by Karp
and Ramachandran [19]). We use M(n) to denote the best currently known upper bound on the
number of operations needed to multiply two n x n matrices. It is known (see Coppersmith and
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Winograd [3]) that M(n) 0(n2"376). The quantity M(n) appears in some of our processor
bounds for parallel algorithms because of a result of Pan and Reif [24], who had shown that
two n x n matrices can be multiplied in O(log n) time using M(n) processors, and the fact
that the best-known processor bounds for ./V’C computation of transitive closure, directed s-t

path, and BFS tree are obtained using matrix multiplication.
We review some standard terminology associated with maximum flow algorithm and

sketch Dinic’s algorithm. For further details see [27]. A flow in a network is blocking if
every path from s to contains a saturated edge. Consider a current flow f in G and the
corresponding residual graph R. The level of a vertex v V is the length of the shortest path
from s to v in R. The level graph L for f is the subgraph of R that contains only vertices
reachable froms and only edges e (u, v) such that level(v) level(u)+ 1. The construction
of the level graph for a given flow f can be done in O (m) time using breadth-first search. In
parallel, the construction can be done in O(r log m) time using O(rn/r) processors, where
r is the level of (using a straightforward parallel implementation of the breadth-first search
algorithm).

Dinic’s max-flow algorithm [4] maintains a current flow f, initialized as the zero flow,
and repeats the following until is not reachable from s in the residual graph for f.

1. Find a blocking flow f’ on the level graph for the current flow f.
2. Replace f f + f’.

Dinic showed that the level of strictly increases in each phase and hence the algorithm
terminates after at most n phases.

The complexity of each iteration of Dinic’s algorithm is dominated by a blocking flow
computation on a layered network. It is not known whether the blocking flow problem on
networks of arbitrary depth is either 79-complete or is in Aft7. We sketch an Aft7 but very
inefficient algorithm for finding a blocking flow in networks of a fixed depth r. The algorithm
is based on a similar algorithm of Fisher, Goldberg, and Plotkin [6] which was used to show
that approximate matching is in .A/’C. In 4 we present a much more efficient algorithm that
uses O(m/r)processors and runs in t(r2) time (alternately, M(n) processors and t(r) time).
Note that the latter algorithm is in A/’C when r O (polylog rn).

Consider a network of depth r with {0, 1 capacities. A blocking flow can be computed
in polylogarithmic time using n O(r) processors as follows. The idea, roughly, is to consider
all O (t/r) S-t paths and construct a dependency graph such that every vertex corresponds to

an s-t path and two vertices are adjacent if and only if the two corresponding paths share at
least one edge. A maximal independent set in the dependency graph corresponds to a set of
paths that, when saturated, comprise a blocking flow. The algorithm computes a maximal
independent set (this can be done within the stated resource bounds) and obtains a blocking
flow. If capacities are integral and polynomial in m, we can use the previous method and
replace edge of capacity Ue by Ue parallel edges. Note that the algorithm requires n O(r)

processors. When capacities are integral but possibly large, a blocking flow can be obtained
by iterating the above algorithm on instances with polynomial capacities log(Uf/m) times,
where Uf is the capacity of the fattest path. In each iteration, we round down the capacities
to units of [Uf/m] and truncate large capacities to m2[Uf/m]. As a result, we obtain an
instance of the blocking flow problem where all capacities are in the range {1..m2}. In the
following iteration, the flow values obtained are subtracted from the capacities, and the fattest
path with respect to the updated capacities has capacity less than [Uf/m].

3. Obtaining a near-maximum flow. We examine applying variants of Dinic’s algo-
rithm to solve the relaxed goal of obtaining a near-maximum flow, when (i) the networks have
small depth or (ii) only approximately-blocking flow routines are available.
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3.1. Small depth networks. Consider a network G and an s-t flow f. The following
proposition states a relation between the value of f and M* in terms of the depth r and the
length of the minimum augmenting path in the residual graph induced by f.

PROPOSITION 3.1. Consider a network G as above and a flow f of value M where the
shortest augmenting path in the residual graph induced by f is of length g. > r + 1. Under
these conditions

M*<_ e’r M.

Proof. Without loss of generality, we assume integral flow values and capacities. Con-
sider an integral flow f of value M. Denote by f* a maximum integral flow with value M*.
There exists a set P of M* M augmenting paths of capacity from s to on the residual
graph that (i) augments the flow from f to f* and (ii) does not use any edge in more than one
direction. (Obviously, all paths in P are of length > .) Note that M* M + PI.

For the analysis, we assign vertices to layers labeled {0 r}, where a vertex v V is
assigned according to the length of the longest path in G from s to v. It is clear that all edges
are directed from lower levels to strictly higher levels. We account for a unit flow in an arc
("weight" of the arc) as follows: if it is from layer to layer j, account for it as Ij l. The
total weight of a flow on G equals r times the value of the flow.

Consider a blocking flow with no augmenting path ofweight less than (note that weight
suffices for the result ofthe proposition; length is a stronger requirement). For an augmenting
path p P, denote by ap the weight from the forward edges, and by bp the weight from the
backward edges. Obviously at, bt, r, at, + bp >_ g.. Note that since > r + 1, we have
bp>_l.

Intuitively, view a path from P as "exchanging" weight bp out of the old flow with a larger
weight ap added toward achieving the optimal flow.

Formally, since no two paths from P use an edge in opposite directions we have

From the inequalities at, r bp and ap + bp >_ it follows that for all p P,

bp >_ (t r)/2

Combining the two we have

IPI(- r)/2 < bp < rM.
peP

Hence,

2r
IPI < M.

REMARK 3.2. Proposition 3.1 is related to a result of Even and Tarjan [5] for zero-one
networks which states a relation between the length of the shortest augmenting paths in a
residual graph and the value of the remaining flow. It is also related to a result by Fisher,
Goldberg, and Plotkin [6], who showed that ifa matching in a graph is such that there is no

augmentingpath oflength smaller than g. then the cardinality ofthe current matching is at least
(1 1/g.) ofthe maximum cardinality matching. Since a bipartite matching can be expressed
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as an instance of maximum flow on a directed acyclic network of depth 3, Proposition 3.1
generalizes the result of [6].

COROLLARY 3.3." The value ofany blockingflow on G is at least M*/(2r).
Proof The proof is immediate from the fact that for a blocking flow, > r + 1.
COROLLARY 3.4. Consider a network G as above. An s-tflow ofvalue at least e)M*

can be computed in O(re-m log(nZ/m)) time. Note that when r and e are fixed this bound
is almost linear.

Proof. The stated time bound is obtained by running Dinic’s algorithm for O(re-)
phases. Each phase amounts to a blocking flow computation which can be performed in
O(m log(nZ/m)) time by a result of Goldberg and Tarjan [15].

3.2. Using approximately blocking flows. We introduce a notion of an approximate
blocking flow and a modified version of Dinic’s algorithm which uses an approximate blocking
flow in each iteration.

DEFINITION 3.5. Consider a max-flow instance as above. An k-blocking flow is aflowfor
which all nonsaturated s-t paths contain an edge ofcapacity not greater than 4. A O-blocking
flow is a blocking flow.

PROPOSITION 3.6 (modified Dinic algorithm). Consider a modification ofthe Dinic algo-
rithm where in each phase we compute an k-blocking flow on the current layered graph. In
thefollowing phase we construct a layered graph by treating edges ofcapacity no larger than
e as having capacity O.

1. At the termination of the kth phase, all augmenting paths of length at most k in the
residual graph contain an edge ofcapacity no larger than 4.

2. The depth ofthe layered graph strictly increasesfrom phase to phase.
Proof The proof is similar to the correctness proof of Dinic’s algorithm [4].
COROLLARY 3.7. Consider a max-flow instance as above. By running the modified Dinic

algorithm until the depth ofthe layered network exceeds (this happens within phases) we
can compute aflow of value M such that

r) M*M+me> g.+r

where M* is the value of the max-flow.
Proof This follows from Proposition 3.1 and the fact that an k-optimal blocking flow

can be augmented to a blocking flow using at most O(me) units of flow.
In the following section we present a deterministic parallel algorithm for computing an

k-blocking flow. The algorithm is particularly efficient when the depth of the network is small,

By combining it with Corollary 3.7 we obtain the bounds stated in Theorem 1,1,

4. Parallel k-blocking flow algorithm. We consider the blocking flow problem on a
directed acyclic graph G (V, E) with capacities ue >_ 0 (e E), a designated source vertex
s V, and a designated sink V. The parameter r denotes the depth of the network.

We present an algorithm for computing an k-blocking flow in G. We first introduce the
concept of path counts.

4.1. The path counts of a network.
DEFINITION 4.1. Suppose that G is a network as above.
1. Denote by "P the set ofall s-t paths in G. Note that 17l _< nr, Denote by 7Puw the set

ofall pathsfrom u V to w V.
2. The path count X of the network is
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When Ue E {0, 1} (e E E), then X 171.
3. The path count of an edge e E is

Xe:HUe’.
{p791ep} e’p

4. The path count from u V to w V is

)(.uw HUe.
p79uw ep

The algorithm we introduce here relies on the property that the path counts of edges obey
"conservation constraints" at vertices, and hence, so does a flow function proportional to the
edges’ path counts.

PROPOSITION 4.2. For all v V {s, },

ein(v) eout(v)

Proof. Consider a vertex u. Both quantities above equal the path count of u,

Xu )(.su )(.
ut H ue.

{p6791u6p} e6p

Complexity ofcomputing the path counts. We suggest two algorithms to compute X and

Xe for all e E E. This is done by first computing for each vertex v V, the quantities Xs

and ;got. It is easy to see that the path count )e of an edge e E, where e (u, v), equals
Xe IgeXSU x or.

The quantities X su and X "t can be computed as follows:
1. We use the relations X ss l, X tt and for v 6 V, Xs e=(w,o)in(o) xSWUe

and X t Ye=(o,w)out(o) xWtUe" We do one forward pass starting at s to compute
the quantities X so (v V), and one pass backward starting at to compute X t

(v E V). Each pass consists of phases, where in the ith phase (0 _< _< r) we scan
all vertices such that is the size of the maximum-size path from s to the vertex (in
a backward pass, from the vertex to t). Note that we scan a vertex only if all of its
predecessors were scanned previously. This can be done in O (r log m) time using
0 (m/r) processors on an EREW PRAM.

2. By using O(log r) matrix multiplications of n x n matrices. Pan and Reif [24] have
shown that multiplication of two n x n matrices can be done in O (log n) time using
max{n2, M(n)} processors. Hence, path counts can be computed in O(logr logn)
time using M(n) processors on an EREW PRAM.

4.2. The -blocking flow algorithm. We present an -blocking flow algorithm. The
algorithm consists of iterations, where each iteration augments the flow. We refer to the
difference between the initial capacity and the current flow value of an edge e as the current

capacity of e. The flow on an edge e does not decrease, and hence, the current capacity of e
(e E) the current capacities, bydoes not increase. For the th iteration, we denote by u

(e E) the flow augmentationXe (e E) the respective path counts, and by 0 < fi <_ U

computed during the iteration. An iteration amounts to first computing the path counts Xe,
(e E), with respect to the current capacities, and then computing a valid flow augmentation
which is proportional to the path counts and is of maximum possible value. Figure depicts
an example for the quantities computed in a single iteration of Algorithm 4.3. The figure
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FIG. 1. Example ofa network with path-counts and correspondingflow values

shows a capacitated network, the corresponding path counts on the edges, and the resulting
flow augmentation.

ALGORITHM 4.3 (Find an e-blocking flow).
1. ---0
2. Set the initial capacities:

0 I Re ifUe > e,
for e E ue *-- I 0 ifue < ,

0 0}E E\{eEE[ue=
3. Repeat:

Let(a) Compute the path counts Xie, for e E, with respect to the capacities Ue.
i mineeE u

i+1 f,(b) For all e E, set fi lziX, Ue U
i+ < set uif Ue i+l 0 (E -- E \ {e}).

(c) *--i+l
Until: is not reachablefrom s in E

4. Output theflow f, where

-1

foreeE, fe,--fie
j=l

4.3. Correctness. For e E, the quantity lZie =. Ue/Xe is the max-flow value per path
The choice of #icount unit we can put through the edge e without violating the capacity Ue.

as the minimum of these quantities guarantees that for all edges e E, fe iX --< Ue.
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Proposition 4.2 states that the path counts Xe obey conservation constraints at the vertices.
Hence, the same holds for the quantities f= lzi)(.e (e E E).

We showed that in each iteration, the values fe’ (e E E) obey both the conservation
constraints at the vertices and the current capacity constraints at all edges, and hence, they
constitute a valid flow.

It is easy to see that for > 0, at the end of the ith iteration we have

for all e E, U --: <_ U -[- f <_ U

i=0

Additionally, the. algor.ithm terminates at the ith iteration if the removal of all edges (e 6 E)
0 j=0 feJ < e disconnects s and t. The correctness of the algorithm follows.for which ue

PROPOSITION 4.4. When the algorithm terminates, fe (e E) computed in Step 4 is an

e-blockingflow.
Observe that in each iteration, the current capacity of at least one edge is set to 0 (the edge

e for which/zi Ue/Xe). Hence, the algorithm terminates after at most m iterations. We will
prove a much better bound on the number of iterations.

4.4. Bound on the number of iterations.
PROPOSITION 4.5. For every edge e E, the quantities lZie (i > O) are a nondecreasing

function of i, and hence, the same is truefor ]Zi mineE lZie (i > 0).
Proof. The current capacities u are nonincreasing with respect to i. It follows from the

definition of the path count X of an edge e that it decreases in at least the same proportion
as the current capacity of e (given that all other capacities do not increase). Hence, for every
e E, Uie+l/)(+1 Ue/Xe.

PROPOSITION 4.6.

-1 (n maxeee uOe)
xo <

Proof In a graph of depth r, there areat most nr-1 different paths through some edge e.
OrEach path contributes at most (maxeee ue) to Xe (for all e 6 E). To bound the denominator,

0>6note that for all e E, u
PROPOSITION 4.7. Iffor some i,

0btl <_ .r/ maxu
eE

then the algorithm terminates at the th iteration.

Proof It follows that for all edges e 6 E,

,,i 0Ue/kte < maxue/lZ <A
e6E

6r, andHence, maxee X < r. The latter implies that for every path p 6 79, Hep U

<5hence, there exists an edge e E p such that Ue,
PROPOSITION 4.8. If

j > + log e -I max u
eeE

then lzj/lZi 3> 2.
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Proof. Consider the set of edges in a kth iteration

Ek {e EllZk <_ jke U Xe <- 2/zk}
It follows that for every edge e e Ek, the current capacity decreases by a factor of at least
1/2 during the kth iteration (that is, for every e Ek we have k+l < Uke/2). Assume to thet’g

contrary that/j < 2/zi. Consider the edge e such that/Ze = . Since is nondecreasing
with k (see Proposition 4.5), we have < < 2i (for < k < j). Hence, since the ’s
are nondecreasing, we have < 2k for k i, j Therefore, e Ek for k i, j
It follows that

/,/e <
bte .< /’/e < e

2(j-i) e -1 maXesE u

This is a contradiction, since in the jth iteration e E.
We obtain the following bound on the number of iterations.
THEOREM 4.9. The total number ofiterations is at most

+ IIg (e-1 max u)] I(r + 1) log (he-1 maxtte)l"eE

Proof. Suppose the algorithm terminates at iteration t. It follows from Propositions 4.6
and 4.7 that

Izt-/#o <_ maxeeE R n maxeeE R

ne e

It follows from Proposition 4.8 that the total number of iterations is at most

< Ilog e -1 maXUe0]eE [1og(/xt-1//Z0)] + 1.

The proof follows by combining the two inequalities.

4.5. Complexity. Denote by Uf the width of the fattest s-t path, i.e.,

Uf max min Re
p79 ep

The quantity Uf is a lower bound on the max-flow and mUf is an upper bound. The parallel
complexity of computing Uf is dominated by the complexity of computing path counts.

We may assume that maxeee Ue < mUf and mineE Ue > 6, since an e-blocking flow
when setting all capacities larger than m Ut" to m Uf, and capacities smaller than e to 0, is also
e-blocking with respect to the original capacities.

PROPOSITION 4.10. Using Algorithm 4.3, an e-blockingflow can be computed in
1. O(r2 logm log2(e-lmUf)) time using O(m/r) processors, or
2. O(r logn logr logZ(e-lmUf)) time using M(n) processors.
Proof From Theorem 4.9, the number of iterations is bounded by

+ [log(e-lmUf)] [(r + 1)log(nme-luf)] O(r log2(e-lmUf)).

The complexity of each iteration is dominated by the computation of path counts. Hence, we
obtain the stated time bounds by combining the above with the complexity of computing the
path counts (see 4.1).
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Particularly when e o(Uf/mk), we can obtain a faster running time for finding an
e-blocking flow by using the following procedure.

ALGORITHM 4.11 (e-blocking flow when e o(Uf/m)).
While Uf > e Do:

1. Compute a max{Uf/m, e}-blocking flow (using Algorithm 4.3.)
2. Update the capacities (subtract the flow values computed in the previous step).

It is easy to verify that when using Algorithm 4.11 we obtain the following theorem.
THEOREM 4.12. An e-blockingflow can be computed in
1. O(r2 log2 m log(e-lmUf)) time using O(m/r) processors, or
2. O(r log r log3 m log(e-lmUf)) time using M(n) processors.
We are now ready to present the proof of Theorem 1.1.

Proof of Theorem 1.1. To obtain these bounds we run the modified Dinic algorithm
until the depth of the layered networks exceeds 4re-1. In each phase we compute an
g-blocking flow, where eUy/2m (U is the width of the fattest path in G). Denote by
M the value of the flow when the modified Dinic algorithm terminates and by M* the value
of the max-flow. We first prove that M and M* have the desired relation. It follows from
the choice of and e that

mg <_ eM*/2

(since U < M*), and that

(g, r)/(e + r) > (1 e/2).

By plugging the above in Corollary 3.7, we deduce that

M + eM*/2 > (1 e/2)M*.

Hence, M > (1 e)M*. We show that the computation can be performed within the
desired resource bounds. It is easy to see that all layered networks obtained in the phases
of the algorithm have depth at most , have at most as many nodes and edges as G, and are
such that the corresponding quantity Uf is never larger than U. Hence, it follows from
Theorem 4.12 that each phase can be implemented in:

1. O(g.2 log2 m log(g-lmU)) time using O(m/e) processors, or

2. O( log log3 m log(g-lmU)) time using M(n) processors.
To conclude note that there are at most phases.

4.6. Remarks.
REMARK 4.13 (blocking only short paths). Consider a network G as above. By modifying

Algorithm 4.3 we canfind a depth-d blockingflow, i.e., aflow which blocks all paths oflength
at most d for some d <_ r. This is done by using a modified definition ofpath counts which
considers only paths of length at most d. The resource bounds of the modified algorithm are
similar, where d replaces r.

REMARK 4.14 (finding an integral flow). The max-flow and blocking flow algorithms
presented in this section compute afractionalflow, even when capacities are integral. In 5.3
we show how to efficiently round any fractional flow to an integral one in A/’C using O(m)
processors, and how to obtain an integral lej-blockingflow within the resource bounds given

for our e-blocking flow algorithm.
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5. Rounding fractional flows. We present an A/’C algorithm that considers a network
G with integral capacities Ue (e E) and a fractional s-t flow fe (e E) with value M.
The algorithm produces an integral flow fe (e E) of value/t M / poly(n)], [MJ
such that fe {[feJ, [fe]} for (e E). We also discuss (i) combining the techniques of
this section with the e-blocking flow algorithm of 4 to produce an integral [eJ-blocking flow
and (ii) rounding a fractional circulation with at most a small increase in the cost, in networks
where costs are associated with the edges.

It should be noted that this section generalizes an A/’C algorithm of Goldberg et al. [11]
for obtaining an integral minimum cost flow given a fractional near-minimum cost flow on
bipartite matching networks (zero-one networks of depth r 3). Their algorithm uses O(m)
processors and is based on Gabow’s coloring algorithm [8J.

5.1. Main iteration. We start with a subroutine for halving the smallest common de-
nominator of the flow values, assuming it is a power of 2. Suppose A 2-k for some integer
k, and the flow f is such that for all e E, fe !A is integral. The following procedure com-
putes a flow f, of value at least as large as the value of f, such that for all e E, fe/(2A) is
integral and for all e E, Ire fe[ < A.

ALGORITHM 5.1 (double unit size).
1. Mark all edges e E for which fe/A is odd.

Denote this set ofedges by E’.
2. E’ is such that every vertex exceptfor s and has an even degree (immediatefrom

conservation constraints).
Find a Eulerian partition of E’, ignoring the directions of the edges. We obtained a
collection of cycles and an s-t path. (A Eulerian partition is a collection of edge-
disjoint cycles and paths such that all edges incident at even degree vertices belong
to cycles and every odd degree vertex is the endpoint ofexactly one path.)

3. Partition the set E’ into two sets E+ (edges labeled +) and E- (edges labeled-)
asfollows:

If e E’ belongs to an s-t path in the Eulerian partition do asfollows. If e is
aforward edge in an s-t traversal ofthe path, assign e E+, otherwise, ife is
a backward edge, assign e E-.
Edges that belong to cycles are labeled such thatfor one ofthe two traversals,
allforward edges are in E+ and all backward edges are in E-.

4. Compute aflow f (e E)asfollows:
lfeE+, fe "- fe+&.
IfeE-, fe " fe-&.
IfeE\E’, fe +’- fe.

The computation is dominated by the construction of the Eulerian partition (O(log n)
time using O(m) processors), and the list ranking operations on segments of total length
IE’I O(m) (O(logm) time using O(m) processors) (see e.g., [18], [19]). It follows that
the subroutine can be implemented on an EREW PRAM to run in O (log n) time using O (m)
processors.

5.2. Rounding algorithm. The following algorithm rounds a flow with general flow
values.

ALGORITHM 5.2 (obtain integral flow).
1. Round up the flow to units of A0 2-5Flgmq.

Note that this may create excesses and deficits at the vertices. The sum ofthe absolute
values ofthe excesses and deficits is at most 2mA0 _< 2m-’* < 1/4. The excesses or
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deficits at s and are determined as ifthere was an ingoing edge incident at s and an
outgoing edge incident at withflow value ofthe s-t flow rounded up to units of Ao.

2. For k O 5[logm]andA=2k Ao:
If there are excesses and deficits present, run the following modification of Algo-
rithm 5.1. Otherwise, run the unmodified Algorithm 5.1.
Since there are excesses and deficits, the Eulerian partition computed in Step 2 of
Algorithm 5.1 may contain paths with end points at vertices other than s and t. The
labels ofedges along suchpaths are determined in the same way as cycles, where with
respect to some traversal, all backward edges are labeled the same and allforward
edges are labeled the same. Use the following rules to determine which of the two

possibilities to choosefrom:
Ifa path p is such that an end edge is directed into a vertex with a deficit, put
the edge in E+. (If this is truefor both end edges of p, arbitrarilychoose one.
Otherwise, if p is such that an end edge is directed out of a vertex with an
excess, put the edge in E+. (If this is true for both end edges of p, arbitrarily
choose one.)
Otherwise, put one ofthe end edges ofp in E-.

Note that (i) at any point, the sum of the excesses and deficits is zero, (ii) the rules to
choose the labels guarantee that the sum of the absolute values of excesses and deficits never
increases, and (iii) at each vertex, the excess or deficit is an integral number of units of the
current value of A. Hence, when A > m-4, there are no excesses or deficits. Observe that
the s-t flow may decrease by at most 2m-4 during the algorithm, since it may decrease only
in iterations where there are excesses or deficits present. It follows that M > [M 2m-4].

PROPOSITION 5.3. The rounding takes 0 (log2 m) time using 0 (m) processors, on an
EREWPRAM.

Proof Step of Algorithm 5.2 can be performed in O(logm) time using O(m) pro-
cessors. Step 2 consists of O(log m) iterations, where each iteration can be performed in
O (log m) time using O (m) processors.

5.3. Computing an integral blocking flow. The rounding algorithm is such that the
amount offlow on edges with integral flow is not changed. Hence, when the rounding algorithm
is applied to a fractional blocking flow, the result is an integral blocking flow. If the initial
fractional flow is -blocking, the resulting integral flow is [q-blocking. In this subsection we
show how to obtain an Ll-blocking flow.

Algorithm 4.3 (-blocking flow algorithm) produces a fractional -blocking flow. To
obtain an integral [/-blocking flow we use a modified Algorithm 4.3, where at each iteration
k, the flow fk is rounded to an integral flow f by a rounding algorithm that is presented
below. The integral flow f is used instead of f to augment the current flow. Note that the
capacities remain integral throughout the execution of the modified Algorithm 4.3.

At each iteration k, the rounding is such that for all e E, fe {fe], /feJ}. The
rounding is done with respect to a parameter 0 that is determined as follows. Initially, 0 --/z0.

At the beginning of any iteration k, if 20 _</z then we set 0 #k. The rounding will have
the following additional property: at least a constant fraction (1/2) of the edges e E for
which # _< 20 and are such that f"i fe/q 1. We note that for these edges we//e
have fe >_ 1/2. We postpone the discussion of how to achieve this rounding.

We sketch why the bounds of Algorithm 4.3 remain the same. Consider the analysis in

4.4. It is easy to see that Propositions 4.5, 4.6, and 4.7 hold. We prove the correctness of
the following modified version of Proposition 4.8. It is easy to see that the remaining part of the
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complexity analysis can be carried out with the modified Proposition 4.8 and it yields the same
asymptotic bounds.

PROPOSITION 5.4 (modified Proposition 4.8). 1. When E > 1, for all iterations i, j, if
j >_ + [log3/2(E -1 maxetr Uie)], then lZj > 21zi.

2. When E < 1, ifiterations i, j are such that j > + [log3/z(maxee Uie)] + [log m] + 1,

0 must be updated at least once between the th and jth iterations.

Proof. We first consider the case where E > 1. Since the algorithm eliminates edges of
capacity E or less, all capacities are at least 2. Consider the kth iteration (i _< k _< j) and an edge

’/2. Hence,e 6 E, (where Ek is defined as in the proof of Proposition 4.8). We have fe > u
k +1 [2Ue/3J The proof follows. We consider the casefe > [fej > Ue/3. Therefore, <

where E < 1. Assume to the contrary that for some i, j as above, the value of 0 is not modified.
By definition, 0 < i < _< //j < 20. At the kth iteration (i < k < j), consider the set of
edges Et, {e 6 et _< 20}. Since/Ze are nondecreasing with k, we have Ei D_... DD_ Ej.
Employing the argument used above and the fact that 0 _</zk, we obtain that for all e 6 E,,
if u ek >_ 2 then uek+ _< [2Ue/3J. Therefore, for k >_ U + [log3/2(maxee Ue)], for all
e E,uet’ 1. It follows from the additional property of the rounding that for k _> k’,
IEk+l < lEvi/2. Therefore, Ej 13. This implies that at the jth iteration, for all edges
e 6 E,/Ze > 20. This is a contradiction since/Zj < 20 and by definition, there must exist an

edge e such that/ZJe =/zj.
What remains is to show how to round the flow such that the resulting integral flow f

has the additional property. It suffices to examine a fractional flow f where edges such that

fe > 1/2 and Ue are marked. We use a variant of Algorithm 5.2 to round the flow such
that at least half of the marked edges are rounded up. The variant runs Algorithm 5.2 as stated,
except for the last iteration where A 1/2. The choice of A0 ensures us that the sum of
absolute values of excesses and deficit is less than 1/4. Hence, at the iteration where A 1/2
there are no excesses or deficits. Therefore, the Eulerian partition consists of a collection of
cycles and possibly an s-t path. It is easy to see that at the iteration where ZX 1/2, the flow
on each marked edge e is either Ffel or FL1 1/2. Observe that Step 2 of Algorithm 5.1
allows us, for each cycle or path, two possible choices of labels of edges that do not violate
the conservation constraints. We remark that for the s-t path, one of the choices of labels
decreases the s-t flow, but for the purpose of rounding the blocking flow, we allow the net
flow to decrease. For each cycle and for the s-t path, we choose the labels that maximize the
number of marked edges which are selected to be in E+.

It follows that using the integral version of the E-blocking flow algorithm, we can compute
an exact integral blocking flow when the capacities are integral and polynomial in m, in the
following EREW PRAM resource bounds:

1. O(r2 log m) time using O(m/r) processors, or
2. O (r log r log4 rn) time using M(n) processors.

5.4. Rounding a flow in a network with costs. Suppose that we are given a fractional
circulation fe (e E), possibly with integral excesses and deficits at the vertices (supplies
and demands), on a network with integral capacities and real costs Ce (e E) associated with
the edges. We modify Algorithm 5.2 so that it produces an integral flow fe with the properties
fe {[feJ, [fel} (e E)and

Ce3 < 2mnAomaxlce] + Cefe
eE

eE
eE

where A0 is some inverse power of2 (typically, log A >_ 5 [log m]). The modified algorithm
runs in time O(log m log A1) and uses O(m) processors. The algorithm uses the input value
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of Z0. Only the excesses and deficits introduced by the rounding are being eliminated. (In
other words, the excess/deficit at a vertex is the excess/deficit reduced by the initial integral
demand/supply value). In each iteration, we do as follows. For each cycle or path c, there
are two ways to label edges with E+ or E-. The choice such that yeEpfqE C <. ,eEpf3E- Ce
guarantees that the total cost does not increase as a result of changing the flow on these edges.
For cycles, we always choose the labels such that the cost does not increase. Because of the
initial rounding, there may be paths with end points at vertices with excesses or deficits. For
such paths, ifboth choices oflabels preserve the sum ofabsolute values of deficits and excesses,
we choose the labeling that does not increase the cost. Otherwise, we choose the labeling that
decreases the sum of absolute values of deficits and excesses. Note, however, that the cost may
increase as a result of the change. Initially, the sum of absolute values of excesses and deficits
is at most 2m A0. Each unit of excess or deficit may be routed once on a cost-increasing path.
The size of each such path is at most n (we may assume that the Eulerian partitions consist
of simple paths and cycles, although this assumption is not needed in previous subsections).
Hence, the total increase in cost resulting from excess/deficit decreasing paths is bounded by
2mn Ao maxe: Ice 1.

When

ZX0 2-5[lgm]

the running time is O (log m) and the resulting integral flow is such that

Ce/e < 2m-4n max ICel-+- Cefe.
eE

eE
eeE

6. Zero-one and unit networks. Zero-one networks are such that all capacities are in
{0, }. A unit network is a zero-one network where in addition, each vertex has either a

single incident outgoing edge or a single incident ingoing edge. This section is concerned
with max-flow computation on such networks. Even and Tarjan [5] showed that on zero-one

(resp., unit) networks, Dinic’s algorithm terminates within O (min{n2/3 v/-}) (resp., O (x/d))
phases. The reason is that if the residual network is such that all augmenting paths are longer
than e, the value of the max-flow is bounded by m/g. (resp., n/g.). Also note that for any
integral flow, the residual networks are of the same form (zero-one or unit, resp.). Hence,
after O (x/-) (resp., O (x/-d)) phases, the value of the max-flow in the residual network is at
most O(4r) (resp., O (Vrd)).

For such networks we can guarantee that if all augmenting paths are long, the value of
the max-flow is small. We obtain parallel max-flow algorithms as follows. We apply Dinic’s
algorithm for some number of phases, using the integral version of the algorithm of 4 to

compute blocking flows. We stop Dinic’s algorithm when the depth of the layered network
becomes large. To obtain a max-flow, we apply a parallel version of the Ford-Fulkerson max-
flow algorithm to the residual network. The Ford-Fulkerson algorithm repeatedly finds and
saturates augmenting paths until no augmenting path exists. Since the value of the remaining
flow is small, the Ford-Fulkerson algorithm does not perform many iterations. A similar
balancing between parallel versions ofthe Ford-Fulkerson algorithm and the Goldberg-Tarjan
push-relabel algorithm [13] was previously used by Goldberg, Plotkin, and Vaidya [12] to

obtain sublinear time algorithms for such networks.
For the first part (Dinic’s algorithm) of the algorithm we use the e-blocking flow algorithm

of 4. In 5.3 we showed that when the capacities are integral of size polynomial in m (as
is the case for zero-one networks), the algorithm can be modified to find an exact integral
blocking flow. For the second part (Ford-Fulkerson’s algorithm), we use the fact that a single
augmenting path, if one exists, can be found in O(log n) time with M(n) processors (using
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parallel BFS) and hence, a flow of value f* can be found in O(f* log n) time using M(n)
processors. By balancing the two parts of the algorithm we determine the number of iterations
used and obtain the following bounds. Note that similar bounds for unit and zero-one networks
were previously obtained in [12].

PROPOSITION 6.1. A maximumflow can be computed on an M(n) processorEREWPRAM
in:

1. O (n2/3 log3+1/3 n) timefor unit networks,
2. O(m2/3 log3+1/3 n) time for zero-one networks, (O((eF Ue)2/3) for general net-

works with integral capacities).
Proof The running times are obtained by first running Dinic’s algorithm, using the

blocking flow algorithm of 4, until the depth of the layered network exceeds some parameter. When capacities are small, this first part of the algorithm takes O(2 log log3 n) parallel
time, using M(n) processors (see Proposition 4.10). (Note that we may assume that capacities
are integral and at most polynomial in n.) The second part consists ofrunning a parallel version
of the Ford-Fulkerson algorithm. The running time is O (f* log n), using M(n) processors,
where f* is the value of the remaining flow. For part 6.1 we choose (n/log n)/3 and for
part 6.1 we choose (m/ log n) /3.

7. Approximate bipartite matching in parallel. A matching in a graph is a set of edges
such that no two edges are incident at the same vertex. The maximum cardinality bipartite
matching (MCBM) problem is to find, in a bipartite graph, a matching of maximum size. The
problem can be stated as an integral max-flow problem on a unit network of depth 3. The
corresponding network is such that the set of saturated edges of any integral flow turns out to
be a matching of cardinality which equals the value of that flow. Hence, MCBM can be solved
using Dinic’s algorithm in O(m/-) time [5] (see also [17] for an algorithm stated in terms
of alternating paths). A blocking flow computation on a unit network can be done in O (m)
time [5], and hence, it follows from Corollary 3.4 that an approximate matching can be found
in O (.- m) time.

As for the parallel complexity of the MCBM problem, it is still not known whether the
problem is in A/’C. It is known, however, to be in A/’C. The first TA/’C3 algorithm was
obtained by Karp, Upfal, and Wigderson [20]. Their algorithm uses O(n6"5) processors. A
later AfC2 algorithm by Mulmuley, Vazirani, and Vazirani [23] uses O(n3"Sm) processors.
The best known A/’C processor bound of O (nM(n)) (in A/’C3) was achieved by Galil and
Pan [10]. Lev, Pippenger, and Valiant [21] gave an A/’C algorithm for the special case of
regular bipartite graphs, and Miller and Naor [22] gave an A/’C algorithm for planar bipartite
graphs. An algorithm by Goldberg et al. [12] solves the MCBM problem in O(n2/3 log3 m)
time using M(n) processors. An interior point-based algorithm by Goldberg et al. 11 solves
the problem in (/-) time using O(m3) processors.

In [6], Fisher, Goldberg, and Plotkin gave an A/’C algorithm which finds a matching in a
graph which is at least (1 ) ofthe maximum cardinality matching. They first showed that if a
matching is such that there are no augmenting paths of length smaller than , then the matching
is ofcardinality at least (1 1/) ofmaximum. Their algorithm is roughly based on examining
all paths of length at most e, and hence uses n o<e) processors. As a corollary of Theorem 1.1,
we obtain an A/’C algorithm which finds a bipartite matching of cardinality (1 / polylog n)
of the maximum matching and uses only a linear O (m) number of processors. A similar result
was obtained very recently by Spencer [26], who used a modification of the parallel exact

matching algorithm of Goldberg, Plotkin, and Vaidya [12]. The results mentioned above are
summarized in Table 1.

THEOREM 7.1. Bipartite matching ofcardinality (1 ofmaximum can becomputed in:
1. O(-3 log2 m log(m-l)) time using O(m) processors, or
2. O(-2 log3 m log- log(m-)) time using O(M(n)) processors.
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TABLE
Parallel maximum cardinality bipartite matching results.

Algorithm Time Processors

Deterministic, approximation to (1 )

Fisher. Goldberg, Plotkin [6]

This paper

O (log m)
O(-lm)
O(-3 log m log(me-l))
O(6-2 log m log. -1 log(m-l))

O(n2-
O(m)
O(M(n))

Deterministic

Hopcroft, Karp 17]
Goldberg et al. 11
Goldberg, Plotkin, Vaidya 12]
Gabow, Tarjan [9]
Shiloach, Vishkin [25]

O(m/-)

0(n2/3 log m)
0 (n log n)
O(n3/2 logn)

O(m3)
O(M(n))
O(m/(n/21ogn))
O(m/n)

Randomized

Karp, Upfal, Wigderson [20] O(log m)
Mulmuley, Vazirani, Vazirani [23] O (log2 m)
Galil, Pan [10] O(log n)

O(n6.5)
O(n3.Sm)
O(nM(n))

Proof The algorithm is as follows. First we translate the bipartite matching instance to
an s-t max-flow problem on a unit network of depth r 3. The max-flow on this network
equals the maximum cardinality of a matching in the original problem. An integral flow
corresponds to a matching. We first find a fractional flow that approximates the max-flow to
within a factor of (1 e). This can be done within the time bound stated in Theorem 1.1.
The finishing step amounts to rounding the flow to an integral flow of at least the same value.
This was previously done by Goldberg et al. in [11 ], who gave an O (log2 n) time algorithm
which uses O (m) processors.

$. Open problems. To conclude, we discuss some issues and open problems that arise
from this work.

Achieving better bounds. We presented an O(M(n)) processors (r) time algorithm for
approximate blocking flow (exact for polynomial capacities). It is still open whether we can
improve on this, that is, find an (approximate) blocking flow in O(r 1-’) deterministic parallel
time for some > 0. Such an algorithm would have interesting implications, one of which is
that a flow with no augmenting paths shorter than r could be found in O(r2-) deterministic
parallel time. (We remark that computing such a flow within the latter bounds might be an
easier task than the first one.) The latter bound, even for the special case of unit networks,
would yield a faster time bound than that currently known for computing maximum cardinality
bipartite matching deterministically, in parallel, using polynomial work.

Extension to minimum costflow. We ask whether our results can be extended to finding
near-minimum cost flow more efficiently on small depth networks, or more specifically, to
minimum-weight bipartite matching. One problem is that the augmenting path argument in
the proof of Proposition 3.1 does not seem to carry over for minimum cost flows.

Weightedpath counts. In this paper we introduced the notion of path counts and used path
counts weighted by capacities to compute a flow augmentation in each iteration of the blocking
flow algorithm. We ask whether we can benefit by considering path counts weighted by other
"costs" associated with the edges, which could possibly be dependent on the capacities and
other parameters. Weighted path counts keep the properties of being efficiently computable in
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parallel and being conserved at vertices. Consider, for simplicity, a zero-one network of depth
r. Let c {Cele E} be nonnegative weights on the edges, and denote by Xe (e E) the
weighted path counts (relative to the weights Ce). Each such system of weights, corresponds
to a flow f (c) where

Xefe(C) (e E).
maxe,eE )(.e’

Denote the value of f (c) by M(c). We ask how close to the max-flow M* is the value of the
max-flow that has the form f (c) for some nonnegative set of costs c. For unit networks we
have M* maxc M(c). We suggest an approach for an algorithm that directly approximates
the max-flow without breaking the computation to blocking flow phases. The approach is to
start with some initial costs and to keep updating them until M (c) is close to M* for the current
weights c.
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A FAST APPROXIMATION ALGORITHM FOR COMPUTING THE
FREQUENCIES OF SUBGRAPHS IN A GIVEN GRAPH*
RICHARD A. DUKEf. HANNO LEFMANN*. AND VOJTICH RIDL

Abstract. In this paper we give an algorithm which, given a labeled graph on n vertices and a list of all labeled
graphs on k vertices, provides for each graph H of this list an approximation to the number of induced copies of H
in G with total error small. This algorithm has running time O(n 1/lglgn M(n)), where M(n) is the time needed
to square an n by n matrix with 0, 1-entries over the integers. The main tool in designing this algorithm is a variant
of the regularity lemma of Szemer6di.

Key words, counting subgraphs, regularity lemma
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1. Introduction. Given a graph G on n vertices and a positive integer k. the following
decision problem arises in a natural way: determine whether G contains a subgraph isomorphic
to the complete graph Kk on k vertices.

The question of whether the complexity of this problem is o(n’) was raised by L. Lovisz
and others. J. Ne,etfil and S. Poljak [NP] provided an algorithm which decides whether G
contains a copy of K, in time O(M(nk/3)), where M(N) O(N2’376) is the time requried
to multiply two N-by-N matrices with 0, 1-entries over the integers (see [CW]), and noted
that E K. Chung and R. Karp had obtained similar results. It is easy to see, as mentioned in
[NP], that a method for deciding whether G contains a copy of K, leads to an algorithm of
the same complexity for determining whether G contains a copy of any other fixed graph H
on k vertices as an induced subgraph.

These decision methods could serve as the basis for an algorithm to determine the number
of copies of K,, or the number of induced copies of some other graph H on k vertices, in G,
but the resulting algorithm would have essentially the same complexity as that of checking
each of the () O (n) k-vertex subgraphs of G.

Other authors have considered a list whose entries record the numbers of occurences in a
graph G of all possible graphs on k vertices. Frank IF] studied the information which could
be derived from such a list for k 3. Similar investigations were done for signed stochastic
graphs by Frank and Harary [FH] to measure balance in empirical networks.

Erd6s, Lovisz, and Spencer [ELS] studied the geometric properties of the vectors whose
components are the relative frequencies with which all graphs on k or fewer vertices occur in
individual larger graphs.

Our objective in this paper is to show that for sufficiently large n and appropriate values
of k, there exists an efficient algorithm which yields an approximation to the number of copies
of each graph on k vertices in a given graph on n vertices, and does so with small total error.
More specifically, given a labeled graph on n vertices and a list of all labeled graphs on k
vertices, this algorithm yields, for each graph Hi in the list, an approximation to the number
hi of induced subgraphs of G which are isomorphic to Hi, with total error at most the average
value of the hi. This algorithm runs in O(n2(M(n)) sequential time.

To describe this result more precisely we need some terminology. Let G (V, E) be a
labeled graph on n vertices whose vertex set V {v, 02 vn is ordered by vl < v2 <
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< v’,. Let the set W {wl, w2 wk}, k < n, be ordered by wl < w2 < < wk.
We say that a graph H with vertex set W is order isomorphic to an induced subgraph H’
of G if there exists an isomorphism q H H’ with the property that for each and j,

<_ i, j < k, wi < wj implies c](wi) < dp(wj). Let H, H2 Ht, where = 2(). be a
list of all labeled graphs on the set W and let cry(G) (h, h2 ht) be the t-dimensional
vector in which for each i, <_ <_ t, hi is the number of induced subgraphs of G to which

Hi is order isomorphic. We call a vector 6 (1, f2 t), 2(), a p-approximation
to cry(G) if Ihi il < P() for each i, _< < t.

Using this notation our main result can be formulated as follows, where all logarithms
are in base 2.

THEOREM 1.1. Let c be a constant, 0 < c < 1, and n be an integerfor which log log n _<
v/c log n. There is an algorithm which, given a labeled graph on n vertices and an ordering
of its vertices and given a list of all labeled graphs on an ordered set ofk vertices, 3 < k <

v/c log n, yields a 2k(ke)l/2-approximation to crk(G) in O(2([)n</6)CM(n)) sequential time,

where e (26k2 log’logn/c logn) 1/21 and M(n) is the time required to multiply two n-by-n
matrices with O. 1-entries over the integers.

To obtain a p-approximation to crk(G), say for p _< 1. we need only ensure that
2k(ke) /2 <_ p. Thus a simple calculation yields the following consequence of this theo-
rem.

COROLLARY 1.2. Let p and c be constants, 0 < p, c <_ 1, and k and n be integers
satisfying 3 <_ k <_ (pa2c logn/258 loglogn) /65. Then there is a polynomial time algorithm
which, given a labeled, ordered graph G on n vertices, n sufficiently large, and a list of all
labeled graphs on an ordered set ofk vertices, finds a p-approximation to crk(G).

In particular, for 3 < k < / oglogn, c 1/2, and as in the statement of the theorem.
we have that log log n _< /1/2 log,, is satisfied and 2k(ke) /2 <_ 4-(), which ensures an efficient
algorithm yielding an approximation 6(G) in which the sum of the errors in all of its terms
is at most the average entry size of tr (G).

COROLLARY 1.3. There is an algorithm whose input is a labeled, ordered graph on n

vertices and a list of all labeled graphs on an ordered set of k vertices, where 3 <_ k <_
/0 oglogn, and whose output is an approximation dk (/1, 2 ,), 2(), to the
vector try(G) (h, h2 ht) with the property that

l<i<_.t l<_i<t

This algorithm runs in O(n 1/lglgn M(n)) sequential time.
The proof of Theorem 1.1 makes use of a variant of the regularity lemma of Szemer6di

[Sz]. Given a graph G, we partition its vertex set into classes and for a subset of k of these
classes, say V1, V2 V, we consider the set of k-tuples in V V2 x Vk. We first
establish the existence of a type of "regular" partition of such a collection of k-tuples. Next
we describe an efficient algorithm for finding a regular partition, cf. [ADLRY] for related
results. (A lemma similar to the existence portion of these results has already been considered
by Eaton and one of the authors [ER].)

To state these results precisely we need some additional definitions. Let G (V, E) be
a graph and (A, B) a pair of disjoint, nonempty subsets of V. The density of the pair (A, B)
is given by

d(A,B)
e(A,B)
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where e(A, B) denotes the number of edges in E joining vertices of A to vertices of B. We
call a pair (A, B) e.-regular if for each choice of X

___
A and Y c_ B with Xl >_ AI and

IYI >_ elnl we have

Id(A, B) d(X, Y)I < e.

Given a k-partite graph G (V, E), V Jl<_i<k Vi, IVil N, 1, 2 k, we
will consider a partition/C of the set V1 x V2 x x Vk where each partition class is of
the form K W x W2 x... x Wk, Wi c_ Vi, 1, 2 k. We will call such classes
cylinders and sometimes write K V (K) x V2(K) x x Ve (K). We say that the cylinder
K W1 x W2 x... x Wk is e-regular if the subgraph G(K) ofG induced on the set t,.Jl <__i <_k Wi is
such that all () of the pairs (Wi, Wj), < < j <_ k, are e-regular. We say that the partition
K is e-regular if all but eNk of the k-tuples (v, v2 v), vi Vi, 1, 2 k, are
contained in e-regular cylinders.

Our algorithm for finding such an e-regular partition K proceeds by starting with the
partition consisting of a single cylinder and refining the partition at hand until e-regularity is
established. This calls for efficient means of determining that a given pair (Wi, W)) is either
e-regular or possesses a pair of subsets X c_ Wi, Y Wj whose density is far enough from
that of (Wi, Wj) to be used in choosing a refinement. That such a method exists is the result
of the following lemma.

LEMMA 1.4. There exists an algorithm which, given a constant e, 0 < e < 1, a graph
G (V, E) and a pair (A, B) of nonempty, disjoint subsets of V with IAI, IBI <_ N and
IA] >_ (2/e)5. will in O(M(N)) time verify that the pair (A. B) is e-regular or will find two

subsets X c_ A and Y c_ B with Sl _> lAi and YI >_ 61Bl such that

Id(A, B) d(X, Y)I _> 3.

where 6 e5/16.
The proof of the existence, for a given k-partite graph, of an e-regular partition of the

k-tuples into cylinders and the proof of Lemma 1.4 are given in 2. Together these lead to the
following corollary.

COROLLARY 1.5. Let G (V, E) be a k-partite graph with V Ul<_i<<_kVi, IVl N,
1, 2 k. For every e > 0 there exists an e-regular partition 1C of V x V2 x x Vk

into s cylinders such that
i) s _< 4p, where p < ()e -5, and
ii) IV/(K)I >_ ePN for each K 1C and 1, 2 k.

Furthermore, if6q+lN >_ 2, where ?J e5/16 and q ()/e,J4, an e-regular partition for G
with at most 4q cylinders can befound in O(()4q+l M(N)) sequential time.

The proofofTheorem 1.1 is based on this algorithm for finding e-regular partitions and one
additional result which we now describe. Given a k-partite graph G (V, E), V t_) <_i<_ Vi,
we set di,j equal to the density of the pair (Vi, Vj) for each and j, < < j _< k. Let
H (W, F) be a graph whose k-element vertex set W {wl, w2 w} is ordered by
wl < w2 < < wk. We say that an induced subgraph H’ of G is partite isomorphic

I},toHifH’ (W’..F.’),where W’ {w.,w2,....w w 6 Vi,. 1,2,...,k,. and the
mapping wi w is an isomorphism. For each such choice of G and H and each and j.
l_<i <j <k, set

if (wi, wj) F,di, ’J’J" di,j otherwise.

Let f< (H, G) denote the number of induced subgraphs of G which are partite isomorphic to

H. The following result is proved in 3.
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LEMMA 1.6. Let G (V, E), V Ul<_.i<_k Vi, be a k-partite graph and a positive
constant.

Iffor each and j, <_ < j <_ k, the pair (V/, ) is e-regular, where e 2/k3, then
we have

l<_i<j<_k l<_i<_k l<i<k

(Similar results concerning the number of copies of a given graph H in a "uniform" graph G
have also been used in jR], [FR], and, more recently, in [SS].)

The proof of Theorem 1.1, making use of Corollary 1.5 and Lemma 1.6, is given in 4.
2. The algorithm for finding a regular partition. First we establish the existence of

an e-regular partition of the type described in the previous section.
PROPOSITION 2.1. Let G (V, E) be a k-partite graph with V I,.Jl<i<kVi, [V/[ N,
1, 2 k. For every e > 0 there exists an e-regular partition

into s cylinders such that
i) s < 4p, where p < ()e-5, and
ii) IV/(K)I > ePNfor each K IC and 1, 2 k.

Proof. We shall make use of the following fact, which we state without proof.
Fact. Let e be a positive constant and Yi, di, 0 < Y’i, di < 1, 1, 2, 3, 4, be real

numbers such that
i) d 1<i<4 idi,
ii) Zl<i<4 /i 1, and
iii) [dl--d[ _> e.
Then

1_<i_<4
1

Much as in the proof Szemer6di’s regularity lemma given in [Sz] we proceed inductively,
forming a sequence of partitions, each a refinement of its predecessor. For a cylinder K
V1 (K) x V2(K) x x V/c (K) and i, j, < < j < k, we let di,j (K) denote the density of
the bipartite graph induced on the set Vi (K) t.J Vj (K). That is,

dij(K)
IE C V(K) x V:(K)I

IV(K)IIVj(K)I

Set/C {K1}, where K1 V1 x V2 x... V/c. If/C is e-regular; we are done. Suppose,
therefore, that it is not. This means that for some and j, 1 < < j < k, there are sets

Wi c_ Vi and V: _c V such that Wil >_ IV/I, Wjl >_ IV:I, and

dij(K1)- IE :3 (Wi x W:)I
IWillWjl

We may further assume that Wi < (1 e)l V/I and Wj < (1 e)lVj and, without loss of
generality, that/= 1 and j 2.

We consider a new partition/C’ consisting of four cylinders

KI,I- W1 x W2 x V3 x... x Vk,

K1,2 W1 x (V2 \ W2) x V3 x... x

gl,3 (V1 \ W1) x W2 x V3 x x Vk,
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and

K,4 - (V \ W) x (V2 \ W2) x V3 x... x V.
For/C’ and each later partition we define an index as follows. If/C K1 U K2 U U Kr,
then indr: .l<_s<_r IX(Ks) Y’.l<_i,j<k d(Ks), where

IKI#(K,)
Nk"

Assume that after m 1 steps we have constructed a partition Km-1 which is not e-regular.
This means that at least eNk k-tuples in V1 x V2 x x Vk are in e-irregular cylinders. Let
J c_/Cm-1 be the set of all irregular cylinders of/Cm-1 We replace each Ki g" with four
new cylinders Ki,1, Ki,2, Ki,3, Ki,4 as described above. Set

U {Ki, I, Ki,2, Ki,3, Ki,4},,7’
KieJ

and

E (E-I J) u J’.
We will compare the indices of the partitions Km- and/Cm. Clearly we have

(1)
indic. -indx:.-, = r.jB { I<-e<-4E Ix(Ks,e) ,<-i,j<-kE d(Ks,e)- IX(K)

B Ix(Ks)r(Ks),
KsJ

where

(2)

E {E Ix(Ks’e)d(Kse)-d(Ks)}l<_i,j<k 1<<4 Ix(Ks)

Set 4(Ks,e) Ix(Ks,e)/Ix(Ks). It is easy to see that for each and j, < i, j < k,

(3) dij(gs) E (gs,e)dij(gs,),
l<e<4

where

(4) B 4(Ks,e)= 1.
1<_<_4

Thus applying Proposition 2.1 with e 0 we obtain

(5)
Ix(Ks,e)

<-<-4 Ix(Ks)
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For each K. 6 ,.7 and each and j, < i, j < k. Moreover, due to the fact that Ks ,.7 there
exist i0, j0, __< i0 < j0 < 1, and some 6 {1, 2, 3, 4} such that

(6) Idiojo (Ks.e) diojo (Ks)l > e.

Due to the construction of the cylinders Ks.e,
2(7) dp (Ks,e) > e

for each , g 1, 2, 3, 4. Combining the fact stated at the beginning with (3), (4), (6), and (7)
we have

(8) zl-t(Ks,e)d2 d2 e2( e2 )
l<e<4 #(Ks) i’j(Ks’e) i’J(gs) >

i ‘Z e:2

Thus (2), (5), and (8) yield

e4
(9) r(Ks) >

for each Ks ft. Since Y.x,r #(K.) > e, we infer from (1) and (9) that

(lo)
e4

ind/c >_ indic,.-, + U(Ks), ;2 > ind/cm-, + e5.

Since it is clear that indx: < () for any partition/C, this means that for some p < ()e-’ the
partition/Cp is e-regular.

Next we turn to the proof of Lemma 1.4. First, however, we consider several additional
propositions which will be used in that proof. If Y is a subset of the vertices of a graph
G (V, E) and x is a vertex of G, x Y, we will use degr(x) to denote the degree of x in
Y, that is, the number of members of Y which are adjacent to x in G.

PROPOSITION 2.2. Let G (V, E) be a graph with (A, B) an e-regular pair of subsets
of V, e > O. Suppose that Y c_ B with Y >_ e lBI and set d A B) p. Then we have

I{x Aldegv(x) > (p- e)lYI}l > (1 -e)lAI.

Proof Let X {x 6 Aldegr(x) < (p- e)!YI}. If IXl eiAI, then

IXl(p )IYI
d(X,Y) <_ =p-e,

contradicting the e-regularity of the pair (A, B).
Since similar reasoning can be used for the set of vertices x A with degr(x) >_ (p +

e)l Y I, we have the following result, where Y B.
PROPOSITION 2.3. Let G (V, E) be a graph with (A, B) an e-regular pair of subsets

of V. e > O. Set d A B) p. Then we have

I{x AI(p-e)lBI < degB(x) < (P + e)lBI}l > (1 -2e)lAi.

If x and x’ are two vertices of the graph G (V, E) and Y is a subset of V disjoint from
{x, x’}, then by the codegree ofx and x’ in Y, written degr(x, x’), we mean the number of
vertices in Y which are adjacent to both x and x’ in G. (Note that degr(x, x’) does not in
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general coincide with the density d({x, x’}, Y).) The following proposition gives information
about codegrees in an e-regular pair.

PROPOSITION 2.4. Let G = (V, E) be a graph and (A, B) an e-regular pair of disjoint
subsets of V, e > O, having density d(A, B) p, where lnl >_ 1. Let D be the collection

ofall pairs {x,x of vertices ofA for which
i) (,o e)lBI < degB(x), degB(x’) < (,o + e)lBI, and
ii) degn(x,xt) < (p + e)21BI.
Then we have

]D] > (1 5e)lAI2.

Proof. Let Z {x AI(p- e)IBI < deg(x) < (p + )IBI}. By Proposition
2.3 we have ZI > (1 2e)lAI. Let x be an element of Z. We claim that there exist at
least (1 3e)lAI vertices x Z\{x} such that the pair {x, xt} is in D. If not, then the
set X {x Aldeg(x,x’) > (p + e)21nl} is such that IXI > elAI. In this case we
could let Y be a subset of B which contains all of the neighbors of x in B and for which

elnl < IYI < (P 4- e)lB!. Then the density of the pair (X, Y) would satisfy

IXI(p -4- e)21nl
d(X, Y) > > p + e.

IXllYI
contradicting the e-regularity of (A, B). It follows that

IDI >_ (1 2e)(1 3e)lAI2 > (1 5e)lAI2.

Remarks. For an e-regular pair (A, B) whose density satisfies d(A, B) = ,o > 2e we
have deg(x) > elBI in the above argument. In this case we could omit the condition

2 xplBI > 1, and could show the existence of at least (1 6e)lAI pairs {x, of vertices of
A satisfying the more symmetric conditions

i) (,o e)lBI < degB(x), degt(x’) < (p + e)lnl, and
ii) (/9- e)21BI < deg(x, x’) < (p + e)21BI.
Our next result provides a partial converse to Proposition 2.4.
PROPOSITION 2.5. Let e be a constant, 0 < e < 1. Let G V, E) be a graph with

2(A, B) a pair of disjoint, nonempty subsets of V with [AI >_ 7" Set d(A, B) p. Let D be
the collection ofall pairs {x, x ofvertices ofA for which

i) degn(x), degn(x’) > (p e)lnl, and
ii) degB(x, xp) < (p + e)2lBI.

Then if !DI > 1/2(1 5e)lAI 2, the pair (A. B) is g-regular, where ; (16e)1/5
Proof. We may assume that d(A, B) p > 0, since otherwise there is nothing to

prove. Let 8 (16e) 1/5 and set with forsight X -___e. Let A {al, a2, ap} and
B {bl, b2 bq} and define a p-by-q "adjacency" matrix M for the pair (A, B) with rows
indexed by the elements of A and columns by the elements of B as follows.

For each ai A and bj B the entry m(ai, bj) in the row ofai and column of bj is given
by

X if (ai, bj) E,
m (ai ,bj)= |_1 if(ai,bj)E.

Let A’ c_. A and B’

_
B with A’I k, n’l , where k > IAI and >_ lnl. Our aim

is to show that the density of the pair (At, Bt) satisfies

p-8 < d(A’,B’) < p+.
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Let E’ be the subset of E consisting of all edges of G joining a vertex of A’ to a vertex of
B’. By reordering we may assume that A’ {a, a2 a,} and B’ {b, b2 be}. Let
M’ be the k-by4 submatrix of M associated with A’ and B’. That is,

M’ (m(ai,

The sum of all of the entries of M’ is equal to ) times the number of edges in E’ minus the
number of nonedges:

(11)
k

_
m(ai, bj) k[E’[- (k. g -[E’[).

i=1 j=l

" be the corresponding rowFor ai E A’ let i be the corresponding row vector of M and let a
vector of Mr.

Then by the Cauchy-Schwartz inequality,

(12) m(ai, bj) <
e

i=1 j=|
k m(ai, bj) t
i=1 i=1 i=1

where for vectors . and 37 the expression Y’ means the usual scalar product. Clearly

(13)

therefore by (11 ), (12), and (13) we have

(14) (. IE"I- (k.
i=1

In what follows we will compute an upper bound for

l l + 2 ?t aj
i=l i=l l<_i<j<_k

For each al A we have

a/2 2 deg(ai) + q deg(ai)

and hence, since 0 < deg(ai) _< q,

(15) a/2 _< max{q, )v2q}.

For ai 5/= aj A the product i j is maximized when at each coordinate the entries of i
and j are equal, so here too we have

ai j < .2 deg(ai) + q deg(ai)

and hence that

(16) ai. a.j _< max{q, )v2q}.
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In any case we have

i j 2 deg(ai, aj) .(deg(ai) deg(ai, aj)) .(deg(aj) deg(ai, ai))

+ (q deg(ai) deg(aj) + deg(ai, aj)).

If {ai, aj

_
D, then we have

deg(ai, qj) > (,o e)q and deg(ai, aj) < (p + )2q,

thus for such a pair,

i tj < (,2 -’1- 2,k + 1)(/9 + 6)2q 2(. + 1)(/9 e)q + q.

By our choice of . we have that ,k + , so that

(/9 "q-- 6)2 2(p e)
(17) i a" <

p2
q

p
q+q= +- q.

Since (k2) --IDI _< (P) -IDI < ep2, we obtain from (15), (16), and (17)

<i_k \l_i_k <i <j <k <i <j <k
{ai,ai }qD {ai,ai }.D

< kmax{q,.Zq} +5epZmax{q, XZq} +2pZq + _.
Hence equation (14) becomes

(18)

(IE’I k + IE’I)2 < kg.q max{ 1, Z2} + 5.g.p2q max{ 1, .2}

-t- 2 p2q --t- -and, using the fact that ,k -o we have
p

(19)
E’I kg. < kg.q max 1,

P p2 "k- 5:g.p2q max 1,

+ 2epZq +-

(1 _p)2}/92

or equivalently

IIE’I- Pkei < x/’keq max{p2, (1 p)2} + 5epZq max{p2, (1 p)2} + 2g.pZq(4ep + 2).

Thus, since 0 < p < 1, we have

(20) IIE’I- ,okel < x/kg.q + 5g..p2q + 2g.p2q(4. + 2).



COMPUTING FREQUENCIES OF GRAPHS 607

Therefore

+
2p2q

(4 + 2)
k2

which, since k > 6p and > 8q, yields

(21)

2 1/5Since p IAI > and 8 (166.) we have

/9>-

and hence that

Thus (21) yields

82p 83.

Id(A’,B’)-d(A,B)I

It follows that the pair (A, B) is 8-regular.
The existence of the sequential algorithm claimed in Lemma 1.4 is now an easy conse-

quence of Propositions 2.3, 2.4, and 2.5. Let a constant e, a graph G, and a pair (A, B) of
subsets of the vertices of G be as described in that lemma. Let F be the set of edges of the
bipartite subgraph of G induced by the pair (A, B). For each vertex x 6 A we compute the
degree of x in B, degB(x), and compute the density d(A, B) p. This can be done in time
O(N2). Note that we may assume that t)lBI >_ 1. Otherwise we would consider the bipartite
graph with vertex classes A and B and edge set ff A x B\F, and use the fact that for
any pair (X, Y), X

_
A, Y

_
B, the density d(x. Y) of this pair with respect to ff satisfies

d(X, Y) d(X, Y). It follows that (A, B) is 6.-regular with respect to the edge set F if
and only if it is 6.-regular with respect to ff and that

Id(A, B) -d(x, Y)I _> 8

implies that

id(A, B) -d(X: Y)I >_ 8.

Let 8 6.5/16 and set Z {x 6 AI(/9 6.)IBI < degB(x) < (p + 6.)IBI}.
1. If IZl _< (1 28)1AI, then by Proposition 2.3 the pair (A, B) is not 8-regular, and, as

in the proof of that proposition, it is trivial to find a subset X

_
A\Z with XI >_ 81AI such

that d(X, B) < ,o 8 or d(X, B) >_ p + 8.
2. IflZI > (1-28)1AI, let M be the IZI-by-IBI matrix with rows indexed by the elements

of Z and columns by the elements of B in which the entry m(x, y) in the row of x and column
of y is given by

if(x,y) F,rn(x, y)
0 otherwise.
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The entries of the matrix product M x Mt, where M is the transpose of M, are the codegrees
of the pairs of vertices in Z. It follows that these codegrees can be computed in O(M(N))
time. For each x Z let

Dx {x’ Z\{x}l degB(x, x’) < (p + e)Zlnl}.
If for some x0 Z we have IDx01 < (1 33)1AI, then as in the proof of Proposition 2.4, the set
X {x’ A\{x}ldegB(x,x’) > (p+3)21BI}satisfieslXI >_ 31AI andbychoosing Y tobeany
subset of B which contains all the neighbors ofx in B and for which 3181 < YI < (9 + 3)lnl,
we obtain a pair (X, Y) whose density differs from d(A, B) by at least

3. If, on the other hand, IZI > (1 23)1AI and IDxl >_ (1 33)1AI for each x Z, then
2 2since e 35/16 and AI > (7) , it follows from Proposition 2.5 that the pair (A, B) is

e-regular.
This completes the proof of Lemma 1.4.
Corollary 1.5 now follows by combining the proofofthe existence of an e-regular partition

of k-tuples as given for Proposition 2.1 with Lemma 1.4. Suppose we are given a positive
constant e and a k-partite graph G (V, E), V I,.Jl<i<k Vi, IVil N, 1, 2 k, as in
the corollary, where 3q+lN > 2 when

1. We let/C K }, K1 V1 x V2 x x Vk, be the first partition and compute the
() densities of the pairs (V/, Vj), 1 < < j < k.

2. Given a partition Km for every pair (V/(K), Vj (K)) ofeach cylinder K in that partition
we use the algorithm of Lemma 1.4 to verify that this pair is e-regular or to find subsets
Wi cc_ vi(g), Wj c_ Vj(K), IWil >_ IV/(K)I, IWjl _> ,SlV(K)I, such that [d(Wi, Wj)-
d(Vi(K), V(K))I >_

3. If all but eNk of the k-tuples of V1 x V2 x... x V, are contained in e-regular cylinders,
then we halt. Km is an e-regular partition with at most 4m cylinders.

4. If more than eNk k-tuples are contained in cylinders which are not e-regular, then
for each cylinder K of Km which has not been shown to be e-regular choose one of the pairs
(Wi, Wj) for a pair (V/(K), V (K)) of that cylinder that was found in Step 2 and use this pair,
as in the proof of Proposition 2.1, to replace K by four new cylinders. Call the resulting
partition

5. Set/Cm+ =/E’ and m m + and return to Step 2.
As in the proof of Proposition 2.1, we have that ind(/Cm) > e34 and hence that this

2)5procedure halts after at most q ()
which assures that at each iteration the pairs (V/(K), V (K)) are large enough for Step 2 to be
carried out using the algorithm of Lemma 1.4.

Observe that by our construction each k-tuple of V1 x V2 x x Vk is contained in at
most one e-regular cyclinder. Hence, the number of k-tuples in K W1 x W2 x x Wk is
given by 1-[= Wi I. Thus checking whether all but eNg of the k-tuples of V1 x V2 x x Vk
are contained in e-regular cyclinders takes by Proposition 2.1 at most O (4()/e64 n) sequential
time.

Finally, since each cylinder contains () pairs and the partition Km has at most 4m such
cylinders, the total number of times that the algorithm of Lemma 1.4 is used is at most
(k2)4q+l. This establishes that the entire procedure can be implemented in the asserted time
and completes the proof of Corollary 1.5.

3. Proof of Lemma 1.6. First we prove a result concerning the number of copies of K,
the complete graph on k vertices, in a k-partite graph with e-regular pairs of classes, from
which Lemma 1.6 follows easily.

PROPOSITION 3.1. Let G (V, E), V [,-,Jl<i<k Vi, be a k-partite graph, k > 3, andfor
each and j, < < j < k, let di.j be the density of the pair (Vi, Vj). Suppose that 3 is
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a positive constant and thatfor each and j, < < j < k, the pair (Vi, Vj) is e-regular,
where 3Z/k3. Then the number fk(G) of subgraphs of G which are isomorphic to Kk,
k > 3, satisfies thefollowing:

(22) l-I I-I tv,
l<i<j<k l<i<k l<_i<k

Proof If 3 > 1 there is nothing to prove, so we assume 3 < 1. Note also that (22) is
satisfied if di,j < 3 for some and j since in this case fk(G) < 5 I-Ii<_i<_k IV/I, so we also
assume that i,j >" t in all cases.

For integers j and , 1 < j < < k, and any sequence xl, x2 Xk, xi Vi,
1, 2 k, we will let Ne (xl, x2 xj) denote the set of common neighbors of xl, x2
and xj in Ve, and we call the sequence xl, x2 x "good" if it satisfies

(23) IVel rI (di,e ) < INe(xI, x2 xj)l < IVel I-I (di,e + ),
l<i<j l<i<j

for each j, <j<k-l, andeache, j <e<k.
First we seek upper and lower bounds for fk(G) when the following condition holds:

(24) H (did ) > for each j and e, 1 < j < g < k.
l<i<j

Assuming (24) does hold we wish to find an upper bound for the number of copies of Kk
in G which are spanned by good sequences. Trivially there are at most Vll choices for
the first vertex in such a sequence. Suppose xl, x2 xj-1 are the first j 1 vertices of
some good sequence which spans a copy of Kk in G. Then the next vertex of this sequence,
xj, must be in Nj (xl, x2 xj-1). By the definition of "good sequence" there are at most

IVl 1-Ii<_i<_j-1 (di,j + ) choices for xj for each such sequence X1, X2 Xj-1. It follows that
the number of copies of Kk spanned by good sequences is at most

(25) H ]Wit H (di,j + ).
l<i<k l<i<j<k

Now consider the number of copies of Kk spanned by sequences which are not good (still
asuming that (24) holds). For each , 2 < < k, the e-regularity of the pair (V1, Ve) implies
by Proposition 2.3 that there are more than (1 2e)lVll vertices in V1 for which we have

(26) IVel(d,e- ) INe(xl)l IVel(dl,e-+-).

It follows that there are more than (1 2(k 1)e)lV11 vertices in V1 for which (26) holds for
each, 2 < < k. The number ofcopies of Kk spanned by sequences where (23) does not hold
for j and at least one value of , 2 < < k, is therefore less than 2(k 1) I’I l_<i_<k V/I.
Suppose the sequence xl, x2 xl spans a copy of Kk and that there exists an integer s,
2 < s < k- 1, such that (23) holds for each j, < j < s 1, and each , j < < k, but
that (23) does not hold for Xl, x2 xs and some particular value of , say (t > s).
Then we have [Nt(xl,x2 Xs-1)[ > IVtl Hl<_i<_s_l(di,t ) and, given that (24) holds,
IN(xa, x2 x-)l >_ lVtl. Hence as in the proof of Proposition 2.2 (resp., 2.3) there
are fewer than 2el Vs vertices in Vs which have more than (ds,t + )lNt (xl, x2 xs_l)l
or fewer than (d,t e)INt (Xl, x2 Xs-1)l neighbors in Nt (xl, x2 Xs- 1). Thus there
are fewer than 2(k s)lVl vertices x such that (23) holds for each j, 1 < j _< s 1, but
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such that it does not hold for Xl, x2 xs and at least one value of e greater than s. It follows
that fewer than 2(k s)6 l-II_<i_<k IEI copies of Kk are spanned by sequences of this type.

We now have that when (24) holds the number of copies of K spanned by sequences
which are not good is less than

(27) H IV/I E 26(k-s)=k(k-1)6 H IV/I.
l<_i<_k l<_s<_k-1 l<_i<_k

Combining (25) and (27) shows that in this case

(28) f(G) < [k(k 1)6 + H (dLJ--6)] H IVl.

Since di,j > 8 k36/8 for each and j, 1 < < j < k, we have

) ()
(29) H (di,j + 6) < + - H

_<i <j _<k <_i <j_<k

Now since

+ -5 < exp

and exp(x) < 1 + 2x for 0 < x < 1, we have from (29) that

k(k 1) )(30) H (di, +6) < 1+ k H di, <_ H di, +
<i<j<k <_i <j<k <i <j<k

k(k 1)
k3

It follows that the right-hand side of (28) differs from 1-Ii_<i<j_<k di,j. Hl<S< v by less than

(31)
k(k- 1)

k3
(t2 + 8) H IV,. I,

l<i<k

and this quantity is less than 8 I-Ii_<i_<k IV/I, since 1 + 8 <_ k2/k when k >_ 3.
Next we wish to find a lower bound for fk(G) when (24) holds. We will count only those

copies of Kk which are spanned by sequences xl, x2 xk such that for each j, _< j _< k- 1,
and each g, j < g _< k, we have

(32) INe(xi, X2 Xj)I >_ IVel H (di,e 6).
l<i<j

There are at least (1 (k 1)6)1Vll choices of a vertex Xl for which (32) holds for j
and each g, 2 _< g _< k, by Proposition 2.2. Suppose xl, x2 xs, s >_ 2, is a sequence
of vertices in V1 x V2 x... x Vs which spans a copy of Ks in G and for which (32)
holds for each j, 1 _< j _< s- 1, and eachg, s _< g _< k. Then for eachg, >_ s,
we have INe(xl,x2 xs-1)l > IVel I-Ii<_i<_s_l(di,e -6) which, given that (24) holds,
implies that Ne (xl, x2 xs- 1)1 > 61Vel. Thus for each such g, by 6-regularity of the pair
(Vs, Ve), there are at most 61Vs vertices in Vs having fewer than (ds,e-6)lNe(xl, x2 xs-1)l
neighbors in Ne (xl, x2 xs-l). That is, there are at least (1 )lVl vertices xs in Vs such
that Ne (xl, x2 xs)l > Vel I-I <_i <_s (di,e 6). It follows that there are at least

(33) H (di,s 6) (k s)e] V,
l<i<s-1
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choices of the vertex xs in Vs such that xl, X2 Xs span a copy of Ks and for which (32)
holds for each j, 1 < j < s, and each e, s < < k. Since di,j < and di,j 6 > 0 for each
and j, 1 < < j < k, it can easily be shown by induction on s that

H (di,,-6)>_ H d,,s-(s-1)6.
l<_i<_s-1 l<i<_s-1

Hence the quantity in (33) is at least

[H<_i<_s_di,s-(k-1)61lVs"
and when (24) holds we have

(34) fk(G) > H IVil H [ H di,s-(k-1)61.l<_i<k l<s<k l<i<s-1

If for each s, < s < k 1, we have I’Ii<_i<_s- di,s > (k 1)6, then

<s<k <i <s-1 <i j <k

In this case, since k(k 1)6 (k(k 1)/k3) 2 < d, the upper bound of (22) follows from
(34). If, on the other hand, I-I<_i<_s-1 di,s < (k 1)6 for some value of s, then we have

I-Ii<_i<j<_k di,j < ((k 1)/k3) 82 < 8 and in this case the lower bound in (22) is trivially
satisfied.

Finally we must establish upper and lower bounds for fk(G) when (24) does not hold.
Assume then that is the smallest integer, < < k 1, for which we have I-I <i <t (di, 6) <
6 for some value of , < _< k, and that r is the smallest integer, r > t, such that

Hl<_i<t(di,r 6) < 6.

The number of copies of Kk in G which are spanned by good sequences is again bounded
from above by the quantity in (25). Suppose that xl, x x is a sequence which spans
a copy of K but which is not good. Let s be the smallest integer such that (23) holds
for each j, _< j _< s- I, and eache, j < e < k, but that (23) does not hold for
xl, x. xs and at least one value of e, e > s. If s _< for as defined above, then for
each e > s we have INe(x,x2 x-)l > IVel l-[<_i<__(di,e .) by (23) and therefore
that INe(Xl, xz xs-)l >_ IVel, In this case it follows as before that there are at most
2(k s)6 I[_<i_< IVl copies of K spanned by such sequences. If s > t, then (23) holds
for each j, j _< t, and each e, j < e _< k. Since x, x xk spans a copy of K, Xr
must be in Nr(Xl,X2 xt). By (23) we have INr(x,x2 xt)l <_ I-Ii<_i<_t(di,r + 6)
(while by the definition of r and we have I’Ii<_i<_t(di.r 6) < 6). There are at most

l-Ii_<_< IV/l, l"I<_i<_t(di,r + ) copies of K spanned by sequences of this type. Combining
these results we have

(35) tic(G)<[ H (di,j + 6) + 2(k-J)6+ H (di’r + 6)l H ’Vii"
<i <j <k <j<t <i <t <i <k

Since we have di,j > t k36/ in all cases we obtain

di,j-I-6 +
26

di,j 6 di,j 6

-1
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for each and j, < < j < k, and hence that

(36) H (di,j-+" :) <_ + 2 S- 1
l<i<j<k

H (di,j :),
l<i<j<k

where

(37) H (di,j-) < H (di,r--) < .
l<i<j<k l<i<t

Reasoning as for (30) and using the fact that

k(k 1) (---3 1)
-1

we obtain

<k2 =d;
k k

(38) 1+2 -1 < 1+2 -1 < 1+.
Finally since < k 1, we have .l<<.j<t 2(k j) < k(k 1). Combining (35), (36), (37),
and (38) yields

(39) fk(G)<_[2(1-+-),-t-k(k-1),] H IV’l,
l<i<k

which leads to

[4,_ k(k-1)]2k3 ()fk(G) < .3 + H IVil < 2 H IVil "< H IVil"
l<i<k l<i<k l<i<k

Thus the upper bound in (22) holds in this case.
Given that Hl<_i<_t(di,r ?) < for some r and t, we have Hl<i<j<_k(di,j 6) < 6, so,

again using di.j > 5 for all and j, < < j < k, we obtain

d,j H (di,j-)< 1+ -1H di,j= H dij-l<_i<j<_k l<_i<j<_k l<_i<j<_k

Thus, as in (30) and (38), we have

(40) H
l<i<j<k

t2
di,j < + <2- <d.

The lower bound in (22) is trivially satisfied in this case, which completes the proof of the
proposition.

To establish Lemma 1.6 we must consider an estimate for f<(H, G), the number of
induced subgraphs of G which are partite isomorphic to the k-vertex graph H. To do so
we simply make use of the graph G which is obtained from G by replacing the bipartite
subgraph induced by V/and Vj by its bipartite complement whenever (wi, wj) is not an edge
of H. Then we have f<(H, G) fk(). Since E-regularity^is preserved with respect to
taking complements and as the density of the pair (V/, Vj) in G is di,j, Lemma 1.6 follows
immediately from Proposition 3.1.
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4. The proof of Theorem 1.1. Let c be a constant 0 < c _< 1, n be an integer for which
log log n _< v/C log n, and k be an integer satisfying 3 _< k _< v/C log n. Let G (V, E) be a
graph with an n-element vertex set V {vl, 02 on ordered by v < 1)2 <: < 1)n and
suppose we are given a list H, HE Ht, = 2(). of all labeled graphs on the vertex set
W {to 1, WE, bOk} ordered by w < WE < < Wk.

We begin by partitioning V into m [ parts Vl, V2 Vm each of size N n/m
(where w.l.o,g, m divides n) with

Vj -- {u(j-I)N+I, U(j-1)N+2 UjN}

for j 1,2 m.
For each of the (’) choices of k sets V,., Vi, V/k, with < i < i2 <..- < ik < m

we use the algorithm of Corollary 1.5 to obtain an e-regular partition of the k-partite subgraph
of G induced by tA<_j<_k Vii, with e as in the statement of the theorem. For each e-regular
cylinder of each such partition and for each labeled graph Hi, < < t, we use the inequality
of Lemma 1.6 to obtain an estimate of the number of induced subgraphs of G which have
as vertices a k-tuple in that cylinder and which are partite isomorphic to Hi. For each i,

< < t, we add these estimates to obtain the entry hi of dk. Thus the remainder of the
proof of Theorem 1.1 consists of establishing the following:

(i) The conditions of Corollary 1.5 are satisfied whenever the algorithm in that statement
is employed,

(ii) For each i, < < t, the error Ihi fil is at most 2k(ke) /2, and
(iii) This procedure can be implemented in O(2()n2CM(n)) sequential time as asserted

by the theorem.
For (i)it suffices to show that 3q+lN >_ 2, where 3 e5/16, q ()/e34, and N = m"--

as above. First note that by the definition of e, namely e (216k2 log log n/c log n)/2, and
the fact that k > 3 we have

(41)

It follows that

log e > i (16 + log k2 log log n) > - (19 log log n).

(42) log(1/) _.< 4- 2-5T (19- loglogn) < 2-5T loglogn.
From the definition of q we have

(k2) 216
=

()clogn
<

c logn
(43) q

k2 log log n 2 log log n

Since k >_ 3 and log log n _< /clogn we have 2 log log n < k19c log n, from which it
follows that

k2(44) e < k <

This yields

(45)

and therefore

(46) log N log n log m > log n log k2 + log e 1.
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Combining (41) and (46) we have

(47) logN> logn-logk2+--logk2---loglogn-l>_ logn- loglogn- 1.

From (42) and (43) we obtain

5 5
(48) log(tq+l N) > log N - log n - log log n

and using (47),

37 26
(49) log(dq+l N) > - log n - log log n 1.

For (i) it suffices to show that log(3q+l N) > 1, or by (49), that 37 log n 52 log log n > 84,
which follows from the fact that n satisfies log log n < v/log n.

For each i, < < t, the error term Ihi hi in (ii) is at most the sum of the following
three quantities:

a) The number of k-element subsets of the vertex set V which meet at least one of the
classes of Vii in more than one point,

b) The number of k-tuples in V/ x V/ x x V for each of the (’) choices of the
classes V Vi2 V/ which are not in -regular cylinders of the partition obtained for the
k-partite subgraph of G induced by t-Jl<_j<_k Vii, and

c) The total error resulting from using the estimate of Lemma 1.6 of the number of
induced subgraphs of G which are partite isomorphic to Hi for each e-regular cylinder of each
of the (’) partitions.

To establish (ii) it suffices to show that the sum of the quantities in (a), (b), and (c) is at
most 2k(k,)1/2.

The number of choices of a pair of vertices of G which are in the same class V/j is m ().
Since m [ we have

(50) m < <
rn --(k-2) k-tuples, the quantity in (a) is at mostSince each such pair is in n-2

(51) k-5 - <

The number of k-tuples of vertices with at most one point in each class Vij, but not in
an ,-regular cylinder of one of the (7) partitions, is at most (7)’Nk by Corollary 1.5, so the
contribution of (b) to the error satisfies

(52) ,Nk , < ,

By Lemma 1.6 the error resulting from using the inequality of that statement for one
e-regular cylinder, Wi x Wi x... x Wi, of the partition/C of V/I x V/2 x... x V/ is at most

I-I__ IW I, where d k(k,) /2. Since

H ]Wi.il-- H IVijl’
<_j<_k <_j<_k
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where the sum is over all cylinders of/C, the contribution from a single partition is k(kr)l/2Nk.
The quantity in (c) therefore satisfies

Combining (51), (52), and (53) we have for each i, 1 t,

(54) Ihi il < 6 + k(kr)

It follows from (44) that < k3/6 and hence that < k3/2, which together with (54)
establishes the claim in (ii).

Since our algorithm consists of using the procedure described in Corolla 1.5 once for
each labeled graph Hi, 1 2(), and each choice of k classes Vit, , it can be

implemented in O(2()(7)()4q+iM(N)) sequential time. Thus, since N n, to verify (iii)
it suffices to show that

(55) () (k2)4q+l = O(nC,.

By the definition of m and using (45) we have

(56) ()=
It follows that

(57)

and, by (41), that

log < k + k log k k log 6,

(58) log < k + k log k ]- (16

Thus we have

+ log k2 log log n).

(59) log < 2k + log log n,

since log k _< 1/2 log log n. Now, making use of v/c log n >_ 3, k, and log log n, we obtain

(60) log < c log n,

which yields

(61) mk) < n7c/6.

Again using 3 < v/c log n and log log n < /c log n we have

c
(62) log log n < v/C log n < log n.
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Since k < v/C log n, it follows that

(63) (k2) c C nc/3< log n <

(64)

Finally, from (43)we have

4q+l <: 4" 2(clgn)/(lglgn)

which, since log log n > 3, yields

(65) 4q+l < 4.2(c/3)lgn 4nC/3o

Combining (61), (63), and (65), we have that (55) is satisfied, which establishes (iii) and
hence completes the proof of the theorem.

Notice that the computation above indeed shows that

(66) () ()4q+l O((logn) -76k+1 .n)

for our choice ofthe parameters m, k, q, once n is large. To see this, observe that for log log n >

3 we have 2k + loglogn < -k loglogn and thus (59)implies log () < k loglogn. This
yields a total running time of

0 2(’-)n(l)M(n) =0 n+(l)M(n)

As noted in 1, Corollary 1.2 is an immediate consequence of Theorem 1.1. To verify
Corollary 1.3 it must be shown that for c and 3 < k _.< / oglog,,, we have 2k(ke) 1/2

1/4(). Taking logarithms, this is equivalent to checking that

(67) 2 + 3 log k + log e _< 2k- 2k2.

By the definition of e, with c = , it is enough to show that

(68) log log n 42k2 + 42k >_ 59 + 65 log k + log log log n,

or, since k >_ 3, that

(69) log log n 42k2 > 65 log k + log log log n,

which is easily verified when 3 < k < / loglogn.

Concerning the running time, observe that by (66) our choice of the parameters yields

(2()(mk)(;)4q+lM(n)) O((logn) l+’/-6’glgnn io_og,,M(n))0

=0 nM(.n

5. Remarks and further results. One could combine the algorithm of Lemma 1.4 with
the proof of the regularity lemma of Szemer6di [Sz], in much the same way as we obtained
Corollary 1.5, to obtain an efficient algorithm which would yield an e-regular partition of
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the vertex set of a given graph in the sense of Szemer6di’s result. Indeed, a related paper
by Alon, Yuster, and the present authors [ADLRY] includes a result (Corollary 3.3) which is
essentially an alternate version ofLemma 1.4 and which is used in exactly this way to produce
such an algorithm. The resulting constructive version of the regularity lemma (Theorem 1.3 of
[ADLRY]) leads to efficient sequential and parallel algorithms for many applications involving
topics such as graph colorings and graph decompositions.

We note, however, that in spite of these results it is also shown in [ADLRY] that the
problem of deciding whether a given partition of the vertices of an input graph does satisfy
the properties guaranteed by Szemer6di’s regularity lemma is coNP-complete.

The algorithm for finding an e-regular partition in the sense of the regularity lemma could
itself be combined with Lemma 1.6 to obtain an algorithm for computing an approximation
to the number of subgraphs of a given graph G which are isomorphic to a particular smaller
graph H. Unfortunately, the upper bound on the number of classes in the e-regular partition
assured by the "original" regularity lemma is extremely large. Due to the way in which this
upper bound depends on E, this approach would only achieve the accuracy of Corollary 1.5
for an input graph G on n vertices when H is a graph of k vertices with k _< log(p) n. where
log(p) denotes the p-fold iterated logarithm and p in this case is a polynomial (of degree about

This is the reason for our use of a partition of the set of k-tuples of vertices into20) in .
cylinders as described in Proposition 2.1.

The regularity result given in Proposition 2.1 is nearly optimal in a certain sense. Although
that this cannotthe bound on the number of cylinders in that statment is still exponential in ,

be avoided entirely follows from the existence of a bipartite graph G (U U V, E) in which
every "large" pair (X, Y), X

_
U, Y V. is either e-irregular or has density satisfying

d(X. Y) <_ e. The following results make this statement precise.
THEOREM 5. I. Given a positive constant e and positive integer n, there exists a bipartite

graph G (U tO V. E) with [VI [U[ n and density d(U, V) (1 r’) 1/2"f 1/4r
such that./’or any pair (X, Y), X U, Y c_ V for which

i) IXIIYI > 4n22-1/, and
ii) d(X, Y) > e,

we have that (X, Y) is e-irregular.

Proof Let U and V be sets of size n. Set 1/ and r 1/2 (where w.l.o.g, r and
are integers) and partition each of U and V into pairwise disjoint subsets of size n / r. Choose
a bijection between the subsets of this partition of U and the collection of all sequences of
length r whose entries are integers between and t, and a bijection between the subsets of
V and this same collection of sequences. If x is in the subset of U which corresponds to the
sequence (ul, U2 Ur), let x(j) uj for each j, j 1.2 r. Similarly, for y in V let
y(j) denote the jth term of the sequence which corresponds to the subset of V containing y.
Define a bipartite graph G on U t3 V as follows: the pair {u, v}, u 6 U and v 6 V, is an edge
of G if and only if x (j) # y(j) for each j, j 1, 2 r.

Note that each point u U is joined to

(t--1)rn(1)7= 1-7 n--(1-V%)(’/z)’/Tn

vertices of V, from which it follows that

d(u, v) ( 4-i))/)

Now suppose that (X, Y) is an e-regular pair with X c_ U, Y

_
V, and that this pair has

density greater than e.
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For each j, j 1, 2 r, and each i, = 1, 2 t, set

Xi(j) {x Xlx(j) i},

and

yi(j) {y YIy(j)= i}.

Clearly, for each j, j = 1, 2 r, we have

X U Xi (j) and
l<_i<t

Now set

X(j) U {xi(j)llxi(j)[ < lXl]
l<i<t

and

Y(J) U {yi (j)llyi (j)l < IYI}
l<i<t

for each j, j 1, 2 r.
It follows immediately that

(70) IX(j)l < tlXl- /lXl and IY(j)l < tlYI = flYI.

Finally, set

X’=X- [J x(j) and Y’=Y- [J Y(j).
j <r <_j <r

From (70) we have that

1
(71) IX’l > (1- r/)lXl IXl and IY’I > (1- r/-)lYI- IYI.

Notice that by the definition of G no edgejoins any vertex ofX (j) to any vertex of yi (j).
It follows that the density of such a pair is zero and, since (X, Y) is an -regular pair with
d(X, Y) > , we have

(72) IXi(j)l < lXl or IYi(j)l < lrl

for each j, j = 1, 2 r and each i, 1, 2 t.
If x X’ and y Y’, then by definition we have both IXX(J)l >_ IXI and IYY(J)[ > lYI.

It follows from (72) that in this case we have x(j) y(j) for each j, j 1, 2 r. Thus
for each j there exists a partition U yj {1, 2 t} with the property that if x e X’,
then x(j) . Xy, and if y Y’, then y(j) . Yj.

Selecting such partitons for each j, j 1, 2 r we have

IX’l I Ijl t-
l<j<_r
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and

IY’l II lyjl
l<j<r

t)2 for each j j 2, r, we obtainNow since I’lljl (

()r(n2) n2
(73) IX’IIY’I _< 7 2/v7

Combining (71) and (73) yields

which establishes the theorem.

4n2

IXllYI 2/,

COROLLARY 5.2. Given a positive constant e andpositive integer n there exists a bipartite
graph G (U U V, E), IUI = IVI n, such that if (X, Y) is any e-regular pair, X c_ U,
Y c_ V, with d(X, Y) > e and IXI IYI m, then

2n
m<

21/24"

COROLLARY 5.3. Given apositive constant e andpositive integer n, there exists a bipartite
graph G (U U V, E), UI VI n, such thatfor each e-regular partition 1C of U V
into cylinders we have

IEI > c21/, where c
(1/4" 2e)

Proof Let G (U t_J V, E), IUI IVI n be the bipartite graph constructed in the
proof ofTheorem 5.1 and/C an e-regular partition of U x V into cylinders. A cylinder X x Y,
X

_
U, Y

_
V, is called "big" if

IXIIYI > 4n22-1/47,

and "small" otherwise.
Note that if X Y is big, then by Theorem 5.1 the pair (X, Y) is either e-irregular or has

density at most e. Consider the pairs (edges and nonedges) which are contained in big cylinders.
These consist of at most en2 edges which are not in e-regular cylinders, at most en2 edges
which are in cylinders of density at most e, and at most (1 d(U, V))n (1 1/.v/) n
nonedges. Thus there are at least (1//- 2e)n2 pairs which are contained in small
cylinders from which the corollary follows.

REFERENCES

[ADLRY]

[cw]

[ER]

N. ALON, R. A. DUKE, H. LEFMANN, V. RODL, AND R. YUSTER, The algorithmic aspects ofthe Regularity
Lemma, J. Algorithms, 16 (1994), pp. 80-109.

D. COPPERSMITH AND S. WINOGRAD, Matrix multiplication via arithmetic progressions, J. Symbolic
Comput., 9 (1990), pp. 251-280.

N. EATON AND V. RODL, Ramsey numbersfor sparse graphs, Emory University, Preprint.



620 R.A. DUKE, H. LEFMANN, AND V. RODL

[ELS]

[FR]

[FI

[FH]

[NP]

JR]

[SS]

[Sz]

P. ERDOS. L. LOVASZ. AND J. SPENCER, Strong independence of graphcopy functions, in L. Lovfisz.
J. H. Spencer, eds., Graph Theory and Related Topics, Academic Press, New York. 1979,

pp. 165-172.
F. FRANEK AND V. RODE, Ramseyproblem on multiplicities ofcomplete subgraphs in nearly quasirandom

graphs, Graphs Combin., 8 (1992), pp. 199-308.
O. FRANK, Estimating a graph from triad counts, J. Statist. Comput. Simulation, 9 (1979),

pp. 31"-46.
O. FRANK AND E HARARY, Balance in stochastic signed graphs, Social Networks, 2 (1979/80),

pp. 155-163.
J. NEETIIL AND S. POLJAK, On the complexi, ofthe subgraphproblem, Commentationes Mathematicae

Universitatis Carolinae, 26 (1985), pp. 415-419.
V. RODE, On universality of graphs with uniformly distributed edges, Discrete Math.. 59 (1986),

pp. 125-134.
M. SIMONOVITS AND V. Z. SOs, Szemerddi’s partition and quasirandomness, Random Structures Algo-

rithms, 2 (1991), pp. 1-10.
E. SZEMERIDI, Regular partitions of graphs, in Proc. Colloque h,ter.. CNRS. J.-C. Bermond,

J.-C. Fournier, M. Las Vegas, and D. Sotteau, eds., 1978, pp. 399-401.



SIAM J. COMPUT.
Vol. 24, No. 3, pp. 621-649, June 1995

995 Society for Industrial and Applied Mathematics
013

A VARIATIONAL METHOD FOR ANALYSING UNIT CLAUSE SEARCH*
HENRI-M. MIJEANf, HENRI MORELt, AND GIRARD REYNAUD

Abstract. We expose a variational method for analysing algorithms, as applied to analyse the algorithm UC,
which is the Davis-Putnam procedure for a set of clauses of three literals. The variable from a unit clause or, if
there is none, the first remaining variable from a fixed list is chosen. The algorithm UC finds all the solutions as a
set of cylinders. Following the nomenclature of Purdom [J. Inform. Process., 13 (1990), pp. 449-455], we call this
algorithm "unit clause backtracking with cylinders of solutions."

First we give an expression for the number of nodes of the calculation trees of all the inputs. Then we use a
variational method to calculate the base fl of the principal exponential part of the average time of calculation T.
This "exponential base" is the maximum of three elementary functions f/ of four real variables, These functions
are defined on the product of the half positive real line by the 3-dimensional unit real cube. We finally obtain
the following short statement. Let v be the number of the variables. Let c be the number of the clauses. Let
7’ > 1. Let y be constant when v grows to infinity. The principal exponential part of the average time of UC
is flv where

/= max 2x(1 3)‘2 ’3)
Y

0<x< -- + T

We mean that limv--,o T /v .
As a first consequence of our method we match UC, with the algorithm B without rearrangement (i.e., with a

fixed order for introducing the variables). This gives a proof to a conjecture ofP. W. Purdom [Artif. Intell., 21 (1983).
pp. 117-133].

Key words, analysis of algorithms, computational complexity, satisfiability, variational methods

AMS subject classifications. 68, 49

Introduction, The problem of whether an "and of or’s" F (conjunctive normal form) is
satisfiable is known as the satisfiability problem. This problem is denoted by SAT, or 3SAT
when each clause has 3 literals.

We consider an algorithm UC which solves 3SAT and finds all the solutions as a set of
cylinders. We calculate the average number of nodes of a calculation tree for an input with a
simple probability law [6].

The following works are close to ours: P. W. Purdom, Jr. [12], [13], [15] gives asymptotic
results, a compact summation for the calculation time, and the conjecture that UC is in the
difficult case exponentially better than B. The summation and conjecture were the main impulse
for our work; moreover, the report that it was very difficult to give bounds to match UC and
B gave us the idea of calculating exactly the base of the exponential part of the average time.
See more in 1.1.

The works of J. Franco [3], Ming-Te Chao and J. Franco [10], A. Goldberg, P. W. Purdom,
Jr., C. Brown, and E. Robertson [4], [14] give a probabilistic analysis of simplified Davis-
Putnam procedures. B. Monien and E. Speckenmeyer [11] give an algorithm which solves
SAT in less than 2n steps. P. W. Purdom, Jr., and C. A. Brown [13] give upper and lower
bounds for the average calculation time of UC. See more in a survey by P. W. Purdom [15].
V. Chvatal and E. Szemeredi give an exponential lower bound for the size of the resolution
proof of unsatisfiability for a fixed ratio of the number of clauses to the number of variables.

Our work gives a method for appreciating exactly the principal exponential part of the
acceleration which is due to the choice of unit clauses.

*Received by the editors May 4, 1992; accepted for publication (in revised form) January 18, 1994.
Laboratoire Analyse, Probabilit6s, Information, Facult6 des Sciences. Luminy, case 901. 70 route L6on-

Lachamp, 13288 Marseille Cedex 9, France.
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cLet v be the number of the variables. Let c be the number of the clauses. Let t’ > 1.
Let t’ be constant when v grows to infinity. Let

(I) r max 2x(1 3)2 _)’0<.<1 Y --The notation/ emphasizes that/ depends only on ?’. We will write/ for/.
We prove that there exist an integer k0 and two positive functions mk and Mk of k > k0

with limits zero when k grows to infinity, such that for every k > k0, for every e > 0 we can
find vk, for which v > Vk, implies/ rnt i < T </ + Mt + .

Let k be such that for k >_ k we have rnt < , Mk < , then v > vt,, implies
/ < T]/ < fl + ; that is,

lim T =/.

(Thus, if we write T =/Vh(v), h(v) may be exponential but of less importance than/v:
for instance h(v) could be fl’/-.)

7). 4.3, followingWe will define a ?’c 4.5... such that for t’ < ?’c, / is 2(g see
"Remarks on the average number of solutions."

Our method uses variational arguments. For clarity, in this paper we give only asymptotic
results and consider only the case ?, > 1 (the case V < needs slight modifications of our
proofs).

I. Description ofUC with input F.

1.1. Algorithm. At the end of the paper, there is an index of the first occurrence of each
item.

Let v be integer > 3.
The literals are the elements of a set L of 2v elements; on L we are given a partition P

of v subsets of two elements. To each of these subsets s {/, m}, s e P, is associated a
variable vs which takes the value or m. The number of the variables is v. If s {/, m} the
two literals and rn are said to be in opposition, or opposed; we write -m -(-l).

An instance for 3SAT is a sequence F (i)l<i<c, ci {xi, Yi, zi}, of clauses which are
defined as sets of three (distinct) literals without opposition. (i.e., the literals of each clause
have three different variables). Repeated clauses may be in F. Thus, c will be always the
number of the clauses of the entry F we consider. The real number V is the ratio _c. An entry
F is satisfied by n {l Ip}, p < v iff for every 1... c, c n - . If < i’ we say
that ci is "before" ci,.

Let n 112... lp be a list of p distinct literals without opposition. The set {1, 12 lp}
is also denoted by n. The set {-l -lp} is denoted by -n. We refer to n as the "stack."
The literals 11 lp will be successively introduced by the algorithm.

For < p, the prefix I12... li ofn is denoted by ni. The set of clauses F is obtained from
F by removing every clause satisfied by n and removing every literal of-n in the remaining
clauses. So, F is satisfied by n iff F is empty.

We define the following lexicographic order on the unit clauses of Fn. (The unique
literal which is in the unit clause d is also called .)

Let r(d;) be the smallest integer for which there is in F a clause u, u {-lj, -lr(, },
where j < r(a), and let r’(a) be the index ofthe first such u. Then a <
or r(a) = r(’) and r’() < r’ (’). This is the condition for the value of 8 being forced before

’ is assigned a value.
We are given a constant list ala2.., ao of distinct literals without opposition. We say that

this list is the standard list.



A VARIATIONAL METHOD FOR ANALYSING ALGORITHMS 623

The algorithm UC is the following. We denote a state of the stack by n.

Begin. Let n be the empty sequence.
(A)
If there are two opposed unit clauses in Fn then

this partial backtracking ends without solution;
else

if there is a unit clause in Fn then
choose as lp+l the least one in the lexicographic order; go to (A);

else if F is empty then
this partial backtrack ends (n yields a cylinder of 2v-p solutions);

else let s be minimal such that as is neither in n nor in -n. Generate in parallel two
calculations by taking as or -as as lp+l; let each calculation go to (A).

N.B. We choose this algorithm to analyse the importance of selecting forced literals. This
is relevant for , great enough, for instance, near the maximal entropy case (e.g., 4 < , < 5
for v 50), i.e., when half the entries of c clauses with v variables are satisfied. So the
algorithm UC is not interesting for low values of ’; for such a ?, it would be useful to extend
our analysis to an algorithm selecting literals in the shortest clauses, without using a standard
list. See 5.

Let us call U the algorithm derived fromUC by the following modification. The algorithm
U does not stop on solution nodes n and lengthens such a node by a complete subtree.

We will use the fixed length clause distribution with equiprobability for each clause. This
algorithm, and our probability model, are almost the same as they are in the analysis of 13].
If we replace in our version the test for Fn being empty by a test for all the variables being set
we obtain the version ofPurdom and Brown. Purdom analyses the same algorithm in 12]. All
the techniques of algorithm UC are in the Davis-Putnam procedure [2], which also contains
a number of additional techniques. So, for , close to where our algorithm is slow, do not
conclude that the Davis-Putnam procedure is also slow.

The advantage of our method is particularly great when the number of clauses is propor-
tional to the number of variables, a case of great importance for which the previous formulas
did not give tight bounds. Our method gives more than tight bounds: it gives the exact principal
exponential part.

1.2. The ordinary backtrack algorithm with a fixed order for the variables.

1.2.1. Description of B with input F. The algorithm B is the following. We denote a
state of the stack by n.

Begin. Let n be the empty sequence.
(A)
If there is in F a clause {-li, -lj, -Ip }, < j < p then

this partial backtracking ends without solution;
else

if Fn is empty then
this partial backtrack ends (n yields a cylinder of 2v-p solutions);

else
generate in parallel two calculations by taking ap+ or -ap+ as/p+l;
let each calculation go to (A).

1.3. An example of backtrack tree for UC and B. We give below an example of back-
track tree for UC. We also give for the same entry the backtrack tree for the algorithm B.
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Solution

Contrsdictlon

b
b b b

-c -d d c c

Number of nodes 14

FIG. 1.

We see in Fig. how UC works. On the second and third branch the forced literals -d
and d are introduced with rearrangement.

Figure 2 gives the calculation tree of B for the same instance F. These calculation trees

are subtrees of the whole binary tree of depth v.

2. Notation for the analysis.

2.1. Nodes, status of the literals of the stack, selected clauses. Let v >_ p > 3. A state
n 112... lp of the stack defines a node of the calculation tree that is built by UC from an F
as a backtrack tree. If a node n is a prefix of a node n’ we write n < n’.

We define two kinds of positions of literals in n" the standard positions and the forced
literal positions. To each forced literal position is associated a position j < i. The
(position of the) literal lj is called the forcing position for the (position of the) forced lit-
eral li. We have the following conditions for the positions and j" the input F con-
tains at least a clause {-li,,-lj, li}, i’ < j < i, which is selected using lexicographic or-
der.

We define the status of a position i, _< < p of a generated stack n. If li has been
chosen as a forced literal of Fnj_, then the status of is "forced" literal, or else it has been
chosen as an as or -as and the status of is "standard."

We say that n is a binary node if in a next node nlp+ of the backtrack tree lp+l is standard,
i.e., if F,, has no unit clause. Otherwise n is an unary node in the backtrack tree, or a terminal
node.

Let M be the set ofthe positions in n with status "forced" and m be their number. Positions
and 2 are always standard. Thus m < min{p 2, c}, where c is the number of the clauses.

Let (j.) (js)l <s<m be a sequence of m distinct integers with < j, < c. The clause c./
is selected by the algorithm to decide that an lt, is put into the stack as the sth forced literal.
Thus cj,. is the first clause in the corresponding lexicographic order which is not satisfied by
n,.,_ and contains the negations of two literals of n,.,_.
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Solution D
Contradiction

The instsnce

s b c d

+

4. +

b b b b

C C C C C C

d d d

Number o! nodes 26

Fie;. 2.

Let (ki) klk2.., km be the permutation of the integers m such that jk, < Jk2 <
< jk,,. Thus j, is the index of the first selected clause cj., and so on.
Consider again the definition of the lexicographic order in 1.1. If the unit clause literal

8 li has the position in the stack n we also write ri instead of r(li) for the position of the
forcing literal lr(). For the clause u {-lj, -Ir(), 8} the two literals which are opposed to
literals in the stack are said to be theforcing literals for theforced literal 8. By "forcing literal"
we mean the second forcing literal unless stated otherwise.

In Fig. 1, the unit clause literal -d is introduced by the selected clause I-a, b, -d}; we
have now n (a, -b, -d) (1], 12, 13); so 8 -d, r(8) 2, j 1, lj a, lr(d) -b.

More generally, a literal -li, is said to be the forcing literal of a clause u {-li, -li,, x}
of an instance F iff/i, li, are two literals ofn and < i’. We will deal later with clauses in which
the forcing literal ofx was set before the position i’. If a selected clause is cj. {-li, -li,, lbs
where < i’ < bs, we say that -li, is the forcing literal of the sth forced literal Ibs of n. (With
the notation of l.1 we have i’ r(lb.,), js r’(lb.).)

2.2. Moderated measures I, sets ofnodes. The set of instances F is denoted by F. There
are 8() possible clauses, where ()is the usual binomial coefficient. Thus the cardinality of
F is IF l= 8 ()c. We define subsets of F indexed in the following way. Let F, be the subset
of F from which UC generates the node n.

A literal li may be forcing for ti forced literals, ti _> 1. The numbers ti define a measure I
with integral values on the interval of integers p ]. The behaviour of these measures
I is crucial in our method. We will detail the relation of I to the set of the forced positions
as the "flattening" of I. The measures I must obey the so-called constraints of "moderation."
These measures I will be used to index the sets F,,,I of a partition of the set F,, of the instances.
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So, let I (ti)i (ti)i=2 p-1 be a sequence of integers with ti >_ 0; t; will be the
number of variables which are forced when variable is set. We set m mI ZE<i<p-1 ti’

Let F,,.I be the subset of F,I,t from which UC generates n in such a way that for 2 < _<
p 1, ti is the number of forced literals of n which have --li as forcing.

The sets F,I.I are empty if the indices are not compatible in the sense studied in the next
section. The fact that n l lp-1 is a binary node implies that lp is not forced. (Otherwise,
the set Fn.t would be empty). So I must satisfy the following necessary conditions:

(2) for every r [2 p 1], I ([r, p 1]) tr q- tr+l "-’’" -" tp--I < p r.

If I satisfies (2) we say that I is moderated on [2, p ]; it implies that tp-1 O.
We will prove in the next section that condition (2) is sufficient in the following sense. If

(2) is true, the status that UC calculates from F F,,.I for each lj of n may be calculated only
from I (in such a way that every ti is the number of the forced literals lj whose forcing literal
is -li).

2.3. Calculation of the status from any moderated measure I on [2, p-l]. We will
also define and calculate from I an integer q q(1).

In the case that ti 0 for 2 < < p 1, the lj are standard for j p. So we let
q 0 in this case. Otherwise let m be the least such that = O. Then 11 l,,,_ are
standard.

If tm- +"" + tp-1 p m + the li are forced form _< _< p. We let q in this
case. Else let m. be the least integer such that tm,- + + tm2- < m2 ml + 1.

So m2 is the integer such that m2 m is the length of the first round of forced literals.
Then Im. is the first literal of a second segment of standard literals. If there is no > m2 with
ti > 0 let q 2. Otherwise let m3 be the least such i. We may iterate and calculate q and the
sequence 2 < m < < mq < p such that the status is as follows:

(3)

st forced st stq+

112... Im-I lm /ml+l Im2-1 lm2 Im+l lm.-I lm,i Im,+l Ip,

where st means "standard." If q is odd stq means "standard" else it means "forced."
Let M MI denote the union of all the intervals Imp, m2[, [m3, m4[ which are so

calculated and marked as forced. Let q’ denote the number of these intervals which have M
as union. We call MI theflattening of 1. We also say that I flattens on MI. If ti _< for every
i, we say that I is flat. Indeed, the flattening Mt is the same as / (the support of I) shifted
right by 1.

So the sequence of intervals above appears when flattening I, and it is determined if only
I is known, independently of the literals li of the stack n. In the intervals labeled as standard,
the literals li may be any literals which are not in n or --ni, i.e., any literals li which for every
i’ < are different from both li and --Ir. In the intervals labeled as standard the literal 1 must
be the first in the standard list which is not in ni or

So we say that a node n is compatible with I if every literal li of n MI is as or -as,
where s is the least integer such that a and -as are not in n_. There are 2(v + l)
possibilities for the forced literal li at position in n. Let m =1 M I.

The number of nodes which are compatible with I and have length p is

(4) cl 2p H (v + 1).
iM

If M is empty Cl 2P.



A VARIATIONAL METHOD FOR ANALYSING ALGORITHMS 627

If q is even the literals lmq lp become standard by the preceding calculation. Then
we have tmq- tmq to-1 0 and condition (2) is sufficient.

st forced st st

(5) l/2...Im-I lm lm+l...lm2-11m2 lm,.+l...lm.’; lm lmq+l...lp.

We see that q is even iff the measure I (ti)i is moderated on [2 p We get q’ = q

3. Calculation of the number of binary nodes of lengthp-1 which are generated by
UC. We will not examine the case of q odd here. We suppose now that q(l) is even and so
we calculate the total number of length p nodes which are generated from Fn.t by UC. The
integer q is even iff the last literal lp of n is standard, i.e., iff the node np_ is binary. Thus
we will calculate the total number of length p nodes which are generated from F by UC and
such that their preceding node is binary. Thus, our final results are affected by a polynomial
factor, i.e., are not modified.

We first calculate a summation for the exact number of binary nodes of all the backtrack
trees. Then we divide the summation into a polynomial number ofportions and use a variational
argument to obtain the result.

3.1. Sets of clauses which are defined with the stack n. In the following text until (8)
we let I represent the essential information about the nature of the stack. As a function of I,
we calculate how many predicates would result in the program producing a stack of the kind
specified by I. To do the calculation we need to compute how many clauses exist of various
types.

We are given n {l, 12 Ip_ and v. We will consider that the possible clauses that
occur in an entry are of the following four different types:

1) the clauses u which contain at most one literal of-n {-/, -12 -lo- },
2) the clauses which contain --Ik as forcing literal, k 3 p 1, and contain an !i

with j < k.
3) the clauses which are in the sets Sj,k defined below which contain a forced literal of

the stack, the forcing literal of l, and another literal of -n.
4) the clauses of the set Rt which are defined below.
We call Gp the union of the clauses of type and 2.
The clauses of type 1, 2, and 4 can be inserted everywhere when building an entry for a

given n, without changing n. We count separately the clauses of type 4 because we use for
that the appropriate Pi which will be further defined. The clauses of type 3 cannot be inserted
anywhere.

After the necessary definitions, we will check in 3.2 that no type of clause has been
omitted.

We set go =1 Go I. We get, after classic calculation,

4 2
(6) gp - v(v 1)(v 2) v(p 1)(p 2) + p(p 1)(p 2).

Let Gp be the subset of the clauses of Gp satisfied by n {l, 12 lp-l}. We set

gp =l Gp I. We get

(7) go 2(p 1)v2 (p 1)v(p + 4) + 2p(p 1).

go is calculated as follows. The total number of possible clauses is 23v(v 1)(v 2)/3!.
This is the first term in the formula for go. The number go number of all clauses
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number of clauses {-li, -lj, x }, x q n, x q[ -n: number of clauses {--li, --lj, lk or l },
<j < k < p- 1. So,

4
gp -v(v 1)(v 2) (p 1)(p 2)(v p + 1) (p 1)(p 2)(p 3).

Let I be a moderated measure on [2, p ]. Let / {il i be the support of I,
i < < i, (i.e., for j or, tij > 0 and ti 0 if /_). Every F in ’,,,I is a shuffle
of sequences of the following type.

For j o’, k ti.i, let Sj,k be the nonempty subsequence of clauses of F
which contains the negations -x,-l( of two literals of n and the kth forced literal in n for
which -lij is the forcing literal. (The algorithm UC selects the first clause of Sj,k to generate
this forced literal and later finds that the following clauses of Sj,k are thus satisfied.) Let
be the length of Sj,k and/j l<k<tj j.k. Let/z l_<j_<o/zj.

Definition of Pi. Let p and any moderated measure I on [2, p be given. For any
position in the stack let pi be the number of the forced literals lk, < k, the forcing literal of
which has a position i’ < i.

We see that Pi ti-1 Pi Yjo<_j<i tj 0 where j0 is the position of the forcing
literal for the forced fiteral li+l, and 0 is the number of the literals ls, s _< i, which are forced
by

Definition of rl. Let R1 be the set of the clauses {-lj, -li, l }, j < i, which are satisfied
by a forced literal l which is generated with a forcing literal li’, i’ < and has its index k in
]i, + Pi].

Let rl =1 R l= i[2,p_](i 1)pi. Let W be the subsequence of F of the clauses
which are in RI.

3.2. Entries as shuffles. Let to =l W I. Let s to + #. Thus, F is a shuffle of these
Sj,, of W and of the subsequence S of the c s remaining clauses which are in Gp. These
integers depend on I, which is taken to be an index for ri and p.

Now we check that there is no other type of clause to consider to build an entry which
admits n as a node of its backtrack tree and I as the distribution of the forcing literals.

Let u {x, y, z} be a clause in such an entry. If no more than one of the literals x, y, z
is in -n, this clause is considered in Gp. Moreover x, y, z cannot be all in -n because n is a

binary node.
Now, we have only to consider the clauses u which have two literals in -n" we can

write u {-/, -l, z},/3 < or. The literal z must be in n because, if z had not been forced
previously by another suitable clause, z was forced by this clause u. Thus, u {-l, -l, lv },
and we suppose y > ot otherwise u would be in Gp.

If u is the selected clause which introduces l in n as forced, u is in a Sj,. Therefore it
has been considered.

Consequently we suppose that l is introduced by a clause other than u. (Thus the forcing
for Iv is l or on the left of l.)

Consider the following figure for n l Ip_

1 1 1+ l+p+t lp-1

+p +p+t p-

We recall that p is the number of all the forced literals on the right of c which are forced
by literals on the left of or; these forced literals range from ot + to ot + p,. On the right of
ot + p there are t forced literals with l as forcing; on the right of c + p, + t, further forced
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literals are possible, but their forcing literals must be on the right of or. This implies that the
literal r, of u is on the left of

We have two cases:
1) if o + p < V, I is forced by l, so u {-l#, -1,, r, is in an Sj,; otherwise
2) < + pa, which implies pa > 0; we see that u is in R.
This checking emphasizes the different paas played by the sets Sj, and Rt; these two

types of sets are relative to the structure of the lexicographic order.

3.3. Total number Dt,-i of the binary nodes of length p- 1 which the algorithm
UC generates according to a measure I. A node is counted as many times it occurs in
the different backtrack trees. Given I, every clause of the sequence Sj, may be chosen in

u i different ways. Every clause of W may be chosen in r different ways. Then the
total number of the shuffles of the sequences above is for given s, w,

(8)
(s) (s, w, I)

c-’(r’) Z ( c )gp

where Ixj,k > 1, <_ j <_, , < k < tit.
We first analyse U. (.See N.B. in 1.1. U is the algorithm derived from UC by the following

modification: U does not stop on solution nodes and lengthens such a node by a complete
subtree. We may either suppose p < v or consider for a while that we also count length
v solution nodes which are not binary.)

Let n be given and take any shuffle F above of W and the Sj,k then U calculates the right
forced literals, except for a permutation in each subset of the tj forced literals which have the
same forcing literal lit. The number of shuffles from which U generates such a permutation
of n does not depend on this permutation. We will do a division by Hi ti! in the following
expression.

We recall that this summation is a variant ofPurdom’s summation in 13, p. 721 ]. Here we
consider forced literals as introduced one by one, not by batches. We emphasize the particular
set W of clauses.

In the preceding formula, informally speaking, the u’s and #’s relate to those clauses that
force variables; the rl and w relate to clauses that would have forced variables except that the
value of the variable was already known by the time the forcing would have occured. The gp
and c s relate to the clauses that don’t do any forcing.

The integer tj is the number of variables that are forced when j is set;/z.i, is the number
of clauses that force variable k when the forcing literal j is set.

Let I be moderated on [2, p 1] with tp-I 0. We denote by Dl,p-1 (resp., __D,p_)
the total number of binary nodes n of length p which UC (resp., U) generates according
to I, each node being counted as many times it occurs in a backtrack tree. So,

(9)
cX__(s)

2---D/,p-I= Z
O<s<c O<s<c

l_<j

cX_(s)

l-I ti
2<i<p-1

We now return to the analysis of UC.
We will first study DI,p-1 to obtain the average number T of binary nodes of length p,

which will be
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Dp

with Dp I Di,p, where the summation runs over all the I which are moderated on
[2, p-11.

We take off the nodes which U generates although they are satisfied by I, 12 lp-l.
Thus, we get Dz,p_"

(10) 2Dl,p-1 el I"I tij
P(I, lz) (rl)W gCp-S gp

S,tO S
l<j<_a

where/z s w, where s runs over [m, c[, w runs over [0, s rn ], and where P (I, #) is

(11)

P(I, Iz)
IZ=la l,l +...+l ,til +...+lao. +...+la,%

l<j<_a

( )
].L 1.1 z l,tq lZa, #a,tia

where the summation runs over every decomposition of/z as/z _<j_<,, #j and the de-
composition of each #j as IZj Zl<_k<_tij #j,k, with all the t4, t4,k >-- 1. We emphasize that

rn _< s < c; s c is impossible since n is binary. On the formula (10) we see that Dl,p-1 0
ifc =S.

We will now study P (I, #).
Let x Xm be real positive numbers (it is not useful here to consider a more general

case).
Let

la=#+...+l,,n,li>_lfor l<_i<_m ILl, lm

(We use the notation \# because we think of the expression above as a "diagonal power,"
because every I’Ii x" contains the diagonal product I"li xi as a factor.)

So we consider that P (I, tz) (x + + Xm)\U. where the list x x,,, is the list

,, terms ti terms ,i, terms

U Ul U2, bt2 b/a

thus,

Xl + + Xm tittl + + liquor ti(i 1).
2<_i<p-1

(The notation (Z2_<i_<p-1 ti(i 1)) \u supposes that the sum inside has formally m terms.)

We see that

P(I, ) O ifx< ti=m and P(I, m) m! ui
2<_i<_p-I 2<_i<p-I

As a consequence of the definition of (x + + x,,,) \u we have (x + + x,,) \u 5
(x +... + x,,
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Thus,

2_< -1

We will use the following bound:

ti(i- l)

(14) Ht = E ti(i- 1).
2<_i<_p-1

Proof of the preceding inequality. Let m be an integer >_ 1. Let #, u Um be real
numbers with/z >_ m, u >_ 0 for m.

Let

Mm’u { (/’tl lZm)’lzirealnumbers>-lwithElzi=tz}"1<_i<m

It is easy to prove first that for (/zl /Zm) E Mm,t,

(15) 1"I /zi >- /Z rn + 1.
<i _<m

(Roughly speaking, we will get closer to the result by replacing inside the product Hi
two factors x and y, x > 1, y > 1, by and y + x 1. Thus the sum of these factors has not
changed; their product has decreased.)

Then we prove that

(gl "1"’’" +gin)\tz (gl ""’’" +gm)\m(bll "r’’’" dr’him)lz-m.
m!(/z rn + 1)!

This is equivalent to

Mm,u 11 lZm l<_i<m

uildi

<- #’ H Z (lz-’m)’ H -1

m(/z m + 1)
m! U 1di

<i<m u,., (Zl- 1)* (Zm- 1)*
l<_i<_m

which is equivalent to

l-I ui’ H ui

Z l<i<m_
< Z <i<,,,_

H #i (1-1- 1)!. (/Zm l) ]Z- rn + (/Zl- li7 (/Z,,,- 1)"Mm.u
<i <_m Mm.u

The last inequality is a consequence of (15).
Remark. if we do not use (15) we get immediately from the last two lines that

P(I, lz) <
lz! P(I,m)H’ m.

(lz m !m

This result will satisfy the requirements of 4.3, unless we wanted to evaluate exactly the
degree of the polynomial factor, which we will ignore.

4. Asymptotic behaviour of the average number of nodes. We will proceed in nine
successive steps.

where

(13) P(I, #) <_ lz!
P(I, m)H-m,

(/z tn + 1)!m!
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4,1. Notation. We let V , a , . and, as in 4.3, # will change sense with
/z m. We will shorten by supposing ?, > 1.

It the two quantities x and y that we consider below grow infinitely when p and v do so
and x/y has the limit 1, we say that x y.

We have the following behaviour of gp. Let p v(1 O(v)) v(1 r/).
We also have 8() 4v3/3. Thus, T 1/0 (Dp/(4v3/3)c) 1/v.
We will prove that gp and g can be replaced by the following values:

4v3 3k2 .3
gp - D(.), where D D(,k)

4 2

and

4v3 3 () .2
where N N(I.) --).

We will write now g for gp and g* for gp.
Suppose limo r/ 0. Therefore g*/g -20/v 2r/2 + 4r12/v + 80/3v2 +

203/3 + higher-order terms.
Note that, for instance, r/! v2 may be of lower order than 02 / v. We are allowed to set these

definitions, although p and v are two different variables, because 0 < p < v and because of
the special form of the functions we consider, such as gp.

4.2. Asymptotic behaviour for UC. We set

CI -- 2Pc’I.
We recall thatm is an abbreviation of ml =1 1 I= E2<i<p-I ti. The average time for UC

is polynomially (in fact, within a factor of v) equivalent to

(16) ( E2p ((g,)C-S))T max Q,,
P l,,w

where s tt + w, tt runs over [m, c[, w runs over [0, c -/x[, and

Q,,u, C

2<_i<p-I

P(I,#) (:)(;)(rl)WgC_S.ti (4v3/3)c

4.3. Elimination of the parameters g and w by a polynomial bound and summation,
dropping the factor (l-(g*/g)C’S). We will match Qs.w with Qs’,.,, where s rn + w, i.e.,
in the limit case/z m.

Consider 0 <_ rn _< v < c and 0 _< w < c m as fixed; then the possible s verify
c>s >s’withst=rn+w.

We have

P(1, lz) (c w m)! m!
gu-m P(I, m) (c- w lz)! !z!

We may replace above gta-m by (4Dv3/3)u-m within a constant factor when v --, cxz.
3 xIndeed, from the expression of gp we obtain g/(4v3/3) D - + (1/2v2) + ] +

; vhere ) p/v. Thus, g/(4v3/3) D- . .._2).(k/v2)--;, ; + + as 1/4 < D < 1,
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(v))P--m. So, for v large enough,0 < At- m < c, E (g/(4Dv3/3))’-m (1 + o
4 e-4r’ Our assertion is proved.(1 -4 .. (v))Ix-mo < E < as u+lim(1 + -e2)c

Now we apply (13):

(c-w-m)(c-w-m-1)...(c-w-At-1)a.,w
< nx-mQ..w (4D V3/3)ta-m (lz m + 1)!

We will use the following facts:

p2 132
ti(i-- 1) < <

-2-2’
3

(c-w-m)(c-w-m- 1)...(c- w- At- 1)
< yU-m

where F c/13. From the term 133 inside (4D 133/3)u-m, we associate 13:(u-m to simplify
with the bound 13:/2 of HI and vu-m to (c w m)(c w m 1)... (c w 1)
and we obtain

Qs,w (r/2)-<
Qs,.w ( m + l)!

Let d(F) be the integral value of x such that (/2)/(x + 1) is maximal and let
(r/2)d(v)/(d(v) + 1)! a(r).

(Thus, d(F) + is the integral pa [] of ). If F is bounded, Qs., a(F)Qs,.u,
uniformly when p, m, and w vary. Thus, if is bound, Qs. a(F)Qs,.,., uniformly when
p, m, and w vary. Therefore we are allowed to replace Qs.w by Qs’., (s’ m + w).

Now we sum over w; the variable w will no longer appear in our expression for T.
We will also use the fact that s s’ implies that

1- 51-

this implies that for all the considered values of s,

and, since s c,

Thus, we can replace within a factor of c in the expression of T,

S,

by

l- 7
where to ranges in [0, c m].
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We may write the following expressions

=t max2p E Q,,,+w.wT
p

l,m,w

(I1=3 max 2p max .._ Qm+o.wT
p m,la

Ill=m.w

(By =k we mean equality within one polynomial factor of degree k in c and 03
We rewrite Qm+w.w by replacing P(I, m) by m! I’Ii ui t’ and simplifying by m!"

,1 (i uit___) c! (rl)w gC-m-w.Qm+w.w --Cl (403/3)m ti! (C- m W)!w! (403/3)c-m

Therefore

NOW,

Z Qm+w,w

(()c-m()c-m( __) rluiti cl g
ct (403/3)m ti! (c m)! (403/3)

g* c-m

-((403/3) ) (1 + -)

(17)

So we may write for the average time T

T = max max E (01 a):
p m<p

where

(18) (3)
m C’ (g)C-m 1! bli ti

QI = 2P - (c- m)! 4v3/3 M’-v-c’ H. ti’.

Q; =2p ()
m ’ (g*)c-m,(c m)! 4v3/3 Mt-v-Cl ti

with

MI= 1+-
We call M and M. the "delay factors."
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Now we prove that we may neglect Q to obtain the base/5 of the principal exponential
part of T.

We kept this term Q because (17) could be useful to study the acceleration by considering
solution nodes.

Dropping the factor 1-(g*[g)c-s. We modify (16) by removing the term _(g,/g)C-, so
T has the new signification

max2p ] Qs.w.T
P l,la,w

If we sum over to as above we finally obtain

(19) T maxmax Z Qt’
m<p

[ll=m

where Q is still given by (18).
We will prove in two ways that our problem is reduced to finding limv_,+o T /v with

these new expressions (18) and (19) for Q and T.
First proof. (This proof is valid for F greater than the number ?’c we will define.) The

new T is greater than the previous T because we removed _(g,/g)C-S. We will find that

lim T/O=fl= max 2P(1 -3p2 p3)’V"+O0 O.<_p<l "- "t;" "-
It is easy to check that this maximum is reached for a value p of p, with p < if

?’ > Fc" this Fc is easy to compute by considering the curves 2P(1 (3p2/8) + (p3/4)). We
have4.5 < Fc _< 4.6. Forthevaluep,g*/ghasvalue < 1, so(g*/g)c-’ < 1, sincec-s > 1.
Thus, limv__,+ T /v is the same for the new T as for the previous T before (g,/g),.-s is
dropped.

Second proof. We now suppose F > 1. We will now show that we can drop the factor
q (1 (g,/g)c-,)/v in T 1/v for ?’ > without any additional restrictions.

We write (1 h(v, p)C-W)l/v where h(v p) is a rational expression of v, p, i.e.
the quotient of two polynoms of degree 3 in v and p. We have exactly h(v, v) for every
1).

From (16) we see that T is polynomially equivalent to the expression

T max max max S(p, v, m, w)
p<o m<p w<<.c-m

We haveO < m_ < e < and w
-b- -< g. These quantities remain bound when v grows to

infinity.
Thus, if T/ has a limit 1 there exist functions p, m, tol of v such that p/v has a limit

)o < 1, rn/v and wily have limits l < 1, la < F, and

/ lim T-

lim[S(pl(v), v, ml(v), wl(v))]} [1- [h(v, pl(v))]c-m’-w’]
h(V, pl(v))

g*(pl(V), V)

g(Pl (V), V)
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If,ko limo_.,+ pl/v < 1, g*(pl(v), v)/g(pl(v), v) has a limit < (because g*/g
N/D < for . < 1) and limv+h(v, p.(v)) 0, limo+ 1.

Now we suppose .0 1.
Let p v r/(v)), limo._,+ r/(v) 0; since p < v, r/(v) > .
Now we know that (g*/g)(p, v) 20/v + 202 (see 4.1), for p v(1 r/). Thus,

[g* ]c-w, (c_w,)(in(l_20/v_202)+higher.order terms)S=I-- --(p,v) =l--e
g

e( o )(-20-202 v+higher-order terms)

Now two cases are possible.
1) limv-,+ 021) 0; thus,

s (p, v) (?’ l)(2rl/v + 202) -+- higher-order terms.

Thus s 1/ e(l/v)ln((’-ll)(20+202+higher’rderterms)) and limo_,+s 1/ because 2r/+2r/2v >
4. (Roughly speaking 20 + 202v cannot decrease like the function e-, so limo__,+ s I/

cannot be 7 1.)
2) We suppose limo_.,+o 021) 0 not true.
If limo__,+o s I/ is not true there exists a sequence of values of v for which

s/ We have alimo__,+o r/Zv 13 > 0 and for which limo+ s # 1; then limo+o
contradiction.

A third proof is the following.
Third proof We .have

og__. 1-4(1 -.+)(1-,k)(1-.-)+6(,k-)(1-,k+)(1-.) 1-y(,k).2 2gp 4(1 )(1 -2o) 3(. )(Z- ) + 2,k(. )(.- )

The study of y() shows that it decreases on ]0, ]; so, 0 < y(k) < 1 y(1 )
4/(v2 v + 2), i.e., using c s > 1,

0 < g-- <
gp

4 }c-s < exp(_4/(v2 v + 2)).
v2-v+2/

Thus,

l>_[1-
gp]

>_ (1 exp(-4/(v2 v + 2)));,

which has limit when v grows to infinity; so we can replace [1 (g,p/gp)]c-s by 1.
Remarks on the average number of solutions. What follows will help the reader

understand what happens when g*/g is dropped and gives more information on our result (1)
for?’ <?’c.

A clause which is not satisfied by Xl xv contains three elements of {-x -xv}.
The number of the clauses satisfied is 8() () 7(); the number of satisfied entries is

(7()). The number of all length v solution nodes, for all the entries, is S 2(7()) and
the number of cylinder solution nodes for every backtrack algorithm and in particular for U
does not exceed 2S.

Now, the average number S’ of length v solution nodes is (2())o. We see that S’ fl
for?’ < Yc.
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7)0Remark. Define Yo such that 2( 1" then Y0 5.19 For y > 0 the average
number S’ has limit 0 when v increases; for ?, < Y0 it has limit x. y ?’0 is not possible
because ?’o is not rational, nevertheless it is possible to get sequences (cn, v,,)nv for which
c,, ! v,, has limit ?’0 and such that the average number of solutions of the entries with v,, variables
and c,, clauses with 3 literals remains in some fixed bounded interval.

Let ym(V) be the ratio in the maximal entropy case (i.e., when half the entries are
satisfied) (for v 50, Ym is close to 4.7). So Ym < ?’o and S’ grows to infinity.

From now on we drop the factor (g,/g)c-m-w in the expression of T.
If we proceed with the elimination of w in the same way as above, we get

(20) =maxmax i QI.
p rn<=p Ill=m"-"

where

c,
QI

(c- m)! (4v3/3)

(rl)
c-m

Mr= 1+-
As we did in 4.3, we now prove that we may replace g by 4v3D/3 in QI and MI.

We have to analyse

=maxmax )i QI,
p m<=p

II[=m
where

3 c!
DC_mM ,Qt 2P - (C m)-------. -Cl

ti

3r(21) 11 + 4Dr3

D 31./4 + 1.3/2, . P.

4.4. The k-partition on the set of the moderated measures. The average number of
nodes is a sum of terms Tt which are indexed by the set I of the moderated I. The cardinality
of this set I is not polynomial when c v increases. To deal with this fact, we will introduce a

partition on I with sets im...mk, where the mi are integers and ,<_i<_k mi m < p <_ v. For
given k the number of the sets im...m is polynomial. Thus it only remains to find an m j.... m,
for which Tm...m. -t TI is maximum, where I runs in Im,...mk. Then we use variational
arguments. We will let k grow infinitely. We will obtain a problem with real numbers, for
which we use integration.

Let k be an integer. The segment [0. 1[ of real numbers is the union of the intervals

Ai [i___21 [, where k. The sets vA form a partition of the segment [1, v[ of
integers, we call this a k-partition.

Let p < v, 0 _< m < p, 0 _< m < p, _< k be integers and m m + m2 + +mk
be a partition of m into k parts. We denote such a partition by the list mm2..,m and by
Im...m, denote the set of moderated measures I (ti)i on [2, p such that for k,

li Y’j tj mi, where j runs over [(i 1) v/k, v/k] and li denotes the restriction of I
to the interval vA.
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and

With a fixed k, T is polynomially equivalent to

T, max max max (a,n...mk a’m...mk),
p m<p ml...mk

Qm,...m Z Qwhere
filra ...rat

Q’ Eml...mt,, Q’.
Ira l"’mk

This is true within a polynomial factor of degree k / 2 in v.
Indeed, the number of the partitions rn mk is less than vk. We will take k large enough

for our needs, but finite. If we find p and a partition of rn < p such that Q,n)...m is maximal,
the exponential behaviour of Tk will be the same as that of Qm...m.

We now introduce the notation H, AI, Am...m.
Let

1 I-Ilgiti. ti!
H 2P ()

m

(C --C’m)----. Dc-m(22) Qt HAt with At ,-57"d,nMl c

So

(23) Qml...mk nAm...mk, where Am,...m Z At.
fil,nl ...ink

4.5. An approximation forAml...mk. We will define approximations An+...m and Al...m
of Am,.... First we define in 4.5.1 the maximal delay interval and study in 4.5.2 the delay
terms rt and MI (1 + (3rl/4D))c-m,

4.5.1. Maximal delay intervals.
Definition of is. If there exists an integer j such that

(24) mx > (1 -t-i-j)
j<_x <i

for every 6 [j, s], i.e., if the mass of the measure I is more than the number of positions in
the stack between j and s , then let is be defined as the least of these j" otherwise i,, is not

defined.
Let i, j, s be integers in [1, k]. We say that [i, j] is a k-m.d.i. (maximum delay interval

as to Imt...mk) if ij and j k, or is is not defined for s j + 1.
Ifms>v o. if j < k then mj+! < - "If [i, j] is a k-m.d.i., mi > ifi > then mi-i < -,

then s is an element of an m.d.i.. If s is not in an m.d.i., then we say that s is without k-delay.
then s may be without delayThe other s of [1, k] are elements of k-m.d.i. [i, j] If ms < ,

or in an m.d.i. We denote by M.D.I. the set of the k-m.d.i.

4.5.2. Approximation of the delay terms. We first approximate rt i(i 1)pi and

M! (1 + (3rt /4Dv3))c-m for I im,...m,
Let

((25) r- rm....m (S l) s-1 ,
_<s <k

(26) r+:r. v ( v) v
ml...mk -S rs’-- k:

I<s<k

where rs is defined as follows.
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Definition of .
(27) rs mx (1 + s is)-i;

is <x <s

if i. exists, otherwise by rs 0. (Without a loss of generality, we suppose that the (io/k) are
integers). We have for any I Im...mk,

Fm...m < FI < F+
ml...mk

I 1
c-m

We define M- Mnl...m + (3r-/4Dv3) and M+ M,,+,...m +

(3r+/4Dv3

We may write

for every I 6 Im...m,.
Remarks on is and %. With these definitions of i, and rs, i, s is equivalent to ms >_ ,

and ms-1 < , and i, s and ms imply rs 0.
Moreover, rs 0 may happen in the two following cases:
1) is does not exist;
2) i exists, is s, and the excess i,<x<m (1 + s is) is zero.

4.5.3. Approximation of Am...m. Now we recall that c} i(v + 1), where runs
over the set of the indices of the forced literals in n.

Definition of ri. Let ri be the index of the forcing literal of the forced literal l. For
defining an upper bound A+ of Am (see (23)) we will use the following modificationsm ...mk ...mk

of

C ‘it (v-i + 1).
lel,,,, 2<i<p-2 til E "r’t’

II,. n lsk rivAs tri[

1) If s 6 [1, k] is without k-delay (rs 0) for any I 6 i,,,...m and for every index of
forced literal such that ri 6 vAs we replace the factors

H blritr--(v + 1)
rivA, tr

by

to get an upper bound, and by

(_sv)m. (V- (s- 1) v + 1)

(s 1)v )’". v

k (v- (s + 1)Z + 1)’

((s-1)v)m’(v_(s + l)
V
+ l)

to get a lower bound.
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For the s without delay we write s W.D. The definition of ri implies > ri > (s 1)
Now, rs 0 implies that if a literal li is forced by lj, with j < s , then < (s + 1)
Now, replace _,11-Ii(1/tri !) by (l/ms!)( mr;) -. (Terms of the binomial formula may be

lacking in _(ms!/I-Itri!) because of the moderation condition for I" decompositions m.
EjEvAs lj may be not available.

We can prove in three different ways that this modification has no effect on the rest of the
analysis.

First proof. For given k, we will find in 4.8 integers m < p < v and a distribution

m ...mk (with mk 0 for k > ) such that

aml...mk-- Z
Elm ....’k

is maximum and (Qml...mk) 1/ has the limit fl we are looking for.
When k is large enough, this distribution m... m, is close to a distribution with con-

tinuous density. This integral has no contact with the integral A of the constant distribution

ms v/k" when k is large enough, we are sure that every I oflm,...m, for an optimalm m
is moderated. (By "has no contact" we mean that this integral is strictly less than the integral
A. if equality happens we say that we have "contact.")

Second proof A second proof could remain valid when changing the distribution of
the data in such a way that we have a maximum Im...mk with contact. It consist of get-
ting fl from maximum distributions which are moderated in a weaker sense to avoid con-
tact.

Thirdproof. A third proof, which could be used in more general situation, relies on the fact
that even in the case when the term Y’.I I-Ii(l/tn !) is effectively smaller than (1/ms!)(.)m’
the neglected part is polynomialy equivalent to (1/m!)(-)m. [7, pp. 531, Ballot’s prob-
lem].

2) The other s are distributed in the k-m.d.i, intervals [i, j] M.D.I. We give an idea
of what we will do. "We also easily defirie for a single I its m.d.i, intervals in [1, v]. The
restriction of I to such an m.d.i. [x, y] flattens nearly over the same interval (shifted by 1)
and the related factor in c is Hz6[x,yl(V z). When I varies in a Im...m. such that [i, j] is a

k-m.d.i., the related Ix, y] differ little from [, ] if k is large enough. Thus we will use the
following approximation:

H H (su)ms (1))
[i,j]eM.D.I. s[i,j]

T m i,j

where c.+. is
t,J

(28) C’q-’(1)miq

H (v--x + 1),
t,j U

with mi,j ,s[i v,j v] ms.
We get A+m...m,

(29)
n( ( ))M+ Iv Iv v

T +1
IEW.D.

()’)sv m,, v m,,.
c.+.

[i,j]M.D.I. i<s j
T ms---. - ’’"

m!
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In a similar way

(30) M- I-I (l 1)v v U mt

mr! - ti,jleM.t..

k m,----[ - Ca’j’

where ci,. is

(31) (lmi’) Hcj.,-j (v- x + 1).

v-_’ <x<v+zi_

Let

(32) Q+ HA+m m, Q,...m, HAm ...ink ...ink

A new use of the notations i,j, 1, s. From now on 7, , are denoted by i, j, 1, s so
i, j, I, s [0, 1] and the m.d.i, become intervals of [0, 1]. Also p kv will change sense:
) ply will be replaced by p < 1. We will use the following convention: any index is
without delay (we write W.D.); any index s is in an interval [i, j] which is in M.D.I.

We set

rrt =/(1 -I),

(33)

So

(34)

( )(1)rr/+=/(1-l)+ +-’v :rr l- 1-/+-.v

A*ml M+ (-) mr! [i,j]c=M.O.l.
...ink H m U(j-i)v

and

(35) (l
-mt u sSm)7 Ci,j

A,...m, M- (-) mt [i,jlea4.Z).l. ms---. v

4.6. The variational equations.

4.6.1. The variational inequations. From now on we do not mention the functions rnk
and Mk which are defined at the end of the introduction. We have to deal with the fact that
v tends to infinity and k has to be great enough. We prove that this approximation does not

affect/3, in the same way we did in 4.3 when replacing g by its equivalent.
For fixed n < p _< v we choose rnl rnk for A+ to be maximal. We use the following

variational argument.
If we take off a unit mass from a[l , I[, A* is divided by r/rnt. If we add a unit

1’[, A+ is multiplied by rrl+,/(ml, "k- 1).mass to a [l’ .,
So, for every l, l’ without delay, the maximality condition is for every l, l’ W.D.

(36) 7rt+ < zrl’+ and rrt+ > :rr+.
mt mt,+ mt + mr
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Now, for fixed k and #1 #k real in [0, 1] with # /d, q- + ]d,k, we consider the
rn mk defined by mi #i v, which depend on one parameter v. So, m v.

We let v increase to infinity and we get the/-conditions

(37) C’

where C’ is a constant when runs over W.D.
We consider now the s in an m.d.i. [i, j].
IP we add a unit mass in [s 1, s[, a new forced literal is generated at the end of the m.d.i.

So c. is multiplied by j’ and the s-factor of A+ is multiplied by (1/(m + 1)s)(1 j’)
with j j’ 5 j + . The delay-factor M changes in the following way. The term rm,...m.

s+j (later, using compacity, we let andincreases by r v2((j2 s2)/2 + ) with
j be fixed and may neglect e by taking k large enough).
M is multiplied by

.2

x + -e3

Now we take c g v with a fixed g > 1.
With fixed k,

lim x =exp((g-.)(j-s+e)/2( +r))=exp((j -s+)),

where now r is the following limit value:

(38) r

where

(j i)2 ( j+i i+2j) j--i
(39) ri, 2 e /ei 3 o

and

, -/z 3p2 p3
(40) ei e-ai ej e-’j ot D D(p) +

2 4D 4 2_-3- + r

In the same way as above, we get the following conditions of maximality for Qm,...m.

/.z’ #s(41) rc- s e-s (1 j’)eq’+

Replacing e by 0 has no effect on the value of 3 in (1). This simplification does not contribute
to the principal exponential part we are looking for.

(We say that these equations are the conditions for a global equilibration. In fact, for the
calculation of the base we prefer to consider separately the equilibrations on the k-m.d.i, and
on the set without delay, taking/z’ below as a free parameter.)

IWe see by the definition ofry that r.i (j + 1) 5 +md+l < when I varies in Iml....mt. There is an interval

of forced literals which always contains v[-, ]. The restriction of/to v[5, ] flattens on an interval of length

(j + 1) + rj. which has as an extreme position to the right v , v + rj, where < r.i < , and as an extreme

position to the left v i.--A v J__f2 + rj.

There is a constant C’ such that for every and every s,
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4.6.2. The variational equations. We suppose that j < p. From now on we suppose
that k is large enough to neglect here . (It will be clearly possible when we will introduce
integrals.) We consider the variational equations

tJ, ej #s [d, C t.1 C
(42) i.e., a=(1-j)/ej.

7rt 1-jse-s’’ se-s" k’ :rt a k

The constant C is calculated with the condition that
We now consider that s varies continuously on [0, with the Lebesgue measure ds -,

(when k increases enough). So we get limit values by integrals that may be easily neared with
a finite k.

This approximation has no effect on the value of/3 in (1).
After elementary integration we get that

j-i
(43) C 2ot

ei ej

4.7. Lemma "at most one maximal delay interval." Let m mk be such that Q,,,...,,,
is maximal; we say that m mk is an equilibrated set of measures.

We will see that these equilibrated sets are of three types: 1) no delay-no constraint, 2)
delay-no constraint, and 3) delay-constraint.

We will derive from a property of gaussian functions that there is at most one k-m.d.i..
if m... mk is equilibrated. In the case without constraint it will reduce the search for an
equilibrated m l... rnk to four real parameters F, i, j, p and to three parameters ?,, m, p in the
case that there is no m.d.i, for m... m.

A first necessary condition for [i,j[ to be an m.d.i. For [i, j] to be a delay interval, we
must have the following:

(44) everyswith/ <s <j, 2. # >s i.
i<a<s

As #a 2a((j i)/(ei ej))a with k infinitely large we get after elementary
integration

(45)
ei es ei ej

s-i j-i

Let (G) be the gaussian curve e-"" a [0, ]. We say that condition (45) says that the "i s

secant" is under the "i j secant," for every s [i, j]. The abscisse of the inflexion point of
the gaussian curve is . So, if j >_ > , (45) is true. If j < , (45) is false.

Let i0 io(a j) be the point of (G), the tangent of which passes by (j, e), for j >

then (45) is true if and only if j > and >_ i0(a, j). The real number io is easily calculated.
We also derive from above the following lemma.

Lemma "at most one m.d.i, for an equilibrated mt m,."
The parameters C and a are the same for all the m.d.i, of an equilibrated rnl m.
As mi, (ei ej)/(j i) --C-’:: m’i,j is constant when [i, j] M.D.I. By Rolle’s

lemma mi,j is the absolute value of a tangent to (G) at a point over ]i, j[. If > it is

obvious that mi,’ > mj,j’, where mj,j’ is the absolute value of the slope of the tangente in j. If
there exists an m.d.i. [i’, j’] left of [i, j], mi, > mi,.j,, which cannot be true. We now only

jsuppose that j > and > i0. We use the convexity properties of (G). So, the "i

secant" has a slope larger than mj,j (in absolute value). We get the same contradiction if there
were two m.d.i..
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4.8. The three elementary functionsfi to be maximized. Now we will get the elemen-
tary functions ./ to be maximized. We finally obtain the simple formula in (1) for the average
time of UC, as the consequence of the fact that only the first of these functions is relevant for
the considered distribution.

4.8.1. Three classes for the sets of measures. We meet the following two difficulties
which emerge from the fact that the ti may be larger than 1, i.e., from the fact of flattening.

1) When, at node n, the reduced input F,, contains a surplus of forced literals, a so-called
m.d.i, takes place. We overcome this fact with the so-called "at most one m.d.i." lemma.

2) The fact that the measures I must be "moderated" implies the possibility of constraint
cases in the variational analysis. We still get the "at most one interval of constraint" property.

Thus, the m... m, which may be equilibrated (we mean without constraint) are dis-
tributed in two classes.

The first one, 1.D.I, is the class of the m m, for which there exists a m.d.i. [i, j].
The second one, O.D.I, is the class of the rn m, without any m.d.i. [i, j].
We will study below the third case with constraint, which, roughly speaking, is necessary

to keep a m m, from not satisfying the conditions of moderation.

4.8.2. Admissible cases (p, i,j), the first function Tp,id. The m m which are equi-
librated or partly equilibrated with constraint must satisfy the following conditions (k-rood)
of k-moderation (we suppose without loss of generality that p [. 1]):

mx ---0 forx > p,

(46) for every s 6 [, p] ms + m+. + + mp < (p s + l)v,

i.e., as mi vii,i,

(k-mod) tZs + #s+/ + +/z, < p s for k large enough.

In the 1.D.1. case, let [i, j], i, j [ 1], be the k-m.d.i, for m ...m. The lemma
"at most one m.d.i." implies the following second necessary condition:

v
(47) for every/ [i, j], mt _< ;, i.e., #t < -.k

Conversely, the conjunction of (44) and (47) is a sufficient condition for m m to be
moderated (we recall that Yi<_,,<_j P., J ).

We say that (p, i, j), 0 < < j < p < 1, is admissible if the two conditions (44) and
(47) are satisfied.

Now we use the variational conditions for/zt to get the following expression for (47):

am’
(47’) for every [i, j], >_ zrt, where m’ mri.j (ei ej)/(j i).

if 1/2 [i, j], let sup(rrt) , otherwise let sup(rt) sup{zri, rrj,
We now get the following expression for (47):

am’
> sup(n’t).(48) for every [i, j]

2o

Now we will write the base of the principal exponential contribution Tp,i,j of the set

rn m, of moderated measures in the 1.D.I. case, with an admissible (p, i, j). We put the
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values of mr, m, from the variational equations into the expressions of limo--,+oo

and limo_..+oo( an,...m.) /.
In both cases we get expressions which are equivalent to the following Zp,i, j when k is

large.

Sp,,,j "’(m eOR,)J-’ (1--i)
(49) Tp,i,j Debut( IX’ (1 j)(1-j)M’
where
(50)

3
Debut 2PD-U(X

m’ (el ej)/(j i), Sp,i,j
2

3p2 p3
D O(p) --4- + S’

-jeju y
R’ i2ei .2

(?, Ix)(-u) ei ei
p p3

3rl )c-mM + 4Dr3 r

-t
ei =e ,ej =e

(j_i)2( j+i

2 -ej/ei

IX 2
otR
am, Si.j, R=--m

.j2 j3 2 3

-2 +

1V-IX
2+r"

+2j) _.j-i
3 ot

The Zp,i, j may be calculated as follows.
At first we select only the admissible (p, i, j). When an admissible (p, i, j) is found, we

calculate oe as a fixed point, starting from or0 . We always have the following properties:

where

6

(y- 1)
u+= Y and or-=

2 3

In fact, we will give in 4.9.2 an unexpected simplification. So we need not calculate the

Tp,i,j. But it would be necessary to calculate the Zp,i, when changing the equidistribution of
the data into another distribution which emphasizes the entries that result in delay.

4.8.3. The second function: Tt,,u. Now we examine the O.D.I case.
The parameters are 0 < IX < p < 1. We get the following expression for TR,u, the base

of the principal exponential contribution of the corresponding set of measures m m,"

(51)

where

Debut

(52) Debut 2p D-u ?’
(?, Ix)(-u)’ Sp

2 3

The Tp,, must be considered only in the case when the (/z, p) are admissible in the following
sense.

The variational equations reduce to C, for every [ ]. They imply

1) Ix C k f rr,dt C k Sp, where Sp p:
2 3’

tz2)/zt g
We say that (/, p) is admissible if the two following conditions are true.
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First condition (mod.). The measure #, on [ ] is moderated in the following
sense:

every < p, 2_, /zt < p- i.
i<l<p

Second condition (no delay). For every l,/zt < .
We get the following expression for the conditions (mod.) and (no delay):

8p2
otherwise/z < B(Mod./53) If p > then # < A

3(2p + 1)
P(- )

(No delay/54) If p > then z < 4Sp, otherwise # < B.

4.8.4. The third function: Tt,,,,i,c. We will see at the end of 4.9.2 that this function
Tp,u,cc is not relevant. However, we give here some considerations about the "constraint" case
to show that our method could deal with this case in other situations. We will now examine

2 el. LetxinP. Wethe variational case with constraints on a subset (C) of P [, . k
say that x is a contact for rn mk if Y-,s>x m p x. Let c be in P. We now only consider
the m...m which have c as least contact. We call them the c m... mr. We will rule
out a subset of them which are not maximal. Let Tmt...mk be the contribution of m m as
an exponential base. Let ai be the number by which Tm...mk is multiplied by adding one unit
mass ! to the mass mi.

We define the constraint set (C) for a maximal T,,,,...m as the set of contact points" if
s 6 (C), if < s then as > at; otherwise if > s then as < at.

Lemma "at most one interval of constraint." For a maximal c m... m, (C)
[c, i] for an in [c, p]. The proof considers a restriction of m...m with two successive
contacts c, c. We use a simple algorithm for equilibrating a m m. There are two cases.
If equilibrating fails by introducing a new contact, then we do recursion. If equilibrating

If c2 < then for ksucceeds, we use the fact that after equilibrating, the mass mc, < -. p
relative tolarge enough, we meet a contradiction with the constraint condition for c2 +

1--c2.
We also extend the lemma "at most one m.d.i." for ruling out delay from [0, c].
Finally, the constraint case reduces to the following contribution:

( |
ii (l-c’(l-c’ (j-i)l’() M.

a m \ u’ m j-i

(55) Tp,u.i, Debut ,/ .c--g (1 p)(1-p) e2(i-c------- e -4.9. Expression of the principal exponential base of UC.

4.9.1. We now have enough to calculate the base of UC. Now we have reached our
principal aim. Indeed, the calculation of the exponential base for UC for a ?’ consists of taking
the maximum of the following three functions:

1) Tp,u (this is the case of no delay interval); it is easy to see that

(56) max Te,, =max2P(l_ 3p2 p3)r’0_._< p -if- +

2) Tp,i, (for any admissible (p, i, j)).



A VARIATIONAL METHOD FOR ANALYSING ALGORITHMS 647

Indeed this maximum is obtained for

3ySp
4D+3Sp

3) Tp,u,i,c (this is the case of constraint). (We prove that c has only one possible value
different from zero.)

These functions have no more than four real variables. Thus the exponential base may
be calculated with any decimals with a microcomputer. This computing proved that the terms
with delay Tp,i,j and with constraint Tp,u,i.c do not contribute to the maximum which is always
reached by the term Tp,u (case without delay and without constraint). In the special case of
UC and of the chosen equiprobable distribution of the entries, we will give below another
short proof without computing. (However, computing Tp,i,2, Tp,u,i,c might be necessary for
another probability on the set of the entries.)

4.9.2. A unexpected simplification: We prove theoretically that only the function

Tt,,u is relevant. However, it happens that the theoretical optimisation of the Tp,i,2 and
leads to a simple result: we prove now, by elementary analysis, that the maximum is reached
in the case without delay and without constraint. This maximum is

(57) T= max2Ptl-3p2 P--)0<p<_ - +

Indeed this maximum is obtained for

3Sp
4D + 3Sp

Proof The term Tp,u,i,j must be maximal when #’ varies, i, j and the m, s 6 [i, j], are
constant. The condition (OTp,u,i,2)/O#’ 0 is equivalent to (Sp,i,j/#’) x 3(?’ #)/(3D +
3r) 1., where Sp,i,2 .f rt dt + fip r, dt, (zr, t(1 t)).

By matching the relations above for a and/z’, we get Sp,i,j/#’ N and R x ej / -j 1.
which may be written as

ei ej
(58) l--)j
By taking (58) into the conditions of equilibrium (41) for m ink at and 1, we get

mi-1 mi mi-1 mi
=, i.e.,

rri_ ej x ei rri_

Because mi- < and mi >_. 1, by letting k grow to infinity, we get mi 1. So

S,-,i,2 and(59)
#’ rri 2c

Now taking (58) into the expression for

r --ri,j
(j_i)2{ j+i

2 k ei/ej i+2J)3
we get

r
2 2

(2i + j),
3
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where j i. From the expression of 2or in (50) and from (59) we get

4D
3 + r (?, #)Tt’i, where /z + #’ +.

After straightforward simplifications we get

4
(60)

3
S

where Sp (p9-/2) (p3/3); thus

(61) Tp,i,j 2P(1- 3Sp) r.
4

For a given ?, _> (and p such that Sp _> 43 Y-’4 if ?’ _< ) we get the interval [i, j] of
maximality for Tp,i,j.as [in, jm], where i,, is a solution of (60) and jm is a solution of (58)

4with 2or F/( Sp). But the fact that the expression (61) is the same as in (57) allows us
to conclude that the Tp,i, j are not relevant.

The case of constraint is no more relevant" we majorize by removing the condition of
moderation and get a Tt,,i,j term for which (61) is true.

4.9.3. Matching UC and B. The two lemmas of uniqueness of delay and constraint
intervals have the following consequence: the base of the principal exponential part for given- is the maximum of three functions of at most three real variables on a compact set.

The theoretical simplification 4.9.2 has the consequence that it is sufficient in this problem
to compute the simple expression in (57).

We give the following example. For 4, the maximal contribution is given by a
Tp,u 1.16.

We now match with the asymptotic behaviour of the average number of nodes for Davis-
Putnam without unit clause search B. It would be easier if we could find the base of B. For

4, the maximal contribution is 1.36. (For c close to 1, the base in (57) is close to 2
because the algorithm UC is not good in this area.)

5. Remarks. We expect that our method will give the principal exponential time of some
other variants of the Davis-Putnam procedure and of other algorithms. In our paper [9] we
give such variants, the analysis of which is needed.

Our method could be extended to the case of an algorithm searching for one of the shortest
clauses of the reduced entry Fn. For instance, such an algorithm works well for an entry with
one clause.

The entries could also be supposed to have k-clauses, k > 3. In these cases, our method
introduces mesures other than I for each possible length of clause. But we think it would be
easier to first find a simple proof that delay terms do not contribute to the principal exponential
part of the average time. In the case of equal distribution of the entries this seems to us to be
highly likely. In the present work we prove this fact only after finding the contribution of a
maximum delay term Tp,i,j.

A pair P, P2 of NP problems in the following situations could be matched with our
method:

1) Let Ai, 1, 2 be an algorithm which is known as the best one for Pi.
2) Let D,.. (resp., D2,1), be a convenient data reduction from P to P2 (resp., P2 to P),

which satisfies a Levin condition of average case [8], [5]. Such a pair should be selected
from more than 106 choices. But our "variational method" is unlikely to be applied in every
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case. Clearly, applying this method may require several suitable conditions; for instance, it
was possible for UC because, in this case, we had at our disposal a summation T which is
explicit and without recursion, though not simple. Moreover, we could simplify the terms in
this summation to get a simpler situation, then we could consider T as the sum of a polynomial
number ofparts T,,, ...m ofthe summation T. Although these Tm,...m are sums ofan exponential
number of terms, it was possible in this case to consider them as close enough to each other,
taking k large enough.

Acknowledgment. We thank Prof. Paul W. Purdom for his careful reading of this paper
and his numerous helpful comments.
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A GENERAL APPROACH TO REMOVING DEGENERACIES*

IOANNIS Z. EMIRIS AND JOHN E CANNY

Abstract. We wish to increase the power of an arbitrary algorithm designed for nondegenerate input by allowing
it to execute on all inputs. We concentrate on infinitesimal symbolic perturbations that do not affect the output for
inputs in general position. Otherwise, if the problem mapping is continuous, the input and output space topology
are at least as coarse as the real euclidean one, and the output space is connected, then our perturbations make the
algorithm produce an outpiat arbitrarily close or identical to the correct one. For a special class of algorithms, which
includes several important algorithms in computational geometry, we describe a deterministic method that requires
no symbolic computation. Ignoring polylogarithmic factors, this method increases the worst-case bit complexity
only by a multiplicative factor which is linear in the dimension of the geometric space. For general algorithms, a

randomized scheme with an arbitrarily high probability of success is propose& the bit complexity is then bounded
by a small-degree polynomial in the original worst-case complexity. In addition to being simpler than previous ones,

these are the first efficient perturbation methods.

Key words, input degeneracy, ill-conditioned problems, symbolic perturbation, infinitesimals, randomization,
determinants, roots of polynomials, algorithmic complexity

AMS subject classifications. 68Q10, 68Q20, 68Q25, 68U05

1. Introduction. Quite often algorithms are designed under the assumption of input
nondegeneracy. Although they can have many specific forms, most degeneracies in geometric
or algebraic algorithms reduce to a division by zero, or to a sign determination for a value
which is zero. In this article we describe efficient methods for systematically removing
such degeneracies using symbolic infinitesimal perturbations. Our methods apply to every
algorithm that can be implemented on a real random access machine (RAM).

This work is influenced by the treatment of the problem in [12] and, in a more general
context, [21 ]. The main contribution of this article is to introduce the first general and efficient
perturbations from the viewpoint of worst-case complexity. Previous methods incurred an
extra computational cost that was exponential in some parameter of the input size

The principal domains of applicability are geometric and algebraic algorithms over an
infinite ordered field. Take. for instance, a convex hull algorithm in arbitrary dimension over
the reals. It is typically described under the hypothesis of general position which excludes
several possible instances, such as more than k points lying on the same (k 1)-dimensional
hyperplane, in m-dimensional euclidean space, m >_ k. For an algebraic algorithm, consider
Gaussian elimination without pivoting that works under the hypothesis that the pivot never
vanishes. Our perturbation scheme accepts a program written under this hypothesis and outputs
a slightly longer program that works for all inputs.

The perturbations introduced change the original input instance into a nondegenerate one
which is arbitrarily close, in the usual euclidean metric, to the original input. For algorithms
that branch only on the sign of determinants, which includes several important geometric algo-
rithms, we propose a deterministic method. It increases the worst-case algebraic complexity
of the algorithm by a multiplicative factor of O(log d) and its worst-case bit complexity by a
factor of O(dl+), where d is the dimension of the geometric space of the input objects and c
is an arbitrarily small positive constant accounting for the polylogarithmic factor. In addition
to its efficiency, this scheme is easy to implement, which makes it attractive for practical

*Received by the editors August 17, 1992; accepted for publication (in revised form) January 21, 1994. This
work was supported by a David and Lucile Packard Foundation Fellowship and by National Science Foundation
Presidential Young Investigator grant IRI-8958577. A preliminary version appeared in the Proceedings of the 32nd
IEEE Symposium on Foundations of Computer Science, 1991.

Computer Science Division, University of California at Berkeley, Berkeley, California 94720.
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use [14]. The perturbation, although defined in terms of a symbolic infinitesimal variable,
does not require any symbolic computation.

For general algorithms, we propose a randomized scheme that incurs a factor of O(D1+)
on the algebraic complexity, where D is the highest total degree in the input variables of any
polynomial in the program. Under the bit model, the worst-case running time of the new
program is asymptotically bounded by 43+, where 4 is the original bit complexity of the
original one; in both cases ot denotes an arbitrarily small positive constant.

All claims about the efficiency of our approach are based on worst-case complexities.
Yet there exist other measures, such as output size, under which the perturbations cause a
much more significant increase in running time. For a degenerate input the output may be of
constant size while, under the perturbation, the given algorithm cannot do significantly better
than what its worst-case performance predicts.

The next section defines the computational model, formalizes the use of infinitesimals as
well as the notion of degeneracy, and specifies the problem at hand. Section 3 is a comparative
study of previous work on handling degeneracies. Sections 4 and 5 describe the perturbations
for algorithms that branch on determinants and on arbitrary rational functions, respectively;
each section includes an application. We conclude with a summary and a discussion of
directions for further work.

2. Preliminaries.

2.1. Model ol’computation. Our results hold for any infinite ordered field, yet we present
them in terms of the reals/i. We choose the real-arithmetic RAM as our model; it is described
in [18] and is a more powerful version of the simple RAM defined in [1 ].

An input of size N consists of a finite real vector x (xl xv) and a particular input
instance is a (al av) v. The real RAM can perform real arithmetic exactly with
respect to the four basic operations in {/.-, ,,/} and can branch on the sign of a rational
function in the input variables, evaluated at the particular input instance. The machine can
also write to and read from a memory that can store an arbitrary number of exact real values.
The chosen model abstracts certain issues that may arise in practice, such as real number
representation and exactness of arithmetic operations.

The set of instructions that implements a given algorithm on the real RAM forms a
program; no program can alter itself. The subset of instructions executed on some input
instance forms an execution path. For a specific program on the real RAM and a given input,
the output is unique and is expressed by a finite real vector, possibly describing other structures
such as graphs.

In 5 we shall require an extension of the model, namely that there exists an explicit finite
integer bound D on the total degree in x of any polynomial computed in the course of the
program. The concept of this bound appears in the machine of [2] and in the algebraic decision
tree of 18].

Under the algebraic model, the worst-case complexity of an algorithm equals the maxi-
mum number of arithmetic operations, branching, and memory access instructions executed
on any input. More realistically, we may wish to consider the effect of the operands’ bit size
on the speed of arithmetic operations. Under the bit model there is a cost function on each
instruction of the program and the worst-case complexity of an algorithm equals the maxi-
mum sum of the costs of all instructions on the execution path corresponding to any input.
In both models, the time to access the memory is assumed constant and therefore does not
affect the total asymptotic running time. Branches also take constant time, provided that each
number carries an extra bit indicating whether it equals zero or not. Without this extra bit the
branching cost would be linear in the size of the operand but this would not affect the results
in this article.
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The cost of arithmetic operations depends on the particular operation executed as well
as the bit size of the operands. For integers of size b, addition and subtraction have cost
O(b), while the cost of multiplication and division, due to an algorithm by Sch6nhage and
Strassen, is O(b log b log log b) [1]. For rationals, the greatest common divisor (GCD) is
factored out at every arithmetic operation, and finding it takes O(b log2 b log log b) time ].
Let M (b) O(b log2 b log log b) bound the bit complexity of any operation on two rational
numbers, each represented by a pair of O(b)-bit integers. We define the bit size of a rational
number to be the maximum bit size of the numerator and denominator.

Given an input instance, our perturbations define a new instance in terms of a symbolic
variable that is never evaluated, which implies that instead of real numbers the program
may have to manipulate polynomials in this variable. Formally, this can be thought of as
producing a new program with the same control flow in which every arithmetic and branching
instruction is substituted by a black box that implements the appropriate operation on tnivariate
polynomials. Of course, the algebraic as well as the bit cost associated with each instruction
changes.

2.2. Infinitesimals. Our approach in removing degeneracies is to add to the input values
arbitrarily small quantities. To this effect we make use of infinitesimals. The process of
extending the field of reals by an infinitesimal is a classical technique, formalized in [3] and
used by the second author in [4].

DEFINITION 2.1. We call e infinitesimal with respect to I ifthe extension I[(e is ordered
so that e is positive but smaller than any positive element of.

Clearly, the sign of any polynomial in e is the sign of the nonzero term of lowest degree.
Alternatively, it is enough for e to belong to the reals and take a sufficiently small positive

value so that it avoids the roots of a finite set of polynomials; we shall see that this is the set
of all polynomials appearing at a branch in the real RAM program. The smallest positive root
in any of these zero sets is larger than some positive real e0, hence it suffices that e e0. This
idea may be seen as a special case of the "transfer principle" [20].

An immediate consequence is that symbolic perturbations of the input by e-polynomials
are equivalent to defining a new real instance by setting e equal to e0. Then the execution
path on perturbed input is that of some real input which implies that the algorithm halts on
perturbed input provided that it does for all real inputs.

2.3. Degeneracy. Before formalizing the notion of degeneracy, we examine it with re-
spect to some concrete problems. For the matrix inversion problem an intrinsically degenerate
input is a singular matrix, for which the output is undefined. An input degeneracy may depend
not only on the particular problem but also on the algorithm. An algorithm-induced degener-
acy for the Gaussian elimination algorithm without pivoting arises at a matrix with a singular
principal minor.

Yap in [21] uses the convex hull problem in the plane to distinguish between intrinsic
and algorithm-induced degeneracies. Assume that in the output space topology polytopes
of distinct combinatorial structure lie in disjoint components. Then three collinear points
constitute an intrinsic degeneracy because the mapping of point sets to convex hulls is not

continuous. On the other hand, two covertical points have nothing special with respect to the
mapping of point sets to their convex hull. They may, however, constitute a degeneracy with

respect to a particular algorithm that solves the problem by using a vertical sweep-line or relies
on some vertical partitioning of the plane.

We formalize the discussion by considering both input and output spaces as real topolog-
ical subspaces of finite dimension.

DEFINITION 2.2. A problem mapping associates with almost every input instance exactly
one (exact) solution.
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DEFINITION 2.3. The input instances on which the problem mapping is not defined or not
continuousform the set of intrinsic degeneraciesfor this problem.

An algorithm and, equivalently, the respective real RAM program that compute a problem
mapping typically impose certain restrictions on the input instances. Hence the need to
consider the mapping defined by a specific algorithm.

DEFINITION 2,4. An algorithm mapping is defined by a particular real RAMprogram and
is a restriction ofthe problem mapping to exclude at least all intrinsic degeneracies.

In what follows no distinction is made between an algorithm and the real RAM program
that implements it.

DEFINITION 2.5. The input space ofan algorithm mapping is a real space offinite dimen-
sion. In the context ofthe computational model, defined in 2.1, the dimension equals N. The
output space ofan algorithm mapping is a topological space, equal to the union ofthe disjoint
finite-dimensional real topological spaces associated with the distinct execution paths of the
real RAMprogram. These output subspaces will be called leaf subspaces.

This terminology reflects the fact that branching causes the program to have a tree struc-
ture. The problem and algorithm output spaces can be either connected or disconnected.
Usually, a disconnected output space can be made connected by identifying points in different
leaf subspaces. Then the overall space inherits the topology of the leaf subspaces with no
open sets intersecting two leaf subspaceso

This is possible in the example of the convex hull problem mapping, where polytopes
which are identical as point sets but lie in different subspaces can be identified, thus producing
a connected output space. Yet the problem mapping remains discontinuous. There exist other
topologies that will make this space connected and the problem mapping continuous. One
example is the metric topology where the distance of two polytopes is measured by the volume
of their symmetric difference.

DEFINITION 2.6. An input instance is degenerate with respect to some algorithm if during
its execution, it causes some branch rationalfunction f, whose numerator and denominator
polynomials are not identically zero. either to be undefined or to evaluate to zero while the
algorithm produces no solution for the case f O. Equivalently, the input instance is in
general position or generic if there is no such testJunction f

Clearly, the domain of an algorithm mapping is precisely the set of all generic inputs,
which excludes all degeneracies, i.e., both intrinsic and induced ones. An important class of
degenerate inputs are those that lead a program to division by zero. This case is included in
the previous definition by requiring that the program be robust enough to have a zero test on
the denominator before each division.

DEFINITION 2.7. The set ofinduced degeneracies includes exactly those degenerate inputs
that are not intrinsic degeneracies.

The input space can be partitioned into equivalent classes, where each instance produces
the same sign sequence on the branch rational functions reached during execution. The
classes that do not make any branch function f, as specified in Definition 2.6. vanish or be
undefined, partition the domain of the algorithm mapping into cells of input instances that
produce an output instance in the same leaf subspace. The union of inputs that cause some
branch polynomial to vanish contains the degenerate subset and has positive codimension
since it is the finite union of polynomial zero sets. Hence the degenerate subset has positive
codimension which agrees with the informal view of degeneracies as special cases or events
of zero probability.

2.4. Problem definition. Consider an algorithm that solves a problem under the hypoth-
esis of nondegeneracy. Our aim is, given an arbitrary input instance a (a av), to
define in a systematic way some other instance so that the same algorithm can always produce
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a meaningful output. The new instance, denoted a(e) (al (e) aN(e)), will be defined
by adding to each ai a polynomial in some symbolic positive infinitesimal e. The discussion
in 2.1 and 2.2 implies that a(e) can be given as input to the same real RAM program.

To provide some intuition on the desired effects of perturbations we return first to the
matrix inversion problem. Given a perturbed singular matrix, (i) the algorithm should return
its inverse and (ii) the perturbed input should be arbitrarily close to the original one under
the standard euclidean metric. Condition (i) will follow from the correctness of the algorithm
on generic inputs once we establish that perturbed matrices are nonsingular. Restricted to
nonsingular matrices, the problem mapping is continuous. On a perturbed nonsingular matrix,
(ii) implies that the output is arbitrarily close to the exact solution; to recover the latter we can
simply set the infinitesimal to zero in the perturbed output.

There is always a solution for the convex hull problem; however, its combinatorial nature
may prohibit the problem mapping from being continuous. Take, for instance, the volume of
the symmetric difference between the actual output and the exact convex hull as the distance
between these two polytopes. This volume tends to zero with e since the induced metric
topology is at least as coarse as the euclidean one. Under this metric the output space is
connected and the approximate solution is arbitrarily close to the exact one.

We now specify the desired properties of a perturbation in terms of the outputs obtained
under different circumstances. Limits are understood with respect to the topology of the input
and output spaces.

DEFINITION 2.8. Given an input instance a, a strongly valid perturbation defines a new
instance a(e) which lies in general position, tends to a as e approaches zero, and satisfies the
following conditions:

1. If a is in general position, the algorithm produces the same output whether it runs
on a or it runs on a(e) and at the end e is set to O.

2. Ifa is an induced degeneracy, the output space is connected with topology notfiner
than the euclidean one. and the problem mapping is continuous, then the algorithm on
returns an output that eitherproduces the exact solution by setting e 0 or tends to the exact

solution in the limit as e -- O.
3. Ifa is degenerate and some hypothesis ofthe previous casefails, then the algorithm

produces a correct solutionfor a(e).
A more practical definition describes requirements for a weaker perturbation in terms of

the input space.
DEFINITION 2.9. Given an input instance a, a valid perturbation defines a nondegenerate

instance a(e) which tends to a as approaches zero, such that when a is in general position
all branches take the same direction on a(e) as on a.

PROPOSITION 2.10. Suppose that the input space and leaf subspace topologies are at

least as coarse as the real euclidean topology. Then any valid perturbation is strongly
valid.

Proof. It suffices to show that the three conditions of Definition 2.8 are satisfied. For
generic inputs all branches take the same direction on a and a(e), hence the two outputs lie in
the same leaf subspace. No e-term can be the most significant in any polynomial in the output.
because this is the output on a generic instance. Therefore all such terms can be ignored by
setting 0, thus obtaining the exact solution.

In the second case, since we deal with an induced degeneracy, an exact solution exists.
Whenever the problem mapping is continuous the algorithm mapping is also continuous in its
own domain. Since the input space topology is sufficiently coarse, the fact that a(e) tends to
a and the continuity property imply that the output produced on perturbed input tends to the
exact solution as e 0. In the more favorable cases, the exact output is recovered by setting
4--0.
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The correctness of the algorithm on generic inputs and the hypothesis that a(e) is generic
imply that the last condition is satisfied. [3

In what follows we focus on problems that satisfy the hypothesis of the previous propo-
sition, hence reducing the validity requirements to those of Definition 2.9. Furthermore, we
consider perturbations of the following form:

ai(e) ai Jr" e ci,

for ci E Z independent of ai and e. The postprocessing necessary to recover the exact answer
is usually a very case-specific process. We discuss the case of convex hulls at the end of 4
and also refer the reader to [21], [12], [8].

3. Otherwork. The most naive approach is to handle each special case separately, which
is tedious for implerhentors and unattractive for theoreticians. Random perturbations are
frequently alluded to and one such scheme is studied in this article. Their main feature is that
they trade randomness for efficiency.

Symmetry breaking rules in linear programming are the earliest systematic approaches
to the problem. Dantzig presents such a method in [6] which relies on an infinitesimal e.
Consider a linear program reduced to finding nonnegative values for the rn + n variables xj,

’-m+nsuch that the sum of all slack variables z_..,j>n Xj is minimized. The perturbation consists in
adding a power of e to every nonnegative constant b, where _< _< m:

ai.jxj Jr- xn+, bi -i" e
j=l

This forces the perturbed constants to be strictly positive and eliminates the degenerate case
of having bi 0, for some in {1 m }.

Edelsbrunner and Micke systematize in [12] a scheme called simulation of simplicity
(SoS for short) already presented in [9], [11], [13], [10]. It applies to algorithms that accept
n input objects, each specified by d parameters, and whose tests are determinants in the nd
parameters, just as our deterministic perturbation (1) of the next section. SoS perturbs every
input parameter Pi,j into

2iPi,j(e) Pi,j "-I-e

where 6 > d and e is a symbolic infinitesimal; this is a valid scheme under our definition. The
sign of the perturbed determinant is the sign of the smallest-degree term in its e-expression
and can be calculated numerically.

Finding the sign of the perturbed determinant is, on the average, fairly fast. In the worst
case, however, the determinant computation takes I2(2a) steps, since it may have to check that
many minors of the perturbed matrix. This bound is obtained by calculating the number of
distinct vectors (v vd-2), where d denotes the order of the original matrix. Every U is a

positive integer less than or equal to d and for every < j, 13i _< l)j. In 12] every such vector
is associated with a distinct minor that may have to be evaluated. This analysis pertains to

A matrices, to be defined in the next section. Matrices of the second kind, the A matrices,
require more steps in the worst case, for the same order. In short, SoS incurs a worst-case

exponential overhead in d.
Yap in [21] provides a more general framework, which includes SoS as a special case,

where branching occurs at arbitrary rational functions. His technique is consistent relative to
infinitesimal perturbations [22] and valid; here we examine it as applied to polynomial tests.
Let PP PP (xl x,,) denote the set of all power products of the form
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’I eiW X ei > 0
i=l

in the n input variables. A total ordering <A on PP is admissible if, for all w, w’, w" PP,

<A 1/3 and w <A W’ Wll)" "<A IlOtW".

Let wl, w2 be the ordered list of power products larger than 1, i.e., those with at least one
positive exponent. Then each polynomial f(x) is associated with the infinite list

S(f) (f, fwl, fw ),

where fu, is the partial derivative off with respect to wt; for example, fx2.x3 03 f/(02x20x3).
The sign of a nonzero polynomial f is the sign of the first polynomial’ in S(f) whose value
at the actual input is not zero, which can always be found after examining a finite number of
terms.

Yap focuses on sparse n-variate polynomials, with rn denoting the maximum degree ofany
variable. In the case when all variables are of degree m, a polynomial f has (m + 1)’ 1 >_ m"
nontrivial derivatives. On the average only a few partial derivatives will have to be evaluated,
but at worst all of them have to be computed and the complexity is 12(m").

Dobrindt, Mehlhom, and Yvinec [8] studied the problem of intersecting an arbitrary poly-
tope with a convex one in three dimensions, proposed an efficient perturbation, and discussed
postprocessing in this context. The interesting feature of their technique is that it controls the
direction of perturbation. In particular, since the facet structure is given, the polytope vertices
are forced to be perturbed outward.

In a slightly different vein, Canny used a structural perturbation in [4] to ensure that
the input semialgebraic sets are in general position. One immediate application is to motion-
planning algorithms, where these sets describe obstacles or prohibited space. The perturbation
preserves the emptiness and number of connected components of the original sets using se-
quences or towers of infinitesimals.

Perturbation methods have been applied in other cases to eliminate degeneracies with
respect to particular problems, as in 17], for instance.

Finally, Emiris and Canny in 14] extend the applicability ofthe deterministic perturbation
introduced in this article to another two geometric branching tests, most importantly to the
InSphere test. They also propose a new variant of the scheme that eliminates the polynomial
factor in the asymptotic bit complexity overhead with respect to the two tests examined here.

4. Branching on determinants. We first restrict attention to algorithms whose branching
depends exclusively on the sign of determinants in the input variables, which is the case with
several geometric algorithms. We concentrate on two specific types of determinants that cover
important algorithms, such as those computing convex hulls and hyperplane arrangements.
Our approach can be applied to other types of determinants too, as demonstrated in 14].

Assume that the input parameters represent n input objects Pl, P2 Pn, each specified
by d parameters. Without loss of generality, each pi (pi,1, pi,2 Pi,d), is a point in
]Rd. We are interested in the case that the dimension d is arbitrary, whence the total input
size is nd. It is also reasonable to assume that a constant fraction of the points are distinct,
thus establishing a lower bound on the parameters’ bit size. In practice this condition can be
guaranteed using an initial check to eliminate duplicate points; in most settings the complexity
of this phase is dominated by that of the main algorithm.

We perturb deterministically every parameter Pi,j to obtain Pi,j (if), where e is an infinites-
imal symbolic variable:

(1) pi,j(.) pi,j + 5 (i J).
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Although e is never assigned a real value, we shall show that no symbolic computation is
necessary.

First consider matrix Ad+I whose rows correspond to points pi, Pi2 Pid+"

Ad+l

Pi,l Pi,2 Pi,d
Pi2,1 Pi2,2 Pi2,d

Pid+,l Pie+l,2 Pid+,d

Testing the sign of this determinant comes up in various contexts. We call it the sidedness
test because, given a query point Pid+ and the hyperplane spanned by the other d points, the
sign of the determinant indicates on which side of the hyperplane the query point lies. The
determinant vanishes if and only if the query point lies on the hyperplane; the positive and
negative sides of the hyperplane are determined by the order of the d points defining it. This
test is sometimes called the orientation test, since it may be regarded as deciding the relative
orientation of the d + points in the sense of [12]. In fact, the column of ones should be
rightmost, but it is a constant-time operation to obtain the orientation of the points from the
sign of det Ad+l.

Let us refer to the new matrix that contains the corresponding perturbed parameters as the
perturbed matrix, denoted by Ad+l (e). The modified program that runs on perturbed input
will be computing the sign of its determinant, which is given by the following expression.

det Ad+l(e)

det Ad+l q- ((5k terms, <_ k <_ d 1) + ed

i 2 id

i2 i if

1 ie+ i+ i+
where the last term is the determinant of Vd+, a (d + 1) x (d + 1) Vandermonde matrix, with

det Va+ H (ik it).
k,l {1 d}

k>l

The second matrix of interest has rows representing input points Pi, Pi2 Pid"

Pi,l Pi,2 Pim,d
Pi2,1 Pi2,2 Pi2,d

Pid,1 Pid,2 Pid,d

This test decides the orientation of points expressed in their homogeneous coordinates. In a
dual setting, such as in 11 ], the input objects are hyperplanes in (d 1)-dimensional space
and the test indicates on which side of the first hyperplane lies the intersection of the other
d hyperplanes. Then the determinant vanishes if and only if the d hyperplanes have a
nonempty intersection; for this reason, this is called the transversality test.

The corresponding matrix Ad( of the perturbed parameters has determinant

detAd(e) detAd + (ek terms, l_<k_<d-1) + ed
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where the coefficient of ed is the determinant of another Vandermonde matrix Ud and can be
expressed as follows:

d d d

detUa I-Iik detVa Hi/ H
k=l k=l k,

k>l

(i -il).

LEMMA 4.1. Given a real RAMprogram, there exists a positive real constant eo such that,
for every positive real e < Co, every Ad+I (e) and Ad(e) matrix occurring at a branching node
ofthe program is norlsingular and its determinant has constant sign.

Proof The perturbed determinants are univariate polynomials over the reals. Any poly-
nomial over an ordered field that is not identically zero has an algebraic set of roots of positive
codimension. Thus, for univariate polynomials, this set is the union of a finite number of
points.

Neither det Ad+(e) nor det Ad(e) are identically zero because the highest-order term
never vanishes, since all indices are distinct and positive. Hence, there exists a finite number
of roots for each symbolic determinant in e. Letting e0 be the minimum positive such root
over all test determinants in the program proves the lemma.

THEOREM 4.2. Perturbation (1) is valid with respect to algorithms that branch on deter-
minants ofA+ and As, for < d, where d is the dimension ofthe geometric space in which
the input points lie.

Proof The perturbed instance is clearly arbitrarily close to the original one since
tends to zero. This instance is also in general position because both kinds of perturbed

determinants have a well-defined sign that is never zero for sufficiently small e, from the pre-
vious lemma. Finally, since the sign of perturbed determinants is the sign of the lowest-order
nonvanishing term, when the original determinant is nonzero it dominates the e-polynomial.
Then all branches take the same direction, for a given instance, before and after the perturba-
tion.

We now address the question of computing the sign of the perturbed determinant. One
obvious way is to evaluate the terms in the determinant’s e-expansion in increasing order of
the exponent of. The process stops at the first nonvanishing term and reports its sign. This is
essentially the approach adopted by SoS and Yap’s technique. Our perturbation scheme lends
itself to a more efficient trick which reduces the determinant calculation to a characteristic
polynomial computation, which also avoids the requirement for symbolic manipulation:

e Pi,l (e) pil,d(e)
detAd+() _1

e Pid+,l(e) Pid+,d(e)

([ 0 PiI’I Pil’d1
det + Vd+le

0 Pid+t,1 Pid+l,d

1
det(L + e Vd+I).

Having implicitly defined L, denoting by I the k x k unit matrix, and relying on the fact that
every Vandermonde matrix is invertible, we have

det Ad+l(e)
1
det(-Vd+l) det(-(Vd+l)-L e Id+l)

(2) -1 (--1)d+l det Vd+ det(M e Id+).
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Similarly,

det Ad(e) det(Ad + CUd) det(-Ud) det(-(Ud)-1Ad 6Id)
d

(--1)d H ik det Vd det(N Id).
k=l

Matrices M and N are defined implicitly. Notice that we have reduced the computation of a
symbolic determinant to calculating the characteristic polynomial in ofM or N, respectively.

We now prove the efficiency of this approach. Let MM(k) denote the number of multipli-
cations and divisions needed to multiply two k x k matrices, which is currently O(k2"376) [5].

LEMMA 4.3. Computing the sign ofperturbed determinants det Ad+l (;) and det Zd(6
can be done in O(MM(d) log d) arithmetic steps.

Proof. The determinant and the inverse of a d x d Vandermonde matrix takes at most
O(d2) arithmetic steps [23], while computing M or N as a matrix product takes O(MM(d))
operations. Computing det(M Id+l) or det(N Id) is a characteristic polynomial com-
putation for which there exists an algorithm by Keller-Gehrig 16] requiring O(MM(d) log d)
operations. This algorithm is purely numeric as it transforms matrix M or N, respectively,
to a new matrix that contains the coefficients of the characteristic polynomial in the last
column. D

A brief discussion of modular arithmetic is in order here because, in addition to being the
most commonly used method to carry out exact arithmetic on computers, it is also the most
economical for computing the perturbed determinants. Let k denote the total number of finite
fields required for a particular computation, which is proportional to the bit size of the quantity
that is to be eventually computed. Suppose that each finite field Zq is defined bya constant-size
prime integer q which can be obtained in constant time from an existing and sufficiently long
list of primes. Following the exposition in ], thefirst stage consists of mapping each matrix
element into its k residues, the second stage performs the particular computation in k different
finite fields, and the third stage applies the Chinese remainder theorem to find the answer from
its k residues. The first and third stages both have bit complexity O(M(k) log k) while that of
the second stage depends on the computation performed. The modular method is applicable
to rational inputs with the same asymptotic complexity [7].

Let s be the maximum bit size of any input parameter with s O(log n), since we have
assumed that a constant fraction of input points is distinct.

THEOREM 4.4. Consider algorithms that branch on the determinants ofAs+l and As, for
3 <_ d, where d is the dimension of the geometric space of the input points. Perturbation (1)
increases the asymptotic running-time complexity ofthe algorithm under the algebraic model
by O(log d). Under the bit model, the worst-case complexity is increased by a factor of
O(dl+a), where ot is an arbitrarily smallpositive constant thataccountsfor thepolylogarithmic
factors.

Proof The previous lemma proves the claim on the algebraic complexity since the original
complexity of computing a d x d determinant is 69(MM(d)) 15].

In what follows we concentrate without loss of generality on the sidedness test. In
the original setting, the worst-case bit size of the determinant is 6)(ds) and using modular
arithmetic requires k 6)(ds) distinct finite fields. The first stage maps d2 quantities to their
respective residues, the second stage computes the determinant modulo some prime q, while
the last stage’s complexity is dominated. Hence the overall worst-case complexity is

9(d2(ds)1+ + dsMM(d)),

where c is an arbitrarily small positive constant.
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For the perturbed determinant we must compute the coefficients of the characteristic poly-
nomial of M. Observe from (2) that this is a scalar multiple of the e-polynomial det Ad+ (e);
therefore the latter’s coefficient sizes provide upper bounds on the sizes of the characteristic
polynomial coefficients. Now, each entry of Ad+I (e) is a sum of an original point coordi-
nate and a perturbation quantity, hence its bit size is the maximum of s and d log n. All
coefficients of det Ad+l (e) are sums of determinants of order at most d that have entries of
bit size s + d log n. Thus the coefficients have size O(ds + d2 log n). which also provides
an asymptotic upper bound on the number of finite fields. Hence the new bit complexity
is

O(dZ(ds + d2 logn)+ + (ds + d2 logn)MM(d) log d),

where ot is another arbitrarily small positive constant. To complete the proof we apply the
asymptotic lower bound on s. [3

The section concludes with an application to the beneath-beyond convex hull algorithm for
general dimension, presented in 10]. The algorithm is incremental and relies on the hypothesis
of general position with respect to the two tests used for branching. The first simply sorts
the points along some coordinate assuming that no two points have the same coordinate. The
second is essentially the sidedness test. called once the convex hull of a subset of the points
is constructed: given a (d 1)-dimensional facet and a query point, decide whether the point
lies on the same side of the facet as the hull or not. Under perturbation (1) this test can be
implemented by at most two sidedness tests.

The perturbation is transparent with respect to the rest of the algorithm. The two branching
tests can be thought of as subroutines that are given subsets of input points and return a nonzero
sign to avoid degeneracies. The polytope constructed is simplicial, which means that all faces
are simplices. Restricting attention to the facets, we note that their number is not minimum
because some may be created to subdivide a nonsimplex facet into simplices, while others
may include input points in the interior of some facet which have been perturbed into polytope
vertices.

Our approach is most favorable in applications where such redundancy is immaterial,
for instance, in computing the volume of the convex hull. In this case, under the symmetric
volume metric, the problem mapping is continuous and the exact answer is readily obtained
by setting 0 in the expression of each partial volume that makes up the overall polytope.
These partial volumes are Ad+l (e) determinants computed in the course of the algorithm, so
there is no extra cost for calculating the exact volume.

The artificial facets may have to be eliminated for other applications through a postpro-
cessing phase. This involves checking every facet against every one of its d adjacent facets by
computing a Ad+ determinant. If it vanishes, then certain (d 2)-dimensional faces must be
eliminated and, eventaally, certain input points may have to be removed from the vertex set of
the convex hull. The algebraic complexity of this phase is asymptotically equal to the product
of dMM(d) and the number of facets in the approximate output, hence its bit complexity is
dominated by that of the algorithm.

5. Branching on arbitrary rational functions. For the general case where the branching
tests are arbitrary rational functions, we propose a randomized perturbation which is easy to

implement and applies to algebraic problems such as matrix inversion and linear programming
as well as geometric algorithms whose branching functions are not covered by those examined
above.

Let f be an arbitrary rational function whose sign determines the direction taken at some
branch and express it as p/q, where p, q are polynomials in the input variables, each of total
degree bounded by D; recall that D is the maximum total degree in the input variables of any



REMOVING DEGENERACIES 661

polynomial in the real RAM program. Suppose that the input variable vector x belongs to
and let a (al an) be a particular input instance, hence the input size is n.

For a given input, define the perturbed instance a(6) (al (6) an (6)) as follows"

(3) ai(6) ai 4- 6 ri,

where 6 is an infinitesimal symbolic variable and ri is a random integer.
Each ri is chosen uniformly over a range that depends on the desired probability that

none of the branching polynomials vanishes. This probability of success can be fixed to be
arbitrarily high. It is parameterized by a real constant c > 1’ all claims in this section hold
with probability at least 1/c.

The total number of polynomials appearing at the numerator or denominator of a branch
expression is at most 2.3T, where T is the maximum number of branches on any execution
path. Schwartz’s lemma [19] requires that the range of the random values contains at least as
many values as the product of c and the total degree of the polynomial whose roots we wish
to avoid. Here, this polynomial is the product of all branch polynomials, hence its degree is
bounded by 2.3r D. Therefore, the bit size of the perturbation quantities is

[lg c + lg D + (lg 3) T + 1],

where lg denotes the logarithm of base 2.
It is feasible that for some set of random variables, a(6) will still cause some branching

polynomial to vanish. In this case the perturbation has failed, so the algorithm is restarted
and new random variables are picked, independently and uniformly distributed over the same
range. It is not clear that any deterministic scheme could avoid the zeros of all polynomials
without taking time at least exponential in the number of variables. Intuitively, our method is
faster because it randomly selects one n-dimensional perturbation vector instead of trying out
all possible ones.

LEMMA 5.1. Let the entries oft (rl rn) be independently and uniformly chosen
integers of [lg c + lg D + (lg 3) T + 1] bits each, for any c > 1. Then there exists with

probability at least 1/c, a positive real constant 6o such that, for every positive real
6 < 60, every branching rationalfunction f(a + 6r) is de.fined, nonzero, and ofconstant sign.

Proof Let g(a 4- 6r) be any polynomial appearing at the numerator or denominator of
some branch expression and let G(a + 6r) be the product of all distinct polynomials g. By
hypothesis, none of these polynomials is identically zero, therefore G also is not identically
zero. For a moment, fix 6 and consider G (a + r) as a polynomial in r, whose degree in
x and r is the same. Since D bounds the total degree of any polynomial g, the total degree of
G is at most 2.3T D. Now we apply a lemma proven in [19]. The probability that r, chosen
uniformly at random with the given size, is a root of G(a 4- lr) is at most 1/c. All claims that
follow concern the particular r and hold with probability at least 1/c.

First observe that none of the polynomials g(a 4- lr) vanishes at r, hence every g(a
may be regarded as a polynomial in 6 that is not identically zero. Consequently, its zero set
is of positive codimension and, more specifically, a finite point set. Consider the minimum
positive root for every g and let 60 be the minimum over all polynomials g.

THEOREM 5.2. Perturbation (3) is valid with arbitrarily high probability with respect to

any algorithm that branches on rationalfunctions in the input variables.

Proof The perturbed instance is arbitrarily close to the original one as 6 tends to zero.
Branches decide on the sign of a perturbed rational expression, which is the sign of the lowest-
order term in the 6-polynomial that does not vanish. By the previous lemma all polynomials
have a constant nonzero sign for sufficiently small 6, hence a(6) is in general position. For non-
degenerate inputs all query polynomials have a nonvanishing real part, i.e., a term independent
of 6 which dominates the sign.
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What is the tradeoff in efficiency? The algebraic complexity of the algorithm is increased
by the time required to manipulate the e-polynomials symbolically, which depends on D, since
the degree of every polynomial in e is the’same as its total degree in x. The bit complexity is
also affected by D but not by c which is fixed.

LEMMA 5.3. Under perturbation (3) the algebraic time complexity of the branching
instructions and the arithmetic operations is O(D) and O(D log2 D), respectively.

Proof Each operation in {+,-, ,,/} involves multiplication of e-polynomials and a
GCD computation to reduce to lowest terms so that the degree bound D is observed. The
multiplication takes time O(D log D) and the GCD O(D log2 D) [1]. Branching instructions
must find the lowest nonvanishing term in the corresponding e-polynomial, which takes O(D)
time.

Degree D cannot be bounded in general by a polynomial in the algebraic complexity,
which implies that the perturbation may be prohibitively expensive under the algebraic model.
Exponentiating a rational number, for instance, takes roughly a logarithmic number of steps in
the exponent, while on perturbed input the worst-case algebraic complexity is at least linear in
it, which means the complexity overhead is exponential in the original complexity. However,
we obtain better bounds by considering bit complexities.

THEOREM 5.4. Under the algebraic model, the running time increases due to perturba-
tion (3) by a multiplicative factor of O(Dl+a), where D is the maximum total degree in the
input variables ofanypolynomial in the real RAMprogram and ot is an arbitrarily small posi-
tive constant accountingfor the polylogarithmicfactor. Under the bit model, the overheadfor
the worst-case complexity is O(q2+ (n, s)), where (n, s) asymptotically bounds the original
worst-case bit complexity of the algorithm, s is the maximum bit size of the input quantities,
and ot is an arbitrarily small positive constant.

Proof By the p:evious lemma for ev.ery instruction the overhead is O(D log2 D). This
establishes the algebraic complexity overhead.

By the definition of T there exists an execution path with bit complexity 12(T), hence
4(n, s) O(T). By the definition of D, there exists a path where a polynomial of degree D in
the input variables is computed. Since the only legal arithmetic operations lie in {+: -, ,,/},
there must exist an earlier operation on this path computing a polynomial of degree at least
D/2, hence computing values of bit size s D/2. The operation that uses these values as
operands has bit cost 12(sD/2) I2(D). Hence q(n, s) I2(D).

After the perturbation, the same program operates on perturbed quantities; their starting
bit size is multiplied by O(log D + T), assuming c is constant. Moreover, the algebraic
complexity has overhead O(D log2 D). Hence, the worst-case bit complexity overhead is

(4) O((log D + T)D log2 D).

Recalling the two lower bounds on 4)(n, s), we have (n, s)2+ (TD+’), which bounds
the bit complexity overhead (4), for some appropriate c > 0.

COROLLARY 5.5. Perturbation (3) does not affect the worst-case bit complexity class

of the algorithm. In particular, if the original complexity lies in P or EXPTIMEo then the
complexity on perturbed input also lies in P or EXPTIME, respectively.

Proof The proof is immediate from the previous theorem.
Taking up the running example of Gaussian elimination for the matrix inversion problem,

we observe that no checks for zero denominators have to be carried out on perturbed input.
Perturbation thus eliminates the need for interchanging rows. Computation is symbolic, with
GCD operations at every step to cancel common terms and thus prohibit the degree in e
of the symbolic polynomials from growing exponentially in the number of examined rows.
For nonsingular matrices, the result is obtained by setting e to zero at the end. For singular
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instances, this causes some denominator to vanish, so we take the limit as goes to zero. For
singular matrices the result is some real matrix that approximates, in a sense, the inverse

Ii. Conclusion. We studied algorithms modeled as programs on real RAMs with inputs
from an infinite ordered field and described perturbations on the input, such that an algorithm
designed under the assumption ofnondegeneracy can be applied to all inputs. Our perturbations
satisfy the validity condition set out in 2 which guarantees the relevance of the output with
respect to the initial problem.

We defined a deterministic method for’algorithms with determinant tests and a randomized
one for arbitrary test functions. The first applies to algorithms from computational geome-
try whose branching tests can be expressed as a determinant of a A or ,5 matrix. Ignoring
polylogarithmic factors in the geometric dimension, the deterministic scheme does not affect
the algebraic complexity but incurs an overhead to the worst-case bit complexity that is linear
in the dimension. The second perturbation, applicable to most geometric and algebraic algo-
rithms, incurs a worst-case overhead under the bit model that is bounded by a small-degree
polynomial in the original complexity. Both methods are characterized by their conceptual
simplicity and are significantly faster than previous ones.

Examining branching tests that come up in other geometric algorithms and trying to

improve on efficiency are natural extensions to this work, partly fulfilled in [14]. It is also
interesting to attempt to extend the notion of degeneracy over finite fields, where the lack of
order makes our definition of degeneracy invalid. Another direction of generalization is to
observe that each leaf subspace is associated with a semialgebraic set defined by the branch
polynomials on the respective execution paths. We may wish to perturb these sets into general
position.
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TIMOTHY LAW SNYDER AND J. MICHAEL STEELE

Abstract. It is proved that there are constants cl, c2, and c3 such that for any set S of n points in the unit square
and for any minimum-length tour T of S (1) the sum of squares of the edge lengths of T is bounded by Cl logn.
(2) the number of edges having length or greater in T is at most c2/t2, and (3) the sum of edge lengths of any
subset E of T is bounded by c3lEI 1/2. The second and third bounds are independent of the number of points in S,

as well as their locations. Extensions to dimensions d > 2 are also sketched. The presence of the logarithmic term

in (1) is engaging because such a term is not needed in the case of the minimum spanning tree and several analogous
problems, and. furthermore, we know that there always exists some tour of S (which perhaps does not have minimal

length) for which the sum of squared edges is bounded independently of n.

Key words. Euclidean traveling salesman problem, inequalities, squared edge lengths, long edges

AMS subject classifications. 68R10, 05C45, 90C35, 68U05

1. Introduction. The purpose of this note is to provide a priori bounds on quantities
related to the edge lengths of an optimal traveling salesman (minimum-length) tour through n
points in the unit square. By a priori we mean that the bounds are independent of the locations
of the points.

Studies of a priori bounds were initiated by Verblunsky (1951)and Few (1955). Few
showed that for any set S of n points in the unit square, the length of an optimal traveling
salesman tour of S is at most + 1.75. Few’s result led to a series of improvements.
culminating in Karloff (1989), where it was shown that Few’s constant could be reduced to

less than . Goddyn (1990) improved similar results in higher dimensions. Our results
continue in this tradition by giving a priori inequalities for three other quantities related to the
edge lengths of an optimal traveling salesman tour.

The interest in and subtlety of our inequalities comes from the fact that, in contrast to the
minimum spanning tree (MST) problem, optimal solutions to the traveling salesman problem
(TSP) are not invariant under monotone transformations of the edge weights. Before giving
further details on this connection and other related work, we state our main results. We let

lel Ix y[ denote the Euclidean length of the edge e xy with vertices x and y in/R2 and,
in settings where the order of the edges of an optimal tour is not important, we represent a
traveling salesman tour by the edge set {el, e2 e,, }. In what follows, an "optimal" traveling
salesman tour is a tour that is of minimum length when using Euclidean edge weights.

Our first theorem bounds the sum of squared edge lengths of any optimal traveling sales-
man tour.

THEOREM 1. There exists a constant 0 < Cl < cx such that if T {el, e2 e,, is an
optimal traveling salesman tour of {xl, X2 Xn} C [0, 1]2 and ifn > 2, then

(1.1) le 12 < cl log n.
i=1

Theorem 2 is a bound on the number of edges that are of length or greater.
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THEOREM 2. There exists a constant 0 < (-:2 < O0 such that, if v(n, t) is the number of
ei T such that lei > t, thenfor all > 0 and n > 1,

(1.2) v(n, t) <_ C2/t2.

Theorem 3 gives a bound on the total length of any k-edge subset of an optimal TSP tour.
THEOREM 3. There exists a constant 0 < c3 < oo such thatfor each E {eft, eiz eik

T, we have

(1.3) lei <_ c3/.
icE

It is interesting to compare these results to their minimum spanning tree analogues. Steele
and Snyder (1989) proved MST analogues to (1.2) and (1.3), but these proofs were predicated
on a solution to the MST problem via a greedy algorithm and thus were not applicable to the
TSP. The best TSP analogue to (1.2) was therefore Vvsp(n, t) <_ CTsp/-/t, for some constant

CTs. The bounds (1.2) and (1.3), however, are independent of n, the number of points, as well
as the locations of the points. For this reason, we say that (1.2) and (1.3) are fully a priori
inequalities.

Inequalities like (1.1) are important in simulations and investigations in which square root
computations required for Euclidean lengths are deemed to be too expensive (cf. the discussion
in Steele (1990)). It was observed in Steele (1990) in an application of the space-filling curve
heuristic that one could obtain a result like (1.1) for the MST, but without the logarithmic
factor, Although this result might make the logarithmic term of (1.1) seem disappointing, it
is actually best possible since Bern and Eppstein (1993) recently showed that there exist a
positive constant c and point sets S with ISl such that ZesT lel 2 >- c log ISI.

Part of the interest in these results comes from the fact that there are closely connected
inequalities that exhibit strikingly different behavior from the optimal TSP tour. In particular,
there is a constant c’ and for all n there is a nonminimal length tour T’ of S with SI n
such that, for all n > 2, ZesT’ [el 2 < c’. These tours can be obtained via the space-filling
heuristic as noted in the discussion of the MST. Neumann (1982) showed that such tours can
be obtained by appropriately generalizing the Pythagorean theorem, a construction that, upon
reflection, almost parallels that of some space-filling curves.

The curious issue for the TSP is that although there is some tour T’ that makes ZesT, lel 2
particularly small, the Bern and Eppstein (1993) result tells us that a traveling salesman tour
T minimizing er !el need not do nearly so well. Because of the matroidal properties of the
MST, these issues do not arise in its analysis" analyzing the optimal TSP is more difficult.

In the final section, we will comment further on this as well as problems concerning points
in [0, ]a for dimension d > 2. In 2, we prove a technical result that is applied in 3 to prove
our main results.

2. Edge lemmas. The second lemma of this section explicates a property of edges in
a TSP tour that will be useful in the next section, where we prove our main results. Our
first lemma gives a simple geometric bound concerning diagonals of quadrilaterals. In the
statement ofLemma 1, the term "diagonal" is used to denote a segment connecting nonadjacent
vertices of a quadrilateral, regardless of whether the quadrilateral is convex.

LEMMA 1. Let L1 and L2 be two nonintersecting line segments satisfying r <_ ILil < r.
where > and r > O. Suppose the midpoints of L1 and L2 are separated by distance ..
where ) < min{ 1/2 [L 11, IL21}. Ifthe endpoints ofL and L2 arejoined toform a quadrilateral
with sides L, L2, $1, and $2, then ISil <_ ([ 1)r + 3for 1, 2.
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(x,y)

L2
S1

L1 O (ILl I/2,0)

FIG. 1. The lines L and L2 in the proofofLemma 1.

Proof Without loss of generality, we can assume that L is the longer of the two lines
and that it is oriented along the x axis with its midpoint at the origin. We can also assume that

L2 lies entirely in the upper half plane. Let (x, y) denote the rightmost endpoint of L2 and
let S be the line segment determined by (x, y) and (ILI/2, 0) (see Fig. 1, which illustrates
a convex quadrilateral). By the triangle inequality, the segment from the origin to (x, y) is at

lZ21 /X.mostilL21+X, sox <

We also claim that i IL21 . < x. To prove the claim, consider the disk D of radius

X centered at the midpoint m of L2. Since . < 1/2[L21, the point (x, y) must lie outside the
interior of D. Since L2 lies entirely in the upper half plane, the endpoints of L2 must lie in
the shaded regions in Fig. 2, with (x, y) constrained to lie in the first quadrant. Letting (x,’ 0)
be the point where the x axis intersects the circle with center m passing through (x, y), it is
clear from the figure that x > x’. However, the origin-x’ segment is greater than or equal to

[L2I . since L2I )v is the minimum distance from (x, 0) to D. This proves the claim
and yields

(2.1) zlZ21- X x lZzl + )v.

Since L and L2 do not intersect, 0 < y < 2X. Combining this with (2.1) gives us I&l 5
[x 1/21Zll / y _< (/ )r / 3Z, as claimed. [3

LEMMA 2. Let {el, e2 en denote the edges ofan optimal traveling salesman tour of
{x, x2 xn C 2. For each ei satisfying r <_ leil < r, where r > O, let Di denote the
disk of radius aleii centered at the midpoint of ei, where ot 1/13 and 3/2. Then, for
any three disks Di, Di2, and Di3, the intersection Di ("1 Di2 0 Di3 is empty.

Proof. Suppose at first that Di f) Di2 (’] Di3 k and that the edges ei, ei,., and ei3 share
no common vertex. Without loss of generality, let ij j for j 1, 2, 3. We show that if
D, D2, and D3 have a point in common, then it is possible to construct a shorter tour through
{x l, x2 Xn }. It is well known that edges of an optimal Euclidean traveling salesman tour
cannot intersect. We can therefore assume that e ab, with midpoint m and endpoint
a to the left and b to the right, is oriented along the x axis. Similarly we can assume the
midpoint m2 of e2 a2bz lies above e and the midpoint m3 of e3 a3b3 lies above e2, as
illustrated in Fig. 3.

Since the endpoints of the e, {a, a2, a3, b, b2, b3 }, are distinct and are on the tour, there
is a pair ai, bj with j such that ai and bj are joined by a path that contains none of the
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D

m

o (x’ ,o)

a3

FIG. 2. The disk D and its relation to x, L2, and ..
03

02
b3

a2
b2

al bl

Ol

FIG. 3. Three nonintersecting lines ofa TSP tour and their Di. Here, ot clarity.

edges el, e2, and e3. We now claim that we can construct a shorter tour by replacing edges eg
and ej with edges aiajand bibj. This contradiction will establish the lemma.

For specificity, assume that 2 and j 3, as shown in Fig. 4. We form a new path
from a2 to b3 by deleting e2 ande3 and adding the edges a2a3 and b2b3. Since D, D2, and D3
have a point in common, the midpoints of e2 and e3 can be separated by at most the summed
radii of D2 and D3, which is olezl / ale3[. Setting ,k c(le2l + [e31) and recalling that
r <_ leil < fir, we note that ,k __< ot(le21 +/31e21) < le2l; similarly, < le3[. In addition,
we have ) _< 2c03r. These facts allow us to apply Lemma to estimate the net change A in
the path length as

A la2 -a3l + Ib2 b31- le2[- le3l

_< 2 ( r + ) 2r

_<2 (/-l)r+6cr -2r

(1 3 +
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a 3

b2

FIG. 4. Rebuilding the a2 to b3 path when 2 and j 3 in Lemma 2. The curved arc" is a path, the x’ed
edges have been removed, and the dashed edges have been added.

The choices fl 3/2 and ot 1/13 guarantee that A < 0.
For the case of and j 3, one obtains identical bounds on the change in the tour

length when replacing e; and ei with aiai and bibj. Without loss of generality, the 2,
j 3 and 1, j 3 cases are the only cases that need to be considered.

To complete the proof, note that any vertex shared by any of ei, %, and e;: can be replaced
with two vertices that are viewed as being joined by an edge of length 0. The above analysis
can then be applied as before without change to obtain a contradiction.

3. A priori edge-length bounds. We are now in position to prove our main results.
Label the edges of an optimal tour T of {x, x2 x,, C [0, 112 in order as e, e2 e,.
We first construct disks Di of radius a leil and center at the midpoint of ei for each < < n,
where a 1/13. Let i(’) denote the indicator function of Di, i.e., for all x //?2, aPi(x)
if x Di" otherwise gel(X) 0. Let A be the set of all such that r <_ leil < fir, where
/3 3/2. We then claim that

(3.1) 7ti(x) <_ 2(x)o

where (.) is the indicator function of the square [- 1, 2]2.
To prove the claim, note that for/3 3/2 and a 1/13, Lemma 2 tells us that no three

disks of A intersect. Hence, the point x 6 2 can belong to at most two disks associated
with A. Furthermore, since any disk with center in [0, 112 and radius bounded by otflr is
contained in [-c/3r, t + cflr]2 C [--1, 2]2, we need only concern ourselves with the square
x 6 [-1, 2]2. This proves the claim.

If we now integrate (3.1) over x. we obtain a basic bound on a subset of the squared edge
lengths of an optimal TSP tour:

(3.2) Z lei[2 < c,
r<leil<_r

where c 180/-27r-1o The bound is then used as follows.

(3.3)

__lei 12 < + lei 12
i=1 n-/2<_lel<_x/

m

k=l Bt’-ln-l/" <_leil<[3’n-i/:
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where rn is the least integer k such that flkn-l/2 > w/. It suffices to take rn [log3/2()
applying (3.2) to (3.3) yields the bound

(3.4) le 12 < c log n,
i=1

where c is constant as required by Theorem 1. We remark that explicit constants have been
given only to facilitate checking; there is little hope of obtaining the best possible bounds on

c and related values.
Returning to (3.1) and integrating, we see that since [ei > r for all 6 A,

(3.5) IAIzrc2r2 _< 18.

However, IAI [{i" r <_ leil < 3r }[, so for c 18/(zrc2), we have

(3.6) I{ r <_ leil < 3r }1 < cr-2"

We can now bound

(3.7)

v(n, t)= [{i" leil >__ t}

mt--I
<_ _, I{i t <_ leil < ilk+It

k=0

where mt minj{3Jt >__ x/}. We then use (3.6) to obtain

(3.8)

v(n, t) <_ c Z (3kt)-2
k=O

< c -2 Z 3-2k
k=O

C
t-2

-2
which is Theorem 2, with c2 c32/(/32 1).

Theorem 3 now results from (3.8) by first noting that n v(n, x) is the number of edges
in T of length less than x, then writing

Eleil-- E leil + E leil
ei6E eiE eiE

lel<t teil>_t

<- E leil+ leil
eE eiT

(3.9)
le,.l<t le, l>t

<_ tlEI / x d(n v(n, x))

tlEI ] x dv(n, x).<_
,It

Integrating the rightmost term of (3.9) by parts and then applying (3.8), we obtain



A PRIORI BOUNDS ON THE EUCLIDEAN TRAVELING SALESMAN 671

f x dv(n, x) tu(n. t) + f v(n, x) dx

C2 f
x

C2(3.10) < + dx
-t

2c2

Inserting (3.10) into (3.9) and setting ILl -/2 yields Theorem 3, with c3 + 2c2.
4. Concluding remarks. The preceding arguments can be generalized without difficulty

to higher dimensions. The key idea is that in Lemma 2 we showed that if three of the Di
associated with edges of a TSP tour had a point in common, then we could find three edges
el, e2, and e3 that were close together and nearly parallel.

We can obtain a proper analogue in dimensions d > 2 if we consider the possibility that
a large number N(d) of d-spheres Di D(mi, ale/I) c/Ra intersect and exploit the fact that
the surface of any sphere in d can be covered with a finite number M(e) of spherical caps
with polar angle e. In summary, one can prove the following theorem.

THEOREM. There exist positive constants ca and ca such thatfor any traveling salesman
tour T of {Xl, x2 Xn C [0, ]a andfor all n > 2,

E leld < Ca log n,(4.
e6T

and

(4.2) va(t) l{e 6 T’lel > t} < ca/ta.
" such thatfor any E {ei, ei2 ei. c TFurthermore, there exists a positive constant ca

we have

(4.3) leil ck(d-l)/d.
icE
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SPARSE REDUCES CONJUNCTIVELY TO TALLY*

HARRY BUHRMANt, EDITH HEMASPAANDRAt, AND LUC LONGPRI

Abstract. Polynomials over finite fields are used to show that any sparse set can conjunctively reduce to a tally
set. This leads to new results and to simple proofs of known results about various classes that lie between P and
P/poly.

Key words, low density sets, conjunctive reductions, truth table reductions, Kolmogorov complexity

AMS subject classifications. 68Q05, 68Q30

1. Introduction. Sparse sets and tally sets have been the subject of much recent research
in structural complexity theory. A thorough survey of results on this topic can be found in
[HOW92].

Sparse sets are closely linked to nonuniform complexity classes and circuit complexity.
It is well known that sets Turing reducible to sparse sets are those sets that have polynomial
size circuits, which is also the same as the advice class P/poly, the class of sets solvable with
polynomial size advice. Since sparse sets can be encoded easily as tally sets, this is also the
same as the class of sets Turing reducible to tally sets.

For a reduction <P and a class of sets C, let Rr (C) be the class of all sets that are <rp-
reducible to a set in C. In this terminology, P/poly Rr(SPARSE) Rr(TALLY). There is
an interesting structure of sets lying between P and P/poly that can be defined by changing
the Turing reductions to weaker reductions, and/or by considering tally sets instead of sparse
sets.

The study of the Rr(SPARSE) and Rr(TALLY) classes, for various reductions r, was
initiated by Book and K@ in [BK88]. A more extensive study of these classes can be found in
[Ko89], [AHOW92], and [AHH+93]. Our main result refutes one of Ko’s conjectures [Ko89]
by showing that every sparse set is conjunctive truth-table reducible to a tally set as follows:

SPARSE Rctt (TALLY).
Rctt (SPARSE) Rcn (TALLY).

The reduction uses polynomials over finite fields to encode any sparse set into a tally set
in such a way that a polynomial-time algorithm can compute membership in the sparse set

using a conjunctive truth-table query. This encoding method itself found more applications.
Recently, it has been used to show an upward separation for FewP [RRW94]. The more classic
encoding method did not seem to work there. It has also been used to handle bottlenecks in
neural networks [Wat].

Our result is surprising since it is false for disjunctive truth-table reductions [Ko89]m
SPARSE Rdtt(TALLY)mand since it was believed to be false by those who looked at the
problem. One way to interpret the result is as follows. It is easy to see that one can encode a
sparse set into a tally set. But can it be encoded in such a way that all the information about

*Received by the editors April 2, 1993; accepted for publication (in revised form) January 24, 1994.
Centrum voor Wishkunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands. This research
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National Science Foundation grant CCR-9211174.
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the sparse set can be retrieved with a conjunctive truth-table? With a disjunctive truth-table?
The answers are yes and no, respectively.

The results allow us to derive corollaries that either settle other open problems or provide
simple proofs of previously known results. For example, as a derived result, we refuse another
conjecture of Ko by showing

Rbdtt (SPARSE) c__ Rctt (SPARSE).

These two results and the following result by Gavaldh and Watanabe settle all the remaining
open problems from [Ko89]. We end this section by looking at positive truth-table reductions
[Se182] pptt) to sparse and tally sets. In particular, we show that ptt reductions to tally sets
capture the class Rtt(TALLY):

Rpt (TALLY) Rtt (TALLY),

and thus

eptt (SPARSE) Rtt (SPARSE).

In [GW93], Gavald?a and Watanabe use a technique based on Kolmogorov complexity to
prove the conjecture of Ko that ectt (SPARSE) gdtt (SPARSE). Their construction actually
provides something stronger. If f (n) is an unbounded function from integers to integers, such
that f (n) is computable in time polynomial in n, then their construction provides a set that
is not <//-reducible to any sparse set but is <P//-reducible to a sparse set using only f(n)
queries on inputs of length n" ef(n)-ctt (SPARSE) edt (SPARSE), for any polynomial-time-
computable unbounded function f. By improving their technique, we are able to make the
set reducible to a tally set. For any polynomial-time-computable unbounded function f,

ef(n)-ctt (TALLY) gdtt (SPARSE).

Combining this with our main result allows us to strengthen one of Ko’s results and show that
for any polynomial-time-computable unbounded function f,

gf(n)-dtt (TALLY) ect (SPARSE).

This is optimal in some sense and reveals the following picture: Rbatt(SPARSE) is included
in Rctt(SPARSE) (this paper) and RIctt(SPARSE) is included in Ratt(SPARSE) [Ko89]. On
the other hand, for any unbounded f, the classes Rf(n)-dtt(SPARSE) and Rf(n)-ctt(SPARSE)
are incomparable.

From out main result, we can easily obtain further new results. For example, we show
that various classes are not closed under complementation. We also obtain results that were
previously known, almost directly from our main result. A typical line of reasoning is as
follows" if a set is <cP//-reducible to a sparse set, then it is <cP//-reducible to a tally set by our
result and thus its complement is <//-reducible to a tally set. This complementation argument
can be applied only for tally sets.

2. Preliminaries.

2.1. Notation. Let E {0, }. Strings are elements of E* and are denoted by lowercase
letters x, y, u, v For any string x the length of a string is denoted by Ix I, Subsets of
E* are denoted by capital letters A, B, C, S The set E* A is denoted by A. For a
set A we use A=n(A-<n) to denote the subset of A consisting of all strings of length n(< n).
For any set A the cardinality of A is denoted by A II. If for all n, A=n -< d(n), we say that
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A is of density d(n). We call a set S sparse if there exists a polynomial p such that for all
n, s<-nll <- p(n). A set T is called tally if T {0}*. We fix a pairing function )xy.(x, y)
computable in polynomial time from E* x E* to E*. Without loss of generality we assume
that for all x, y Ixl / lYl _< I(x, y)[ < 2(Ixl / lYl). We assume that the reader is familiar
with the standard Turing machine model.

2.2. Truth tables. The ordered pair ((a ak), or), for k > 0, is called a truth-table
condition ofnorm k is (al ak) is a k-tuple of strings and c is a k-ary Boolean function
ILLS75]. The set {a a is called the associated set of the tt-condition. A function f
is a truth-tablefunction if f is total and f(x) is a truth-table condition for every x in E*. We
denote the associated set of f(x) by Ass(f (x)). If, for all x, f(x) has norm less than or equal
to k then f is called a k-truth-table (ktt) function. We say that a tt function f is a disjunctive
(conjunctive) truth-table (dtt (ctt)) function if f is a truth-table condition whose Boolean
function is always a disjunction (conjunction) of its arguments

2.3. Reductions, reducibilities. Let A, A2 c_ E*. In this paper, all reductions are
polynomial-time computable. We say that

1. A is truth-table reducible to A2 (_<-reducible) iff there exists a polynomial-time
computable tt function f such that x 6 At iff ot(Xaz(al) Xa2(ak)) true, where f(x)
is ((al a), a) and XA2 is the characteristic function of the set A2.

2. A is k-truth-table reducible to A2 (<_tt-reducible) iff A <tPt A2 by some ktt func-
tion. A is bounded-truth-table reducible to A2 (<//-reducible) iff A <--tt A2 for some
integer k.

3. A is disjunctive (conjunctive) truth-table reducible (<tt (<cP//)-reducible) to A2 iff

A < A2 by some dtt (ctt) function. For k > 0, A is k-disjunctive (conjunctive) truth-table
reducible (<-dtt (<-ctt)) to A2 if A _<tPt A2 by some dtt (ctt) function of norm k.

4. A is disjunctive (conjunctive) truth-table reducible (<dtt (<c//)"reducible) to A2 iff
PA <k-dtt (<-ctt)A2 for some integer k.
5. A is positive truth-table reducible to A2 (<pPtt-reducible) [Se182] iff A <t’t A2 by

some tt function f such that for all sets X, X2, Y, and Y2, if X <t’t X2 via f, X2

___
Y2, and

Y _<let Y2 via f, then X

___
Y.

We will consider languages that are reducible to sparse and tally sets. Let r be any of the
above reductions. Then

SPARSE {S S is a sparse set},
co-SPARSE {S S is a sparse set},
TALLY {T IT is a tally set},

Rr(SPARSE) {A A <rp S for some S 6 SPARSE},
Rr(TALLY) {AIA <Pr T for some T TALLY}.

2.4. Kolmogorov complexity. The Kolmogorov complexity of a string x, K(x), is the
size of the smallest index of a Turing machine that generates x and halts. A Kolmogorov
random string is a string x such that K(x) > Ix l. For a more detailed description see, for
example, [LV93].

3. Conjunctive reductions to tally sets.
THEOREM 1. SPARSE

___
Rctt(TALLY).

Proof. Let S be a sparse set and let d(n) a polynomial upper bound on its density, where
d is a polynomial-time-computable function. Such a function d exists for every sparse set.
We show that S Rctt(TALLY).

We have to build a <Pctt reduction g from S to a tally set T. We can ensure that Ass(g(x)) f3

Ass(g(y)) 0 for Ixl :?- lYl by building g such that every element of Ass(g(x)) is of the
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fOrlTl 0(n’j), where n is the length of x. In the following, let xl X2. be the 2n strings of
length n. Note that if g is a reduction from S to T, then xi S Ass(g(xi)) cc_ T. Since
this property holds for all xi, a _ctt

<p reduction generates a family of 2 tally sets such that for
all xi q S, Ass(g(xi)) [..Jxjs Ass(g(xj)). Whether the reduction is possible depends on
whether we can efficiently construct such a family of sets. The existence of these kinds of
families has been studied in [EFF82], [EFF85], [NW88]. We will construct a family of sets

" {QI Q2, }, with the following properties:
1. Qi TALLY,
2. Qi can be generated in polynomial time (in n),
3. For any d(n) + sets Qi, Qid,), Qk

d(n)
=1

If we set the tally set T [..JxiS Qi, then xi S iff Qi c_ T, since S is of density d(n). If
we are able to generate Qi in polynomial time (in n), then we can define the <Pctt reduction f
from S =" to T by Ass(f(xi)) Qi. First we show by the next lemma that property 3 above
follows from the following stronger property, which is easier to verify.

LEMMA 1o Let .T" Q Q2, be afamily ofsets such thatfor some r > 0, Qi >
r d(n) and Qi ["1 Qj < r for.i # j. Then, for any d(n)
such that k q {il id(n)}, Qk [,_j](=n] Qi.

Proof Suppose this is not true, i.e., there exist d(n) + sets Qi, Qid(.), Q
IId(n)such that k {i,.. ia(n} and Q i= Q#. Since IIQII > r. d(n), there must exist a

j such that < j < d(n) and Q I Qi > r. But this contradicts the fact that the size of
the intersection of any two different sets is at most r.

One way to construct these families is as follows. Let GF(p) be a finite field with a prime
number of elements. Note here that we can always find a prime between x and 2x [Che52].

We consider polynomials over GF(p) for p prime. We need an easy fact about roots of
polynomials over finite fields. For more detail see 6.6 in [Coh74].

FACT 1. Two different polynomials ofdegree < r cannot intersect on more than r points
in GF(p).

We represent a polynomial of degree < r by its r / coefficients. We view each
polynomial as a (r + 1)-digit number in base p. With the ith polynomial, denoted by qi, we
mean the polynomial whose representation is the number base p that represents i. Consider
the following family of sets: Qi {o(n’a’qi(a))[a - GF(p)}. We will choose r and p such
that the conditions of Lemma are fulfilled. Observe that Qi is a tally set of size p, and that
for two different polynomials qi and qj, Qi .J Qj _< r. It remains to force the following
requirements:

1. pr+l > 2n (we need 2n different sets),
2. r d(n) < p (to fulfill the requirements of Lemma 1).

2nIt is easy to verify that taking r and p the first prime larger than r d (n) fulfills
these two requirements.

The only thing remaining is to show that we can generate the ith set ai in polynomial
time (in n). First we have to compute the prime number p. Since the length of the binary
representation of r d(n) is in O (log(n)) and because there is a prime between r d(n) and
2r d(n), we can do a brute-force search (or do a more sophisticated sieve method [Pri83])
in polynomial time. Next we have to pick the ith polynomial over GF(p) (which can easily
be done in polynomial time) and compute ai. Since p is a prime number, the operations in
GF(p) are simply multiplication and addition modulo p, which also can be done in polynomial
time.
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Recall that the <Pctt reduction f from S--n to x,s Qi is defined by Ass(f(xi))
Qi. Since IIQill p < 2r .d(n) < (4nd(n)/logn), we have in fact shown that S
Roo,dn/log,,-ctt(TALLY). As shown by Saluja [Sa193], this bound is optimal.

Note that if we consider probabilistic reductions, we can randomly choose exactly one
of the strings from Ass(f(x)) and get a many-one reduction with a one-sided error. This
observation is due to Sch6ning in [Sch93], where he shows that every sparse set many-one
reduces to a tally set by a polynomial-time, randomized procedure.

COROLLARY 1. Rctt(SPARSE) Rctt(TALLY).
COROLLARY 2. co-SPARSE Rdtt(TALLY).
Proof. If A is <P//-reducible to a tally set, then is <//-reducible to a tally set.
The following theorem can be derived using Theorem 1. It refutes another of the conjec-

tures from [Ko89]. (The conjecture was that Rbdtt(SPARSE) Rctt(SPARSE).)
THEOREM 2. Rbdtt(SPARSE) cc_. Rctt(TALLY).
Proof. Let A be P<k_dtt-reducible to some sparse set S via f. Using Theorem we get that

S is <P/t-reducible to some tally set Ts via g. We will construct a tally set T and a reduction
h such that A <cPtt T via h. Define

T {0(n’ nk) lnj 11 and ::ti" 0ni Ts}.
In the following it is convenient to view T as a Cartesian product. For A1 Ak tally sets,
let

A x Ak {0(n’ nk)l 0ni Ai }.
Define the <Ptt reduction h as follows: if f(x) ((Yl yk), or), then let Ass(h(x))

Ass(g(yl)) x Ass(g(yk)). Note that h is polynomial-time computable since both f and
g are. It remains to show that h reduces A conjunctively to T.

x A = :li "Yi S
=, :li Ass(g (Yi)) C_ Ts
= Ass(g(yl)) ... x Ass(g(y)) __. T.

x A =i’yi S

= i30n’ 0ni Ass(g (Yi)) and 0i Ts
:: 0(hi nk) T
=, Ass(g(y)) x... x Ass(g(y)) T.

Theorem offers a new understanding of the class Rctt(SPARSE) and as such, it has been
used in [AKM92] to prove various results.

To understand the relationship between sparse and tally sets, it is important to know which
reductions are able to differentiate between tally and sparse sets and which aren’t. It is well
known that Rtt(SPARSE) Rtt(TALLY) [HIS85] and our Corollary gives the analog for
<Pctt reductions. On the other hand, there do exist reductions that are more powerful with
sparse oracles than with tally oracles. This holds, for instance, for many-one reductions and
for disjunctive truth-table reductions [Ko89].

As the next theorem shows, positive truth-table reductions on sparse and tally sets behave
like "<Pctt reductions and not like <ttt reductions.

THEOREM 3. Rptt(SPARSE) Rptt(TALLY).
The result follows immediately from the following theorem, which claims that <tt re-

ductions to tally sets capture the class Rtt(TALLY).
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THEOREM 4. Rtt (TALLY) Rttt(TALLY).
Proof. Let A be a set in Rtt(TALLY) and suppose T is a tally set such that A <tPt T

by a tt function f that is computable in time p(n) where p is a polynomial. We have to
show that A Rt,tt(TALLY). We define the tally set T’, which will witness the fact that
A R,tt(TALLY), as follows:

T’= {0(n’)[ On T} LI {0(n’l)[ 0n Z}.
We claim that A <pPtt T’ by the following reduction.

On input x of length n do the following:

1. If there exists an rn < p(n) such that 0(m’l and 0(m,) are both not in the oracle set,
then reject;

2. else, if there exists an rn < p(n) such that 0(m’/and 0(re’l/are both in the oracle set,
then accept;

3. otherwise, simulate the old tt function f on input x, replacing each query 0m by 0(m’/o

It is immediate that this reduction reduces A to T’, since by definition of T’ we are always
in case 3, which implies that we just simulate f. It remains to show that the reduction is
positive. Suppose for a contradiction that it isn’t. Then there exist a string x of length n and
two oracle sets X C Y such that x is accepted with oracle X and rejected with oracle Y. Since
x is accepted with oracle X, we cannot be in case 1, that is, it must be the case that for all
m < p(n) either 0(m’0) X or 0(re’l) X. Now look at Y. If Y\X does not contain strings of
the form 0Im’) for rn < p(n), {0, 1}, then f(x) with oracle Y behaves in exactly the same
way as f(x) with oracle X. In particular, x is accepted, which contradicts our assumption.
Therefore, suppose that for some rn < p(n) and {0, it is the case that 0(m’il occurs in Y
but not in X. Then it must be the case that 0(m’ll-il) X, and therefore, since X

___
Y, both

0(m’ and 0(m’l/are in Y. This implies that we are in case 2, and thus, x is accepted contrary
to the assumption.

Note that by the construction, it is immediate that T’ is 1-tt reducible to T.

4. Conjunctive and disjunctive reductions. Gavald and Watanabe [GW93] showed
that gctt (SPARSE) gdtt (SPARSE). Combining this result with Theorem 1, we can quickly
derive the following theorem of Ko.

THEOREM 5 [Ko89]. Rdtt (SPARSE) RcttSPARSE).
Proof. Let A be a set in Rctt(SPARSE) that is not in Rdtt(SPARSE). Consider the set

A. Since A Rctt(SPARSE) and Rctt(SPARSE) Rctt(TALLY) by Theorem 1, we have
that A Rctt(TALLY). By simple complementation, it follows that A Rdtt(TALLY) and
therefore, A Rdtt(SPARSE). Now we see that A cannot be in Rctt(SPARSE). For suppose
A Rctt(SPARSE). Then, again using Theorem 1, A
Rdtt(SPARSE), contradicting our choice of A.

Gavald and Watanabe’s proof actually provides something stronger. They show that

Rf(x.ctt (SPARSE) Rdtt SPARSE)

for any polynomial-time-computable unbounded function f. Ko’s proofofTheorem 5 does not
seem to provide this generalization and the above proof does not generalize directly, because
when we go conjunctively from a sparse set to a tally set, we need a polynomial number of
queries. To be able to use the previous argument while keeping the number of queries small,
we need a strengthening of Gavaldh and Watanabe’s theorem to tally sets.

THEOREM 6. For any polynomial-time-computable unbounded function f,
Rf(n)-ctt(TmLLY) Rdtt(SPARSE).
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Proof. If we can prove the theorem for small functions f, it is immediately true for larger
functions, so we may assume f(n) < log n. For every n, let x,, be a Kolmogorov random
string of length n. Define

A (On, (i, b) (if(n), by(n)))such that
< i < i2 < < if(n) < n and

for every j, the ij th bit of Xn is bj }.

<PIt is immediate that A -f(n)-ctt T, where

T {o(n’i’b) lthe th bit of Xn is b}.
To show that A is not <aP/t-reducible to any sparse set, leading to a contradiction, assume

A tt S, via reduction h, where h is nC-time computable and S<-n _< nc.
Let An be the set of all strings of A of the form (on ). We will show that there is

a string Yn in S that is queried by many strings from An (Lemma 2). Suppose that a string
(On, (il, bl) (if(n), by(n))) queries the string Yn. Since h is a tt reduction fro A to S
and Yn E S, this provides us with the f(n) bits i, i2,.,., if(n) of Xn. By a careful counting
argument, we show below that, for n large enough, we get enough bits of x,, from y, to

contradict the randomness of Xn.
LEMMA 2. There exist a constant d andfor every n a string Yn in S such that

II{z An[ Yn Ass(h(z))}ll _> n 1/2f(n)-d.

) f(n)
n Thus, for f(n) < n1/2Proof The number of strings in An is (f(n)) >

[[An >_ n f(n). For each string z in An, there is a string in S fq Ass(h(z)). Since strings in
A,, are certainly of length less than 2n, the queried strings are of length at most (2n). Thus,
there are at most ((2n)C)C (2n)2 strings of S in tOza, Ass(h(z)). There must be a string

Yn in the set that is in Ass(h(z)) for at least [[Anll/(2n)cz many z’s. Since [[Anl[ > ?l 1/2f(n),
[IAnll/(2n)c2 >_ n1/2 f(n)-d for a suitable d.

Given a set Y c_ An, let It, be the set of indices ij that are mentioned in the strings
from Y.

LEMMA 3. Let Y c_ An; then Y _< Iv f(n).
[111, I1 waysProof Each string in Y mentions exactly f(n) bits of Iv. There are exactly f(n)!

to select f(n) bits from the set of indices Iv, so

/lllrllY < < Iv ’)

LEMMA 4. There exists a string Yn S such thatfor the set Y ofstrings in An that query
Yn, I, >- n 1/2-d/f(n).

Proof Let yn be given by Lemma 2 and let Y be the set of strings z in An such that y,, 6

Ass(h(z)). Then, by Lemma 3,

n f(n)-el < lv f<n),
1/2-d/f(n)Illvll >_ n(f(n)-a)/f(n) n

Now, to derive a contradiction, we show how to describe x, with fewer than n bits. To
describe x,,, use the string y,, from Lemma 4. To compute yn, we need one of the strings
Z An that query Yn, and the index of y, in the set of queries. The string z can be described
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using O(f(n) log n) bits and the index can be described in O(logn) bits. It follows that

Yn can be described using O(f(n) log n) bits. Given Yn) we can compute all the bits of
xn that are mentioned in strings form the set Y of strings in An that query yn. Now look
at the sequence containing all the bits of xn that are not mentioned by Y. This requires
n IlZrll <_ n n1/2 -d/f(n) bits. Since the bits described by Y all contain their index, they
can be inserted into their respective position. The total number of bits needed to describe
is n n -d/f(n) -q- O(f(n) log n), which is strictly less than n if f(n) is unbounded and <

log n.
Now we can derive the wanted theorem.
THEOREM 7. For any polynomial-time-computable unbounded function f,

Rf(n)-dtt (TALLY)

_
Rctt (SPARSE).

Proof. Using Theorem 6, we can use the same reasoning as in the proof of Theorem 5.
Since we start from a tally set, we don’t have the problem associated with the blow up in
number of queries.

The following corollaries can all be obtained from Theorems 6 and 7.
COROLLARY 3. For any polynomial-time-computable unbounded function f, Rf(n)-ctt

(SPARSE) and Rf(n-dtt(SPARSE) are not closed under complementation.
COROLLARY 4. For any polynomial-time-computable unbounded function f, Rf(n)-ctt

(SPARSE) and Rf(n)-dtt (SPARSE) are incomparable.
COROLLARY 5. For any polynomial-time-computable unbounded function f, gf(n)-dtt

(SPARSE) and Rf(n-ctt(SPARSE) are strictly included in Rf(n-tt(SPARSE).
These results hold for the corresponding Rr(TALLY) classes as well. For bounded con-

junctive and disjunctive reductions to sparse sets, we get the following analog.
THEOREM 8. For all k >_ 1, Rk-ctt(SPARSE), Rk-dtt(SPARSE), Rbdtt(SPARSE), and

Rbctt(SPARSE) are not closed under complementation, and therefore are strictly included
in Rbtt(SPARSE).

Proof. It it not hard to see that if Rbdtt(SPARSE) is closed under complementation,
then RI-tt(SPARSE) c_. Rbdtt(SPARSE). By Theorem 2, it follows that RI-tt(SPARSE)
Rctt(SPARSE), contradicting [Ko89]. For the bounded conjunctive case we can argue in a
similar way.

Note that this theorem does not hold for the corresponding Rr(TALLY) classes. It follows
from [Ko89] that Rm(TALLY) Rk-ctt(TALLY) Rk-dtt(TALLY) Rbtt(TALLY), and thus
all these classes are closed under complementationo
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Abstract. Some tradeoffs between the size and depth of algebraic formulas are shown. In particular, it is shown
that, for any fixed > 0, any algebraic formula of size S can be converted into an equivalent formula of depth
O(log S) and size O(SI+E). This result is an improvement over previously known results where, to obtain the same
depth bound, the formula size is f2(Sa) with a _> 2.
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1. Introduction. A classical result of Brent 1] implies that for any algebraic formula
there is an algebraic circuit of"small" depth and "similar" size that computes the same function;
see also Muller and Preparata [10]. More precisely, if the formula has size S then the circuit
has depth O (log S) and size O (S). This result holds for formulas over any field. We believe
that a natural question to consider is whether for any algebraic formula there is an equivalent
formula of small depth and similar size.

Since any circuit of depth O(log S) can be transformed into a formula of the same depth
with size polynomial in S, it follows immediately from Brent’s result that there is also a formula
ofdepth O (log S) and size S() that computes the same function as the original formula ofsize
S. Applying this to the specific circuits that result from Brent’s construction yields formulas
with size as large as f2 (Sc’) with ct > 2. Simple changes in Brent’s construction may improve
the exponent, but straightforward modifications do not appear to result in exponents arbitrarily
close to one.

A widely investigated problem that is related to Brent’s result, as well as our work, is the
"formula evaluation problem," where the goal is to construct a "universal formula evaluator"
algorithm. Such an algorithm takes as input a description of a formula with all of its inputs
specified and produces as output the value of the formula. Parallel algorithms for this problem
have been proposed by Gupta [6], Miller and Reif [9], Buss [2], Buss et al. [3], and Kosaraju
and Delcher [8]. These yield NC algorithms for the problem that also produce, for any given
formula of size S, a circuit of depth O (log S). When these circuits are expressed as formulas,
the sizes are g2 (S) for various ot _> 2. In the case of division-free formulas, the exponents are
smaller, but nevertheless bounded above one. As an example, in 8 we exhibit division-free
formulas for which Miller and Reif’s method produces formulas with such a polynomial size
blowup.

In this paper, we show that over any field , for any fixed e > 0, for any formula of size
S with operations from {+, -, x, +} t2 , there are equivalent formulas with

1. depth O (log S) and size O (S +),
2. depth O(log+’ S) and size Sl+O(1/lglgS),
3. depth O (S) and size O (S).
For the third of the above results, when the field size is less than S and the formu-

la contains divisions (+), the method that we use adds new variables to the formula. The

*Received by the editors June 9, 1992; accepted for publication (in revised form) January 26, 1994. A preliminary
version of this paper was presented at the 32nd Annual Institute of Electrical and Electronics Engineers Symposium
on Foundations of Computer Science, San Juan, Puerto Rico, 1991. This research was supported in part by the
National Sciences and Engineering Research Council of Canada.

Department of Computer Science, University of Calgary, Calgary, Alberta, Canada T2N IN4 (bshouty
@cpsc. ucalgary, ca), (cleve@cpsc. ucal gary. ca), and (eberly@cpsc. ucalgary, ca).
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formula is constant with respect to these new variables, but we are unable to eliminate themm
while preserving the size and depth bounds--without the risk of introducing a division by
zero.

Also, for Boolean formulas with operations from {A, v, -,}, we obtain results similar to
those above.

The techniques that we use include a multilevel extension of Brent’s tree-decomposition
method as well as other restructuring methods.

The organization of the remainder of.this paper is as follows. Section 2 contains basic
definitions and notation. Brent’s construction is reviewed in 3, and our multilevel extension of
his tree-decomposition method is given in 4. This is applied to obtain size-depth tradeoffs for
division-free formulas in 5 (Boolean formulas can be regarded as a special case of division-
free arithmetic formulas). In 6, this is extended to general formulas with division. We treat
the division-free case separately before considering the general case because the constants
that we obtain in the division-free case are better and, in the division-free case, parts of
our construction are much simpler. This permits a clearer, more gradual presentation of the
different techniques that apply in the general case. Section 7 contains size-depth tradeoffs for
simple formulas. Section 8 describes some specific formulas that appear to exhibit increases
in size when their depth is reduced and some known lower bounds on the size-depth tradeoff
due to Commentz-Walter [4] and Commentz-Walter and Sattler [5].

2. Definitions and notation. For a field ’, aformula over (, +, -, , /) of depth d
is defined as follows. A depth 0 formula is either c for some c .T" (a constant), or Xu for some
u 1, 2 (an input). For d > 0, a depth d formula is (F G), where {+, -, , +},
F and G are formulas of depth de and d, respectively, and d max(dr, d) + 1. The size of
a formula F, denoted by IF I, is, informally, the number of occurrences of inputs and constants
in the formula. More formally, a depth 0 formula has size one, and I(F G)I IFI + IGI
(. e {+,-, x, +}).

A formula over (f’, -t-, -, x, /) corresponds to a rational function in 3V(x x,,) (for
some n) in a natural way, provided that it does not involve a division by a formula equivalent
to zero. For formulas F and G, F G denotes that they correspond to the same rational
function. Hence denotes equivalence in the function semantics sense.

A division-free formula is one that has no divisions. Clearly, division-free formulas
correspond to polynomials.

A simpleformula is one that is division-free and for which at least one argument of each
multiplication operation is either an input or a constant. Thus, a depth 0 simple formula is
either a constant or an input, and for depth d > 0 a depth d simple formula is (F G), where
F and G are simple formulas, 6 {-t-, -, x }, and if x then either F or G has depth 0.

In order to denote decompositions of a formula, we define an extendedformula, which is
allowed to take auxiliary inputs, which are input symbols that are not from {x l, x2 }. For
clarity, in extended formulas we write all auxiliary inputs as "arguments" to the formula. For
example, the extended formula F(y) has auxiliary input symbol y. If G is a formula, then
F(G) denotes the formula F(y) modified by substituting G for the symbol y.

The size ofan extended formula is defined recursively as above, except that auxiliary inputs
are not counted (that is, an auxiliary input has size 0). The depth of an extended formula is
also defined recursively as above, except auxiliary inputs are included in this definition.

We use special terminology to denote the number of occurrences of auxiliary variables
in extended formulas and the depth of particular auxiliary variables in extended formulas.
For .,4 _c {Yl Ym}, IG(y Ym)l.a denotes the total number of occurrences of inputs
from A in G(yl Ym). Also, for .A {y Ym}, IG(y Ym)l+t denotes the total
number of occurrences of inputs from .T" U {xl, x2 U 4 in G(y Ym). In particular,
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an extended formula G(yl Ym) is read-once with respect to an auxiliary input Yi if and
only if G (Yl Ym)lly, 1. Note that for formulas F Fro,

m

IG(FI Fm)l IG(yl Ym)l + IFil" IG(yl Ym)lly,}.
i=1

For 4 C_ {y Ym}, deptht(G(y Ym)) denotes the maximum depth of any variable
from ,At in G(y Ym).

As usual, for k > 0, {0, }k denotes all binary strings of length k. Furthermore, e denotes
the empty string and {0, }<_k denotes all binary strings of length less than or equal to k.

3. Brent’s construction. Brent’s result is partially based on the following lemma, which
concerns ways of partitioning trees into pieces of various sizes.

LEMMA 3.1 (Brent [1]). For any formula F and any rn such that < rn < IFI, there
exist an extendedformula G(y) that is read-once with respect to y, formulas U and V, and
an operation such that

(i) F G(U V),
(ii) [G(y)[ _< IFI- m and IUl, IVl < m.
For a formula F of size greater than or equal to 5, Brent applies Lemma 3.1 with rn

([F[ + 1)], thereby "decomposing" F into three pieces G(y), U, and V, each of size at

most 1/2([F[ + 1)q. Then, using a recursive technique, he translates G(y) into a circuit of
size O([G(y)[) and depth O(log [G(y)[) that computes A, B, C, and D such that

(A x y)4- B
G(y)

(C x y)+ D’

he translates U into an equivalent circuit (] of size O(IUI) and depth O(log IUI), and similarly
translates V into ’.

Finally, Brent expresses F as the required circuit by the identity

(A x (. I)) + B
F=

(c x (t), ))+ D

This construction cannot be expected to produce a logarithmic-depth; linear.-sizeformula
equivalent to F for a number of reasons. Firstly, since the components U and V each appear
twice in the above expression and may each be of size approximately 2IF[, at each. recursive
step in the construction the formula size could (approximately) double. Since the recursion
may require approximately log IF[ steps to bottom out, the logarithmic-depth formula that
results could have size at least quadratic in IF [. Secondly, the minimum possible sum of the
sizes of the formulas for A, B, C, and D may be at least double that of the formula size for
G(y), which also results in a size doubling at each recursive step, and thus a quadratic blowup
in the final size. It should be noted that this second observation applies even in the case of
division-free formulas, where it may be assumed that C 0 and D 1.

4. Partitioning formulas. The above derivation suggests that Brent’s construction can
result in at least a quadratic-size blowup when used to produce a formula instead of a circuit,
because it is applied recursively to subformulas that are almost half as large as the original
formula. In order to reduce this blowup in size we will use a partitioning method that produces
much smaller subformulas. In particular, given a formula F and parameter k > 2 such that
[FI > k, this construction produces subformulas of size at most [IF[ 4- 1J. The construction
produces a set of "interior" extended formulas and operations corresponding to interior nodes
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FIG. 1. Example ofa decomposition.

of a binary tree, and "boundary" formulas corresponding to leaves, which can be combined to
produce the input formula F.

Suppose, for example, that k 4. Then the construction might produce a decomposition
of F of the form shown in Fig. 1.

The decomposition includes interior formulas and operations Ge(y), ., Go(y), *09
Goo(y), *00, G(y), ., and boundary formulas G00o, G00, G0, G0, G such that each
interior formula has size at most [ 1/41F J, each boundary formula has size at most [ 1/4[FI + 1J
and

F Ge(Go(Goo(Gooo *oo Good) *o Go) . G(Go . Gl)).

As in this example, each subformula produced by this construction will have a subscript
in {0, }* indicating a path from the "root" formula G(y) to that subformula in the tree
comprising the decomposition of F. Two sets of subscripts, Interior and Boundary, are
associated with any decomposition. Interior is the set of subscripts of interior extended
formulas and operations, and Boundary is the set of subscripts of the leaf formulas in the
decomposition.

Using this notation, Interior {e, 0, 00, 1} and Boundary {000, 001, 01, 10, 11} in
the above example. In contrast, Brent’s construction always produces one interior formula
Ge(y) and operation ,e, and two leaf formulas Go(y) and G1 (y) so that Interior {e} and
Boundary {0, }.

Lemma 4.1, then, is a multilevel version of Brent’s partitioning lemma. Informally, it
states that every formula F can be partitioned into 4k 3 or fewer pieces, each of size at most

[IFI + lJ. Parts (i)-(v) establish that the decomposition is well defined and correct, while
parts (vi)-(viii) establish that it is small.

LEMMA 4.1. For any formula F and any positive integer k such that 2 _< k < IF I,
there exist finite sets of indices Interior, Boundary C {0, 1}*, extendedformulas Ga(y) and
operations . for all t E Interior, andformulas G for all fl Boundary such that these
form a well-defined decomposition of F asfollows:
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(i) e Interior.
(ii) Interior n Boundary 0.
(iii) For all Interior, both otO and are in Interior U Boundary.
(iv) For all Boundary, neither flO nor is in Interior U Boundary.
(v) IfU is asfollowsfor all ’ Interior U Boundary, then F Ue

U [ G(UOG * U,) if y Interior,

if , Boundary,

(vi) IG,(y)I < LIFIJ and lGl < LIFI + lJforall Interior, Boundary.
(vii) Interior c_ {0, }_<k-2 and Ilnteriorl < 2k- 2.
(viii) Boundary c_ {0, }_<k-1 and IBoundaryl < 2k- 1.

Proof Let F be an arbitrary formula and let k be an integer such that 2 < k < IF I. We
shall first give a construction for the sets Interior and Boundary, the extended formulas G, (y)
and operations ., for c Interior, and formulas G for fl Boundary, and demonstrate that
these give a well-defined decomposition of F.

To begin, set Ue F so that lUll IFI IFI -I1" L1/41FI -4- 1/. Initially, Interior and
Boundary are empty. We will use a third set, Undecided, as well; throughout the construction
Undecided will contain all subscripts ?, {0, }* such that U has been defined but ?, has not
been added yet to either Interior or Boundary. Thus Undecided is initially set to {e }.

To continue, let ?, Undecided; then Ue has been defined, the size of U is at most

IFI-I’1 LIFI / 1], and y Interior U Boundary. If lUll _< LIFI-4- lJ then , is added
to Boundary and removed from Undecided, and Gr is set to be U. Otherwise, ?, is moved
from Undecided to Interior and Lemma 3.1 is applied to U with m U [ IF I] to define
an extended formula G (y) that is read-once with respect to y, an operation ., and formulas
U0, U such that

1. U G(Uo * U);
2. Ia(y)l _< IUI- m 1/41FI3;
3. lUg01, IUI < m.

1J and FI-I’ 11- lFI / lJ. The subscriptsNotethat IU0l < IFl-l?’01"[lFI-t- IUll <

’0 and , are now added to Undecided.
The construction terminates when Undecided 0.
To establish (i)-(vi), suppose the construction eventually terminates.
Initially, Undecided {e}. Clearly, every subscript that is ever included in the set

Undecided is eventually moved to either Interior or Boundary. Since IFI > k > 2, lUll
FI > 1/2lFI / 1J >_ klFI + lJ and e is not added to Boundary. Thus part (i) follows.

It is easily established by induction on I’1 that no string y is ever added to Undecided more
than once during this construction. Since every subscript that is removed from Undecided is
added to exactly one of Interior or Boundary, part (ii) is correct.

Part (iii) follows from the fact that, for any string a, the strings or0 and ot are both added
to Undecided when c is moved from Undecided to Interior.

Part (iv) follows from the fact that fl0 and fl can only be added to Undecided if fl is
included in Interior, and from part (ii).

Part (v) is easily established by induction on I?’ I.
Part (vi) is a consequence of the condition used to decide whether to add a string fl

to Boundary and of the correctness of Brent’s partitioning method.
Thus, properties (i)-(vi) are established if the construction terminates. To see that it

does, recall that no subscript , is ever included in Undecided more than once and consider

F {0, }* such that y is added to Undecided during the construction. Clearly, 0 < IUI <

j, IYIFI I:r’l" L IFI + so < k Therefore, the construction does eventually halt, defining
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sets Boundary {0, }<k- and Interior c_ {0, }<k-2 and extended formulas, operations,
and formulas such that properties (i)-(vi) hold.

In order to establish parts (vii) and (viii), define Interior Interior for ?’ 6 Interior as

Interior Interior fq {3 6 {0, }* ?, is a prefix of 3}

with , considered here to be a prefix of itself. Then it can be established by induction on
k I?’1 that

IUl k 1Ilnterior < 2

for all ?’ 6 Interior as follows" If ?, 6 Interior and both ?’0, , are in Boundary, then

IUyl k 1Ilnterioryl < 2,
IFI

since lUll > I. If , 6 Interior and exactly one (say, ,0) of ,0 and , is in Interior, then

Ilnteriorl Ilnteriorol + < <
2. IUl.k 1IFI

-2,

since lUll lUg01 -. Finally, if y, ?’0, and ?,1 are all in Interior then, since lUll
lUg01 / IUll,

I1nteriorl Ilnterioro[ + IInteriorl +

< ([2.1U01.k4_2.1Uell.k])+l -3
IFI IFI

< [2.,Ul.k]_2IFI
as desired.

Therefore, since F Ue and Interior lnterior, the size of Interior is at most

2"llFl’kFI 2 2k 2, which is sufficient to establish property (vii). Property (viii) also
follows because elements of the sets Interior and Boundary correspond, respectively, to the
internal nodes and leaves of a binary tree, so IBoundaryl Ilnteriorl + 1. [3

5. Division-free formulas. In this section, we show how to apply Lemma 4.1 to balance
any division-free formula. In the general case there are additional complications that do not
occur in the division-free case. These additional complications are related to the possibility
of introducing a division by zero when a constant is substituted in an extended variable of a
subformula. Techniques for avoiding this problem are explained in 6.

It should be noted that the results in this section can be easily adapted to the problem of
balancing Boolean formulas. This is true for two reasons. Firstly, over the basis {A, @, },
Boolean formulas are equivalent to division-free arithmetic formulas over the two element
field. Secondly, Boolean formulas over the more conventional Boolean basis {/, v,--,} can
be converted into formulas over the other basis by the identities

F v G --- --,(--,F/x G) and --,F @ F.
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Clearly, this conversion only increases the formula size by a linear factor, so the results about
division-free arithmetic formulas apply to Boolean formulas within a linear factor.

Informally, Lemma 4.1 shows that a formula can be suitably "partitioned" into "small"
subformulas. Lemma 5.1 establishes that each interior piece (an extended subformula) in this
partition can be restructured so that its depth with respect to its auxiliary variable is bounded
by a small constant without incurring a "large" increase in the total size and depth of the
extended subformula.

LEMMA 5.1. For any division-free extendedformula G(y) that is read-once with respect
to y, there exists an extendedformula H(y, a, b), andformulas A and B such that

(i) G(y) H(y, A, B);
(ii) IAI, Inl _< IG(y)I + 1;

(iii) IH(y, a, b)llyl (i.e., H(y, a, b) is read-once with respect to y);
(iv) IH(y, a, b)lla,bl < 2;
(v) IH(y, a, b)l 0 (i.e., H(y, a, b) has no variables other than y, a, and b);
(vi) depthlyl(H(y, a, b)) 2;
(vii) depthla,b (H (y, a, b)) 2.
Proof Since G(y) is division-free and read-once with respect to y, there exist formulas

P and Q such that

G(y) =- (P y)-t- Q
H(y,P,Q)

for H(y, a, b) (a y) + b. Clearly, H (y, a, b) satisfies claims (iii)-(vii) so it suffices to
show that there exist formulas A and B satisfying claims (i) and (ii) to complete the proof.
The remaining claims follow by induction on the depth d of the variable y in G(y). When
d 0, we must have G(y) y, so setting A and B 0 satisfies (i) and (ii). If d > 0
then either

1. G(y) =- G (y) + G2,
2. G(y) =-- G (y) -G2,
3. G(y) =- Gz G (y), or
4. G(y) =-- GI(y) x G2,

where G (y) is a division-free extended formula that is read-once with respect to y such that the
depth of y in GI (y) is d- and G2 is a division-free formula. Also, IG(y)I ]al (Y)I 4-. IG21.
By the inductive hypothesis,

GI(y) (A1 x y) + B1,

where AI and BI are division-free formulas such that IAI, IBll < IG(y)I-+- 1. Now, in
case we can set A A1 and B B1 + G2; in case 2, A A1 and B B1 G2; in case 3,
A---1 xA andB =G2-B1;andincase4, A =A x G2andB B1 x G2o In each
case, G (y) _-- H (y, A, B),

IAI _< IG21-t-IAll < IG2I-+-(IGl(y)l + 1) < IG(y)I + 1,

and

Inl- Inl + IG21 < (IGl(y)l + 1) + IG21-- Ia(y)l +
as required. S

The preceding lemmas will be applied as follows: Think of k as a large but fixed integer.
Now, consider any division-free formula F of size S. Let the goal be to restructure F so that
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its depth is O(log S) while maintaining a size that is o(sl/l/lgk). If S < k (or a constant
multiple of k) then the depth is constant because k is fixed, so no restructuring is necessary.
Otherwise, Lemma 4.1 can be applied to F yielding a decomposition of F into pieces Ga(y)
and *a for c 6 Interior, and G for/3 6 Boundary. Lemma 5.1 can be applied to each G(y)
yielding formulas Ha (y, a, b), Aa, and Ba with the properties described in the lemma. Then
F can be "reassembled" with Ha(y, Aa, Ba) in place of each G(y). The result is a modified
formula that is equivalent to F.

For example, consider again the formula shown in Fig. 1. Applying Lemma 5.1 to Ga(y)
for each c 6 Interior, we obtain formulas Ha (y, a, b), Aa, and Ba that can be assembled to
obtain the formula equivalent to F that is shown in Fig. 2.

In general, this process will roughly double the size of the formula, and the depth of the
modified formula will be approximately 3k plus the maximum of the depth of the "residual"
subformulas Aa and Ba for a Interior and Gt for/3 Boundary. Furthermore, by Lem-
ma 4.1 the sizes of these residual subformulas are all roughly S.

Now, consider what happens when all of the above steps are applied recursively to all of
the residual subformulas of size more than some constant multiple of ko Since each recursive

the recursion will bottomstep reduces the size of the residuals by approximately a factor of 5,
out in approximately logk S steps. Thus, the final depth is approximately 3k logk S + O(k)
O (log S) and the final size is approximately

21og SS O(Sl+l/lgk)

as required.
A more precise exposition of the above yields the following theorem.
THEOREM 5.2. For any division-free formula F of size S and any integer k > 2, there

exists aformula G such that
(i) G F,
(ii) depth(G) < (3(k- 1)/ log k) log S / (3k- 1),

(iii) IGI < Sl+/gk + 4(k- 1)(S/lgk- 1).
Proof We shall first define a basic transformation of a formula F of size S that yields

a restructured formula that is equivalent to F. The restructured formula shall be presented in
separate pieces as follows:

1. an inner portion E(w)zx, which is an extended formula over some set of auxiliary
variables w (where 3 ranges over some index set A);

2. an outer portion, which consists of a formula Wa for each auxiliary variable w of the
inner portion.

Such a representation of a formula is denoted by the three-tuple

(A, E(wa)zx, {Wa A})o

It is always understood that this represents the formula E(Wa)azx.
If S < 3k then no restructuring is necessary, so we set A {e}, E(we) we, and

V Fo
If S > 3k then we first apply Lemma 4.1 to F and k yielding sets Interior, Boundary,

extended formulas Ga(y) and operations *a for each c 6 Interior, and formulas G for each

fl Boundary satisfying all the conditions of the lemma. Secondly, we apply Lemma 5.1 to
each Ga (y) yielding Ha (y, a, b), Aa, and Ba satisfying the conditions of this lemma.

Now, define the inner portion E(w)/ as follows: for each element ?, of Interior or
Boundary, define an extended formula V (where it will be understood that the auxiliary
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FIG. 2. Result ofbasic transformation.

variables are a and b for each a Interior, and g for each/3 6 Boundary) by"

/ He (Vy *y Vy, ay, by)
I gy

if y Interior,
if ?, Boundary.

Then set the inner portion as V.
For each c 6 Interior, set the outer formulas corresponding to auxiliary variables a and

ba as A and B,, respectively, and for each/3 6 Boundary, set the outer formula corresponding
to g as Gt.

To simplify the notation at later stages, the auxiliary variables of the inner portion are
renamed as w, where 3 ranges over some index set A (so E(wa)ax Ve), and the cor-



SIZE-DEPTH TRADEOFFS FOR ALGEBRAIC FORMULAS 691

responding outer formulas are renamed as Ws. This completes the definition of the basic
transformation of F.

We now investigate properties of the basic transformation. Clearly, E(Ws)sA =-- F since
Ha(y, A Ba Ga (y) for allot Interior. Also, using the fact that depthlyl Ha (y a, b)
2 and depthla,bl(Ha(y, a, b)) 2 for each ot Interior and Interior c_ {0, 1} -<k-2, it is
straightforward to verify that

depth(E(ws)sA) < 3(k- 1).

We now examine the size of E(Ws)sA. When F is transformed to E(Ws)sA, any size
increase is a result of the replacement of Ga(y) by Ha(y, Aa, Ba) for oe 6 Interior. Since
IAa[, IBa[ < IGa(y)l/ and [Ha(y, a, b)l{a,bl < 2, there are at most two instances ofvariables
or constants in Ha(y, Aa, Ba) corresponding to each variable in Ga(y). In addition, there may
be two additional variables or constants for each c 6 Interior. Since Ilnteriorl < 2k 2,

IE(Ws)sAI 2S + 2(2k 2) 2S + 4(k 1).

Finally, note that since Aa 1, [Ba < l sJ / < s / for each ce 6 Interior and

1j<GI < [ S + S + for each Boundary, it follows that, for all 8 A,

IWal s + 1.

Thus, in summary, the basic transformation converts a formula F ofsize S to
{Ws’8 6 A}), where

1. E(Ws)sA F;

3(k-l) ifS>3k,2. depth(E(ws)sx) <
0 if S < 3k;

3. [E(Ws)szxl < /2S+4(k-1) ifS>3k,
|3k ifS<3k;

4. for each 6 6 A, Wal S + if S > 3k,

3k if S _< 3k.

Now, we define the formula that results from applying iterations of the basic trans-

formation on a formula F of size S in the following way: Informally, first apply the basic
transformation to F once, and then, in the formula that results, for each subformula in the
outer portion apply the basic transformation again yielding a "new" inner portion and a "new"
outer portion corresponding to that outer formula. Now, graft all the new inner portions onto
the original inner portion and create a new outer portion consisting of all of the new outer
portions. This results in a new formula (presented as an inner portion and an outer portion)
on which the above steps can be applied again until applications .have been made.

More formally, for the formula F, define the sequence

(Ai, Ei(Ws)SeA,, {Ws Ai}) for/ >_ 0

as follows" First, define (A0, E0(ws)sA0, {Wa 8 6 A0}) ({e}, w, {F}). Then, assuming
that the tuple (Ai, Ei(WS)8Ai, {Ws Ai}) has been defined for each 8 6 Ai, apply the
basic transformation to Ws yielding

(As, Ds(wx)xe^, {Wx X
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Without loss of generality, assume that the sets As are disjoint for distinct 3 A. Then define

(Ai+I, Ei+I (W)8sAi+,, {W

as
1. Ai+l [--JAi
2. Ei+l (tl)3)$Ai+ Ei(D(wx)xeA)e/xi
3. e/xi+ } {w .z A }o

This completes the definition of iterations of the basic transformation.
It is straightforward to verify from this that, after applying iterations of the basic trans-

formation on F for > O, the following hold:
1. the resulting formula Ei(W,),eA, is equivalent to F;
2. the depth of the inner portion is at most 3(k 1)i;
3. each of the outer formulas has size at most (and depth less than)

max(3k, k-i S d- k l-i -Jr k2-i + -+- k-1 q- 1) < max(3k, k-i S + 2);

4. the size of the restructured formula is at most 2 S - 4(k 1)(2 1).
In particular, after/logk SI iterations,

1. the depth of the inner portion is at most 3(k 1)[logk SJ _< (3(k 1)/log k) log S;
2. each of the outer formulas has size at most (and depth strictly less than)

max(3k, k-Llgk sj S -t- 2) < max(3k, k + 2) < 3k;

3. the size of the restructured formula is at most

2llgk SIS +4(k- 1)(2lg sl 1) < S+l/gk +4(k- 1)(S1/gk- 1).

The theorem now follows from the above by noting that the depth of a restructured formula
is at most the sum of the depth of its inner portion and the maximum depth of any of its outer
portions.

COROLLARY 5.3. Over anyfield ’, for anyfixed > O, for any division-free formula of
size S with operationsfrom {+, -, t3 ’, there are equivalentformulas with

(i) depth 0 (log S) and size 0 (S +),
(ii) depth O(log1+ S)and size Sl+<I/glgs),

(iii) depth O(S) and size O(S).
Proof. Apply Theorem 5.2, setting k 21/’ (in the first case), k log S (in the second

case), and k S/2 (in the third case). In all three cases the above depth and size bounds are
direct consequences of the bounds given in the theorem.

6. General algebraic formulas. We now consider algebraic formulas with divisions.
The restructuring of partitioned formulas is similar to, but more complicated than, the method
given above for the division-free case.

In the division-free case, Lemma 5.1 asserts that if G(y) is read-once with respect to y
then it can be expressed as G(y) =_ (P y) + Q, where PI and QI are approximately Ia(y)l.
In the more general case, where divisions may occur, it is easy to establish that G(y) may
either be expressed in the above form or in the form

(Pxy)+Q
G(y) =-- y+R

The difficulty arises in bounding the sizes P I, Q I, and RIo The technique used in Lemma 5.1,
which is inductive on the depth of y, does not readily generalize here because the quantities
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P I, Q I, and RI may grow very quickly at each inductive step. For example, this may occur
if G(y) G1 (y) + G2, where

GI(y) - (Pl x y) + Ql

y+Rl

In this case, the inductive step would yield

G(y) =- ((Pl + G2) x y) + (Ql + (G2 x R1))
y+RI

whose size may be approximately double that of the formula for G1 (y)meven when IG2I 1.
Lemma 6.3 is an analogue of Lemma 5.1 and will be used in place of Lemma 5.1 to

prove the main theorem. Lemmas 6.1 and 6.2 are used to prove Lemma 6.3; Lemma 6.1
also resembles Lemma 5.1, but is proved using a different technique that involves solving a
system of linear equations for the aforementioned P, Q, and R. This system of equations
includes three new auxiliary variables, zl, z2, and z3mand the formulas obtained by this lemma
are actually extended formulas in these new auxiliary variables. Since arbitrary substitution
of constants for these variables can introduce divisions by zero, some care must be taken
in eliminating them. Lemma 6.2 gives upper bounds for the number of constants whose
substitution for zl, z2, or z3 can cause problems. In Lemma 6.3 these bounds are applied,
together with the results of Lemma 6.1, to obtain small formulas P, Q, and R that do not have
any new auxiliary variables as subformulas, and can be used to replace G(y) as described
above.

LEMMA 6.1. For any extendedformula G(y) that is read-once with respect to y, there
exists an extendedformula H(y, gl, g2, g3, Zl, Z2, Z3) and extendedformulas G(Zl), G(z2),
G(z3) such that

(i) G(y) H(y, G(z), G(z2), G(z3), zl, z2, z3);
(ii) IG(zt)l+lzl, IG(z2)l+lz2, IG(z3)l+lz31 < IG(y)[ +1 (i.e., the sizes of G(zt), G(z2),

and G(z3), counting all variables, are bounded above by IG(y)I + 1);
(iii) IH(y, gl, g2, g3, Zl, z2, z3)l{y} (i.e., H(y, gl, g2, g3, Zl, z2, z3) is read-once with

respect to y);
(iv) IH(y, gl, g2, g3, Zl, Z2, Z3)l{g,g2,g3} < 44;
(v) IH(y, g, g2, g3, Zl, z2, z3)l+lzt,z2,z31 < 42;
(vi) depth{yl(H(y, gl, g2, g3, Zl, Z2, Z3)) "< 5;
(vii) depth(H(y, g, g2, g3, Zl, Z2, Z3)) < 9.
Proof Part (ii) follows immediately from the fact that G(y) is read-once with respect

to y. Parts (i) and (iii)-(vii) are less trivial, and are proved below.
Since G(y) is read-once with respect to y, there exist formulas P, Q, and R such that

either

G(y)
(Pxy)+Q
y+R

or

G(y) (P y) / Q.

The existence of P, Q, and R can be shown by considering the functions computed along the
path in G(y) from y to its root: each such function is the quotient oftwo affine linear functions
of y. Although this establishes the existence of P, Q, and R, this does not lead to an efficient
way of constructing these formulas; in the general case (with divisions), the resulting formula
size may be exponential in IG(y)I. Instead, we use the method below.
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First, we consider the case where

(Pxy)+a
G(y) =- y+R

Substituting three distinct new auxiliary variables z, z2, and z3 for y in this equation
for G(y) gives

(P Zi) "l" Q
G(zi) 1,2,3.

zi+R
This results in the system of equations

z2 -G(z:) x G(z) x z
Z3 -G(z3) R G(z3) x z3

Since z, z2, and z3 are new auxiliary variables and G(y) is not of the form (P x y) / Q, the
columns of the above matrix are linearly independent and, therefore, this system of equations
is nonsingular. This system is equivalent to the block lower triangular system

1 z -G(z) G(z) x Zl
0 Z2-Z G(zt)-G(z:2) x G(z:z) xz:z-G(zl) xzl
0 z3 Zl G(Zl) G(z3) R G(z3) z3 G(Zl) Zl

To solve this, it is sufficient to find P and R such that

z3 Zl G(Zl) G(z3) G(z3) x z3 G(Zl) zl

and then use back substitution to find Q.
Let ((’), ’) denote the six-tuple (G(z), G(z2), G(z3), Zl, z2, z3) and (if, ) denote

(gl, g2, g3, Zl, z2, z3). By Cramer’s role (applied to the above linear system)

G(z2) x z2- G(z) z
G(z3) z3- G(z) x z

Z2 Zl
Z3 Zl

D(6(’), ’)

G(Z) -G(z2)
G(Zl) G(z3)

G(Z) G(z2)
G(zl) G(z3)

where/3((’), ’) and D((’), ’) are equivalent to the numerator and denominator of the

preceding expression, respectively. In particular, we can choose/3 (((-), ’) and D(((’), ’)
where P(, ’) and D(ff, ’) are as shown in Figs. 3 and 4. Clearly, depth(/’(ff, ’)) 4,
depth(D(ff,’)) 3, I/;(,z-)l 0, I/;(, z-)ltff 8, I/3(’, z-)ltz-3 4, IO(, z-)l 0,
ID(ff, z-)llffl 4, and ID(ff, z-’)llzq 4.

Similarly,

g

Z2 Zl
z3 Zl

G(z2) x z_- G(z) x zl
G(z3) x z3- G(Zl) x zl

z2 Zl
z3 Zl

D(G(),)

G(Zl) G(z2)
G(z) G(z3)
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FIG. 3. Formula (,, Z-’).

FIG. 4. Formula D(, .

FIG. 5. Formula (, ).

where formula/(, ’) is as shown in Fig. 5. Clearly, depth(/(, ’)) 4, I/(, ’)1 O,
I/(, ’)lt/= 4, and I/(, ’)llz-3 8.

It can be shown by back substitution that

Q(6(’), ’) D((’),
zl G(zl) D((), )- z fi((), )+ G(Zl) ((), )o

It is straightforward (but tedious) to confirm that this is equivalent to ((’), ’) for the
formula Q(ff, ’) as shown in Fig. 6. It is easily checked that depth(O(, ’)) 4, [O(g, z-’)[
0, 1(, z-)ll! 8, and 1(, [l’i 6.

Clearly, the desired H (y, , ’) can be expressed in terms of/3 (if, ’), 0(, ),/(, ’),
and D(ff, ’); however, prior to completing the construction, we restructure the expression
((P x y) + Q) / (y + R) so that it is read-once with respect to y. This is accomplished
by performing a "polynomial division" of y + R into (P x y) + Q, resulting in the identity
((P x y) + Q) / (y + R) H(y, P, Q, R, D) for the formula H(y p, q, r, d) given in
Fig. 7.
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FIG. 6. Formula (, Z-’).

FIG. 7. Formula ffI (y, p, q, r, d).

Set H(y, ,, z-) -I(y, fi(g, z-’), 0(,, z-), (,, z-), D(,, z-")); then it is easily checked that
depth(H(y, if, z-)) 9, IH(y, , z-)[ 0, IH(y, if,, z-)lly/ 1, IN(y, , z-’)[lil 44, and
[H (y, , z-) lz-3 42 as claimed. Furthermore, it follows by the construction of these formulas
that

G(y) =_ H(y, d(, ), ),

which completes the proof for the case where G(y) =_ ((P x y) + Q) + (y + R).
The proof of the simpler case where G(y) =- (P x y) + Q is straightforward and omitted

here.
The formulas introduced in Lemma 6.1 introduce new variables, z, z., and z3. The next

lemmas establish that these can be replaced by elements of the ground field .T, provided .T is
sufficiently large.

LEMMA 6.2. (i) Suppose G (z) GL (Z) * GR (z) for {+, -, x, /} and no proper
subformula of G(z) is identically zero. Let dL (respectively, dR) be an upper bound on the
degree in z of the numerator and denominator of the rational function Gc (z) (respectively,
GR(z)). If. {+,-} then there are at most dt + dR elements f" such that G() is
identically zero but none of Gc( ), GR(), or any of their subformulas are identically zero.
If, {x, +} then there are no elements 0 such that G() is identically zero but none of
G t. ( ), GR(), or any of their proper subformulas are identically zero.

(ii) Suppose G(z) is read-once with respect to z and that no subformula of G(z) is
identically zero. Then there are at most + depth(G(z)) _< IG(z)l elements yc such that
a subformula ofG() is identically zero.

Proof. The first claim is easily verified by expressing the numerator of G(z) as a function
of the numerators and denominators of GL(z) and GR(z). If 6 {+, -} then this numerator
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is a nonzero polynomial with degree at most dt + dR in z. If , --: then the numerator
is a product of numerators or of a numerator and denominator of subformulas of GL (z) and
GR(z).

The second claim can be proved using induction on the depth of G(z) and the fact that,
if G(z) is read-once with respect to z, then every subformula of G(z) that includes z is the
quotient of two affine linear functions of z, while every other subformula of G(z) has degree
zero in z. V]

LEMMA 6.3. Suppose the extendedformula G(y) is read-once with respect to y, I.’1 >_
IG(y)I + 6, and let S be a subset of.T" with at least IG(y)I + 6 distinct elements. Then there
exist an extendedformula 121(y, a, b, c) andformulas A, B, and C such that

(i) G(y) =- n(y, A, B, C);
(ii) IAI, Inl, ICI _< Ia(y)l + 1;

(iii) I(/(y, a, b, c)llyl (i.e., ft(y, a, b, c) is read-once with respect to y);
(iv) I/(y, a, b, c)lla,b,cl < 44;
(v) I(y, a, b, c) < 42;
(vi) depth{yl((y, a, b, c)) < 5;

(vii) depth(/(y, a, b, c)) < 9;
(viii) the only constants occurring as a subformula of 121(y, a, b, c), A, B, or C either

occur as a subformula ofG(y) or belong to S.
Proof As argued in the proof of Lemma 6.1, since G(y) is read-once with respect to y,

there exist formulas P, Q, and R such that either

G(y) =- (Pxy)+Qy+R

or

G(y) =- (P x y) + Q.

Suppose the first case holds and let H(y, gl, g2, g3, Zl, z2, z3) be the formula that exists by
applying Lemma 6.1 to G(y). if, as in the proof of Lemma 6.1,

D(gl, g., g3, Zl, z2, z3) z: Zl
Z3 Zl

g2lt (z2-z) x (gl-g3)- (z3-Zl) x (gl-g2)gl
gl g3

then for any ’, ’2, ’3 .T, the formula H(y, G((), G((2), G((3), (1, ’2, (3) is well defined
and equivalent to G(y) provided that D(G((I), G(’2), G((3), (1, (2, (3) is well defined and
not equivalent to the zero function (again, see the proof of Lemma 6.1 for details).

We next show that (l, (2, (3 S exist with the above properties. To begin, we count the
number of elements p .T" such that either D(G(O), G(z2), G(z3), , z2, z3) or one of its
subformulas is identically zero. By Lemma 6.2 (ii) there are at most I.G(y) values p " such
that G(O) or one of its subformulas is identically zero. Since D(G(’), ’) is not identically
zero, the value of G(y) depends on the value of y. Therefore, there are no additional elements

.T" such that either G(gr) G(z2) or G(p) G(z3) or any of their subformulas is
identically zero. There is only one element .T for which z2 , z3 P, or any of their
subformulas is identically zero (namely, ap 0). By Lemma 6.2 (i) there are no additional
values ap for which either (z2 P) x (G(O) G(z3)) or (z3 1/1) X (G(ap) G(z2)) is
identically zero and, since both of these are equivalent to rational functions whose numerators
and denominators have degree at most two in p, there are at most four additional values for
which D(G(O), G(z), G(z3), r, z2, z3) is identically zero. Thus there are at most IG(y)I + 5
values p .T such that either D(G(O), G(z2), G(z3), t, z2, z3) or one of its subformulas is
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identically zero. Since ISI IG(y)I + 6, it is possible to choose an element (l 6 S such that
neither D(G(), G(z2), G(z3), (1, z2, z3) nor any of its subformulas is identically zero.

We next count the number of elements p of the field .T" such that either the formula
D(G(), G(gr), G(z3), g’, gr, z3) or one of its subformulas is identically zero. By Lemma
6.2 there are at most IG(y)I -t- values such that either G(() G() or one of its
subformulas is identically zero, and at most two values such that either p (l or one of
its subformulas is identically zero. Formulas G((t) G(z3) and z3 (1 are independent
of . Finally, since both ( () x (G((1) G(Z3)) and (Z3 ’1) X (G((1) G(p)) are
equivalent to rational functions whose numerator and denominator are affine linear in p, there
are at most two additional values such that D(G((1), G(p), G(z3), (1, , z3) is identically
zero. Again, since 1,91 >_ IG(y)I + 6, it is possible to choose (9. S such that neither
D(G((), G((2), G(z3), (l, (2, z3) nor any of its subformulas is identically zero. It follows
by virtually the same argument that it is also possible to choose (3 ,9 such that neither
D(G((), G((2), G((3), (1, (2, (3) nor any of its subformulas is identically zero as well.

Now, set

/_it(y, a, b, c) H(y, a, b, c, (l, ’2, (3),

A G((), B G((2), C G((3).

Clearly, (y, A, B, C) =_ H(y, G((), G((2), G((3), (1, (2, ’3) G(y), the size bounds
stated above for A, B, and C follow immediately from the definitions of these formulas, and
the size and depth bounds for/(a, b, c) and H(A, B, C) follow directly from those given for
H(y, g, g2, g3, Yl, Y2, Y3) in the statement of Lemma 6.1.

The simpler case where G(y) =_ (P y) + Q is handled similarly. [3

THEOREM 6.4. For anyformula F of size S < lY’I 6, any subset S of ;F with size at

least S + 6, and any integer k > 2, there exists aformula G that is equivalent to F and has
depth bounded by

2k-1)’ S 6klog +
log k

and size bounded by

S +log 44/log k + 4(k Slg 44 log k

such that the only constants appearing as a subformula of G either appear as a subformula
of F or belong to S.

For anyformula F of size S > I1 6 and any integer k > 2, there exists aformula G
that is equivalent to F and has depth bounded by

3(2k- 1) 2’] S 6k 3+ log + +log k

and size bounded by

(S +log 44/log k .. 4(k 1) (Slg 44/log k 2 log S
1))

log lY’I
/ 5

Proof. Let F be an arbitrary formula of size S < I1 6, S be a subset of f" with at least
S + 6 elements, and k be an arbitrary integer such that k >_ 2. The construction of a small
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size, small depth formula equivalent to F is similar in this case to the construction given in
the proof of Theorem 5.2.

As before, we first define a basic transformation of F that yields a restructured formula
equivalent to F--again presented as an index set A, an inner portion E(wa)aezx which is an
extended formula over a set ofauxiliary variables wa (for 3 6 A), and an outer portion including
a formula W for each auxiliary variable w of the inner portion, such that F =_ E(W)/.

If S < 6k then it is sufficient to set A {e}, E(We) we, and We F. Otherwise, we
apply Lemma 4.1 to F and k, yielding sets Interior, Boundary, extended formulas Ga(y) and
operations *a for each c Interior, and formulas G for each fl 6 Boundary, satisfying all
the conditions of the lemma. Second, we apply Lemma 6.3 (instead of Lemma 5.1) to each
Ga(y), yielding/-)a (Y, a, b, c), Aa, Ba, and Ca, satisfying the conditions of this lemma.

The inductive definition of the inner portion E (wa)aezx is almost identical to the one given
in the proof of Theorem 5.2: for each ?, 6 Interior tA Boundary, define an extended formula

V (with auxiliary variables aa, ba, and ca for c Interior and g for/ Boundary) by

//-) (V * V, a, br c
/ g

if y Interior,
if , 6 Boundary.

Then set the outer portion as
For each o 6 Interior, set the outer formulas corresponding to the auxiliary variables

ba, and ca as Aa, Ba, and Ca, respectively, and for each fl Boundary, set the outer formula
corresponding to gt as Gt.

As before, to simplify notation at later stages, rename the auxiliary variables of the inner
portion as w, where ranges over some index set A (so Ve E(wa)azx) and rename the
corresponding outer formulas as Wa to complete the definition of the basic transformation
ofF.

It is again clear that F E(Wa)ezx, since f-Ia(y, Aa, Ba, Ca) Ga(y) for all ct

Interior.
Since depthlyl(/a(y, aa, ba, ca)) < 5 and depth(/-)a(y, aa, ba, Ca)) _< 9 for each ot

Interior, and since Interior c_ {0, }_<k-2, it is straightforward to verify that

depth(E(wa)zx) < 6(k- 2) + 9 3(2k 1).

Now consider the size of E(W)zx. Since the size of/-)a(aa, ba, ca) is at most 42,
I/-)a(y, aa, ba, Ca)l{aa,ba,ca} 44, and IAal, IBal, IC=l _< IGa(y)l / for all cg 6 Interior,

I/-)a(y, Aa, Ba, Ca)l < 42 + 44(IGa(y)l + 1) 441Ga(y)[ + 86.

It follows by the definition of E(Wa)azx that

IE(Wa)al I/=(y, Aa, Ba, Ca)[ + Ial
Interior flBoundary

< 44Z Iaa(y)l / 861Interior I+ Z Ial
Interior Boundary

< 44S+172(k- 1),

since S ZaInterior IGa(y)l + ZflBoundary 1681 and Ilnteriorl <_ 2k 2.

Finally, Wl _< klFI / 1J < S / for all 6 A as before.
In summary, the basic transformation converts a formula F of size S to one denoted by

the three-tuple (A, E(w)azx, {Wa A}), where
1. E(W)zx =-- F;
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2. depth(E(w)zx) < I 3(2k 1) if S > 6k,
| 0 if S < 6k;

3. IE(W)zxl < /44S + 172(k- 1) if S > 6k,
|6k ifS<6k;

4. For each zX Wl < S + if S > 6k,
6k if S < 6k.

We next define a sequence

(Ai, Ei(tO,)eA,, {W Ai}) for > 0

of formulas equivalent to F corresponding to iterations of the basic transformation on F--in
precisely the same way as this is defined in the proof of Theorem 5.2. It is straightforward to
verify that, after applying iterations of the basic transformation on F, for > 0, the following
hold:

1. the resulting formula Ei(W)zxi is equivalent to F;
2. the depth of the inner portion Ei (w,),szx, is at most 3(2k 1)i;
3. each of the outer formulas has size at most (and depth less than)

max(6k, k-i S q- k l-i q.- k2-i --I -t-- k-1 -k- 1) < max(6k, k-i S d- 2);

4. the size of the restructured formula Ei(W,),Ai is at most

44i- 1) 172(k- 1) < -k-4(k- 1).44iS-I--
44-1

1)(44i- 44is 1)(44i-

In particular, after/logk SJ llog S/log kJ iterations,
1. each of the outer formulas has size at most (and depth less than)

max(6k, k-Llgk sl S + 2) < max(6k, k + 2) < 6k;

2. the size of the restructured formula is at most

44/logk SJ S d-4(k- 1)(44tgk sJ 1)
_< sl+log 44/1og k .]_ 4(k 1)(Slg 44/1og k

The results of the theorem for the case S < I1 6 now follow from the above by noting
that the depth of a restructured formula is at most the sum of the depth of its inner portion and
the maximum depth of any of its outer formulas.

Now suppose that .T" is finite and that F is a formula with size S > max(I.T’l 6, 1). Let
,5’ ’(xl) and consider F as a formula of size S over the infinite field ; the only "constants"
arising as subformulas of F are xl and elements of the small field .T’. Let ,9 C include all
elements of .Y’[x] whose degree in x is at most loglrl(S + 6); clearly, ISI >_ S / 6, and
(by the claim for formulas over large fields) there exists a formula G equivalent to F that has
depth bounded by

and size bounded by

3(2k 1)
log k

log S + 6k-

sl+log 44/1og k + 4(k 1)(Slg 44/log k 1),

such that the only constants appearing as a subformula of t either appear as a subformula of F
(hence are X or belong to 9r) or belong to ,9. Now, each element of,5’ is equivalent to a formula
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(with constants in .Y" and variable xt) with size at most 2 lOgl-i(S + 6) + < 2 logl S + 5

and depth at most 2 logl (S + 6) < 2 lOgl S + 4. Therefore, the formula ( can be used
to obtain an equivalent formula G with constants in .)c- and variables x, x2 such that

IGI _< 11(2 logl S + 5) and depth(G) < depth(0) + 2 logic- S + 4 as required to prove the
claim for the case in which " is small.

COROLLARY 6.5. Over any field .T’, for any fixed > O, for any formula of size S with
operationsfrom {+, -, , /} t_) .T’, there are equivalentformulas with

(i) depth 0 (log S) and size 0 (STM),
(ii) depth O(log+ S)and size S+(/lggs3

O(S) ifl’i > S,
.K’ log S(iii) depth O(S) and size O(.logll) iflVl < S,

Proof Apply Theorem 6.4 setting k 45 /’ (in the first case), k log S (in the second
case), and k S/2 (in the third case).

7. Simple formulas. Kosaraju [7] showed that any simple formula F is equivalent to a
division-free formula/ of depth at most log IF[ / 2v/log IF[ + d for some constant d; clearly,

such a formula/ can have size at most clFl+2//glFI O(IFI l+) for some constant c
and arbitrary > 0. As shown below, Brent’s construction and the techniques used to prove
Theorems 5.2 and 6.4 can be used to improve the bound on formula size implied by Kosaraju
[7] for restructuring simple formulas.

LEMMA 7.1. Suppose G(y) is read-once with respect to y. If lG(y)l 0 then G(y) y.

If ]G(y)I > then there exist division-free formulas A and B such that ]A], IBI < IG(y)I,
and either

G(y) =-- A x y + B or G(y) =-- A x y- B.

Furthermore, if G(y) is simple then B is simple as well, the only operation in A is x, and the
depth ofA is at most [log IG(y)IJ.

Proof. Clearly, G(y) y if IG(y)I 0 and G(y) is read-once with respect to y.
Now suppose that G(y)I > 1. We first show that formulas A and B exist with all the

stated properties, except that the depth of A may be larger than claimed when G(y) is simple.
This is proved using induction on the depth d of y in G(y). Since IG(y)I > 1, d > 1.

If d then either
1. G(y) y + G’ (or G’ + y),
2. G(y) y
3. G(y) G’ y, or
4. G(y) y x G’ (orG’ x y)

for some formula G’ such that IG’] IG(y)I. Clearly, when G(y) is simple, G’ is either an
input or a constant in case 4. In the first of these cases G(y) A x y + B for A and
B G’. In the second case G(y) A x y B for the same choice of A and B. In the third
case G(y) A x y +B for A and B G’. Finally, in the fourth case G(y) A x y+ B
for A G’ and B 0. In each case, it is clear that IAI, Inl < IG(y)I and, if G(y) is simple,
then so is B, and the only operation in A is x as desired.

Now suppose that d > 1; then there exist formulas G (y) and G2 (both simple if G(y) is
simple) such that G(y) is read-once with respect to y, the depth of y in G(y) is d > 0,
IG(y)I >_ 1, IG21 > 1, and IG(y)I-t-1621--IG(y)I, so _< IG(y)I, [G21 < IG(y)I- 1.
Furthermore, either

1. G(y) G (y) + G2 (or G2 + G (y)),
2. G(y) G (y) G2,
3. G(y) G2 G1 (y), or
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4. G(y)-" Gt(y) x G2 (or G2 G(y)).
If G(y) is simple then, clearly, G2 is either an input or a constant in case 4.

By the inductive hypothesis there exist division-free formulas A and Bt such that
IAtl, lBl[ _< IGt(y)l and either Gl(y) =-- At x y + B1 or G(y) =- At x y- B1, and
such that Bt is simple and the only operation in A is x if G (y) is simple. Now, since either
G(y) =- A x y + Bt or Gt(y) -= Al x y- B, and G(y) can assume any of the above four
forms in each case, there are eight ways in which G(y) can be constructed from At, Bt, y,
and G2. It is straightforward to check that in all eight cases, either G(y) =- A x y + B or
G(y) A x y B, where A is one of A l, -1 x A, or At x G2, and B is either G2 / B,
G2 B, or G2 x B. Clearly, IAI, IBI _< Ia(y)l and A and B are division-free in each case.
Furthermore, if G (y) is simple then A is only set to be A x G2 when G2 is either an input
or a constant.

Finally, suppose G(y) is simple. Then the above formula A is simply a product of all of its
inputs and constants. Since multiplication is associative, this can be replaced by an equivalent
balanced formula of the same size. The depth of this new formula is at most the floor of the
logarithm of its size as is needed to complete the proof. [3

Recall that Lemma 5.1 established that if G (y) is division-free and read-once with respect
to y then G (y) -= A y + B for division-free formulas A and B of size at most G (y)l + 1. The
results of Theorem 5.2 can be improved slightly if Lemma 7.1 is applied in the construction
used to prove the theorem instead of Lemma 5.1. In particular, if this substitution is made
then the resulting "basic transformation" converts a division-free formula F of size S into
(A, E(w), {W A}), such that E(W) F and the depth of E(w) and the
size of each auxiliary formula W are as described in the proof of the theorem, but where

2S ifS>3k,
IE(W)aAI <_

3k if S < 3k.

Consequently, iterations of the basic transformation produce a restructured formula of size
at most 2 S, with the remaining properties described in the proof of Theorem 5.2mand the
size bound of Theorem 5.2(iii) can be improved to "lal < S+1/og ,,. However, this change
does not lead to an improvement in Corollary 5.3 (or to any other notable benefits).

THEOREM 7.2. For any simple formula F there exists an equivalent division-free for-
mula G (not generally simple) with depth at most 3 log FI such that [GI _< IFI log FI / IF [.

Proof We prove the result by induction on the size of F. The result is trivial if lFI _< 2
since it is sufficient to set G F.

Suppose IF[ > 2 and set rn [[F[]. By Lemma 3.1 there exists an extended for-
mula G(y) that is read-once with respect to y, formulas U and V, and an operation such
that F G(U V), Ia(y)l _< IFI- rn L1/21FIJ, and IUI, IVI _< rn < 11/21FI]. Since
F is simple, G(y), U, and V are simple as well.

Suppose G(y) # y. Then, by Lemma 7.1, there exist division-free formulas A and B
such that IAI, IBI < IG(y)I, B is simple, depth(A) < [log IG(y)IJ < [log IFIJ 1, and
either G(y) =- (A x y) + B or G(y) (A x y) B. Consequently, F =_ H(U, V, A, B),
where either H(u, v, a, b) (a x (u . v)) + b or H(u, v, a, b) (a x (u . v)) b. By
the inductive hypothesis, U is equivalent to a formula U such that the depth of U is at most
3 log IUI and It)l _< IUI / lUI log IUI. Similarly, V is equivalent to a formula " whose

depth is at most 3 log V and whose size is at most V + g lVI log V I, and B is equivalent to

a formula/ with depth at most 3 log IBI and size at most BI + 71BI log IB I. Set

G H(O, 9, A, ).
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Then G _---- F, and the depth ofG is the maximum of +depth(/), 2+depth(A), 3 +depth(O),
and 3 + depth(l)). Since the depths of , Q, and/ are at most 3 logl(IFI/2)l and the depth
of A is at most (log IFI) < 3 log IFI 2, the depth of G is at most 3 log IFI. Also,

Iml + 101 + I1 + IAI
_< L1/21FIA / (ISl / IVl / IBI) / y(ISl / IVl / IBI)logL1/21fll
_< L1/21FI/+ Ifl + 5lfl((log Ifl) 1)

_< Ifl / 71flloglfl

as desired.
If G(y) y then F U V and the result follows by a similar (but simpler) argument.

It is possible to obtain an improved version of Theorem 5.2 for simple formulas. Suppose
k > 2, and F is a simple formula of size at least 3k. Applying Lemma 4.1 to F, we obtain
sets Interior and Boundary, simple extended formulas G(y) and operations ., for each
t Interior, and simple formulas G for all/3 6 Boundary with the properties described in
the lemma. By Lemma 7.1 each extended formula Ga(y) is equivalent to either A y + B
or Aa x y Ba, where Aa and Ba are division-free, B is simple, IAI, IBI _< IG(y)I, and
A is balanced. Since it is not necessary to apply the construction recursively to A for any
a Interior, and

"[A[ < IF[ and [B[ < [F[,
ot 6Interior a6Interior

we obtain a sequence of tuples

(Ai, Ei(Wd)Ai, {W8 Ai}

such that Ei(W)/x, =-- F, the depth of Ei(w)/x, is at most log IF[ greater than as stated
in the proof of Theorem 5.2 (since this formula now includes the balanced formulas A for
a Interior rather than corresponding auxiliary variables a), IWl _< k-ilF[] + 2 for
all 3 6 Ai, and [Ei(W)la,xi < (i + 1)[F[, so that the size of this reconstructed formula
grows linearly instead of exponentially with io Setting [logk FIJ, as usual, we obtain the
following result.

THEOREM 7.3. For any simple formula F ofsize S and any integer k > 2 there exists a

division-freeformula G (not necessarily simple) such that
(i) G F,
(ii) depth(G) < (3k/ log k) log S + (3k- 1),

(iii) GI < S(llogk SI + 1).
Kosaraju’s results and Theorem 7.2 leave very little room for size-depth tradeoffs for

simple formulas. Still, Theorem 7.3 can be applied to prove something new.
COROLLARY 7.4. Over anyfield J:, for anyfixed > 0 and any simpleformula ofsize S

with operationsfrom {+, -, t2 .T’, there is an equivalent division-freeformula with
(i) depth O ((log S)+) and size 0,, logSlglogSs

as well as an equivalentformula with
S log S(ii) depth 0 (log S log log S) and size 0 og og log S )

Proof. Apply Theorem 7.3, setting k (log S) in the first case and, in the second case,
k (log log S)(log log log S). [3
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8. Specific formulas and known lower bounds. As mentioned in 1, parallel algorithms
for the formula evaluation problem can be modified to transform formulas into small-depth
circuits, which can in turn be transformed into formulas of the same depth. We conclude with
an example illustrating that polynomial size blowup can arise from this approach, even if one
is restricted to division-free formulas. In particular, we shall exhibit a formula of size n such
that when the formula evaluation algorithm of Miller and Reif [9] is applied to it, the resulting
formula is of size f2 (n 1+) for a fixed > 0.

For each n, define the formula Fn(Xl, x2 X2n+t) as

Fn(X1,X2 X2n/l) :(’’" (((XI X X2) +X3) X X4) ---... X X2n --X2n+l.

Clearly, depth(Fn(xt X2n+l)) 2n and IFn(Xl X2n/)l 2n + 1.
Commentz-Walter [4] shows that, over the Boolean semiring ({0, },/, v) (where nega-

tions are disallowed), there are formulas equivalent to Fn (Xl X2n+l) with depth O (log n),
but all such formulas have size f2(n log n). Commentz-Walter and Sattler [5] also show
that, even if negations can be introduced, any formula of depth O(log n) that computes

n log log nFn(Xl X2n+l) must have size "2(lo]-i---gn). (This nonmonotonic lower bound does
not apply if operations can be introduced.)

Now consider the formula Gnk, where

Gnl(Xl X2n/l) Fn(Xl X2n/l)

for Fn (x l, X2 X2n/l) as above, and

G(nk)(xl X(2n/l)k F(Gnk-l(xlk-1)),.. Gnk-l).t,x2,+-1))
for k > 1, where xk-) (x(i_l)(2n/l)k-,/l xi(2n/l)k-), 2n + 1o

For n 3 the method of Miller and Reifbalances G1(x XT) to the formula (((x x
x2) + x3) (x4 x6)) + ((x5 x6) + x7), which induces one more occurrence of the variable

x6. When we try to balance G using Miller and Reif’s method we induce two copies of
(i) (i)each c/3 (x6 in each level of the formula Gk. This implies that if the balanced formula is

of size S(N) for N 7, then

S(N) 8S(N/7),

which implies that Miller and Reif’s method gives a formula of size ng 8/log 7 > n 1.0686.
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LEARNING ARITHMETIC READ-ONCE FORMULAS*
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Abstract. A formula is read-once if each variable appears at most once in it. An arithmetic read-once formula
is one in which the operators are addition, subtraction, multiplication, and division. We present polynomial time

algorithms for exact learning of arithmetic read-once formulas over a field. We present a membership and equivalence
query algorithm that identifies arithmetic read-once formulas over an arbitrary field. We present a randomized

membership query algorithm (i.e., a randomized black box interpolation algorithm) that identifies such formulas over
finite fields with at least 2n + 5 elements (where n is the number of variables) and over infinite fields. We also show
the existence of nonuniform deterministic membership query algorithms for arbitrary read-once formulas over fields
of characteristic 0, and division-free read-once formulas over fields that have at least 2n + elements. For our

algorithms, we assume we are able to perform efficiently arithmetic operations on field elements and compute square
roots in the field. It is shown that the ability to compute square roots is necessary in the sense that the problem of
computing n square roots in a field can be reduced to the problem of identifying an arithmetic formula over n
variables in that field. Our equivalence queries are of a slightly nonstandard form, in which counterexamples are

required not to be inputs on which the formula evaluates to 0/0. This assumption is shown to be necessary for fields
of size o(n! log n) in the sense that we prove there exists no polynomial time identification algorithm that uses only
membership and standard equivalence queries.

Key words, learning theory, interpolation, exact identification, polynomials, rational functions, read-once for-
mulas

AMS subject classifications. 41A05, 41A20, 68Q20, 68T05

1. Introduction. We consider the problem of exactly identifying an unknown formula
via oracle queries. In the classical black box interpolation model, there is a black box oracle
that computes the unknown target formula, and one is free to substitute inputs into the black
box with the goal of constructing a formula that is equivalent to the unknown target. These
substitutions are sometimes called membership queries, a term that was developed in the
context of boolean functions. Each boolean function corresponds to a subset of its domain
(the set of elements for which the output ofthe function is 1), and thus substitution is equivalent
to testing membership in the set.

Another way to acquire information about an unknown formula is via an "equivalence
query." In this type of query, one proposes a candidate formula h and asks whether it is
equivalent to the unknown target f. If h is equivalent to f, the answer to the query is "yes."
If h is not equivalent, the answer is a counterexample--an element of the domain on which
the outputs of h and f differ. Equivalence queries are motivated in part by the problem of
learning from random examples (i.e., from a sequence of random elements of the domain of
f, each labeled according to the output of f on that element). Given a long sequence of
random examples labeled according to f, one can simulate an equivalence query by testing
the hypothesis h on those examples. If h disagrees with some example, that example is a
counterexample, otherwise h is at least a good approximation for f (with high probability).
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The model of exact learning with membership and equivalence queries was introduced
by Angluin [1] and has been the subject of much research in the learning theory community
(we give a more precise definition later).

A multivariate formula is read-once if each variable appears at most once in it. Angluin,
Hellerstein, and Karpinski [2] proved that boolean read-once formulas over the basis (AND,
OR, NOT) can be exactly identified in polynomial time using membership and equivalence
queries (this is not possible using either type of query exclusively). This result has been
generalized to include other classes of boolean read-once formulas [10], [6], [12], [5].

We study the problem of exactly learning arithmetic read-once formulas. These are
formulas over a field where the basis functions are arithmetic operations (addition, subtraction,
multiplication, and division) over that field. We give an efficient deterministic algorithm for
formulas over arbitrary fields using membership and equivalence queries. We further show
that membership queries alone suffice (if one allows randomization) for fields that have at least
2n + 5 elements, where n is the number of variables. We also show nonconstructively that
membership queries alone suffice for deterministic (but nonuniform) identification offormulas
over fields of characteristic 0 or division-free formulas over fields of at least 2n q-- elements.

The membership query only results can be rephrased as interpolation results using black
box substitutions. Arithmetic read-once formulas over a field compute a subclass of the multi-
variate rational functions over that field. Division-free arithmetic read-once formulas compute
a subclass of the polynomial functions. The leamability of sparse polynomials and rational
functions over fields using membership and enhanced membership queries has been previ-
ously studied [9], [8], [3], [15], [4]. The classes of sparse polynomials and rational functions
are incomparable to the class of arithmetic read-once formulas; sparse polynomials and ra-
tional functions are not necessarily read-once, and the polynomials obtained from expanding
division-free read-once formulas are not generally sparse. The results in this paper are the
first nontrivial polynomial interpolation results for a class of nonsparse rational functions.
The special case of division-free read-once formulas with sparse polynomial expansions was
studied by Lhotzky [14].

We present a single core algorithm that employs new algebraic techniques for exact
identification of an arithmetic read-once formula over any field, using membership queries (or
equivalently, substitutions). The algorithm requires a set of "justifying assignments" (input
settings to the variables that satisfy certain properties defined below) as additional input. This
algorithm relies on being able to compute efficiently the arithmetic functions on field elements,
and also on being able to compute square roots in the field. The ability to compute square
roots is shown as necessary for identifying this class, since we are able to reduce the problem
of computing n square roots in a field to that of identifying an n variable arithmetic read-
once formula over that field. The upper bounds we give in this paper are based on unit time
computation of square roots and field operations.

We present several altemate methods for finding justifying assignments. If the field is
sufficiently large (at least 2n / 5 elements), we can use randomized membership queries. We
also prove (nonconstructively) that a nonuniform deterministic membership query algorithm
exists if a formula is division-free, or if the field has characteristic 0 (e.g., the reals). In the
latter case we use a result of Heintz and Schnorr [13]. Membership queries alone do not

provide enough information to identify arithmetic read-once formulas over small finite fields,
so to handle an an arbitrary field we present a technique that uses equivalence queries as well
as membership queries. These equivalence queries are slightly nonstandard in that we add
a minor restriction on what counterexample may be returned. In particular, if there exists a

counterexample on which the target formula does not evaluate to 0/0, we require that such
a counterexample be returned. This assumption is shown to be necessary for fields of size
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o(n/log n). For fields of this size it is shown that there is no polynomial time identification
algorithm that uses just membership and standard equivalence queries.

Other work related to this paper is by Goldman, Kearns, and Schapire [7] who use non-
adaptive randomized membership queries to identify restricted classes of boolean read-once
formulas. They also show nonconstructively the existence of deterministic algorithms.

In 2 we present our definitions and basic notation for this paper. In 3 we discuss the
core algorithm, and in 4 we describe the techniques for obtaining justifying assignments and
state our positive results as theorems. Section 5 describes the lower bounds. We conclude in

6 with a table summarizing our results.
This paper uses a number of basic facts from linear algebra. As an aid to readers without

a strong background in this area we include many of these facts as propositions, either without
proof or with the proofs deferred to the appendix.

2. Definitions and notation. Aformula is a rooted tree whose leaves are labeled with
variables or constants from some domain, and whose internal nodes or gates are labeled with
elements from a set of basis functions over that domain. A read-once formula is a formula
for which no variable appears on two different leaves. An arithmetic read-onceformula over
a field/C is a read-once formula over the basis of addition, subtraction, multiplication, and
division of field elements, whose leaves are labeled with variables or constants from

For notational convenience we define a modified basis and consider our arithmetic read-
once formulas defined over this basis. Let K be an arbitrary field. Our modified basis for
arithmetic read-once formulas over/E will include only two nonunary functions, addition (+)
and multiplication (x). The unary functions in the basis are (ax + b)/(cx + d) for every
a, b, c, d /C such that ad bc 5 0 (this requirement prevents ax + b and cx + d from being
identically 0 or differing by just a constant factor). We also assume that nonconstant formulas
over this modified basis do not contain constants in their leaves.

We represent such a unary function as fa, where

a=(ac )
The restriction on a, b, c, and d is equivalent to saying that the determinant of A (denoted
det(A)) is nonzero. This representation becomes useful when we think of the column vector
(a b) r as representing the field elementa/b. With this representation we may compute fa (x)
by multiplying A(x 1)r.

The value of a read-once formula on an assignment to its variables is determined by
evaluating the formula bottom up. This raises the issue of division by zero. We handle this by
defining our basis functions over the extended domain/C t2 {c, ERROR}, where oo represents
1/0 and ERROR represents 0/0. Note that (a b)r now corresponds to a domain element for
any choice of a, b /C, since if b 0 then a/b is either oo or ERROR depending on a. On
field elements the basis functions are defined in the obvious way. For the special values we
define our basis function as follows (assume x /C {0}, y /C t_J {oct, ERROR}, and A is
as above):

There are arithmetic read-once formulas such as x/0 and O/x for which there is no equivalent read-once formula
over the modified basis having no constants in the leaves. However, such formulas are in some sense degenerate.
For example, note that x/0 is algebraically undefined and O/x would normally be reduced to 0 even though O/x does
not evaluate to 0 at the point x 0. We shall ignore these degenerate formulas and define the class of arithmetic
read-once formulas as precisely those that are constant or for which there is an equivalent read-once formula over the
modified basis with no constants in the leaves.
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y + ERROR y x ERROR fa (ERROR) ERROR,
x-1-oo --x X ( 00,
O+ O0 O0 X 0<) 00,

0 X O O + O0 ERROR,

f(l= c0,
c=0, and f(@)-ifc0.

Note that f (oe) is represented by A(1 0) r. By Property 2.2 in 2.3 these definitions
are designed so that the output of the read-once formula is the same as it would be if the
formula was first expanded and simplified to be in the form p(x Xn)/q(x1 Xn) for
some polynomials p and q, where gcd(p, q) 1, and then evaluated.

The distinction between c and ERROR is an important one. The value x is essentially
just another domain value (although we make no membership queries with variables set to
Introducing means that our unary basis functions are bijections from K U {} to/ U {e}.
It is possible for subtrees of a formula to evaluate to x but for the entire tree to evaluate to
a value from/. This is not the case for ERROR, which, once it appears anywhere within a
formula, is necessarily propagated to the root.

We say that a formula f is defined on the variable set V if all variables appearing in f
are members of V. Let V {x x }. We say a formula f depends on variable xi if there
are values x), xO) x) and x’) in/C for which

f(x0,, XO, X(n0,) # f(xlO, xtO’1,Xt 1, xtO+’l X(nO’),

and both those values of f are not ERROR. We call such an input vector v (xl) Xn()) a
justifying assignment for xi (this is a slight modification of the definition in previous literature
to account for the ERROR possibility).

An assignment of values to some subset of a read-once formula’s variables defines a
projection, which is the formula obtained by hard-wiring those assigned variables to their
values in the formula and then rewriting the formula to eliminate constants from the leaves.
Let fl(x <---x()) denote the projection of f obtained by hard-wiring x to the value x (). For
a set of variables W _c V and an input setting v e K]n, let fl(W )) denote the projection
of f obtained by hard-wiring each x e W to its value in o.

If f depends on variable x, we say a value x) e/C U {oo} for x2 blocks x in f if the

projection fl(x2 <--x()) no longer depends on x.
A justifying assignment for a variable gives us values to which we can set the remain-

ing variables such that the induced projection depends on that single variable. We are also
interested in input settings that fix all but two or three variables so that the induced projec-
tion depends on those two or three variables. We call such settings two- and three-justifying
assignments, respectively.

For any pair of variables xi and xj that appear in a read-once formula, there is a unique
node farthest from the root that is an ancestor of both xi and xj, called their lowest common
ancestor, which we write as lca(xi, xj). We shall refer to the type of lca(xi, xj) as the basis
function computed at that gate. We say that a set W of variables has a common lca if there is
a single node that is the lca of every pair of variables in W.

We define the skeleton of a formula f as the tree obtained by deleting any unary gates in

f and removing the labels from any remaining internal nodes (i.e., the skeleton describes the
parenthesization of an expression, but not the actual operations or embedded constants).

2.1. Identification with queries. The learning criterion we consider is exact identifica-
tion. There is a formula f called the targetformula, which is a member of a class of formulas
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C defined over the variable set V. The goal of the learning algorithm is to halt and output a
formula h from C that is equivalent to f.

In a membership query, the learning algorithm supplies values (xl) x)) for the vari-

ables in V as input to amembership oracle and receives in return the value of f(x) x)).
Note that if f’ is a projection of f, it is possible to simulate a membership oracle for f’ using
a membership oracle for f.

In an equivalence query, the learning algorithm supplies a candidate read-once formula h
as input to an equivalence oracle, and the reply of the oracle is either "yes," signifying that h is
equivalent to f, or a counterexample, which is an input setting v (xl) Xn)) such that
h(v) f(v). In the standard model the choice of the counterexample v is arbitrary. In this
paper we consider a slightly nonstandard model in which the counterexample v is arbitrary,
except that it will not have f(v) ERROR unless no other counterexamples are available.

A technical detail is how much time to charge for making a query. We follow Angluin,
Hellerstein, and Karpinski [2] and charge for both setting up the query and invoking the oracle.
In a membership query consisting of an assignment to n variables, we charge unit time for
specifying each of the n assignments. Therefore, the set-up cost of a membership query is is
typically O (n) (it can be lower if the query is formed by changing only a small number of
bits in the previous query, as is the case in several of our algorithms). The setup cost of an
equivalence query involving a read-once formula is also typically O(n) because we charge
according to the number ofnodes in the input formula. We charge unit time for invoking either
the membership oracle or the equivalence oracle once the query is set up.

2.2. Properties of unary functions. Here we list some basic properties of unary func-
tions fA. These show some of the advantages of the matrix notation. In all of the following
we assume

For the basis functions A is nonsingular. When we consider projections that assign values to
all but one variable in a read-once formula, the induced function can be constant or have a
degenerate form such as O/x. These correspond to functions fa for which det(A) 0.

Using basic linear algebra, we establish the following properties of our representation.
The proofs are technical, though straightforward, and we defer them to the appendix.

PROPERTY 2.1.
(1) Thefunction fa is a bijectionfrom 1C U {o} to 1C {oo} ifand only if det(A) 5/: O.

Otherwise, fa is either a constant valuefrom 1C U {o, ERROR} or else a constant valuefrom
1C o}, except on one input value on which it is ERROR.

(2) Thefunctions fa and f)A are equivalentfor any . O.
(3) Given any three distinct points Pl (x, y), P2 (x2, Y2), and P3 (x3, Y3),

(a) ifp, p2, P3 are on a line then there exists a uniquefunction fA with fa (x)
ax + b that satisfies fa (Xl) y fa (X2) Y2, and fa (X3) Y3;

(b) if p, P2, P3 are not on a line then there exists a unique function fA with
det(A) : 0 that satisfies fa (Xl) y, fa (X2) Y2, and fA (X3) Y3.

(4) Iffunctions fa and fn are equivalent and det (A), det (B) : 0, then there is a
constant )for which )A B.

(5) Thefunctions (fa o fn) and fAn are equivalent.
(6) /fdet(A) - 0, functions f and fa-’ are equivalent.
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(7) fa(X) fa(Xo o)(X) and fa( + x)

f(x o) A (X) and ) / fa (x) f(o )A (X).
fa(’o ) (X)" ZfA (X)

2.3. Properties of read-once formulas. In this section we state some important prop-
erties of read-once formulas, which we shall frequently use in the subsequent sections. The
proofs are technical and we defer them to the appendix.

Property 2.2 shows that the definitions at the start of 2 for evaluating an arithmetic read-
once formula indeed do the right thing. We show that the output of the formula is the same
as it would be if we first simplified the formula to the form p/q for two polynomials p and q
with gcd(p, q) 1, and then evaluated it.

First we give an inductive definition of what it means for an arithmetic read-once formula
to compute a rational formula (by the natural means of expanding and then simplifying the
formula). We say an arithmetic read-once formula f computes the rational function p/q
defined as follows: If f is a single leaf labeled with a variable x we say f computes x,
and if f is a constant a we say f computes a. If the root of f is a unary function fA
with A ( ), whose input is a subformula computing Pl/q, we say that f computes
(ap + bql)/(cpl + dql). If the root of f is a gate whose two inputs (w.l.o.g.) compute
p/q and P2/q2, we say that f computes (pp2)/(qq2). If the root of f is a + gate whose
two inputs (without loss of generality (w.l.o.g.)) compute p/ql and p2/q2, we say that f
computes (plq2 + P2ql)/(qlq2)o Furthermore, if f computes p/q and gcd(p, q) r, we
also say that f computes (p/r)/(q/r).

PROPERTY 2.2. Let f(x Xn) be an arithmetic read-onceformula that computes

p(xl Xn)/q(xl Xn),

where gcd(p, q) 1. Thenfor any v (x), X(n)),
(1) f (v) a ’ {oe, 0} ifand only if p(v)/q(v) a;

(2) f (v) 0 ifand only if p(v) 0 and q(v) 7 0;
(3) f(v) oe ifand only if p(v) 7 0 and q(v) 0;
(4) f(v) ERROR ifand only if p(v) q(v) O.
Note that this property is not true ofread-twice formulas (e.g., xIx, which by our definition

computes 1, fails condition (4)).
Property 2.3 implies that the type of the lca of two variables in an arithmetic read-once

formula is unique (i.e., there are no two equivalent read-once formulas in which the same pair
of variables have different lca types).

PROPERTY 2.3. There exist no nonsingular matrices A, B, C, D, E, and F such that

fA(fB(Xl) X fc(X2)) fD(fE(Xl) "Jr" fF(X2)).

Property 2.4 states that an arithmetic read-once formula with two inputs is a representation
that is unique except for fairly minor variations of the unary functions (e.g., corresponding to
whether a constant multiplicative factor is applied to the output of a gate or to its input(s)).

PROPERTY 2.4. For nonsingular matrices Ai, Bi, and Ci (i 1, 2) we have
(1) fcl(fa(Xl)X fB(X2))= fc(fa(Xl)X f/h(X2))ifandonlyif

fa (X) Otfa, (X), f, (X) fn, (X) and fc: (x) fc, (l/x)

or
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fA. (X) f. (X)
fA,(X)’ f, (X)’

and fc2(x)=fc,(--)
for some constants or, , and y, where cq3, 1;

(2) fc, (fa, (Xl) + f, (x2)) fc2 (fa2 (Xl) + f2 (X2)) ifand only if

fa (X) + fa, (X), f2(x)=3+lf,(x), and fc2(x)=fc’(l(V+x))-rl
for some constants or, , and y, where ot + + ?, 0 and some nonzero constant

Property 2.5 addresses the question of when adjacent 4- or x gates in a formula may be
collapsed together to form a single gate (ofgreater fan-in). Because there may be an intervening
unary function, this is not always possible (unlike the situation for boolean formulas, where
after pushing negations to the leaves, adjacent AND or OR gates can be merged). It turns out
that such a collapse is possible only when there is either no intervening unary function, or else
the intervening function (f below) is of a fairly simple form (such as simply multiplying its
input by a constant).

PROPERTY 2.5. For nonsingular matrices Ai (i 1, 2, 3), B, and C,
(1) there exists matrices A and C such that

fc(fAa(X3) X fB(fA,(Xl) X fAz(X2)))= fc,(fA’3(X3) X fAI(Xl) X fA’2(X2)

ifand only if

o)0 Ol2
or B oz 0

for some nonzero constants Ol and cz;
(2) there exists matrices A and C such that

fc(fA3(X3) 4- fB(fA,(Xl)4- fAz(X2)))-- fc’(fA(X3)4- fA’(Xl)4- fA2(X2))

ifand only if

B-- ( 0110 Ot20t3 )
for some nonzero constants 1 and: and a constant 3.

3. The core algorithm. Our results for learning arithmetic read-once formulas are all
based on the following general purpose core algorithm, which uses deterministic membership
queries and can be applied to learn read-once formulas over any field. The core algorithm takes
as input three-justifying assignments for each subset of three variables in a target arithmetic
read-once formula f, and returns an equivalent arithmetic read-once formula. In this section
we assume that the justifying assignments are already available. In subsequent sections, we
discuss different techniques for obtaining such justifying assignments, depending on the query
model and field in question.

In our discussion of the core algorithm, we assume the field over which the formula is
defined has at least three elements, since division is not an interesting operation in two element
fields (the division-free case for two element fields is covered in other papers [5], 11 ]).

The algorithm is based on the reduction of Lemma 3.2 presented in 3.1. The reduction
transforms our problem to the problem of finding polynomial time routines that (1) learn the
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skeleton of the target formula using membership queries and justifying assignments, and (2)
learn read-once formulas that contain at most one nonunary gate using membership queries
and justifying assignments.

In Lemmas 3.3 and 3.4 we reduce the problem of skeleton construction (problem (1)
above) to the two subtasks of (la) determining the type of the lca ( or /) of each pair of
variables and (lb) determining (in some cases) which two out of three variables have the
deeper lca when all the pairwise lca’s are of the same type.

These techniques are taken or generalized from previous work on boolean read-once
formulas. In 3.2, 3.3, and 3.4 we present the key new results for the arithmetic read-once
formula problem that solve problems (la), (lb), and (2), respectively.

The resulting algorithm allows us to prove the following result in a computational model
that allows unit time computation of field operations and square roots.

LEMMA 3.1. There is apolynomial time algorithm that uses membership queries andthree-
justifying assignments to exactly identify an arithmetic read-once formula over an arbitrary
field. This algorithm requires O(n4) time, O(n3) membership queries, and n square root

computations.

3.1. General techniques for finding and using the skeleton.
LEMMA 3.2. Given the skeleton of an arithmetic formula f as well as two-justifying

assignmentsfor each pair ofvariables, the problem ofpolynomial time exact identification of
f with membership queries is polynomial time reducible to that of identifying aformula that
has a single nonunary gate with membership queries andjustifying assignments.

Proof. We find two variables xi and xj that are siblings in the skeleton. Using a two-
justifying assignment a (a an) for Xi and xj, we have

f(a ai-l,xi,ai+l aj_l,xj,aj+l an) fc(fA(xi) op fB(Xj)),

where op 6 {+, }. Given that we can identify this one-gate formula (i.e., find A, B, C, and op
within the factors allowed in Property 2.4), we now reduce the problem to exact identification
of an arithmetic read-once formula with n variables as follows: We will substitute

where

for op x and

y fA(Xi)op fB(Xj)= fDxiB(Xj)

Dx’ ( fA (xi 0)1

fA(Xi) )Dxi 0

for op + (this is by Property 2.1 (7)).The new read-once formula f’ obtained from this
substitution is over the n variables (y, x xi-, Xi+l xj_, xj+ Xn). Now, to
simulate the membership query

o_) o+) .(o) .(o)f,(y(O) xlO) x x "t’j-1 d6j+l

we ask the membership query

f (xlO) x[O_) ai, x[O+),, xO)-l, fB-" D::’, (y(O,),.(O,.,tj+ Xn(0)).
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Let J be a set ofjustifying assignments for each set of two variables in f. Then it is easy
to see that

J! {(fDbiB(bj) b bi-l, bi+l bj-1, bj+ b,)l(b bn) J}

is a set of justifying assignments for each set of two variables in f’. We repeat this process
n times until we have identified f.

Define the metaskeleton of an arithmetic read-once formula f as the graph obtained from
the skeleton of f by merging together all adjacent nodes labeled with the same type of gate
( or +). The following lemma is proved by Angluin, Hellerstein, and Karpinski [2]. (Their
proof is for boolean formulas over {AND, OR}, but the same proof works for {/, x }.)

LEMMA 3.3 [2]. There is a polynomial time algorithm forfinding the metaskeleton of f
given the type ofthe lca ofeach pair ofvariables.

Given the metaskeleton, the remaining problem for skeleton construction is to reconstruct
those portions where all the gates are of the same type (corresponding to the nodes of the
metaskeleton). To do this we shall perform a procedure (described in 3.3) in which we
examine sets of three variables and try to determine which two ofthem (if any) have the deeper
lca. We can make this determination in some but not all cases. However, our procedure does
satisfy the following two conditions: (1) every time we decide a particular pair has a deeper
lca we are correct, and (2) we always determine the deeper pair in the case where the deeper
lca is an immediate child of the shallower one. Lemma 3.4 shows that this gives us enough
information to build the skeleton.

LEMMA 3.4. Let S be a set containing elements of the form {xi, xk }, xj }o Suppose the
following two conditions are true of Sfor a read-onceformula f:

()

(2)

If {Xi, Xk }, Xj E S then lca(xi, Xk) is below lca(xi, xj),

lflca(xi, Xk is below lca(xi, xj and there are no intervening nonunary gates

then {xi, xk }, xj S.

Then there is a polynomial time algorithmfor reconstructing the skeleton of f given S.
Proof. For an arbitrary pair of variables xi and xj, define the following two sets:

W {Xk {{Xi, Xk}, Xj} S},

U {Xl for some xk W, {{x/, xk}, xj S}.

We claim that the set {x U W I..J U consists of exactly those variables that appear in the same
subformula of the formula rooted at lca(xi, xj), as does xi (let us call this subformula f).

If xk 6 W then condition (1) implies^that xk appears in f. Then this implies that any
x that we add to U must also appear in f. Thus {xi U W t.) U is a subset of the variables
appearing in f.

Let G be the root node off(a child oflca(xi, xj) in f). Ifx, appears in fand lca(x/, x)
G then condition (2) implies that xk E W. If X appears in f and lca(xi, xt) G, then for an

xk with lca(xi, xg) G (and hence in W), condition (2) implies that {{xk, x}, xj} 6 S, and
hence that xt will be in U. Thus every variable appearing in f (besides xi) is in either U or
W. This proves the claim.

The lemma easily follows from the claim since, if the skeleton has more than one gate,
we can find an xi and xj such that W U U 13, and then we can partition the variables and
learn the two subskeletons recursively.
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3.2. Determining the type of an lca with blocking values. In this section we show how
to determine the type of the lca for a pair of variables in the target formula. We consider only
lca(xl, x2) for notational convenience. We use the following criterion to determine the type
of the lca. (We already know that the type of lca(xi, xj) is unique by Property 2.3, although
the correctness of this lemma gives an alternate, more involved proof of that fact.)

LEMMA 3.5. Suppose f(x l, x2 Xn) is an arithmetic read-onceformula over a field,
and the projection f’(xl, X2) f (xl, X2, X0),..., Xn)) depends on x and X2. The type of
lca(x, x2) in f is ifand only ifx2 has exactly two blocking valuesfor Xl in f’. The type of
lca(x, x2) in f is + ifand only ifx2 has exactly one blocking valuefor x in

Proof Suppose x), x) /C are values such that f’(x,, x2) f (x,, x2, x)
Xn)) depends on x and x2. Then it must be true that f’(x,x2) fc(fA(X) op fB(x2)),
where op 6 , +} is the operation computed at lca(x, x2). Furthermore, matrices A, B, and
C must be nonsingular.

Ifop , f’(x, x) depends onx if and only if fB(x2) 5 0 or cxz. Thus the distinct
values of x2 that block x in f’ are f- (0) and f- (cx).

Ifop +, f’(x, x) depends onx ifand only if fn(x) 5 cxz. Thus the unique value
of X2 that blocks x in f’ is f-I (oct).

Thus, to determine the type oflca(xl, x2) for any pair of variables we need only determine
the number of blocking values in f’(xl, x2). We first look for two values of x2 that do not
block x. We do this by testing three arbitrary field elements. Either two of these values for
x2 block x (in which case we’ve found that there are two blocking values and are done) or
else two of them do not. In the latter case let x) and x2 be the two nonblocking values. For

l, 2 define bi fB(xi)). We know bl b2 (Property 2.1 (1)). Let us define matrices Hi
as follows (where op is the type of lca(xl, x2)):

fni (Xl) f’(Xl, Xi))

fc(fA (Xl) op fB(xi)))
fc(fA (Xl) op bi).

(i)By substituting three values for x into f’(Xl, X2 (Property 2.1 (3)), we can solve this to find

H and H2 (within a constant factor). Since x is not blocked by x, we know that matrix H
is invertible (Property 2.1 (1)). We define D H- H2.

LEMMA 3.6. Matrix D has two distinct eigenvalues if lca(x, x) is multiplication and
only one eigenvalue iflca(x, x2) is addition.

Proof. A value y 6/C L {cxz} for x blocks x2 in f’ if and only if

(3) f’ (y, x)) f’ (y, X2)).
Equation (3) is true if and only if ft4 (y) fH2 (Y) (by the definition of Hi), which is true if
and only if y fo(Y) (by Properties 2.1 (6) and 2.1 (5)).

For a value y 6/C, y fo(Y) if and only if D(y 1) r ,k(y 1) r for some 6/C or, in
other words, if and only if . is an eigenvalue of D and (y 1)r is a corresponding eigenvector
of D.

For y cxz, y fo(Y) if and only if D(1 0) r ,k(1 0) r for some ,k 6 /C or, in other
words, if and only if . is an eigenvalue of D and (1 0)r is an eigenvector of D.

For each eigenvalue of D there is exactly one eigenvector of the form (y 1)
(D cannot be a multiple of I since f/ and ft42 are not equivalent). The claim follows from
Lemma 3.5.

Thus, to determine the type oflca(x, x2) we need only compute the number ofeigenvalues
for matrix D. The eigenvalues are the roots of the quadratic equation det(D .I) 0. To
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determine whether the equation has one or two roots we need only check whether or not the
discriminant is 0 (true for any field/C).

Note that finding the eigenvalues requires solving a quadratic equation, and hence taking
square roots in the field. We shall later do this to compute one blocking value for each internal
node of the formula (in 3.4).

3.3. Building a skeleton when all lca’s are the same type. By Lemma 3.3 the previous
section allows us to reduce the skeleton construction problem to the case where all the nonunary
gates in the formula are the same type (+ or x ). To solve this problem we use Lemma 3.4. This
requires building a set S, and in this section we present a technique to do this. Lemma 3.7 states
a criterion for determining whether to add {{x, x}, x3} to S (signifying proof that lca(x, xg.)
is below lca(x, x3)). The criterion is to add the element if and only if both conditions (4) and
(5) of the lemma fail. Applying this criterion to all three-tuples of variables gives us a set S
that satisfies the conditions we need to apply Lemma 3.4.

LEMMA 3.7. Suppose x(4),..., X(n) are the values of x4, Xn in a three-justifying
assignmentfor {Xl, x2, x3}. Let f’(xl, x2, x3) f (xl, x2, x3, x4), xn)) and define the
following two conditions:

(4)

(5)

Every value ofxl that blocks x2 in f’ also blocks x3 in f’o
Every value ofx2 that blocks x in f’ also blocks x3 in f’.

Then thefollowing two statements are true:
1. Ifvariables x and x2 do not have the deepestpairwise lca of {xl x2, x3}, then either

condition (4) or condition (5) is true.
2. If lca(x, x2) is a child of lca(xl, x3) in the skeleton of f, expressed with as few

nonunary gates as possible, then both conditions (4) and (5) arefalse.
Proof First we show statement 1. Iflca(x, x2) is not the deepest lca, then either all three

variables have the same lca or else x3 has a deeper lca with one of Xl or x2 than with the other.
If they share the same lca, then any value ofx that blocks x2 must force an input to that gate
to x (or 0 if the gate computes ). Hence that value also blocks x3 (i.e., condition (4) is true).
If lca(x, x3) is below lca(xl, x2), then any value of x2 that blocks Xl must set an input to a
node of which x3 is a descendant to x (or 0 if the node computes ). Hence that value for
x2 also blocks x, and condition (5) is true. A symmetric argument applies when lca(x2, x3)
is below lca(x, X2).

Now we prove statement 2. In this case, f’(x, x2, x3) can be written as

fc(fA3 (X3) op fs(fa, (X) op fa2 (X2))).

Since lca(x, X2) is a child of lca(x, X3) in a read-once formula with as few nonunary gates as
possible, we may assume (by Property 2.5) that B is not of the form

(when op ) or of the form

(o, 0) (0 ’t0 a2
or

c2 0

(when op +). If B is of one of those forms and lca(x, x2) is indeed a child of lca(x, x3),
then the formula can be rewritten so that x, x2, and x3 all share an lca.
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Suppose op . Since B is not of the proscribed forms, either ft (0)
cxz. This implies that one of the two values of xl that block x2 (and in the process force
lca(xl, x2)’s output to 0 or 0) does not block x3. Similarly, one of the two values of x2 that
block x does not block x3.

Suppose op +. Since B is not of the proscribed form, f8 (0) # cxz. This implies that
the value of xl that blocks x2 (forcing their lca to 0) does not block x3. Similarly, the value
of x2 that blocks x does not block x3, [-]

Thus, to build the skeleton it suffices to decide the question of whether every value of x
that blocks x2 in f’ will also block x3 in f’. To find which values ofx block x2 we can fix x3
to some nonblocking value and then, as shown in the proof of Lemma 3.6, map the blocking
values to the eigenvectors of a 2 2 matrix D. We proceed similarly to characterize which
value(s) of x block x3. To decide if those sets of values are the same we need not calculate
the eigenvectors explicitly, since two 2 x 2 matrices have the same eigenvectors if and only
if they have the same determinant and the same trace (the sum of the two elements in the the
diagonal).

3.4. Identifying functions with a single nonunary gate. To complete the process of
constructing a read-once formula equivalent to f, we take the skeleton obtained from the
previous steps and identify the individual gates (along with unary functions on their inputs
and output). Applying Lemma 3.2, this problem reduces to identifying arithmetic read-once
formulas that have a single nonunary gate (this subroutine will be invoked once for each
nonunary gate in f). These formulas have the form

fc(fa, (Xl) op op fAn
where op 6 x, /}. Our skeleton from the previous sections has gates with unbounded
fan-in, but without loss of generality we can split the / and gates in the skeleton so
that each has fan-in two. Then our problem is to identify a two input read-once formula
f(xl, x2) fc(fa (Xl) op fB(x2)).

LEMMA 3.8. There is an 0(1) time algorithm that uses membership queries to identify
exactly an unknown arithmeticformula on two variables that depends on both its inputs, when
the (single) nonunary operation is known. A single square root computation is also required
ifthe nonunary operation is multiplication.

Proof As above, suppose f(x, x2) fc(fa (X) op f(x2)). We first examine the case
(2) for x2 that do not block X (we find these bywhere op . We select two values x) and x2

trying at most four values for x2; if the field has only three elements the single gate problem
is easy since we can test all possibilities for A, B, and C). Then, using three values for x and
interpolating by Property 2.1 (3), we can find

fn, (x) f(x X(i))2

fc(fA (Xl) fB(xi)))

() (Xl),(6) fc bi A

where bi fB(xi)) (see Property 2.1 (7)). This gives

Hi ---cic(b O1)A
for some constant ci (Property 2.1 (4)). Now we compute

(7, DI ,-I,2 A-I ( OL2) A
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(8) D2-- H2H-1 --C( )1 0 )C_I0 2

where Zl c2b2/cb and 2 c2/c. (Matrices H and H2 are invertible since xl is not
blocked.) We calculate the eigenvalues . and ,k2 of D1, which are also the eigenvalues of
D2. (Here is where the square root is computed.) Note that since bl - b2 the eigenvalues are
distinct. Then, from equations (7) and (8) (by solving linear equations) we find A and C.

The A and C we find in this manner are not unique solutions to equations (7) and (8).
But it turns out that any such A and C will suffice in the sense that for the solutions A’ and C’
which we find, it will be true that for some B’,

fC(fA(X) f(X2))= fc’(fA’(X) f’(X2))o

Given this claim, we may easily find the B’ given A’ and C’.
To prove the claim we use Property 3.9 (1) and (2) below, which imply that we shall have

either fa’ Otfa or fa’ ot/fa (depending on which of the two eigenvalues we label X1).
Likewise we get fs, /3f8 (in the former case) or f, ,8/fn (in the latter). The claim
follows from Property 2.4 (1).

The proof for op + proceeds similarly to the previous case. Again, we select two
(2 that do not block x, and we interpolate to findvalues x and x2

(i)fHi (Xl) f(xl, x2

fcfax + fx))
(9) =fc( bi)
where bi fB(xi)) (see Property 2.1 (7)). This gives

Hi --ciC( bli)a
for some constant ci (Property 2.1 (4)). Now we compute

(10) Ot H(-’ H2 a-I (,k, )2 ) Z0 1

(11) D2 H2H1-1-- C ()1)2 )C-10 L1
where L c2/c and L2 c2(b2 bl)/Cl. (Matrices H1 and H2 are invertible since x
is not blocked.) We calculate the eigenvalue l of D, which is also the eigenvalue of D2.
(This does not require a square root computation, since the characteristic polynomial has a
zero discriminant.) Then from equations (10) and (11) (by solving linear equations) we find
an A and C.

The A and C we find in this manner are not unique solutions to equations (10) and (11).
But it turns out that any such A and C will suffice in the sense that for the solutions A’ and C’
which we find, it will be true that for some B’,

fC(fA(Xl) "-]- fB(X2)) fc’(fA’(Xl) "t" fB’(X2))o

Given this claim, we may easily find the B’ given A’ and C’.
To prove the claim we use Property 3.9 (3) and (4) below, which imply that we shall have

fa’ Cfa + . Likewise we get f, cfn + ,. The claim follows from Property 2.4
(3).
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We omit the straightforward proof of Property 3.9. Note that the first two subproperties
follow immediately from the fact that the columns of A-1 and X-1 are eigenvectors for the
two eigenvalues 31 and 32 of

A-l( 310 320)A=X-1( 310 320) X’

and the eigenvectors are unique up to nonzero scalar multiples (and the ordering of the eigen-
values).

PROPERTY 3.9.
(1) lf3 5 32, 3 5 O, and 325 O, then

A-l( 3’0 320)A=X-( 3’0 320)XifandnlyifX=( 0/10 0/20 ) A
for some constants 0/ and 0/2.

(2) lf3 32, 3 5 O, and 32 O, then

A-(310)A__X-(32 O)xifandonlyifX=( 0
0 32 0 31 0/2 0 A

for some constants 0/ and 0/2.

(3) If3, 32, 33 O, then

A-l( 310 3132 ) A X-I ( 31
0 3133)XifandnlyifX--( 0/1

0 0/20/3) A
for some constants 0/, 0/2, and 0/3"

(4) lf3, 32 = O, then

A-I( 31032)A=X-’(313032)XifandnlyifX=( 0 0/0/2) A
for some constants 0/I and 0/2.

4. Finding three-justifying assignments. In this section we address the problem ofhow
to obtain three-justifying assignments. Intuitively, the larger the field, the easier this problem
since an assignment must be justifying for any particular variable unless it sets some subtree
of the formula to 0 or cx. As the number of field elements increases, the proportion of
assignments that sets some subtree to 0 or cx declines.

4.1. Using randomized membership queries over large fields. Lemmas 4.2 and 4.3
give randomized procedures for finding one- and three-justifying assignments, respectively.
Note that the procedures draw random elements from a set of m distinct elements in/C, and
the probability that the procedures succeed in finding the desired justifying assignments is
dependent on m. To obtain a high probability of success we need m to be large, and hence we
need/C to contain a large number of distinct elements.

We make use of the following lemma adapted from a result of Schwartz 16].
LEMMA 4.1 [16]. Let A c__ 1C be a finite set offield elements. If p(xl Xn) is a

polynomial ofdegree d that is not identically equal to O, then the total number ofroots ofp in
An is at most
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LEMMA 4.2. Let f be a read-once formula such that f (x l, X2 Xn) depends on x l.

For a sequence of random assignments, xi), (i), t, chosen uniformlyfrom
a set A

_
1 with Ial m, the projection f(x, xi),...,xn(i)) depends on x for some with

probability at least

Proof Since f(x Xn) depends on x and is an arithmetic read-once formula with
respect to x l, we have

f
pllxl +
P21Xl -- P22

where the Pij’S do not depend on x and

PllP22--P12P21--det( pllp21 P12 )’0"p22

Note that the projection f(xl, xi) xi)) depends on xl if and only if

(Pll P22 PI2P21)(xi X(ni)) O.

Since deg(Pjk) < n, we have deg(p|ip22 p12p21) < 2n. Applying Lemma 4.1, the proba-
bility that for all we have (pp22 pl2p21)(xi),..., x(il) 0 is at most

LEMMA 4.3.
(1) Let f be a read-onceformula such that f(x X2 Xn) depends on x, X2, and X3.

For a sequence oft random assignments, x4i) Xni), t, chosen uniformlyfrom
(i) Xni) depends on x, x2, x3a set A c_ 1C with IAI m, the projection f(xl, x2, x3, x4

for some with probability at least

(2) Given x(4) X(n, we can deterministically verify whether f(x x2 X3 X(4O)
x) depends on x, x2, and x3 using 0(1) membership queries.

Proof We prove (1) for 1. The proof for any then follows from the independence
of the random assignments. Assume (w.l.o.g.) that all nonunary gates have fan-in 2 and that
lca(x2, x3) is below lca(x, x2). Consider the five formulas obtained by cutting f into pieces
by deleting the nodes lea(xl, x2) and lca(x2, x3). Each piece is a read-once formula that has
exactly one input from {xl, x2, x3} or from a node that was the lca of two (or more) of those
variables. When the inputs to a piece are fixed as in some random assignment to {x4 x, },
a unary function is induced on the piece’s one remaining input. To show that to {x4 x,
is a three-justifying assignment it is enough to show that for each of the five formulas the
induced unary function is some fA with A nonsingular. If n through n5 are the number of
inputs to each of these five pieces, then Lemma 4.2 implies that the probability is at least

2nl/m 2ns/m that each A is nonsingular. The lemma follows since the sum of
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the ni’s is at most n + 2 (each variable is an input to one piece and the two lca’s that were
deleted are also inputs).

Part 2 follows from the more general proof of Lemma 4.5 in the next section. [3

Note that when the number of the elements in the field is 2n + 5 and c(2n + 5),
Lemma 4.3 gives a technique that with probability at least e finds a three-justifying
assignment for any set ofthree variables on which the target formula depends. The randomized
algorithm in this case is a Las Vegas algorithm (ifwe already know the set of variables on which
the formula depends), since we can verify deterministically whether the projection depends
on the three variables. The expected number of queries made by this algorithm is O(n! k)
when the field has at least 2n + 4 + k elements.

The algorithm for finding the variables on which the target formula depends is Monte
Carlo, correctly identifying a nondependent variable with probability and correctly identi-
fying a dependent variable with probability at least (2n/m)t. These results together with
the results in the previous section give the following theorem.

THEOREM 4.4. There is a Las Vegas randomized polynomial time algorithm that uses
membership queries to identify exactly an arbitrary n variable arithmetic read-onceformula
over a field, provided thatfield has at least 2n + 5 elements and the variables on which the

formula depends are known. The variables on which the read-once formula depends can be
found in Monte Carlo randomizedpolynomial time provided that thefield has at least 2n +
elements.

4.2. Deterministic membership query algorithms. In this section we argue (noncon-
structively) that for some fields there exist nonuniform deterministic membership query al-
gorithms. We show that there is an O (n5) time complexity nonuniform algorithm that leams
arithmetic read-once formulas over fields of characteristic 0. We also show that there exists
an O(n7 log n) time complexity nonuniform algorithm that learns division-free read-once for-
mulas over any field with at least 2n elements. Our algorithms are nonuniform in the usual
sense. That is, for every n we construct a table of size poly(n) and use the table to leam
formulas deterministically with at most n variables.

Let V be the set of n variables on which the target formula is defined. If v 6 n is an
input setting for f (and an assignment of values to V) and 6 {0, }, we denote by Vxi the
assignment that is equal to v in all entries except entry vi, which is set to o

Both algorithms rely on the existence of a testing set. This is a set of s vectors T
{13(1) 1)(s) Q /n having the property that for any arithmetic read-once formula f(x
Xn) over K and any subset of variables X c_ {x Xn}, there exists some l) (i) T for which
fl((V X) +- v(i)) depends on all the variables in X if and only if f depends on all the
variables in X. The following lemma shows how the existence of a small testing set implies
the existence of a deterministic polynomial time identification algorithm, and in the following
two subsections we show that testing sets indeed exist for the classes of formulas we consider.

LEMMA 4.5. Suppose T {v( v(s is a testing set for a set F of arithmetic
read-once formulas defined on n variables over the field 1. Then there is a deterministic
membership query algorithmfor identifying an unknownformula f F, whose running time
is polynomial in n and s.

Proof To find the set of variables on which f depends, we check each xi and v(j T to
(j) (j)see whether ftVxi,__o) ftvxi). If f depends on xi, then for some v(j) fl((V {x/}) +--

v (j)) depends on xi, and hence by Property 2.1 (1) these two values of f will differ (and not
be ERROR). Then, to apply our previous techniques (Lemma 3.1) we need only show how to
decide which v (j) T is a two- or three-justifying assignment for each subset X oftwo or three
variables on which f depends. Letk IXl (_< 3), LetA C/beasetofm > 18 field elements
(if/ contains fewer elements we can check whether the assignment is justifying by trying all
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possible settings of the k variables in constant time). By Lemma 4.2, if fl((V X) +-- v)
depends on each xi X then it does not depend on xi for at most a fraction 2k/m of the
mk input vectors from Ak to which we might set the variables in X. There can be at most
3(2km-1) settings for X in which f fails to depend on any of the at most three variables in
X, and since m > 6k this quantity is less than m, implying that some input vector from A
will give a justifying assignment. Note that m is O (1). Thus finding justifying assignments
from the testing set requires O(sn3) time and membership queries.

Note that the previous section shows that once you fix a formula, the probability is very
high that a small set ofrandom assignments will have all the necessary justifying assignments.
If the number of possible formulas were small (or even exponential in n) we could then
show that the probability a random set of assignments fails to have the necessary justifying
assignments for any f less than 1, implying that a testing set exists. Unfortunately, the number
of formulas is very large (or infinite) depending on the field, so this simplistic argument will
not work. The following two sections more carefully demonstrate the existence of testing sets
using more elaborate probabilistic (and hence nonconstructive) methods,

4.2.1. A testing set for fields of characteristic 0. For fields of characteristic 0 our ex-
istence proof for a testing set is built upon the following lemma of Heintz and Schnorr.

LEMMA 4.6 13]. Let 1C be afield ofcharacteristic O. Let Pd,u be the set ofallpolynomials
over 1C on variables x Xn that have degree at most d and that can be computed with
a circuit using at most # nonscalar multiplications Then for u 2/z(d + 1) and
s 6(# + 1)(# + 2) there exist v(1) v (s) {1, 2 U} such thatfor any p Pd,u,

p(v() p(v (s)) 0 ifand only if p =_ O.

Based on the Heintz-Schnorr lemma we prove the following result.
LEMMA 4.7. Let 1C be a field of characteristic O. Let F be the set of all arithmetic

read-once formulas. There exist s 6(7n 7)(7n -6) vectors T {v (l vc) __.
{0, 2(7n 8)(4n2 5n + 1)} with thefollowing property: for every f F there is a
vector vi) T, wherefor each subformula g off that is the input to a + or gate,

g(v (i)) . {0, x, ERROR}.

Proof. Let f be any arithmetic read-once formula. The tree corresponding to f can be
regarded as a circuit C that computes f. We now show how to change this circuit to a new
circuit C’ satisfying the following condition: the output of C’ for some vector input v is 0 if
and only if g(v) {0, cxz, ERROR} for some subformula g of f. We construct C’ from C as
follows: First, each node c in C that computes a rational function f will map to two nodes
Otl and 02 in C’. The nodes Cl and O/2 will compute polynomials fat and f2, respectively,
where f f, IL.

(1) If node c in C is labeled with a unary function Iff,. ) and is the parent of a node

in C, then we define two nodes O/1 and or2 in C’ that compute

f,, af,q, + bf& and f, cf, + df.
(2) If node ot in C is labeled with multiplication x and is the parent of nodes/3 and ,,

then we define two nodes c and c2 in C’ that compute

f, f, f, and f2 f
(3) If node ot in C is labeled with addition + and is the parent of nodes/3 and ,, then we

define two nodes cl and or2 in C’ that compute

and f. f2f..
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It is easy to see that the root r in C corresponds to two nodes r and r2 in C’, where

f fr fr,
In f there are 2n 2 subformulas that are inputs to / or x gates. Each such g can have

g(v) {0, cxz, ERROR} only if one of the two corresponding nodes in C’ is 0. We add to the
root of C’ 4n 5 multiplication gates that multiply all these nodes, and it is now obvious that
the output of C’ is 0 for some vector input v if and only if some g(v) {0, cx, ERROR}. The
nonscalar multiplicative complexity of the circuit C’ is at most (4n 5) + 3(n 1) 7n 8,
and the degree of the polynomial that is computed in C’ is at most n (4n 5). Therefore, by
Lemma 4.6 there exists 6(7n-7)(7n-6) vectors T {v() v (s)}

___
{0, 2(7n-

8)(4n2 5n + 1)}n that satisfy the condition of the lemma.
From this we can prove our desired result.
THEOREM 4.8. There is a deterministic polynomial time algorithm that uses membership

queries to identify exactly an arbitrary n variable arithmetic read-once formula over a field
ofcharacteristic O.

Proof. Lemma 4.7 states that there exists a testing set of size O(n2). The result follows
from Lemma 4.5.

4.2.2. A testing set for division-free formulas over large fields. In the division-free
case we may consider the basis functions to be , +, and (alb), where (alb)(x) ax + bo
We assume that the and / gates have fan-in two.

We define a tree F’(f) obtained from f by removing all nodes labeled with (alb) by
replacing each input xi by COi and changing the labels to + and the labels + to max. The
computation in the formula F (f) is defined by the following rules:

(1) The inputs (co con) must be positive integers.
(2) A node labeled with 4- computes the sum of the two results in its children.
(3) A node labeled with -a-s(x, y) computes the maximum of x and y if x :/: y and

gives the result ND (not defined) if x y.
(4) ND+x =ND and -h-g(ND, y) =ND for any x, y {ND, 1, 2 }.

The function computed by F(f) is denoted by ft. The connection between fr and f is
described in the following lemma, We omit the simple proof.

LEMMA 4.9. Let co Wn be positive integers. If fr(w COn) -fiND then

deg f (x’’,..., x)" fr (col con)-

We add ND to the computation of the tree because when we have subtraction of two

polynomials of the same degree, we cannot know the degree of the result. An immediate
consequence of Lemma 4.9 is the following lemma.

LEMMA 4.10. If fr(col co,) -fiND then f(x’ x") 7 O.
The following lemma shows that in fact most input settings (where the coi’s have values

between and a sufficiently large c) do not cause fr to output ND. From this we shall be able
to show that there is a polynomial size set of input settings such that no fr outputs ND on all
of them, and from that we shall be able to prove the existence of a testing set for division-free
read-once formulas (provided the field has sufficiently many elements).

LEMMA 4.11. Let f(x Xn) be any arithmetic read-onceformula not equivalent to

O. For random integers COi 1, 2 c} we have

2

Prob(fr (co COn) ND) <
C

Proof We shall prove the claim that for any integer k and any gate in fv, the probability
that the gate outputs k is at most n/c. If this is true it follows that the probability that two
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inputs to a max gate are equal is at most n/c, from which the lemma easily follows (since
there are at most n such gates).

We prove the claim by induction on the number of variables n appearing in ft. If n
then fr is just a single variable, and the result is trivial.

If the root of fr is + (i.e., fr g + g2), and if K is the (finite) possible set of integer
outputs for g when its variables are chosen from c}, then

Prob(fr(og) k) Prob(gl (o9) kl)Prob(gz(w) k kl)
kK

< Z Prob(g (o)) k
n

kK
C

n

C

(applying the inductive hypothesis on g, which contains fewer than n variables).
If fr --a-g(g, g2), andg and g2 containn andn2 variables, respectively, (n +n2 n)

then

Prob(-fi(g, g2) k) < Prob(gl k) + Prob(g2 k)
nl n2<
k k

and the claim, and hence the lemma, follows. [3

The following upper bound for the number of read-once formulas over + and -- with
n variables follows from simple induction.

LEMMA 4.12. The number of read-onceformulas over the operations + and-- is less
than nn.

Proof. We show that there are at most n! such formulas. This is true for n 2, where
the only possibilities are x + x2 and --(x, x2). For a formula over n / variables the
inductive hypothesis applies to the two subformulas of the root (over k and n k variables,
respectively). We bound the number of formulas over n + variables as follows (the 2 comes
from the choice of + or for the root, and the comes from the fact that each formula is
counted twice, since the left and right subformulas may be exchanged):

n-
2.g.Zk!(n-k)! < (n-1)n! _<(n+l)!o [3

k=l

Now we can prove the key result ofthis section that makes the transition from a randomized
to a deterministic algorithm.

LEMMA 4.13. There exists a set {w) wm)} _c {1, 2 n2+}’, where m ]
such thatfor any arithmetic read-once formula f not equivalent to O, one of fr(co1))
fr (com)) is not ND.

Proof. Choose col) wm) randomly. By Lemma 4.11 we have

2n
Prob(fr (wi)) ND) _< n-.

C

Therefore

and by Lemma 4.12

Prob((i _< m)fi-,(o9(i)) ND) _< (n-) < n-n,

Prob((:lfr)(i _< m) fr(coi)) ND) < nnn-n 1.
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Therefore, there exist CO(l) CO(in) such that for any fr, one of fr(co)) fF(CO(m)) is
not ND.

LEMMA 4.14. Let tc KZn3+l be any distinct elements in 1C. There exists

T "--{U (1) u(s)} g {KI, K’(2n3 +
\i=1

where s < 3n4 log n, such thatfor any arithmetic read-onceformula f we have

f (v (l)) f(v (s)) 0 ifand only if f O.

Proof For co (co co,,) we will denote (x x" by x.
We defineLet co) com) be the vectors in Lemma 4.13 with e

T {y O)(i)
li m and , tc, K2 K2n3+l }.

The entries of ,
and

12n2 {Ki (using 2n2 as an upper bound for n2+)are from wi= K’(2n3+l)

ITI m(2n + 1) < 3n4 logno

Now, iff 0then f(v)= 0forall v T. Iff 0 thenby Lemma4.13 there exist co{i)

such that fr(co{i)) -eND, which by Lemma 4.10 implies that f(x") O. Note that f(x")
is a polynomial over one variable with

deg f(xCi’) < coji) < n(2n2) 2n3.
j=l

Thus f(x") can have at most 2n roots, and hence for some Y0 {K’I K2n3+l we

must have f (yg(i)) O.
To prove the main theorem for this section we show that T will indeed be a testing set.
THEOREM 4.15. There is a nonuniform deterministic polynomial time algorithm that

uses membership queries to identify exactly an arbitrary n variable division-free arithmetic
read-onceformula over afield with at least 2n3 + elements.

Proof Using Lemma 4.5 we need to demonstrate the existence of a testing set. We claim
that the set T described by Lemma 4.14 is a testing set.

Let f be any division-free arithmetic read-once formula. Let a be any node in f, f be
the formula computed at node or, and X be the variables in f. We will say that fa is maximal
X-independent if the node ot is labeled with x, X f3 X 13, and if for the parent p(c) of
Xp( 0 X 0. It is obvious that for any two maximal X-independent formulas f and f,
X and X are either equal of disjoint. Let f f, be all the maximal X-independent
foulas in f. By the previous propeies we have that

h-- fl ...for

is a division-free arithmetic read-once formula. By Lemma 4.14, for some U (i) we have
h(vi)) O, which is equivalent to f (vi)) 0 for j t. Now it can be easily
shown that if f depends on all the variables of X if and only if all the maximal X-independent
formulas are not zero for vi, fl((V X) +-- vi)) therefore depends on all the variables
of X. [3
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4.3. Using equivalence queries over arbitrary fields. An alternate technique for gen-
erating justifying assignments requires equivalence queries but works for small as well as
large fields. The basic approach is to use the core algorithm to learn a projection of the target
formula, where the variables for which we do not yet havejustifying assignments are fixed. We
then make an equivalence query, and the counterexample is used to findjustifying assignments
for a new variable.

THEOREM 4.16. There is a deterministic polynomial time algorithm that uses member-
ship and equivalence queries to identify exactly an arbitrary n variable arithmetic read-once
formula over afield, provided thatfield has at least 3 elements.

Proof. The algorithm starts with an equivalence query on some arbitrary constant hypoth-
esis. Assuming the answer is not "yes," the result is a counterexample a (al an) for
which f(a) :fi ERROR (if f is not constant it must take on at least two different non-ERROR
values). At this point we describe all variables as "static," meaning we have no justifying
assignment for any of them.

The algorithm works in phases. During a phase, each variable is categorized either
as "active" or "static." The algorithm has a justifying assignment for each active variable.
In addition, it has two- and three-justifying assignments for each pair and triple of active
variables. Furthermore, all these justifying assignments assign the same values to each static
variable.

At the start of a phase, the algorithm tries to increase the number of active variables
by repeating the following procedure for each currently active variable, which we call the
activation procedure. Assume w.l.o.g, that the static variables are Xm+l xn and that they
are assigned values am+ an. (For the initial case where no variables are active, the
activation procedure is simply to search for a justifying assignment for some variable xi by
setting ai to two different values and checking whether the value of f changes.)

1. Pick some currently active variable xj with justifying assignment a am,
am+l, an.

2. Check whether the projection

f(al aj-1, xj, aj+l ai-1, Xi, ai+l an)

depends on both its inputs X and xj.
3. If m > l, check whether for each other current active variable Xk, we can obtain a

two-justifying assignment for Xk and xi by taking the two-justifying assignment for xk and
xj, unsetting xi, and setting xj to some value that does not block xi (obtained by trying three
arbitrary values).

4. If m > 2, similarly check whether each three-justifying assignment for xj and a pair
of active variables can be converted to a three-justifying assignment for that pair of variables
and xi. If there are only two current active variables xj and x, then check whether taking
their two-justifying assignment and unsetting xi gives a three-justifying assignment for xi, xj,
and Xk.

5. If all the above conditions are true for xi, then make xi active. Save the two and
three-justifying discovered above. Find and save a justifying assignment for xi by taking one
of the two-justifying assignments for xi and some other active variable xj, and setting xj so it
doesn’t block xi (obtained by trying three arbitrary values).

When the activation procedure fails to find any more new active variables, the algorithm
learns the projection f(X Xm+l, am+l an), in which the static variables Xtn/l Xn
are fixed to the values a,n+ an. The algorithm learns this projection by executing our core
algorithm, using the justifying assignments associated with the active variables (note that these
assignments are justifying both for f and for the projection). The algorithm then performs an
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equivalence query "h _= f?" using the learned projection as the hypothesis h. If the answer is
"yes," the algorithm is done (this happens precisely when all relevant variables of f are active,
because then and only then is the projection equal to f ). Otherwise, the algorithm receives
a counterexample v (b bn) for which h(v) :fi f(v) (recall that f(v) :fi ERROR if
possible, and we prove below that such a nonerror counterexample is always available). We
shall show how to use this counterexample to increase the number of active variables.

The algorithm then processes the counterexample as follows in order to find more new
active variables: It chooses an arbitrary static variable xi such that ai :/: bi (one must exist
since h is correct on the projection where Xm+ Xn are set to am+l an). It tests three
possible field values to a to assign for xi in search of one for which

f (Xl Xm, am+l an) =- f(xl Xm, am+l ai.-1, ai, ai+l an)

and

’bi+l, bn)f(b bm-, am+l ai-l, ai, ai+ an) # f(b bi-, a

and neither of the quantities in the second condition is ERROR To check the first condition it
would suffice to verify that none of the justifying assignments or membership queries made
while running the core algorithm to find h are affected by the change (though since the
projection has special properties, the condition can in fact be checked with one membership
query, as we describe below). The second condition is easily checked with a membership
query, as is the non-ERROR condition.

If such an a is found, the algorithm updates ai and bi to a. It also updates ai to a in the
justifying assignments associated with the active variables. We argue below that such an a
must exist (given that the activation procedure failed on the current set of active variables and
justifying assignments).

The algorithm then tries to use the activation procedure (with the new value a) to find a
new active variable. If the procedure fails, the algorithm repeats the above process, making the
ai’s and bi’s agree on another variable and again attempting the activation procedure. Since
the changes still leave the modified v a counterexample to h f (by the second condition,
whose left-hand side is h(v) and whose right-hand side is f (v)), the algorithm must eventually
find some new active variable (given the claim that it can otherwise always find a suitable a).
Once it has found a new active variable it begins a new phase with the expanded set of active
variables.

Because the set of active variables grows at each phase, the algorithm eventually makes
all relevant variables active and learns f.

This completes the description of the algorithm. We now justify the claim that in the
processing of the counterexample, if the activation procedure failed with the current set of
active variables and justifying assignments, then a exists. Consider the processing of the
counterexample b. A static variable xi is chosen such that ai 5/= bi. The procedure for finding
a new active variable failed, so, in particular, it failed to make xi an active variable. We
consider the conditions that caused this to occur.

Let f be the maximal subformula of f that contains xi, but no active variables. Let
fa (xi) be the unary function induced on f when its remaining (static) inputs are set as in

am+l an. We shall show that because the activation procedure didn’t make xi active,
det (A) 0. Assume not. Then fA (xi) depends on xi. Let xj be the active variable with an

lca as deep as possible with xi (i.e., lca(xi,xj) is the gate in f for which f is an input). Let
xj’s justifying assignment be al an. The projection considered in step 2 of the activation
procedure is

f(al aj-l,xj,aj+l ai-l,xiai+l an) fc(fA(Xi) op fB(Xj)),
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where det(B), det(C) - 0 (since this projection depends on xj). The projection hence
depends on both xi and xj. Furthermore, any two- or three-justifying assignment for a set
of active variables that includes xj must induce a projection that depends on xi when that
variable is unassigned. Finally, if xj and some other x are the only active variables, then
the two-justifying assignment for xj, x sets the other variables precisely as in this projection
(because all other variables are static); thus, unsetting xi in the two-justifying assignment for
xj and x gives a three-justifying assignment for xi, xj, and x. It follows that the procedure
could have made xi active by the above choice of xj, which is a contradiction. Therefore,
det (A) 0.

It follows that setting a to any value (except possibly one which yields ERROR) leaves
fa, and hence f(x Xm, am+l an), unchanged. (Note that the algorithm can detect
the one bad value, since this forces the output ofthe projection of f to ERROR on any setting of
the active variables. Thus, testing the first condition for a in fact takes only one membership
query.) Furthermore, if the induced projection on f remains unchanged, all the justifying
assignments for the active variables remain justifying. Now consider the projection

fB(Xi) f(bl bi-l, xi, bi+l bn).

If det (B) 0, then changing Xi to any but at most one value does not change fB and hence
preserves f(v) h(v)and f(v) :fi ERROR. Ifdet (B) 0, then there can only be one "bad"
value of xi that sets fB(xi) h(v) because h(v) does not depend on xi (the algorithm can
detect this one bad value using a membership query). Moreover, there are no values of xi that
set fB (xi) to ERROR. Hence in either case, there is only one value for xi such that v does not
remain a non-ERROR counterexample to h f.

Thus, as claimed, out of three possible field elements to set ai and bi, at least one of these
is not "bad" and preserves the two conditions. We can easily check whether this is the case.

To conclude the proof, we observe that there will indeed always be a non-ERROR coun-
terexample available to return if h f (recall that we shall get such a counterexample
whenever possible). This follows from the fact that a justifying assignment exists for every
static variable xi appearing in the formula, which means that there exist inputs differing only
on xi’s value that induce all possible values on f’s output. The hypothesis h does not include
xi, so it cannot be correct on more than one of these inputs.

The above algorithm requires at most n equivalence queries, because each counterexample
is processed to produce at least one new active variable. The main time and membership query
requirements come from the (at most) n applications of the core algorithm and the fact that
from each counterexample there may be up to n attempts of the activation algorithm, each of
which requires O (n2) time and membership queries for every pair of a static xi and active xj.

5. Lower bounds.

5.1. Lowerbounds for small fields. In this section we show that the identification results
we achieve using (nonstandard) equivalence queries are not achievable (at least over small
fields) in the standard equivalence query model. Note that our results leave a gap of size
O(log n) between the size of the largest field that, provably, requires (modified) equivalence
queries and the size of the smallest field for which membership queries alone are shown to be
adequate.

THEOREM 5.1. There is nopolynomial time algorithm that uses only membership and stan-

dard equivalence queries to identify exactly arithmetic read-once formulas over n variables
on fields that havefewer than o(n/ log n) elements.

Proof We consider the case where the target formula f over the field/C is equivalent to a
formula of the following form, where the variables are V {x Xm, Yt Ym (n 2m)
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and ai, bi E ]:

(xl--al) x... x (X,n--am) X X... X
(Yl bl) (Ym bm)

Note that such a formula can be rewritten to contain one gate and n unary gates.
Consider an algorithm A that uses queries to identify f. If/C is finite and c I/CI is

sufficiently small, we shall show with an adversary argument that a polynomial number of
queries are not enough to identify f. This is true because there will not be enough information
to determine the ai’s and bi’s uniquely.

Consider a membership query of A that is answered with ERROR, or an equivalence
query on a rational function that is answered with "no" and a counterexample for which the
value of f is ERROR (note that the hypothesis ERROR is not allowed for an equivalence
query in this model).

Each such query (membership or equivalence) gives us one new example on which the
value of f is ERROR. Each such example eliminates from consideration only those target
functions f for which one of the following two conditions is true on the input:

(a) None of the (xi ai)’s are 0.
(b) None of the (yi bi)’s are 0.
Thus an ERROR example eliminates (c 1)m choices for the ai’s and (c 1)m choices

for the bi’s. Hence the number of possible target formulas eliminated is less than 2(c- 1)mcm
(it is actually that quantity minus (c 1)2m).

There are cn choices for f, no two of which are equivalent. Therefore, by repeatedly
giving answers of the type described before, the adversary can force the algorithm to make a
number of queries that exceeds

cn 1( c )
’/2

2(c 1)n/2cn/2 2 c

If C is asymptotically less than any positive constant times n! log(n), this grows superpolyno-
mially in n. This means that if the size of the field is not within a log factor of the number of
variables, membership and standard equivalence queries do not suffice for polynomial time
identification.

5.2. A tight bound on the number of square root operations. In this section we show
that any algorithm that exactly identifies arithmetic read-once formulas on n variables over a
field/C can be modified to an algorithm that finds the square root of n elements in the field
/C. This reduction shows that any algorithm for identifying read-once formulas should (in the
worst case) compute the square root of n elements in the field. Since our algorithm in this
paper needs to compute only n square roots, this lower bound is tight.

THEOREM 5.2. Any algorithm that exactly identifies arithmetic read-onceformulas over
a field 1C must (in the worst case) compute the square root of exactly n elements of the
field

Proof Let/C be a field of characteristic other than 2. Consider the formula

)
When we identify the arithmetic read-once formula f(x, x), we find three matrices A’,
and C’, where

fc,(fA,(X1) X fB,(X2) f(i, -ib) (f(,, -t>)(XI) X f(,, .t>)(X2))
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By Property 2.4.1, we have either

A’ (all a12)_. (0/-o/b) A’ (al a12)__ (or 0/b )a21 a22 fl fib or
a21 a22 fl -fib

for some constants 0/and/3. In both cases alz/al and a22/a21 will be the roots of b2. This
gives a reduction from identifying a read-once formula with two variables to finding the square
root of one element in the field.

We now define the following read-once formula with n variables x Xn

f2(Xl,X2) b2t
XIX2 b

and

J+l (Xl Xi+l) b2i (Xi+l f/(xl xi))

j(Xl xi)xi+l b2i
We claim that an algorithm that identifies the formula fn (xl xn) finds the square root of
b, b22 bn2. It can be easily shown that this formula is read-once and the unary operation
attached to each variable xi is

A’--(ali-(i)) ( ) ("12 0/i --0/ibi At ali? al’2 0/i otibi

ai (i) i ii bi
or

u22 a? a’2’ i -tibi

for some constants 0/i and flio Therefore, identifying the formula will also give the square
(i). (i)of the b/2’s (bi +a2/al ). This completes the proof for fields of characteristic otherroots

than 2.
For fields of characteristic 2, we have instead

f (Xl, X2)
b2(Xl + X2) (f( )
xx2 + b2 f( ) ) (xl) -- f(l )(x2)

When we identify this formula we get f(x, X2) fc’(fA’(Xl) "31- fB’(X2)), for which (by
Property 2.4.(2))

A’ all a12
a21 a22 0/3 o3b

for some constants 0/, O2, and 0/3. Then a22/a21 is the root of b2. As before we identify the
formula fn, where now

f2(Xl,X2)
b(x + x2)
X X2 "3t- b

and

J+l (Xl Xi+l) b2i (Xi+l + fi(Xl Xi))

f/(Xl Xi)Xi+l dr- b2i
to reveal the roots of b/2 for n 1.
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TABLE 5.
Summary of results.

Type of
result

Randomized/
deterministic

Upper
bound rand. > 2n + 5 O(n3)
Upper
bound

(division-
free)
Upper
bound
upper
bound

deter.

deter.

size memb. l, equiv.

> 2n3+

char. 0

any

O(n logn)

O(n5)

O(n6)

Complexity
time sq. roots

O(n4) n-

O(n logn)

O(n6)

O(n6)

n--I

n--I
Lower
bound
Lower
bound

either

either

finite

any

a total of

1/2, I/Cl )n/2
n-I

6. Summary of results. Table 5.1 summarizes the results of this paper. For the lower
bound the equivalence queries are standard and for the upper bound they are in our modified
form. We have shown the equivalence query upper bound for fields of three or more elements,
but if we disallow division for two element fields it holds in that case as well 11 ], [5].

There is no consensus in the literature on how much time should be charged for the setup
of a membership query. If those costs are considered constant, we can save a factor of n from
the running time bound for the nonuniform deterministic algorithms.

7. Appendix. ProofofProperty 1. Note that
a bc-ad
-S " c(cx+d)fa(X) ax+b
d

c0,

det(A) and if c 0 we have fa (X) (det(A)x + bd)/d2.If c 0 we have fa (X) - c(cx+d)
From these it easily follows that if det(A) 0 then fa is a constant function, except possibly
on one input value where it is ERROR. And if det(A) :/: 0 then fa is a one to one mapping
(or bijection) from/C tO {oo} onto itself (if c 0 and det(A) :/= 0 then d -J: 0). This proves
Property 2.1 (1).

Property 2.1 (2) follows from the fact that

()a)x + (,kb) ax + b
fZA (X) fA (X).

(;kc)x + ()d) cx + d

Property 2.1. (3(a)) is obvious. To show Property 2.1 (3(b)) we prove that the equations
fA (Xl) Yl, fA (X2) Y2, fA (X3) Y3 have a unique solution. We have three simultaneous
equations

or

(12)

xla + b (ylXl)C "}- yd,

x2a q- b (y2x2)c -!- y2d,

x3a q- b (y3x3)c q- y3d,

xa yd + b (ylXl)C,

x2a y2d + b (y2x2)c,

x3a y3d + b (y3x3)c.
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Since pl, p2, and P3 are not on a line we know c 7 O. We also know that

(13)
XI y
x2 Y2
x3 Y3

Since c 7 0,

()x + (-) a’x + b’
fA(X) d dx + (7) x +

It suffices to show that a’, b’, and d’ are unique. Dividing (12) by c, we get

d’ b’Xla Yl "+" ylxl,

X2ap yzd’ + b’ yzx2,

bx3a y3d’ + y3x3.

The fact that this has a unique solution (which we can find) follows from equation (13).
We now prove Property 2.1 (5). Let B (g fh)" First consider those x’s for which

gx + h 0 (i.e., fn(x) cx or ERROR). In this case we have

fAB(X) f[ae+bg af+bh’ (X)
ce+dg cf+dh]

f(ae af (X)
\ce cf)

If ex + f 0 then fAn(X) ERROR and fn(x) ERROR, implying (fA o fn)(x)
ERROR. If ex + f O, then it is easy to verify that both fAn and (fA o fn)(X) equal- c-C0,

a 7-0, c =0,
ERROR a=c=0.

In the case where gx + h 7 0,

(ex+f
(fA 0 fB)(X)

a’gx+h" nt- b
ex+fC(g-T + d

(ae -t- bg)x + (af + hb)
(ce + gd)x + (cf + hd)
f[ae+bg af+bh’ (X)

ce+dg cf+dh]

fAB(X).

From this we prove (Property 2.1 (6)) that fA-’ f by observing that

(fA 0 fA-I)(X) fAA-I(X) fl(X) X

(where I is the identity matrix).
To prove Property 2.1 (4) we show that fo(x) x implies that D ,kl. This suffices

because the equivalence of fa and fn means that fa-’ n (x) x (Property 2.1 (6)), and showing
D A-B kl implies that B )A as claimed. Suppose fo(x) x. If

dl d2)D d3 d4
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then

This implies that for all x,

dx +d2
d3x + d4

"-’x.

dx + d2 d3x2 + d4x.

This can only be true if d2 = d3 0 and dl d4. Therefore

D__td O)0 d4 =dll.

Finally, we prove Property 2.1 (7) (using Property 2.1 (5)):

fA(1. "l-X)-" fA (f( :)(X))’- fA(; )(X),
1.fA (X) f( o) (fA (X)) f( )a (X),

1. nt- fA (X) f(o x) (fA (X)) f(t x) A (X).

ProofofProperty 2.2. We first show that when the formula f is expanded to form p/q, it
will be true that gcd(p, q) (i.e., no simplification by nonconstant factors is ever possible).
This is shown by induction on the number of nodes in f. If the gate at the root of f computes
a unary function f fa (g), where g Pl/q, then f (ap + bql)/(cpl + dq) (where
ad bc 76 0) and gcd(apl + bql, Cpl -t- dq) gcd(p, q), which is by the inductive
hypothesis. If the gate atthe root is + then f p/q + p2/q2 (plq2 + p2ql)/(qlq2). Let
1. gcd((pq2 + P2q), (qq2)). Then 1.lqq2 and 1.1Pq2 + P2q and, therefore,

1.]ql (Plq2 + P2ql) Pqq2 P2q21
and

1.]qZ(Pq2 + Pzql)- PZqlq2 pq22.
Since the variables in p and q are distinct from the variables in p2 and q2, we must have I.
1.11.2 where 1.1 ]P, 1. ]q2,1.2[p2, and 1.2[q22. Since, by the inductive hypothesis, gcd(pt, qt)
gcd(p2, q2) 1, we have 1.1 1.2 and 1. 1.

If the gate at the root is x then the result is obvious.
Parts (1)-(4) in this property can be proved by induction on the number of nodes in f.

These claims are easily seen to be true for a single node formula; let us suppose they are true
for all subformulas of f. We show only the proofofpart (4). The other parts follow in a similar
manner. If the gate at the root of f is a unary gate then f fa (g), where g p/q and

f (apl +bq)/(cp +dq). If f(v) ERROR then g(v) ERROR, and, bythe inductive
hypothesis, p (v) q(v) 0. Then p(v) q(v) 0. If, conversely, p(v) q(v) 0
then, since A is nonsingular, p (v) ql (v) 0. By the inductive hypothesis g(v) ERROR
and, therefore, f(v) fa (ERROR) ERROR.

If the gate at the root is + then f gl + g2 p/ql + Pz/q2 p/q, where p
Plq2 + PZql and q qq2. If f(v) ERROR then either g(v) ERROR, gz(V)
ERROR, or g(v) gz(v) cx. If gl(v) ERROR then by the inductive hypothesis
p (v) q (v) 0 and, therefore, p(v) q(v) 0. If gz(V) ERROR then in the same
manner we get p(v) q(v) O. If g(v) gz(v) O then qt(v) qz(v) 0 and
therefore p(v) q(v) O. On the other hand, if p(v) q(v) 0 then we have one of the
following cases:
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(1) q (v) q2(v) 0.
(2) q (v) p (v) 0 and q2(v) # 0.
(3) qz(v) pz(v) 0 and q (v) # 0.

This implies that either g (v) ERROR, gz(V) ERROR, or g (v) gz(v) x, and in
all cases f(v) ERROR.

The case where the gate of the root is is handled similarly. [3

ProofofProperty 2.3. We substitute x fs-, (Y) and x2 fc-, (yz) and get

fD-’A(YlY2) fes-"(Y) + fFC-’(Y2).

By substituting yl cx we get fo-, A (00) fEB-’ ((X)) "Jr- fFC-’ (Y2) (for Y2 0). Since the
formula on the left side is independent of Y2 it must be true that fe--, (cxz) ec (otherwise
the formula on the right side will depend on Y2). By substituting yt 0 we get fo-- a (0)
fe-’ (0) + fFC-’ (Y2) (for Y2 7 oz). Using the same arguments as before we get fe.-- (0)
cxz. Since fe-. (x) is bijective and fes- (cx) fEB--i (0) O, we have a contradiction. [3

Proof of Property 2.4. We first prove part (1). The "if" direction is easily verified by
substitution. To prove the "only if" direction, we substitute xt fa;’ (Y) and x2 fs?, (Y2)
and get

fc;’c, (yly2) fazA;’ (Yl)ft2n;" (Y2).

As in the proof of Property 2.3, by substituting y 0 we get that either fc;’c, (0) fAzA-I (0)
0 or fc;tc, (0) fa2A-( (0) Cxz. By using the substitutions y2 0, y cx, and y2 o

we conclude that we either have

fc;’c, (0) fazai-, (0) fs.8/-, (0) 0 and

or

fCfIC, (0) fAzA-I (0) fB2B?’ (0) OQ and
-, (cxz) ft2?’ (z) O.fc;’c, (cx) fAzA,

+/- c,/thatfc;,c,(X) +/-x fa2 (x) =aX,In the first case we have for some constants , A-’
and fs2n;, (x) /3x, and in the second case we have fcc, (x) , faa-(’ (X) , and

ft?’ (x) . It immediately follows that a/37, 1, which gives us the the desired result.
The proof of part (2) is similar. [3

ProofofProperty 2.5. To prove part (1), we substitute x f(a’-- (0) and get

fc(fa3 (X3) fB(fa,(a;)-’ (0) fa2 (X2))) fc,(O).

Since the formula is independent of x2 and x3, fa,a’)-’ (0) 6 {0, Cxz} and either fn(0) or

fn (cx) is equal to 0 or cxz.
By substituting x fa’,)-’ (Cxz) and using the fact that fn is bijective we conclude that

{ft(0), fo(cx)} {0, cxz}.

This implies that

The proof of the second part is similar.

0 or2
or B

ct2 0
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AMORTIZED COMMUNICATION COMPLEXITY*
TOM,S FEDERt, EYAL KUSHILEVITZat, MONI NAOR, AND NOAM NISAN

Abstract, In this work we study the direct-sum problem with respect to communication complexity: Consider
a relation f defined over {0, }n x {0, }n. Can the communication complexity of simultaneously computing f on
instances (xl, yl) (xe, Ye) be smaller than the communication complexity of separately computing f on the
instances?

Let the amortized communication complexity of f be the communication complexity of simultaneously com-
puting f on instances divided by e. We study the properties of the amortized communication complexity. We show
that the amortized communication complexity of a relation can be smaller than its communication complexity. More
precisely, we present a partialfunction whose (deterministic) communication complexity is (R)(log n) and amortized
(deterministic) communication complexity is O (l). Similarly, for randomized protocols we present a function whose
randomized communication complexity is (R)(log n) and amortized randomized communication complexity is O(

We also give a general lower bound on the amortized communication complexity of any function f in terms
of its communication complexity C(f): for every function f the amortized communication complexity of f is

f2(CX/-) log n).

Key words, communication complexity, graph coloring, simultaneous computation

AMS subject classifications. 94A05, 68Q22, 68R99

1. Introduction. A very basic question in the theory of computation is the direct-sum
question: Can the cost of solving independent instances of a problem simultaneously be
smaller than the cost of independently solving the problems, say, sequentially? In this work
we study the direct-sum question in the context of communication complexity. This question
was recently raised by Karchmer, Raz, and Wigderson [7] as part ofa new approach for proving
lower bounds on Boolean circuits using communication complexity arguments (as in [8] and
19]). For a general survey on communication complexity see 12]. Different scenarios where

the direct-sum question was investigated are [4], [6], [18], and [21 ].
Let f be a relation defined on {0, }n x {0, }n. Let f(e) be the extension of f to

instances. The communication complexity problem associated with f(e) is as follows: Party
P1 receives inputs x xe and party P2 receives inputs Yl Ye (each of xi and yi is
an n bit string). They need to find values Zl ze such that for each i, the value zi satisfies
the relation f(xi, Yi). Denote by C(f) the communication complexity of f, namely, the
number of bits that the parties need to exchange on the worst-case input in the best protocol
for computing f. Similarly, denote by C(f) the amortized communication complexity of f,
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A relation defines a subset f (x, y) of a domain 79 for every input pair (x, y) {0, }n x {0, }no In particular,
we will be interested in two special cases of relations: functions, where for each input pair (x, y) there is a unique
value in f(x, y), and partialfunctions, where for each input pair (x, y) there is either a unique possible value or all
values in 79 are possible.
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namely,

(f) lim sup C(f(e))

Clearly, C(f) < C(f) for every relation f. It was observed in [7] that when (nonpartial)
functions are considered, an upper bound on C(f), which is significantly smaller than C(f),
implies that the rank lower bound on C(f) 13] is not tight. This is true because the rank of
the matrix representing f(e) equals the rank of the matrix representing f to the power of e.

We present a partial function f such that C(f) (R)(logn) and C(f) O(1). This
proves that computing a relation f on e instances simultaneously may be easier than computing
f on the instances separately. In [7] it was conjectured that C(f) cannot be smaller than
C(f) by more than an additive factor of O(log n). We prove two weaker versions of this
conjecture:

If one-way communication protocols are considered then any partial function f over
{0, 1} x {0, 1} satisfies Cl(f) > Cl(f) logn O(1).
For general (two-way) protocols, any (nonpartial) function f over {0, }" {0, }’
satisfies (f > /C(f)/2 log n O (1).

The proof of the first lower bound is via a reduction to an appropriate graph-coloring prob-
lem followed by application of the results of Linial and Vazirani [11] on the chromatic
number of product graphs. The lower bound for general protocols is achieved by con-
sidering nondeterministic protocols and proving that CN(f) > CN(f) log n O(1),
then applying a result of Aho, Ullman, and Yannakakis which relates the nondeterministic
communication complexity of a function with its deterministic communication complexity.

We also study the direct-sum question with respect to randomized protocols. The only
trivial upper bound on CR(fe)) in this case is that for any (partial or nonpartial) function f,
CR(fe)) O(. log . C(f)) (the log factor seems to be needed, since we are required to
have a "good" probability of success on all instances simultaneously). For explicit functions
we can do much better: We consider the identity function (i.e., ID {0, }n {0, }n

__
{0,

defined by ID(x, y) iff x y). It is well known that Cg(ID) (R)(logn) [24]. We
prove that Cg (I D) O ).

Remark. Some of the results of this paper were re-proven in a completely different way
in [10].

The organization of the paper is as follows: In 2 the various notions of communication
complexity and amortized communication complexity are defined. In 3 we exhibit a par-
tial function whose amortized communication complexity is smaller than its communication
complexity. In 4 we discuss the special case of one-way communication protocols. In 5 we
prove our lower bound on the amortized communication complexity for the case of general
protocols. In 6 we present a function whose amortized communication complexity is smaller
than its communication complexity when randomized protocols are considered. Finally, in 7
we mention some open problems.

2. Preliminaries. In this section we give formal definitions for the various notions of
communication protocols and communication complexity used in this work.

Let 7) be a set, and let f be a relation defined over {0, }n x {0, }n such that for every
(x, y) 6 {0, 1}n{0, 1}n, it satisfies 0 : f(x, y) c_ 79. We say that f is Boolean ifD {0, 1}.
We say that f is afunction if for every (x, y), If(x Y)I 1, and f is a partialfunction if for
every (x, y), either If(x, Y)I or f(x, y) 79.



738 T. FEDER, E. KUSHILEVITZ, M. NAOR, AND N. NISAN

Given a relation f and an integer e >_ 1, we define the relation f(e) over ({0, }n)e
({0, }n)e with range D as follows:

f(e)((xi xe), (y ye)) {(zl ze) z f(x, y) ze f(xe, ye)}.

In what follows we define the communication complexity of relations of the form f(e). Note,
however, that this covers the special case of f() f.

Two parties P and P2 wish to compute a possible value of f(e) on their input. The
party P is given an ne-bit input x and the party P2 is given an he-bit input y. We interpret
x (resp., y) as consisting of e pieces (or instances) x,o.., xe (resp., y ye) each of n
bits. The parties exchange messages in rounds according to a deterministic protocol. That is,
each message sent by a party Pi depends on its input and the messages it received in previous
rounds. The last message in the protocol is an e-tuple z (z ze) called the output of
the protocol. We say that a protocol $" computes the relation f(e) if, for all inputs x and y
the output z satisfies z f(e) (x, y).

The concatenation of all the messages exchanged in the protocol .T" on input (x, y) is
denoted U(x, y). The (deterministic) communication complexity of the protocol .T’, denoted
C(), is the maximum ].T’(x, Y)I over all (x, y). The (deterministic) communication com-
plexity of the relation f(e), denoted C(f(e)), is the minimum of C (.T’) over all deterministic
protocols $" computing

The amortized communication complexity of the relation f is defined as

(f) lim sup -C(f(e)).
We sometimes restrict the discussion to one-way protocols. In such protocols the com-

munication consists of a single message: P sends a message to P2 and P2 has to compute the
output. We denote by C (.T’), C (f), and C (f) the analogues of C ()t--), C (f), and. C(f)
for the case in which only one-way protocols are considered.

We also consider randomized protocols, in which each of the parties has, in addition to

its input, a string of random coins (the random strings of the two parties are independent).
A randomized protocol .T" computes the relation f(e) if, for every input (x, y) the output z

3of .T" satisfies z f(e)(x, y) with probability > . The notions of CR(f), CR(f(e)), and

CR (f) are defined in a similar way with respect to randomized protocols. That is, Cg (.T’) is
the maximal length of communication (over all inputs and all strings of random coins) in the
protocol f’, CR(f(e)) is the minimum of CR(.) over all randomized protocols that compute
the relation f(e), and Cg(f) equals lim supe._, -[C(f(e)). We emphasize that the meaning

3 theof this definition is that when computing f(e) we require that with probability at least
output is correct for all e. instances simultaneously.

It is also useful to consider a variant of the randomized model in which both parties have
access to a public random string. The quantities Cpub(f(e)) and Cpub(f) are defined in a
similar way.

Finally, we give the definitions for the nondeterministic case. In a nondeterministic
protocol for computing f(e) the parties are allowed to make "guesses" while choosing their
messages. In any computation, the protocol gives either a correct value of f(e) (x, y) or "fail".
The protocol is required to output a correct value of f(e)(x, y) in at least one computation on
(x, y) (i.e., in this computation the output is correct for all instances). The nondeterministic
complexity of a protocol .T’, Cv(-), is defined as the maximum over all (x, y) and over all
computations ("guesses") of (x, y) (note that for nondeterministic protocols 9r(x, y) is not
unique). The measures Cv(f(e)) and N(f) are defined with respect to nondeterministic
protocols.



AMORTIZED COMMUNICATION COMPLEXITY 739

3. A partial function with a low amortized complexity. In this section we prove
that (deterministic) amortized communication complexity can be substantially lower than
the corresponding communication complexity. We present a partial function f such that
C(f) (R) (log n), while C(f) O (1).

We start with the definition of f: Let M {0, 1, 2 rn }. Let > 2 be a parameter.
The input of P is S, a subset of M of size (the length of this input is n log rn bits). The
input of P2 is x 6 S (the length of this input is log rn < n bits). The parties wish to compute
the rank of x in the subset S (a number in the range 0 1). If x S then any output (in
the range 0 1) is allowed. Orlitsky [17] showed that the communication complexity
of this function is C(f) O(log + log log m).

The protocols we present make use of the following set of hash functions suggested by
Fredman, Komlrs, and Szemer6di [5]" Let p 2 log rn be a prime Define

H {h" M ---> {0, 2t2 1}11 h(x) (ax mod p) mod 2t2 < a < p 1}
We say that h H is good for a set S C M if h is with respect to the elements of
S. Otherwise, we say that h is bad for S. Fredman, Komlbs, and Szemerdi [5] proved the
following property of these hash functions.

LEMMA 3.1. Let H be as above and let S be any subset ofM ofsize to Then, at least

ofthefunctions in H are goodfor S.
We start by presenting the following protocol from 17] that meets the lower bound for

computing f on a single instance (S, x). This protocol (which uses the above H) has the
advantage that an appropriate generalization of it gives the amortized result.

P1 finds a function h H, which is good with respect to S. It sends its name
(O (log + log log rn) bits) to P2.
P computes h(x) and sends this value (O(log t) bits) to P1.
Since h is good with respect to S, if x S, the value h(x) determines x. (If x S
then either h(x) h(s) for some s S or it does not For the correctness of the
protocol it does not matter which is the case.) Now P computes the value f(S, x)
and sends it to P (O (log t) bits).

We now show how to generalize the protocol in order to efficiently compute the val-
ues f(S1, x), f(S2, x) f(Se, xe) simultaneously. The main idea is formalized by the
following claim.

CLAIM 3.2. Let H be as above and let S Se be any e subsets ofM ofsize t. Then
there exists a set L oflog + hashfunctions h, h hloge+ H such that

of the Si’sforfor every j (1 < j < log + 1), hj is good with respect to at least
which h hj_ are all bad.

In particular, it follows that for every Si (1 < < ), there exists at least one hash function
in L, denoted hj(i), such that hj(i) is good for Si. The proof uses Lemma 3o and a simple
counting argument.

Proof. We show how to construct L iteratively. In the jth iteration we consider a matrix
with all the subsets Si for which h hj_ are bad as rows, and the hash functions in H
as columns. The (S, h) entry in this matrix is if h is good with respect to S, and 0 otherwise.
By Lemma 3.1, at least half of the entries in every row are l’s. Therefore, there exists a
column in which at least half of the entries are l’s. We take the corresponding hash function
as hj. [-1

The following protocol computes f on instances simultaneously:
PI finds a set L of log + hash functions as above and sends the names of functions
in L to P2. In addition, for every < _< e, it sends the index j (i).
P2 computes hji)(xi) for every and sends it to P.
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Since hj(i) is good with respect to Si, the party P knows the value of Xi for every
< < e and thus can compute f(S, x) f (Se, xe).

The correctness of the protocol is obvious. For every such that xi Si it computes the
correct answer (and if xi q Si then any answer is good). We now analyze its complexity.

CLAIM 3.3. The above protocol can be implemented so that the number ofbits exchanged
is O(g. log + log e (log + log log m)).

Proof To specify the names of functions in L, P1 uses O (log e. (log + log log m)) bits.
In addition, for specifying all the indices j (i), P1 needs only O () bits (which is better than
the obvious O( log ) bits). This is true because h is good for about of the sets, h2 is good

of the sets etc. Therefore, by using, say, Huffman coding, we get that O (e) bitsfor about
are enough. In the second step P2 sends the results of applying hj(i) on xi for every i, which
requires O( log t) bits. [3

Take, for example, 2 and recall that in this case the length of the input satisfies
n 2 logm. We get that the number ofbits exchanged in this protocol is O( + log . log n).
Thus, we proved the following theorem.

THEOREM 3.4. There exists a (partial)function f {0, }n x {0, }n {0, 1} with
communication complexity C(f t0(log n) and amortized communication complexity

(f) limsup C(f(e)) 0(1)

4. One-way communication. In this section we deal with one-way communication pro-
tocols. We show that ifwe restrict the discussion to the computation ofrelations using one-way
protocols, then we can still "save" bits by computing f on many instances simultaneously. In
fact, the partial function f of the previous section yields such an example: Take 2 and
assume that Si {Yl, Y}, where 0 < Yl < Y < m 1. As stated before, C(f) to(log n)
(and clearly C (f) > C(f)). On the other hand, a slight modification ofthe previous protocol
gives (f) O(1)" P1 sends hj(i)(yl) and hj(i)(y) for < _< g together with the list L
of hash functions. Now P2 can decide whether xi y or xi y.

On the other hand, we can prove that for every (partial) function f, no more than log n
bits can be saved: Cl(f) > C (f) log n O (1). We start with a simple theorem, which
claims that if f is a nonpartial function then essentially nothing can be saved. That is,
Cl(f) C(f).

THEOREM 4.1. Let f be a (nonpartial) function defined on {0, }n x {0, }". Then
C(f)- < Cl(f) < C(f).

Proof Define the following relation on the inputs of PI" x x2 if f(x, y) f(x2, y)
for every y. Clearly is an equivalence relation. Denote by Class(f) the number of
equivalence classes of the relation. It can be easily verified that for computing f the party
PI must use Class(f) different messages (i.e, CI (f) is exactly [log Class(f)]). This is true
since P can send, on input x, the index of equivalence class for which x belongs. From this
information P2 can easily compute f(x, y) (by choosing arbitrary x’ from that equivalence
class and computing f (x’, y)). On the otherhand, iffor two inputs x, x’ in different equivalence
classes P sends the same string, then by the definition of the relation there exists y such
that f (x, y) # f(x’, y). If P2 holds y as his input then clearly the protocol is wrong for at

least one of f (x, y) or f(x’, y). Similar arguments show that for computing f(e the party
Pl must use Class(f(e) Class(f) different messages. Since this number of strings is
enough, the theorem follows. [3

The above example shows that this result, cannot be extended to partial functions. The
key point is that for partial functions is not necessarily an equivalence relation. However,
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in the following we show that this example is optimal in a sense. More precisely, we prove for
every partial function f that C1 (f) cannot be smaller than C1 (f) by more than an additive
factor of O (log n).

THEOREM 4.2. Let f be a (partial)function defined over {0, 1} X {0, }n. Then
C(f(e)) > 2C(f)- logn- O(1).

Proof. The idea of the proof is to reduce the problem of the one-way communication
complexity of a function to an appropriate graph-coloring problem, and then to use results of
Linial and Vazirani [1 on this problem.

We construct a graph Gf (V, E) as follows" Each vertex corresponds to x 6 {0, }n.
There is an edge between x and x’ if there exists y such that f(x, y) N f(x’, y) 13 (this
happens if and only if If(x, Y)I If(x’, Y)I and f(x, y) f(x’, y)). Intuitively, there
is an edge between x and x’ if P2 must be able to distinguish between these two inputs to
compute the output correctly when it holds input y (since there is no output which is legal for
both (x, y) and (x’, y)). Similarly, we define a graph Gf(2; its vertices correspond to pairs
(Xl, X2) {0, }n X {0, }n. There is an edge between x (x, X2) and x’ (x’l, x;) if there
exists y (Yl, Y2) such that f(2)(x, y) N f(2)(x’, y) 0 (this happens if and only if either
If(x, Yl)l If(x’, Y)I and f(xl, Yl) 76 f(x’l, Y), or if If(x2, Y2)I If(x, Y2)I
and f (x2, y2) :/: f (x;, y2)).

The number of different messages used by the optimal one-way communication protocol
for f is exactly the chromatic number of GI (denoted x(Gf )). If we have a legal coloring
of Gf then this coloring defines a one-way communication protocol for computing f" P
sends the color c of its input x. This color together with P2’s input y determine z f(x, y).
To see this, fix a y and consider all the vertices colored by c. If for all these vertices the
corresponding x satisfies f(x, y) 79, then any z 79 will do. If for some x, If(x, Y)I
then we take z f(x, y). For any other x’ colored by c, since there is no edge between x
and x’, it follows from the construction that z f(x’, y). On the other hand, every protocol
induces a legal coloring of Gf, where the color of every x is the message P1 sends on it. This
is true because for every x, x’ on which the same message rn is sent by P1, and for every y,
there is a z that P2 outputs. The correctness of the protocol guarantees that z 6 f (x, y) and
z 6 f(x’, y) and, therefore, f (x, y) f3 f(x’, y) 7 0. Hence there is no edge between x and
x’, so the coloring is legal. Similarly, the number of different messages used by the optimal
one-way communication protocol for f(2 is exactly X (Gf(2) (again, fix (yl, y2) and argue the
existence of Zl and z2 as needed for each coordinate separately).

Now we define theproduct operation on graphs" Given G (V, El) and G2 (V2, E2),
the vertices set of the product G x G2 is Vl x V2. The edge set includes all the edges
((1)1, V2), (b/l, U2)) such that (/31, b/l) G E1 or (112, u2) E2. (In the terminology of [11] this
is called inclusive-product.) It is easy to verify that Gf(2) Gf X Gf.

Applying this reduction to the graph-coloring problem we can now prove the theorem:
it is enough to prove that for every f, x(Gf(2)) >_ xZ(Gf)/cn for some constant c. This is
proved in 1, Thm. ].

The statement of 11, Thm. is more general than what we used and allows not only
products of a graph G by itself but products of any two graphs. In particular, it says that for
any two graphs G
X (G 1)X (G2)/c log V I. Thus, by the same proof as above, we get the following theorem.

THEOREM 4.3. Let n
and let g be a (partial) fnction dened over (0, ] 10, ]. Let f g be defined in the

2Similar reductions appear in 17] and [22]. In these works the two parties have an input (x, y) in some domain
.A, and P has to transmit its input x to P2. In our setting this problem corresponds to the problem of computing the
specific function f which is defined as f (x, y) x if (x, y) 6.4 and f(x, y) 79 otherwise.
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obvious way over ({O, 1}n {0, 1}m) ({0, 1}n {0, 1}m) (each party receives two instances;
one is an n-bit string and the other is an m-bit string). Then,

Cl(f g) > Cl(f) + Cl(g)- logn- O(1).

Therefore, we have the following corollary.
COROLLARY 4.4. Let f be a (partial) function defined over {0, }n {0, }n. Then

Cl(f) > Cl(f) > C(f)- logn- O(1).

Proof. The first inequality is obvious. For the second inequality we will prove (by
induction) that CI (fie)) > g.Cl (f) ( 1) log n ( l)c (for some constant c), which
implies the corollary. This is certainly true for g 1. For a general e we can write C (fie))
C (f fe-1)). By Corollary 4.3 this is at least C1 (f) + C1 (fe-) log n c. Now, by
the induction hypothesis C(fe-)) > (e 1)C(f) ( 2) logn ( 2)c, which gives
us what we need.

For additional examples ofpartial functions with C (f) significantly smaller than Cl (f),
we show that for every graph G with 2n vertices there exists a (partial) function f such that
G Gf. Label the vertices of G by strings in {0, }" and define a function f as follows" for
every x, f (x, x) 1. For every edge (x, y) 6 E define f (x, y) 0. For all the other pairs
f(x, y) 79. It can be easily verified that G Gf. This implies that, from every graph G
with 2n vertices, such that X (G x G) - x2(G)/cn, we can construct a partial function f such
that C(ft2)) 2C(f) logn O(1). Examples of such graphs are given in [11, Thm. 2].

5. Lower bound for general protocols. In order to prove lower bounds on C(f) for
a specific relation f, we may use traditional techniques. For example, consider the identity
function (i.e., ID(x, y) equals ifx y, and 0 otherwise). It is easy to verify that C(ID)
C(ID) n (as in [24]). In this section we give a general lower bound on C(f) in terms of
C(f) for any (nonpartial) Booleanfunction f,

To this end, we first discuss the amortized nondeterministic communication complexity
of (arbitrary) relations. We start with some definitions and notation used in the proof. Given a
relation f defined over {0, }n x {0, }n, and > 1, we denote by Mf<e) the matrix representing
the relation f<e). That is, each row of Mfte) corresponds to an input x (Xl, x2 xe) of
P1, and each column corresponds to an input y (y, y2 ye) of P2. The entry (x, y)
of Mf<e) contains the set f(x, y) (a subset of 79e). A monochromatic rectangle of Mf<e) is

a set R Rx Ry cc. ({0, 1}n)e X ({0, 1}n)e such that we can associate with R an output
vector zR D in such a way that every input (x, y) 6 R satisfies zR f(x, y). We denote
by N(fie)) the minimal number of monochromatic rectangles needed to cover (possibly with
overlaps) all the entries of Mfe). Since any nondeterministic protocol for computing f<e
induces such a cover, log N(f<e)) < Cv(fe)). The next theorem claims that N(f<2)) cannot
be much smaller than N2 (f).

THEOREM 5.1. Let f be a relation defined over {0, 1}n x {0, 1}n. Then, for some
constant c,

N2(f)
N(f(2)) >_

c,n

For the proof of this theorem we need the following claim, provided by the proof of 11,
Thm. ].

CLAIM 5.2. Let A be an d matrix whose entries assume k values and such that < d.
Let k be the minimal size ofa set T c_ 1, 2 k} that covers all the rows of A. That is, for
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every row there exists a column j such that the value Ai,j belongs to T. Similarly, let k2 be
the minimal size ofa set that covers all the columns. Then k k2 < c’ log k.

Proof. Consider an optimal cover of Mf2 with k N(f(2)) monochromatic rectangles,
denoted by R, R2 Rk. We show how to cover My with m monochromatic rectangles,
where m2 < c. n N(f(2)) for some constant c. This implies that N2(f) < c. n N(f(2)).

Consider the following 22" 22n matrix A (this is not Mf2): each row of A corre-
sponds to an input (x, y) and each column corresponds to an input (x2, Y2). Every entry
((x, y), (x2, Y2)) of A contains an element in 1, 2 k} such that ((xt, x2), (y, Y2)) be-
longs to gt. (If ((x, x2), (y, Y2)) belongs to more than one rectangle then we choose one of
them arbitrarily.) Apply Claim 5.2 to the matrix A described above and assume without loss
of generality that kl < k2; we get that k2 < c n k. Let T be a set of k values that covers
the rows. We now prove that this implies that My can be covered with k monochromatic
rectangles.

Associate with every entry (x, y) in My an element of T that appears in the row (x, y) of
A (if there is more than one possibility, then choose one arbitrarily). Now we extend this to
(possibly overlapping) rectangles in the obvious way. That is, for every T the rectangle R
includes every (x, y) with value t, and if (x, y) and (x’, y’) are in R then (x’, y) and (x, y’)
are in R as well.

Clearly, these are k rectangles and they cover My. What we still have to prove is that
any such rectangle R is monochromatic. That is, there exists a z such that for all (x, y) R
it satisfies z f(x, y). By the construction, if (x, y) and (x’, y’) both have the value t, then
there exist x2, Y2, x2’ and y such that both ((x x2) (y, y2)) and ((x’ x), (y’, y)) belong to
Rt. Since Rt is monochromatic, we can associate with Rt a vector (z, z2) with whom all pairs
in gt "agree." This, in particular, implies that z f(x, y) and z f(x’, y’). In addition,
since Rt is a rectangle it also contains ((x, x2), (y’, y)), and ((x’, x.), (y, Y2)), which implies
that z f(x, y’) and z f(x’, y) as well. Therefore R is monochromatic.

To conclude, we can cover My with no more than v/c n N(f(2)) monochromatic rect-
angles, which completes the proof of the theorem. [3

Again, the above theorem (using 11 ]) can be generalized to prove the following.
THEOREM 5.3. Let n < m. Let f be a relation defined over {0, }n X {0, }n and let g be

a relation defined over {0, }m )< {0, }m. Then,

N(f N(g)
N(f g) >

c.n
It follows that N(f0) >_ Ne(f)/(cn)e- We now focus our attention on the case where

f is a (nonpartial) function. For this case we can apply known relations between deterministic
and nondeterministic communication complexity ].

CLAIM 5.4. Let f {0, 1}n {0, }n _+ {0, }, be a (nonpartial) function. Then,
C(f < 2log2 N(f ).

Using Theorem 5.1 and Claim 5.4 we get the desired lower bound.
COROLLARY 5.5. Let f {0, }n {0, }’* --> {0, }, be a (nonpartial)function. Then,

C(f >_ -(f >_ v/C(f )/2 logn- O(1).

Proof. Clearly, C(f) _> C(f). For the other inequality we write

C(fe)) > log N(fe))
>glogN(f)-glogn-O

>g.. (v/C(f)/2- logn- O(1))
By the definition of C(f) the result follows.
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We do not know how to extend the above result to general relations or even to partial
functions. Our proof method fails in these cases since the gap between deterministic and
nondeterministic complexity may be exponential (examples of such partial functions can be
constructed based on results is [20]).

6. A function with low amortized randomized complexity. In this section we consider
amortized randomized communication complexity. Clearly, for every relation f, CR(f) <

C(f < n. However, unlike the deterministic case, we do not know whether CR(f) < C(f
for all relations f. If f is a (partial) function then C( is O(C(f). loge) since
we can compute f separately for each instance. We do this O(log e) times and take the
majority as the output (the O (log e) factor seems to be needed since we require the protocols
for computing f<e) to be correct with high probability on all e. instances simultaneously). For
specific relations we can do much better. We consider the identity function I D(x, y). It is
known that C(ID) (R)(log n) (see [24]). We show that the amortized complexity of ID
with respect to randomized protocols is CR(ID) O(1). Moreover, the probability of error
in our protocol for ID is much less than a constant: it decreases exponentially with x/. (This
can actually be improved to exponential in

To simplify the presentation of the protocols we first assume that the two parties have a
way of agreeing on a random string with no cost in communication. This can be thought of
as protocols in the public-coins model. After presenting the protocols we describe how the
parties can agree on such strings while preserving both the communication complexity and
the correctness of the protocols.

The following protocol computes the identity function on a single pair of inputs (x, y)"
The parties agree on a random string b 6 {0, }n.
P computes (b, x), the inner product of b and x(mod 2), and P2 computes (b, y).
The parties exchange the bits (b, x) and (b, y). If the bits are equal they output
"equal" (x y), otherwise they output "not equal" (x y).

The number of bits exchanged in the protocol is O (1). If x y it is always correct, while if
(which can be improved to any other constant advantagex : y it is correct with probability

while preserving the O (1) complexity).
Now suppose that the two parties P and P2 wish to compute the identity function on e input

pairs (x, y), (x2, y2) (xe, Ye). Consider the protocol where P and P2 amortize the first
step in the above protocol while exchanging the bits (b, xi) and (b, Yi) for all < < e. Such
a protocol gives a "good" success probability for computing each of the f (xi, yi) separately,
while what we want is a "good" probability of computing f on all e instances simultaneously.
A possible idea is to decrease the error probability on each (xi, yi) to poly(e) by choosing
k O (log e) vectors bi,..., bl. Formally, we have the following protocol.

PROTOCOL multi_compare.
1. The parties agree on k random strings b, b2 bk
2. For/= 1,2 k"

(a) PI computes b/i (bi, Xl), (bi, x2) (bi, xe).
P2 computes 1) (bi, Yl), (bi, Y2) (bi, Ye).

(b) The parties exchange the vectors ui and vi (each of them is an e-bit string) using
a procedure exchange(ui, vi).

(c) For < j < , if the jth bits of ui and vi are different then the parties P
and P2 replace xj and yj (resp.) by xj yj On, where 0 denotes a string
of n zeros. (The motivation for this step will become clear while making the
analysis below.)

3. The output for the jth pair (xj, yj) is "equal" (xj yj) if and only if, for every
_< < k, the jth bits of ui and vi are equal.
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The probability that the protocol will err on any pair is at most 2-k. The only problem
with this protocol is that if k O (log ), and procedure exchange in step 2(b) is implemented
in a naive way (i.e., P sends ui to P2 and P2 sends vi to P), then the communication
complexity of the protocol is O( log ) (i.e., O (log ) invocations of the procedure exchange;
each requires 0() bits). This complexity is more than our goal.

The main idea for reducing the communication complexity is the following: even if a
vector bi does not recognize all the pairs such that xj yj, we expect that it does recognize a
constant fraction of them. At each time that the parties recognize such a pair, they replace it by
xj yj On (step 2(c)). Therefore, the expected Hamming distance between the vectors ui
and vi in the above protocol decreases from round to round. We present an implementation of
the procedure exchange(u, v) that uses this property. It enables the parties to exchange ui and
vi (step 2(b)) in a cost that depends on the Hamming distance between the vectors; namely,
the smaller the Hamming distance, the lower the communication complexity. This will give
us the desired complexity.

We start with a simple case where the parties P and P2 receive, in addition to the
input vectors u, v 6 {0, }e, respectively, a bound d such that u and v are promised to be at
Hamming distance at most d. The following deterministic protocol exchanged(u, v) enables
each party to learn the value of the other party by exchanging O (log ()) bits (we assume that

otherwise the parties simply exchange their inputs). This protocol was discoveredd_<z,
independently by Brandman, E1-Gamal, and Orlitsky (in 16]), Witsenhausen and Wyner [23],
and Karchmer and Wigderson [9].

PROTOCOL exchanged (u, v).
The parties consider the graph with 2e nodes corresponding to the strings in {0, }e,
and edges between nodes which are at Hamming distance at most 2d. The parties fix
a coloring of the graph. (An effective coloring can be constructed using linear error
correcting codes such as BCH.)
P sends P2 the color of u and P2 sends the color of v under the coloring. Since the
Hamming distance between u and v is bounded by d and there is at most one member
of every color class at distance d from v (as we have a legal coloring of vectors with
Hamming distance < 2d), P2 can identify u. Similarly, P can identify v.

The degree of every node in this graph is less than 2d- (2ed). Therefore, there exists a coloring
of the graph with that many colors. Since the communication in this protocol consists of
names of colors, O(log(2d (2ed))) O(log ()) bits are communicated.

The protocol exchanged above assumes that we have an upper bound on the Hamming
distance between u and v. In our case (step 2(b) of the protocol multi_compare) a good bound
on the distance between ui and vi is notknown. Ifwe use the protocol exchanged with the wrong
bound d then it may fail. Therefore, we generalize the protocol exchanged to a (randomized)
protocol exchange (which in fact uses exchanged as a procedure). This generalized protocol
can work in the case in which a good bound d is not known. The expected number of bits
exchanged is still only O (log (e)) bits, where A is the actual Hamming distance between u
and v. We use this protocol to implement step 2(b) of the protocol multi_compare.

PROTOCOL exchange(u, v).
1. The parties agree on k random "test strings" c, C2 Ck {0, }e.
2. For d 2 22 23 21oge.

(a) P and P2 engage in exchanged(u, v). Denote the output of P by v’ and the
output of P2 by u’.

(b) Test step: P and P2 test whether u’ u by comparing the inner product of
the "test strings" Cl, c2 ck with u and u’; this is done in a bit by bit manner,
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quitting early if they discover an error and going to the next d. If all the k bits
are equal the protocol terminates (i.e., the parties assume that d is correct, and
therefore u’ u and v’ v).

By the analysis of the protocol exchanged made above, the number of bits required in
and O (e) otherwise. If u’ :/: ustep 2(a) of protocol exchange(u, v) is O (log ()) if d <

then the expected number of bits exchanged in the test step is O(1). If u’ u then the
number of bits exchanged in the test step is O(k); however, this happens only once (note
that once we reach d such that d > A, the deterministic subprotocol exchanged (step 2(a))
always stops with the correct values). Therefore, the expected number of bits communicated

log Ais O(k +/._,i=l log (2ei)). To compute the overall number of bits communicated we need the
following technical claim.

CLAIM 6.1. For any D <_ /2,

,o (;it
i=I

Proof. We first show that for all < k < g we have We know that

(e k)(e (e +
2k(2k- 1)..-(k + 1)

1)--. ( k + 1)
2k(2k- 1)... (k + 1)2’
( 1)-.. ( k + l)

4"
In addition, we have that () > ()* > 8 (for the last inequality we use the assumption k < g)
and hence (ek) > ()2/4k > ()3/2. Therefore, every term (except perhaps the last two)in the

7-,log Dsum z..,i= log (,) is at least at -32 times the preceding term, and the sum is bounded by some

constant times the largest term, which is log (). [3

andTherefore, the expected number of bits exchanged is O(k + log (e))if A <

O(k + log (//2)) otherwise. The error probability in each round is bounded by 2-’ and,
therefore, the total error probability is bounded by log 2-.

As mentioned, we now use the procedure exchange described above to implement step 2(b)
of the protocol multi_compare. The analysis of the protocol multi_compare is as follows: Let
Di be the random variable counting the number of indices < j < e such that (bi, xj)
(bi, yj) but (b, xj) (b, yj) (bi-1, xj) (bi-1, yj). In other words, Di is the distance
between ui and D (recall that if, for some i’ < i, (bi,, xj) (bi,, yj) and exchange succeeds
in round i’, then both xj and yj are replaced by 0 and, therefore, the jth coordinate of u and
vi must be the same).

The expected number ofbits exchanged in an execution ofthe protocol, given that Di d,
is bounded by c. =(k + log ()) for some constant c. For any set of inputs the expected
value of Di+l, given that Di d and that procedure exchange does not fail, is -.. Therefore,
conditioned on the fact that exchange does not fail in any round, E[Di] < g 2 and for all
0 < rn < we have Prob[Di > 2m-i < 2-m. If exchange does fail at some round, then just
because Di < g., the expected number of bits exchanged in the protocol is k. c. (k / ). The
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expected total number of bits exchanged is, therefore, at most

EIc" i= (k+log(Di))lexchangealwayssucceeds
+ Prob [exchange fails at least once]

i I ( e ) lexchange always succeeds] + ck e lge2-k< c. k + c. E log
Di

< c. k + cZ 2-mlg + ck. glogg2-k

i=l m=0
g’2m-i

< c. k2 + cZ log 2-t

S=
g2-s

/=0

+ ck f, log e2-
< c. k2 + 2cZ log + ck log2-s=!

g2-s

which by Claim 6.1 is O(k2 + e + k e log e2-’)o If k is (R)(), then the expected number
of bits communicated is O (e).

As for correctness, if xj # yj then with probability at most 2-’ we have that for all
< < k, (bi, xj) (bi, yj). Therefore, the probability that for some j and all < < k

we have that (bi, xj) (bi, yj) is bounded by e/2. In addition, there is the probability of
failure each time we invoke exchange(u, v). This probability is at most log e/2*, Thus, the
probability of error in our protocol is bounded by (e + k log e)/2k, Therefore, if k / then

the probability of error is at most 2-f(47). To summarize, we have just proved the following
lemma.

LEMMA 6.2. The protocol described above computes, in the public coins model, the
identity function on g. instances while maintaining that the number of bits communicated is

O(e) and the probability oferror on any instance is at most 2-().
Newman [15] has considered the public coins model vs. the private coins model. He

showed that CR(f) O(Cpub(f) + logn), which in particular implies

CR(f(e)) O(Cpub(f(e)) + log

Clearly,

C(fe)) > Cpub(f(e)) O(e. log. Cpub(f)).

Altogether we have the following theorem.
THEOREM 6.3. Let f {0, }n x {0, }n _.+ {0, 1} be a (partial)function. Then
1. CR(f l(Cpub(f));
2. for every sufficiently large , -g CR(f(e)) O(log g. Cpub(f )).
In particular, this theorem together with Lemma 6.2 gives the following theorem.
THEOREM 6.4. CR(ID) O(1).
Note, however, that Newman’s method is nonconstructive in nature. In the rest of this

section we turn to the question of constructively converting the protocols described above to
run in the private coins model. We describe a way for the parties to agree on the random
strings (i.e., the bi’s and ci’s) with not much additional cost in the communication.
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We first describe how to agree on a single string bi. A collection of vectors B,n C {0, }m
_+. e. In [14] and [3]is called e-biased if every x {0, }m satisfies Prbsm ((b, x) O)

the existence and construction of such sets, which are of size polynomial in m (and thus each of
their elements can be represented by O (log m) bits), is shown. For our purposes it is sufficient

Fix Bn and Be, two e-biased probability spaces. Pt selects bi Bn byto take e to be, say, .
choosing log IBn random bits and sends those bits to P2. They can both compute bi. Clearly,
if x y then (bi, x) (bi, y), while if x y then (bi, x) (bi, y) with probability at least

In order to pick k strings b b2 bk the party P samples k times B,, using O(k. log n)o
bits altogether. He sends those bits to P2. The probability that multi_compare errs is at most. (43_)k, and the expectation of Di is at most e. ()-i.

The strings cl, c2 ck are selected similarly from Be using O(k log ) bits. Note,
however, that step (1) in protocol exchange(u, v) should not be repeated, i.e., c, c2 c are
chosen once and for all at the beginning of the protocol multi_compare. In the public coins
model there is no reason for doing that; we can allow the parties to use new strings c c
each time that step 2(b) of exchange is executed. However, the fixed choice of c Ck
makes the conversion to the private coins model easier. Choosing the ci’s once and for all
using e-biased spaces has the property that in protocol exchange(u, v) in case u’ u, the
expected number of bits exchanged is O(1). Also, the probability of error is at most (1/4).
Thus the analysis of Lemma 6.2 still applies and we get that the probability of error is at most

2-vT and the number of bits exchanged is O(e + log n).
For values of which are around log n we would like to replace the term x/ log n with

V + log n. This can be done by sampling the bi’s via a random walk in an expander as in
Ajtai, Komlbs, and Szemerdi [2] (in such a case the bi’s are not independent): The elements
of Bn are mapped to nodes of a constant degree expander G. Then, a random walk of length
k in G is generated, and the vectors b, b2 bk are the vectors corresponding to the nodes
of the walk. The number of bits required to specify the walk is O (log IB,, + k), which is
O(logn + k). (See, e.g., [14] for details.) As before, Pl selects the random bits and sends
them to P2, so that they both agree on the same sequence. If x y then the probability that
(bi, x) (bi, y) for all < < k goes. down exponentially in k. The strings Cl, c2 c
are selected similarly in Be using O (k / log ) bits.

To conclude, we have a randomized protocol in the private coins model for computing
the identity function on e instances with probability of error at most 2-v% and expected
complexity of O( + log n), which is O () for sufficiently large. With a "small" additional
error the protocol can be converted to a protocol that uses O () bits in the worst case. This
gives a constructive proof for Theorem 6.4.

7. Open problems. We conclude by mentioning some open problems"
In [7] it was conjectured that for any relation f, the communication complexity C(f)
cannot be smaller than C(f) by more than an additive factor of O(log n). The exam-
ples given in our paper do not contradict this conjecture. On the other hand, according
to the best lower bound we are able to prove (Corollary 5.5), even for (nonpartial)
functions, that a quadratic gap between C(f) and C(f) is possible (and the gap may
be even bigger for general relations). Therefore, the main open problem is to try to
close this gap by either improving the lower bound (in particular, trying to extend it to
relations) or presenting relations with more than O(log n) difference between C(f)
and C(f). (Presenting other relations with O (log n) difference between C(f) and
C(f) may also be interesting.)
Another open problem involves trying to achieve similar lower bounds for the ran-

domized model. That is, can one prove a lower bound on Cg (f) in terms ofC(f)?
In the randomized case it is also not known whether Ctc(f) < CR(f) for every
relation f.
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In the case of partial functions f, one can consider a weaker definition for the correct-
ness ofa protocol for computing f(e). the protocol is required to succeed in computing
fe)(, ) only if, for all (1 < < e), we have If(xi, Yi)l (otherwise, there
is no requirement). In such a model we think of inputs such that f(xi, yi) 79 as
"illegal." Clearly, proving upper bounds under this definition is easier, while proving
lower bounds is harder.
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AN OPTIMAL EXECUTION TIME ESTIMATE OF STATIC VERSUS DYNAMIC
ALLOCATION IN MULTIPROCESSOR SYSTEMS*

H/KAN LENNERSTAD AND LARS LUNDBERG

Abstract. Consider a multiprocessor with k identical processors, executing parallel programs consisting of n
processes.

Let Ts (P) and Ta (P) denote the execution times for the program P with optimal static and dynamic allocations,
respectively, i.e., allocations giving minimal execution time.

We derive a general and explicit formula for the following maximal execution time ratio: g(n,k)
max Ts (P)/Ta (P), where the maximum is taken over all programs P consisting of n processes. Any interpro-
cess dependency structure for the programs P is allowed only by avoiding deadlock. Overhead for synchronization
and reallocation is neglected.

Basic properties of the function g(n, k) are established, from which we obtain a global description of the function.
Plots of g(n, k) are included.

The results are obtained by investigating a mathematical formulation. The mathematical tools involved are
essentially tools of elementary combinatorics. The formula is a combinatorial function applied on certain extremal
matrices corresponding to extremal programs. It is mathematically complicated but rapidly computed for reasonable
n and k, in contrast to the rip-completeness of the problems of finding optimal allocations.

Keywords, dynamic allocation, static allocation, combinational functions, 0, l-matrices, extremal combinatorics
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1. Introduction. In this report an optimal bound of the efficiency of using static com-
pared to dynamic allocation in parallel computing is derived. In static allocation no process
reallocation is allowed from the processor where a process was initiated. Dynamic allocation
allows unlimited reallocation.

Consider a multiprocessor with k processors. We calculate the quotient

Ts(e)
g(n, k) max, T,t(P)

where the maximum is taken over all programs P with n processes. The processes of the pro-
grams P may have any set of run times and any possible structure of interprocess dependency.
Ts (P) and Td (P) are the execution times for the program P with optimal static and optimal
dynamic allocations, respectively, i.e., allocations for which the execution time is minimal.
Besides the allocations, the function g(n, k) itself is optimal since it is a bound of the above
ratio, which cannot be improved; the term "optimal" thus appears in two senses. The problem
is fully defined in 2.

The mathematical aspects of the subject are focused in this report. The same problem
is treated from a computer science point of view in [6]. That report also contains a more
detailed presentation on how the problem occurs in parallel computing and the significance of
the problem for parallel processing.

Since the problems offinding optimal allocations are np-complete, general and, preferably,
optimal, results are already needed for a medium number of processors and processes in order
to choose multiprocessor architecture which optimizes performance. There appear to be no
general results concerning allocation strategies of parallel programs other than the results by
Graham [3]. The overhead for process reallocation and synchronization is neglected in that
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751



752 H.KAN LENNERSTAD AND LARS LUNDBERG

work also. In [3] it is proved that in the unsynchronized case, i.e., when there are no interprocess
dependencies, the optimal worst-case ratio of static versus dynamic allocations is 2, taken
over all parallel programs consisting of any number of processes. So-called selfscheduling
algorithms are also considered. This term is used for dynamic allocation algorithms where,
when a processor becomes idle and there are waiting executable processes, one of these
is immediately allocated to this processor. It is established in [3] that the execution time
for a program allocated with a selfscheduling algorithm is never higher than two times the
completion time with optimal dynamic allocation.

The allocation scheme is an important feature for the performance of a multiprocessor,
thus an immediate area of applications for the present results is multiprocessor design. The
results can further be used to evaluate the efficiency of allocation algorithms versus the best
possible algorithm. By using the estimates for the allocation obtained by a selfscheduling
algorithm versus an optimal dynamic allocation mentioned above [3], the np-completeness in
finding the optimal dynamic allocation can be avoided, and an estimate of the execution time
with optimal static allocation is obtained. This is optimal except for at most a factor of 2. The
estimate can be improved by running several different selfscheduling algorithms. So-called
free-fly algorithms, which allocate parallel programs that are not completely known at start,
can also be evaluated in this way in the common case when the complete program is known
at completion. The case of average ratio between the allocation strategies is not considered
here. We believe that this is a problem which requires a different approach. A consequence of
the generality of the present results is that no specific knowledge about a parallel program can
be used to improve the estimate. However, it is expected that the techniques presented here
can be extended to take advantage of various kinds of program specifics, thus improving the
bounds by keeping away from those programs which maximize the ratio studied in this work.
In effect we present a methodology for obtaining optimal control of np-complete scheduling
problems.

In the mathematical formulation, each static allocation is represented by a partition of the
columns of a matrix, which represents a parallel program. The main ingredient in the proof is
a duplication argument producing n! copies of the matrix with the columns permuted, which
provides control on the optimal static allocation.

Taking the reallocation overhead into account obviously favors static allocation. The
significance of this is strongly program dependent, although possibly a feature which can be
analyzed by similar mathematical tools.

We next give an overview of the report.
In the following section the allocation problem is described and analyzed in detail. It is

formulated as a mathematical problem about so called 0, 1-matrices, i.e., matrices where all
entries are 0 or 1. In 3 we give a full formulation of the mathematical problem and introduce
necessary notation. Section 4 contains the main result; here the formula for the function
g(n, k) is stated and proved. Results which give a global description of the function g(n, k)
are presented is 5. Finally, plots describing the function g(n, k) are included.

References [1 ], [2], [9], and 10] present theoretical results on 0, 1-matrices. References
[3], [4], [5], [7], [8], 11 ], 12], and 13] are a selection of reports where scheduling problems
are analyzed. However, none of these, with the exception of [3] as described above, appear to
be useful for the present formulation and solution of the problem.

2. The allocation problem. In this context the only difference between static and dy-
namic allocations is that in the dynamic case processes, after having been started, can be
transferred to another processor. The cost of this transference is neglected. In the static case
processes are always processed to the end on the processor on which they were initialized. If
a process is put into a waiting state, it will be restarted later on the same processor.

A program P consists of n processes of possibly very different execution times. The
processes are, of course, usually dependent of each other. One can expect that dependencies of
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the type that process cannot execute further at the time point ti unless process j has reached the
time point tj. When process j has reached the time point tj, it is said to execute a synchronizing
signal to process i, restarting this process. Certainly there can be many synchronizing signals
to a time point tj, in which case all have to be executed before the process restarts. The
execution time of synchronizing signals is neglected. Most parallel programs contain many
synchronizing signals. In this report any set of synchronization signals is allowed as long as
the parallel program is executable. Our only assumption about the structure of synchronizing
signals is that it is consistent, i.e., the program can, for example, when having n processors,
execute to the end without violating any synchronizing signal.

Thus a parallel program P of n processes is defined by the n execution times of the n
processes and the set of synchronizing signals.

Now consider a parallel program P. Assume that we have found an optimal dynamic
allocation with execution time Td(P). This optimal dynamic allocation will be kept fixed
during the entire following argument dealing with the program P and its descendant P’. Next
we introduce a discretization of the time interval in subintervals (ti, ti+) of equal length such
that all synchronizing signals, process initiations, and process terminations appear on the time
points ti, where ti Td(P), 0 m. Obviously, all processes in the interval (ti-1, ti)
are completed before any part of the processes corresponding to the interval (ti, ti+) when
using this allocation, since this is so without the discretization. Such a discretization is possible
if all synchronizing signals and process terminations occur at rational time points, which we
can assume. Observe that rn might be very large even if the program P is small and has a
simple structure. However, rn plays no important role in the theory.

Consequently, during a time interval (ti, ti+l), no process of the program P starts and no
process stops.

From the program P we next construct another program P’ by two changes ofthe program
P: we introduce new synchronizing signals and prolong certain processes. At every time
point ti we introduce all possible synchronization between the processes. This means that the
synchronization now requires that all processes in the interval (ti-1, ti) have to be completed
before any part of the processes corresponding to the interval (ti, ti+l ), which will increase
the execution time with most other allocations. Since the execution time of synchronizing
signals is neglected, this does not change the total execution time with the fixed optimal
dynamic allocation, which is Td(P). Furthermore, all processors are made to be busy at all
time intervals. If necessary, this is achieved by prolonging some processes. However, no
process is prolonged beyond Td (P), hence Td (P) Td (P’). It is of no importance that the
transformation from P to P’ can be made in many ways; many programs can play the role of
P’ to a specific program P.

By the construction we thus have Td (P) Td (P’). However, since introducing more
synchronization and prolonging processes never shortens the execution time, the execution
time is either increased or unchanged for other allocations. In particular, for optimal static
allocation we therefore have T. (P) < Ts (P’). Consequently,

Ts(P) ,(P’)
Td(P) Td(P’)

Certainly there are programs P which are left unchanged by the above transformation: pro-
grams such that P P’. Since these programs constitute a subset of the parallel programs
we consider, we actually have

T,,(P) Ts(P’)
max max
P Td(P) P Td(P’)
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Therefore, in order to calculate the maximum, only programs of the type P’ need to be
considered.

We next represent a program P’ with optimal dynamic allocation on a multiprocessor
with k processors by an m x n matrix of O’s and l’s only. Here each process is represented
by a column and each time period is represented by a row. The entry at the position (i, j) of
the matrix is if the jth process is active between ti-1 and ti; if it is inactive the entry is 0.
Each row contains exactly k l’s, since each processor is constantly busy. In this report, such
a matrix is referred to as an m, n, k-type matrix. The main part of this paper analyzes these
matrices. For example, we characterize the type of matrix which corresponds to the worst
case. Because of the complete synchronization, each row has to be completed before the next
row. The optimal dynamic allocation of the program P’ represented in this way is m, i.e., the
time unit is changed to Ta (P)/m.

What is the optimal static execution time of the program P’? To compute this we need
to decide how the n processes are to be allocated to the k processors. Since every process in
the static case is to be executed on one processor only, the static allocation corresponds to a
way of grouping the n columns of the matrix together in k sets, one set for each processor.
Because of the complete synchronization, at each step the processors have to wait for the
slowest processor. This is the processor that has the highest number of processes to execute,
i.e., the maximum number of ’s in one group. Hence the static execution time is the sum of the
maximas for the rows multiplied by the factor Ta (P)!m. This is the optimal static execution
time Ts (P’) if we have found the best allocation, i.e., a way of grouping the n columns together
in k sets which minimizes the static execution time. In the following we denote

T(P) Ts(P)
m

Td(P)

i.eo we compute the time in the time unit Ta(P)/m.
In the main result of this paper we give a formula for the function g(n, k) representing

the worst case, i.e., for any parallel program P0,

Ts(Po) Ts(P) T(P)
< g(n k) max max

Td(Po)- P Td(P) P m

Here T(P) is defined in the next section.

3. The mathematical formulation. As described in the previous section, the corre-
sponding mathematical problem can be formulated as follows.

Consider an m n matrix P of 0’s and l’s only such that each row has exactly k l’s and
thus n k 0’s, < k < n. These matrices are referred to as m, n, k-type matrices.

The column vectors of P will sometimes be denoted by 1)i. Consider a partition A of the
n vectors 13 into k sets. Observe that the number of sets equals the number of l’s on each row
in P. We will be mostly concerned with partitions where the sizes of the sets in the partition
differ as little as possible. If n/k is an integer w then every set has w members. Denote the
integer part of n / k, the floor function, by/n/ k/, and the smallest integer greater than or equal
to n ! k, the ceiling function, by In ! k. If n! k is not an integer, the sets in a partition where
the sizes differ as little as possible have In kl or n/k] members.

Given any partition A ofthe column vectors in k sets, we form a quantity TA (P) as follows.
The vectors in each group are added together, making k vectors of nonnegative integers

from the n column vectors. By taking the maximum of these vectors componentwise, one
single vector of positive integers is obtained. All vectors here are, of course, m-dimensional.
The sum of the components of the final vector is the quantity TA (P). Set as a formula we
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FIG. I. Thefunction g(n, k) is defined as the worst-case ratio ofstatic versus dynamic allocations: g(n, k)
maxt,(Ts(P)/Tl(P)). Here Ts(P) and Ta(P) denote the execution time for a parallel program P with optimal
static and optimal dynamic allocations, respectively, executed on a multiprocessor with k identical processors. The
maximum is taken over all parallel programs P consisting ofn processes.

have

m

Z max (Evi),TA(P)
/=1 k

j=l

where the last sum is taken over the indices i, which belong to the/th partition set.
We want to choose the partition A so that TA (P) is minimal. The interesting quantity is

thus

T(P) min TA(P).
all partitions A

The function g(n, k) is defined by

T(P) }g(n, k) max -, all m, n, k type matrices P
m

For given m, n, and k, we will thus be concerned with the problem of calculating
max T (P)/rn over all m, n, k-type matrices P.

A natural conjecture is the estimate T(P)/m < g(n, k) < 2. In the case n < 2k it is
immediately seen to be true by simply grouping the column vectors together in pairs. The
conjecture is not true in the general case as is immediately visible in Fig. 1o However, for
a partition where the size of the sets differ as little as possible, the largest set has n/k].
Then the maximum number of l’s in a set is min(n/k], k)" both the number of slots in
the largest set and the total number of l’s provide bounds. We thus obtain a crude estimate
g(n, k) < min([n/k], k). We will frequently compare the optimal estimate g(n, k) with this
crude estimate.

Our final preparation before the main result is to introduce and summarize the notation
which is relevant in this situation.
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We say that a matrix P is of m, n, k-type if it has m rows and n columns, all entries are
0’s or l’s, and each row has exactly k l’s, where < k < n.

We call a matrix P complete if all possible rows, that is, if all () permutations of the k
l’s, occur equally frequently as rows of P. The number of rows is thus necessarily divisible
by ().

We also need the following three combinatorial functions. Let I be a finite sequence of
nonnegative integers Then we define

b(l) the number of distinct integers in I;
a (I, j) the number of occurences of the jth distinct integer in I, enumerated in
size order, < j < b(l);
rr (k, w, q, l) the number of permutations of q l’s distributed in kw slots, which
are divided in k sets with w slots in each such that the set with maximum number of
l’s has exactly l’s.

4. The optimal estimate. With this notation, the main result is contained in the following
theorem.

THEOREM 1. Given positive integers m n and k, k < n, in the case where w n/ k is an
integer, we havefor all matrices P ofm, n k type

min(w,k)

T(P)/m <_ g(n k) (- /=1 lyr(k, w, k, 1).

lfw n/k is not an integer, we let w In/ kj and denote the remainder ofn divided by
k by nk, i.e., nk n kln/kJ. Then we havefor all matrices P ofm, n, k type,

T(P)/m < g(n,k)
min(w+ ,k) min(w,k.--l

=max(0, [’’-k-"k!W-’l)/2=max(0, rk-tnk
max(/1,/2)

min(l_k-12) )yr(nk w + 1 i l)zr(k ni, w, k i,/2)
\i=max(/,k-lz(k-m,))

Thefunction zr(k, w, q, l) is 0 ifmin(q, w) < or q > kl, otherwise it is given by

yr(k w q,l)=(w)1 (w) ( w ) k,

vlb({l,il it-.I })i ik-t **j=l a({l, it ik-1}, j)!

Here the sum is taken over all sequences of nonnegative integers I {it i-1},
which are decreasing, ij > ij+t for all j k 2, bounded by l, il < l, and have sum

q-l, Y- ij q -1.
For each m, n, k-type matrix P the minimum

T P min TA P
all partitions A

is attainedfor a partition where the sizes ofthe sets in the partition differ as little as possible.
nThe bound is optimal in the sense that if divides m, in which case there exist complete

matrices, we have T(P)/m g(n, k) for all complete matrices P.
In Fig. a plot of the function g(n k) for _< k, n < 50 is presented. Figure 2 shows the

detailed structure of g(n, k).
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The ridge/valley structure of the surface g(n,k) is shown here in detail by studying the function
g(n,k) as a function of k, for each constant n. The locations of global maximas (m), local max-
imas (m,m and local minimas (11) are plotted.
kt

5.0

4O

2O

10

iO 20 30 40 50

3

n=2k

8
n= -k
n=3k

n

3:rd ridge

:30 40

maxk g(n,k)

:st ridge 2:nd ridge

10 20

FIG. 2. Notes: (1) g(n, k) is increasing as a function of n. (2) The straight line equations in the margin are

simply constructedfrom the graph. (3) Thefunction maxk g(n, k) gives the worst case ratiofor all parallel programs
with n processes andfor all multiprocessors with identical processors.

If k > n, the definition g(n, k) is consistent with the allocation problem. Then
each processor has one single process to execute and there is no difference between static and
dynamic allocations. The case g (n, 1) is another trivial case.

The sequences in the function 7r can easily be generated by the algorithm described in
the following lemma. We say that the least decreasing sequence of length/z and sum o" is the
sequence {[ [], /1 lJ}. If cru is the remainder when o" is divided by/z, the
number of ’s is o’u and the number of /’s is # o’u, making the sum of the sequence
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LEMMA 1. Let ) and cr be nonnegative integers and # be a positive integer such that

Every sequence of# integers in the interval 0 < < ., which is decreasing, bounded by
), and has sum or, is generated exactly once by thefollowing algorithm:

1. Take I as the least decreasing sequence of length lZ and sum
2. Find the rightmost position in I, say j, whichfulfills

(a) ij, < 1,
(b) ij, < ij,-I or j 1,
(c) ),+ > 0.

The algorithm terminates ifno such j can befound.
3. The next sequence is obtainedfrom I by increasing the entry in position jl by one

and replacing the subsequence {ij+l its with the least decreasing subsequence
oflength lz j and sum Z;=j,-k-1 ij 1.

4. Go to step 2.

Proofof the lemma. It is immediately clear that the starting sequence is decreasing, has
sum o’, and has entries in the interval 0 < < l. It is also obvious that these properties are
preserved by the algorithm.

Consider a sequence I of this kind. If it is not the last one generated by the algorithm,
the next sequence will have its entry at jl increased. This entry will not decrease again unless
an entry to the left is increased. By reapplying this argument we find that no sequence is
generated twice by the algorithm.

It remains to prove that the algorithm generates all such sequences. This is done by
induction over the length/z of the sequence.

For/z the only sequence is {o" }, which is the starting sequence of the algorithm and
the only sequence generated by the algorithm.

Assume that the lemma is true for all decreasing sequences of length
We want to prove that the algorithm generates all decreasing sequences of length/z + 1,

sum or, and bound ..
These sequences are {min(, or), I1} [cr//z], Ij0}, where 11 Ijo are decreasing

sequences of length/z bounded by min(., r) [cr//z] and with sums o- min(), o’)
cr [cr//z], respectively. Now the algorithm applied on the sequences {min(, or), 11
{[r/lz], ljo} of length/z + with the bounds min(, o’) [cr//z], is, except for the first
entry, the same as the algorithm applied on the sequences {11 ljo of length/z with the
bounds min(, or) [o’//z]. By the induction assumption this generates all decreasing
sequences of length/z. The lemma is proved.

Proofofthe theorem. Consider an arbitrary matrix P of m, n, k type. Let A be a partition
where the sizes of the sets differ as little as possible. We will later prove that the minimum is
attained for such a partition if P is complete. This kind of partition is enough to consider for
an arbitrary m, n, k-type matrix P since we clearly have

TA(P)
min

any partition A

TA(P)
< min with sets of "equal" size

any partition A rn

In the following we derive the optimal upper bound g(n, k) of the rightmost quantity.
Note that some m, n, k-type matrices do not have an optimal partition of this type. An

example of this is the 3, 4, 2-type matrix
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0 0 1)0 0
0 0

Each row in P can be regarded as a permutation of k l’s in n slots. There are of course

() such permutations. Furthermore, there exist n! permutations of the columns of P, where
each permutation produces a possibly different m, n, k-type matrix Pi, n !. When
we permute the column vectors, we permute the rows; all possible rows appear if we perform
all possible column permutations. Now partition A applied to Pi is equivalent to a different
partition Ai applied to the original matrix P in the sense that TA (Pi) TAg (P).

Next we construct a matrix P* from the matrices Pi, which has rn n! rows and n columns,
using the following duplication argument. This will provide control of the partitions.

The first rn rows of P* constitute the matrix P itself. The next rn rows constitute the
matrix P where the columns are permuted according to a specific permutation, which is not
the identity. The following n! 2 blocks of rn rows contain all other permutations of the
columns of the matrix P. We know three facts about the matrix P* which make this procedure
useful.

1. Every row in P* occurs exactly as many times as any other different row in the matrix
P*. Every possible row does appear. That is, P* is a complete matrix.

2. Each column permutation represents a partition Ai of the columns of P, so that
TA(Pi)-- TAi(P),i n!.

3. The quantities TA (Pi), k! relate to the quantity TA (P*) as TA (P*)
_in" TA(Pi).

The first fact is clear since the duplication argument from each row produces all other
nn rows, counting all O’s and all ’s as different. In reality there are (k) different such rows,

hence each is repeated k!(n k) times. Fact 2 follows by an argument above. Observe that the
function T is by definition the sum of an operation made on each row separately. On the fight
side of the equality in fact 3 this summation is carried out separately for the n! parts of P*.

Thus, since T(P) arises from the partition Ai, which gives the smallest value of Tai (P)
TA (Pi), we have T(P) < Tai (P) TA (Pi) for all n!. We then obtain from fact 3,

n!

T(P)/m <_ E T(Pi)/n!m T(P*)/n!m
i=1

We have thus established that the complete matrices are extremal matrices for the present
problem.

A complete matrix has a particularly simple structure. Each permutation in the matrix P*
is repeated rn times if we count every and every 0 as distinct. By releasing this distinction,
each permutation really is repeated mn!(n k)! times. Since this factor only multiplies all
occurring numbers, what is left to study is the complete matrix/3, where each permutation
occurs exactly once. We have

T(P*) mn!(n k)!T(P), so

T(P) < T(P*)/n! mn!(n k)!T(15)/n! ) T().

The matrix/5 has () rows and n columns, and contains each permutation of the k l’s
in the n slots exactly once The columns are grouped together in sets with In/k] or in/kJ
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members. For the maximum operation we are interested in the number of l’s in the set with
most ’s, we have here, say, ’s. For the component sum of the final vector we are interested
in the number of permutations where we have exactly l’s in the set of maximum l’s.

First we consider the case when n!k w is an integer. Then all sets in the partition
contain w vectors.

For the sake of clarity, we compute a few special cases of zr (k, w, k, l) before considering
the general situation In these cases we assume that k < w.

1. Clearly, rr (k, w, k, 1) wk, since here we have to put exactly one in each set In
the first set the can be put in w different slots as it can in all other k sets.

2. r(k w,k,k)= k. Here the first factor comes from the ways of putting all the
l’s in one set, and the factor k is the number of sets where this can be done.

3o rr(k, w, k, k 1) (_l)w(). The second factor in this case is the number of slots
to put the single 1o The last factor is the number of ways to distribute the two different
sets among the k sets.

4. r(k, w, k, k- 2) (kW2)(()(k2) --[- w()/2). The first term is the number of ways
to produce k 2 with the distribution k 2 2 0 0 of the l’s in the k sets.
The other term arises from the distribution k 2, 1, 1, 0 0.

Generally, to begin we have a number of ways to distribute k l’s in k sets regardless of
order both in each set and between the sets. These ways are represented by the decreasing
sequences. The order in each set is disregarded here in such a way that only the number of
l’s is significant. The order between the sets is disregarded by choosing one specific order,
which is decreasing sequences.

In a set of/l’s and w -i O’s there are () different permutations. So, taking the order in

the sets into account, if we have {i i} l’s in the k sets, respectively, there are (itS) (itS)
different permutations Since the maximum number must appear, we always get a factor ()
which can be factored out. The remaining sequence is of length k and has sum k lo

Next we consider the order between the sets. There are k! permutations of the sets. If
there are a({l, i ik-}, j)! sets with ij l’s, we get no new permutations by permuting
within this group of sets. Hence the factor from permuting the sets is

k!
ik-

j=l l)a({/ i ik-1} j)!

The number of permutations which give the number is thus

Fib({l,i i:-})ai i._
"’j=l ({/, il i-}, j)t

summing over the decreasing sequences of length k 1 sum k and bound lo
In the case when n/k is not an integer, we work with a partition where the nk leftmost

sets have w + Fn/k] vectors and the rightmost k n have w Ln/kJ vectors.
The formula in this case is derived from the previous formula by introducing the possibility

that the number of sets k and the number of l’s q are not equal By summing over all possible
maximums to the left (l) and fight (/2), and over all possible numbers of ls to the left (i)
the results for general n and k follow. The bounds of the indexes appear from the limitations
of the number of l’s for which there is room to the left or to the right in the different cases
and from the minimum number of l’s according to l, 12 and

We finally prove the optimality result concerning the type of partition.
nIf the matrix P is complete with () rows then P --/5 and the above calculation is true

with equality if rain,, ,rtt Ta (P) is attained for a partition where the sizes of the sets differ
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as little as possible. Next we prove that this holds for complete matrices. Thus the bound is
attained for programs corresponding to complete matrices.

Let A be a partition of the n columns into k sets with {i i columns in each set,
respectively. Assume that there are ij’s, say i and i2, such that i > i2 q- 2, otherwise we have
the aforementioned type of partition. From the partition A we will obtain a new partition A’
by transferring the i th vector from the first set to the second. We show that the result is never
worse for this partition, i.e., TA,(P) < TA (P). By repeating this transformation a partition
where the sizes of the sets differ as little as possible is finally derived, and the result follows
from the inequality.

nConsider a row in P, that is, a permutation p {p(i)}i= of l’s and O’s. If p(il) 0

nothing happens on this row. If p(i) and Yi=l < -iii,+, the maximum taken over
this row does increase unless other sets contain more l’s. These are the critical permutations.
However, for each such permutation there is a unique permutation/5, where the row maximum
in such a case will decrease. / is defined as a partial mirror image:

p(ilWi2+l-i)
(i)

p(i)

if/= i2ori=il+l il+i2,
all other i.

X-,i +i2Since Y’i2=t p(i) < z_.,i=i.+t p(i) for a critical permutation, we know that/5 is not critical if p
is. Furthermore, it follows from/5 p that-is a bijection. Hence every critical permutation
p can be paired with a unique permutation/3 since P contains each permutatio,n exactly once.

Because p(i) /5(i) for/ i + i2 -+- n and Yii=/(i) > Zti2=i,+l p(i), it is
clear that if the partition change causes the maximum on the row with p to increase, then the
maximum on the row with/5 will certainly decrease. The proof of the theorem is completed.

Given n and k, how many matrices of (k)’ n, k type are complete? Since we obtain

all complete matrices by permuting the rows in a given complete matrix, there are ()! complete
nmatrices. There are in total (k) () different matrices of (k), n, k type: for each row there are

() possibilities and we have () rows. The relative number of complete matrices can now

be estimated by Stirling’s formula n! ()n4-n"

2rr
e k

which tend to zero rapidly as (k) "-+ cxZ. The significance of this is limited, however, since
it is clear that for increasing n and k, matrices very close to complete matrices play a role
increasingly similar to the role of the complete ones.

5. Properties ofthe function g(n, k). The function g(n, k) can be regarded as a weighted
mean value of the integers 1,2 min([n/k], k), where the weights are the number of
permutations which gives to the final sum, divided by the total number of permutations ().
This fact is exploited in this section. The crude estimate can be viewed as the estimate of this
weighted mean value by the largest integer min(n/k], k).

From Theorem 2 we will be able to derive the following description of g(n, k) for large n
and k. We find that g(n, k), like the crude estimate, has an infinite series of plateaus: for each
positive integer to there is an almost planar unbounded part which is a subset of the domain
n > (to 1)k, n < wk, where the values are close to to. After the proof of the theorem this

property is given a more precise formulation. In Fig. the first two plateaus, g and g 2
can be seen. It seems like the distance from the origin to the plateau g z increases very
rapidly with z. The plateau g 3, for example, appears beyond n 100.
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FIG. 3. Functions giving upper and lower boundsfor the diagonal limitfunctions D(w, v) limk__ g(wk +
v, k) are plotted, given by the estimates max(w, to + w(l w-V-1) v) < D(w, v) < to + (1 w-W-l).
Notes: (1) Observe the increasing scale on the v-axis. (2) The plots illustrate the fact that, at least for large k, the
distancefrom the wth plateau to the next increases very rapidly with w.

The crude and optimal estimates often differ strongly, quantitatively. One simple example
of this is the fact that for < n _< 100, < k < 100, the maximum of the crude estimate is
10 while the maximum of g is 2.8.

THEOREM 2. Thefunction g(n, k) has thefollowing properties:
1. g(n, k) is increasing as afunction ofn.
2. For any positive integer w, g(wk, k) is increasing as afunction ofk.
3. For all positive integers v and w we have

to + (1 w-(+)) > lim g(wk + v, k)
k---cx

> max(w, to + w(1 w-+))).

4. Thefunction g(n, k) is unbounded.
In Fig. 3 the functions bounding D(to, v) limk__, g(tok / v, k) are plotted for to

2 7.
Proof (1) g (n, k) minall partitions A TA (P)/m, where P is a complete m, n, k-type matrix.

Let A be a partition where the sizes of the sets differ as little as possible. Now, by adding to
the matrix P one column of zeros only, we obtain the noncomplete m, n -t- 1, k-type matrix
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P0. This column is added to the partition A, producing A0, in such a way that A0 also have
sizes of the sets which differ as little as possible. By the proof of Theorem 2 it follows that
g(n,k) Ta(e)/m TAo(Po)/m < Tao(15o)/m g(n + 1, k), where /fro is a complete
matrix of rn, n + k type. We can choose rn so that it is divisible by both () and (n+).

(2) The increasing property in property 2 follows by adding w columns to the matrix P
with an argument similar to the one in the proof of property 1.

(3) Assume thatk is large, so thatk < (w+ 1)v. When attempting to estimate g(wk/ v, k)
we ofcourse consider m, wk+ v, k-type matrices, so we have v sets with w + column vectors
and k v sets with w vectors. The limit will be derived by estimating the weight to w + I.

[wk+-(w+t)) ofHow many of the total (kk+) permutations give rise to w + 19 To begin,, -o+)
the permutations have all ’s in the first set. There are v sets with size w + 1, so we have v sets
of permutations with at least one set with all l’s. We denote these sets by Blj, j v.

[wg+v-+h members. The sets are not disjoint, forEach of these sets of permutations has g-o+
example, permutations which have all l’s in at least two of the sets appear in two sets of
permutations. Analogously, we have (e) sets of permutations, the Bej s, j (e),

(wk+v-2(w+l)) Observewhich have at least two sets full of l’s. These sets have cardinality -2(w+l)
that each B2j is the intersection of two Blj’S.

In general, there are (i) permutation sets Bij’s having at least sets of all s, each of
[wk+u-i(w+ ’Swhich has t -i(o+t)) members. Each Bij is the intersection of B,j Now recall that if

Ai are n finite sets, we have the relation

iAil-- ..(-1)i+1

all sets C {1, 2 n} with III

This generalizes the rule A t0 B AI 4- BI A fq B for finite sets A and B.
By applying the relation, it follows that the number of permutations which have all l’s in

at least one set of size w + is

Z(__I)i+,(I) ) wk-+-v-i(to-+- l)

i=
k i(w + 1)

Next we divide by (o+) and let k --+ c. What remains of the sum is then

(__1)i+1 (P)to-i(w+l’ |__ (1- to-’(w+l,)Vo
i=l

The main part of the estimates in property 3 now follows from the weighted sum. By letting
v --+ c in the limit applied on n (w 1)k + v, it follows that the limit on n wk + v is
bounded from below by w and property 3 follows.

(4) One consequence of the theorem is that g is bounded on every straight line n
wk / v, n > 1, k > 1, to and v are integers. This bound is expected to increase with to; by (3)
surely the limit as k --+ cxz does. Of course g(n, k) is nevertheless unbounded, which follows
by the existence of the plateaus or by taking first w and then k large enough in estimate 3.

The essence of property 3 is that for large enough v, the limit along the straight line
n wk + v is very close to to + 1. Furthermore, from the crude estimate we get that
g(n, k) < w + if n < k(to + 1). The increasing property of g(n, k) as a function of n now
establishes the fact that the graph of the function g (n, k) contains an infinite series of plateaus,
one for each positive integer. For each integer to + 1, if v and/z are large enough, the values
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of g at the points (n, k) fulfilling wk -t- v < n, k > /z, and (w / 1)k > n are in maximum
norm arbitrarily close to w / 1. However, for large w, v may have to be chosen very large
since w-+l is then very close to 1.

Globally, the function g(n, k) thus has a shape resembling an infinite winding staircase
with constant step height, where each step is narrower, smoother, and considerably more
distant from the origin than the previous step. Closer to the origin the plateaus appear as
slowly rising ridges.
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COMPUTING THE DEGREE OF DETERMINANTS VIA COMBINATORIAL
RELAXATION*

KAZUO MUROTAt

Abstract. Let A(x) (Aij(x)) be a square matrix with Aij being a polynomial in x. This paper proposes
"combinatorial relaxation-" type al....gorithms for computing the degree of the determinant /(A) deg det A (x) based
on its combinatorial upper bound (A), which is defined in terms of the maximum weight of a perfect matching in an
associated graph. The graph is bipartite for a general square matrix A and nonbipartite for a skew-symmetric A. The
algorithm transforms A to another matrix A’, for which (A) (A’) (A’) with successive elementary operations.
The algorithm is efficient, making full use of the fast algorithms for weighted matchings; it is combinatorial in almost
all cases (or generically) and invokes algebraic elimination routines only when accidental numerical cancellations
occur.

It is shown in passing that for a (skew-)symmetric polynomial matrix A (x) there exists a unimodular matrix U (x)
such that A(x) U(x)A(x)U(x)T satisfies (A) (A) (A).

Key words, determinant, matching, polynomial matrix, computer algebra, combinatorial optimization, polyhe-
dral combinatorics
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1. Introduction. Let A(x) (Aij(x)) be an n x n polynomial matrix with

(1.1) Aij(x) Aijs Xs,
sZ+

where the coefficients Aijs are elements of a certain field F (typically the real number field R)
and the summation is taken over a finite subset of nonnegative integers Z+. In this paper we
consider computational procedures for

(1.2) (A) degx det A(x),

the degree of determinant of A(x). In particular, we are interested in algorithms that avoid
the explicit computation of the coefficients fs in the polynomial expansion of the determinant

f(x det A(x , f x
This problem will arise in many different branches of the mathematical sciences. In

control theory (e.g., [33], [38]), for instance, the number of exponential modes of a linear
time-invariant descriptor system Ed/dt F + Gu with descriptor-vector and input-
vector u is equal to (F xE), which is sometimes called the dynamical degree [20], [23].
Thus, the determination of the dynamical degree of a large-scale descriptor system is a typical
example of the present problem.

The present work is another attempt of the "combinatorial relaxation" approach to alge-
braic computations, which has been proposed recently by Murota [26] for the computation of a
Newton polygon. This approach establishes a link between computer algebra [6], [9], [34] and
mathematical programming (combinatorial optimization [21], [31], in particular). We make
use of results in mathematical programming in two different ways. Firstly, the proposed algo-
rithms use the results from polyhedral combinatorics in their individual steps; the correctness
relies on duality theorems and the practical efficiency relies on fast combinatorial algorithms.
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Secondly, the algorithms are designed in line with a general idea known as "relaxation" in
mathematical programming, which typically appears in integer programming [35]

In general, an algorithm of "combinatorial relaxation" type consists of the following three
distinct phases:

Phase 1" Consider a relaxation (or an easier problem) of a combinatorial nature to the
original problem and find a solution to the relaxed problem.

Phase 2: Test for the validity of this solution to the original problem.
Phase 3 (in case of invalid solution): Modify the relaxation so that the invalid solution

is eliminated.
It is important for computational efficiency that the relaxed problem can be solved efficiently
and the modification of the relaxation in Phase 3 need not be invoked many times.

The proposed algorithms for 3(A) are designed based on well-known "generic" character-
izations (see 2.1 and 4.1) of 3(A) in terms of perfect matchings of a graph G(A) associated
with the given matrix A. Here the word "generic" refers to an algebraic assumption that
the nonzero coefficients Aijs in (1.1) are subject to no algebraic relations, but its practical
interpretation would be "so long as no accidental numerical cancellation occurs."

For a general nonsymmetric matrix A, the associated graph G(A) is a bipartite graph
Go(A), each edge of which corresponds to a nonzero entry Aij(x) and is associated with
deg Aij(x) as a weight. The maximum weight 30(A) of a perfect matching in Go(A) is equal
to the highestdegree of a nonzero term in the determinant expansion, which is an upper bound
on 3 (A) (i.e., 30(A) > 6 (A)) and is gen...erically equal to 6 (A).

For a skew-symmetric matrix A, 60(A) is not qualified as a generic characterization of
3(A) because of the nonnumerical cancellation of terms resulting from skew-symmetry. In
this case, 3 (A) is generically equal to twice the highest degree of a nonzero term in the Pfaffian
[22] and the relevant combinatorial object is known to be matching in a nonbipartite graph
G(A). In fact, this connection of nonbipartite matchngs and skew-symmetric matrices was
used in the original proofofTutte’s theorem [37]. Let 6 (A) denote twice the maximum weight
of a perfect matching in G (A). Then 6(A) > 6 (A).and the e..quality holds generically.

The proposed algorithm first finds 6(A) (either 6o(A) or 6t (A)) instead of 6(A) by solv-
ing a weighted-matching problem using an efficient combinatorial algorithm (Phase 1) and
then tests for nonsingularity of a constant matrix to see whether 3(A) equals 6 (A) (Phase 2).
The algorithm invokes an exception-haning algebraic elimination routine to modify A only
when it detects a discrepancy between 3(A) and 3(A) resulting from numerical cancella-
tion (Phase 3). Since numerical cancellation occurs only rarely (or nongenerically), the
proposed algorithm is in almost all cases combinatorial and hence suitable for large scale
problems.

In Phase 3 the matrix A (wijh 6(A) < 6(A) 1) is modified to another matrix A’ such
that 3(A’) 6(A) and 3(A’) _< 3(A) 1. The modification algorithm makes essential use of
dual variables based on the duality theorem for the polyhedral description of matchings of the
following kind (see 2.2 and 4.2):

3(A) max{weight of a matching}

max{primal IP(A)} < max{primal LP(A)}
min{dual LP(A)} < min{dual IP(A)},

where LP(A) and IP(A) stand for the linear program and the integer program for the matching
problem in G(A), respectively. The integrality theorems (Edmonds [12], Cunningham and
Marsh [8]) state that all these "obvious" inequalities are in fact equalities. Combining this
with 6(A) < 3(A), in which equality holds generically, we obtain

(1.3) (A) < (A) min{dual IP(A)},
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which is satisfied with equality in the genetic case, as an extension of the duality principle.
The modification algorithm of Phase 3, which relies on the duality (1.3) above, amounts to
establishing a novel identity

(1.4) 6(A) min{3(A’) A’ 6 [(A)},

where A,4 (A) U (x)A (x) U (x) is unimodular} for a nonsymmetric A and (A)
{U(x)A(x)U(x)T U(x) is unimodular} for a skew-symmetric A (see Propositions 3.3 and
4.14). Note that 3(A) 6(A’) for all A’ 6 .M (A). Such identity will enforce the link between
linear algebra (determinant) and graph/matroid theory (matching) observed in various contexts
[5], [13], [18], [23], [32].

This paper is organized as follows. In 2 general nonsymmetric matrices are treated by
means of bipartite matchings. This is extended to symmetric matrices in 3. The main body
of this paper is in 4, where skew-symmetric matrices are treated by means of nonbipartite
matchings. The complexity issues are discussed in 5.

2. General nonsymmetric matrices. In this section we consider a general n x n matrix
A(x) (Aij(x)) with Aij(x) F[x, 1/x], i.e.,

(2.1) Aij(x) Aijs xS
sEZ

where Aijs G F (a field) and the summation is taken over a finite subset of integers. We
allow negative powers in x, though we are mainly interested in polynomial matrices (with
Aij(x) F[x]). For S F[x] or S F[x, l/x] the set of n n matrices over S will be
designated by .Mn(S) or simply by A//(S). As in (1.2), we denote by 8(A) the highest degree
of a nonzero term in detA(x) 6 F[x, l/x]; note, however, that 8(A) can be negative and
8(A) -cx if det A(x) O.

Most of the results of this section can be found in the unpublished report of Murota [25]
and are implicit in [26]. They are, however, included here in an explicit form for a clear
exposition of the central ideas of the present paper without involving too many technicalities,
which will be introduced later in 3 and 4.

2.1. Generic characterization of degree of determinant. The structure of A is conve-
niently represented by a bipartite graph G G(A) Go(A) defined as follows: The vertex
set V V (G) is the disjoint union of the row set R and the column set C of A, and the edge
set E E(G) is identified with the nonzero entries of A, i.e.,

E(G) {(i, j) R, j C, Aij(x) 7 0}.

To edge e (i, j) E is attached a cost (or weight)

(2.2) Ce Cij max{s Aijs # 0} degx Aij (x).

The set of end vertices of an edge e (i, j) 6 E is denoted as 0e {i, j}, and this notation
is extended for M _c E as OM [,.J{0e e 6 M}. A subset M of E is called a matching
if IOMI 2IMI and a perfect matching if IOMI 2IMI VI. We denote by/z(G) the
maximum size of a matching in G. The cost (or weight) of M c_ E is defined by

, Cij.
(i,j)EM

M is an optimal matching if M is a perfect matching of maximum weight.
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We now introduce g0(A), which plays the central role as a combinatorial counterpart of
g(A). We define

(2.3) g0(A) max{c(M) M is a perfect matching in G0(A)},

where g0(A) -cxz if no perfect matching exists. It is easy to see that go(A) is equal to the
highest degree of a nonzero term in the defining expansion of the determinant

(2.4) det A(x) sgna lY’I Ai,i) (x ).
a i=1

On recognizing a perfect matching as an alias of a permutation, we obtain the following
proposition.

PROPOSITION 2.1. Let A (x be a square matrix.
(1) g(A) < go(A).
(2) The equality holds generically, i.e., if the set of nonzero leading coefficients {Aijs

Aij(x) # O, S deg Aij(x)} is algebraically indepe.ndent (over a subfield ofF).
This observation means that we may expect g0(A) to be equal to g(A) if accidental

numerical cancellation does not occur. We say that A(x) is upper tight if g(A) go(A).
Our algorithm takes advantage of the available fast combinatorial algorithms (see 1],

[19], [21 ], [31 ]) to compute g0(A), which serves as a first approximation to g (A). The outline
ofthe proposed algorithm of "combinatorial relaxation" type follows. The detailed procedures
of Phase 2 and Phase 3 will be described later.

ALGORITHM FOR COMPUTING g (A) (OUTLINE).
Phase 1: Compute g0(A) by solving the weighted-matching problem in G(A) using an

efficient combinatorial algorithm....
Phase 2: Test whether or not g(A) g0(A) (without computing g(A)).

If so, output go(A) as g (A) and stop.
Phase 3: Modify A to another matrix A’ such that g(A’) g(A) and go(A’) _< g0(A)- 1.

Put A "= A’ and go to Phase 1.

Example 2.1. Consider the following matrix:

A(x) x

with t being a nonzero parameter (free from x).

ox2)x3

The associated bipartite graph G Go(A) is depicted in Fig. 1. It has six vertices and
eight edges, and admits four perfect matchings with weights 3, 3, 2, and 0. By direct expansion
we obtain

det A(x) -ax3 + X3- X
2 + O/ (1 -ot)x -x2 + O.

Accordingly, we have

3 ifot-#l,go(A)=3, g(A)= 2 if or= 1.

2.2. Test for upper tightness. This section describes a procedure for Phase 2 which
tests for the upper tightness (i.e., g(A) g0(A)) of A(x) without expanding det A(x). The
procedure makes use of the standard duality results for bipartite matchings, which follow from
the integrality of the associated linear program.
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i=1
c=0

j=l

i=2 j=2

i=3 j=3

FIG. 1. Bipartite graph Go(A) (Example 2.1).

Consider a linear program

PLP: maximize

(2.5) subject to Z e-- (i e V),
Oegi

e>O (eeE),

and its dual

(2.6)

DLP: minimize Pi (= re(p)),
ieV

subject to Pi nt" Pj >-- ij ((i, j) E).

Note that (e e 6 E) is the primal variable and p (Pi V) (PRi
R) (Pcj j C) is the dual variable.

As is well known, these linear programs enjoy the integrality property.
PROPOSITION 2.2. (1) PLP has an integral optimal solution (with e {0, 1} (e E)).
(2) If Ce is an integer for e E, DLP has an integral optimal solution (with Pi Z

(i e V)). rq

This implies that

(2.7) g0(A) min{re(p) P is feasible to DLP }.

The optimality of a perfect matching is expressed by the complementary slackness con-
dition as follows: For e (i, j) 6 E,

(2.8) Ce "j ij Pi Pj

is called the reduced cost with respect to p. Then p is (dual) feasible if and only if ’e <- 0
(e e E). An edge e is said to be tight (with respect to p) if’e 0. We set

E*= E*(p)= {e 6 E I’ -o},

which is the set of tight edges. We also set G* G* (p) (V, E* (p)).
PROPOSITION 2.3. Let M be a perfect matching in G(A) and p be a dualfeasible solution.

Then both M and p are optimal ifand only ifM c_ E*(p). [3
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The following corollary is important for our algorithm. Note that E* (p) depends on the
choice of p.

PROPOSITION 2.4. Let p be a dual optimal solution and M be a subset of E. Then M is
an optimal matching in G ifand only ifM is a perfect matching in G* (p). [3

In accordance with E* we extract the "tight" part. from A (x). Namely, for a dual feasible
p we define

(2.9) T(A; p)= A*= (Ai), Ai { ijcij otherwise.if(i, j) 6 E*(p),

That is,

(2.10) Aij(x) xp’+pl (Aij q- O( 1))

where o( denotes an expression consisting ofnegative powers ofx. Note that A* is a constant
matrix and that it depends on p.

The linear algebraic significance of the dual variables is made clearer by the "leveling"
or "scaling" operation E(A; p) defined by

(2.11) (A; p) diag (x; --PR) A(x) diag (x; -Pc),

where, for a vector r (ri n), in general,

diag (x; r) diag (xr xr2 xr" )o

Note that (A; p) 6 A//(F[x l/x]) if p is integral.

PROPOSITION... 25 .Let A(x=.E(A;...p) and re(p) ,iv Pi.
(1) 6(A) 6(A) n’(p), 60(A) 30(A) 7r(p).
(2) lfp is dualfeasible, then A(x) A* + o(1)o
Proof. (1) The first relation is immediate from (2.11). The second follows from

,(i,j)t(cij Pi Pj) c(M) iv Pi, which is true for any perfect matching M.
(2) This is a restatement of (2.10).
The following proposition shows that the test for upper tightness of A(x) is reduced to

the test for nonsingularity of a constant matrix A*o It is emphasized that an integer-valued
dual optimal solution can be computed efficiently.

PROPOSITION 26. Let p be a dual optimal solution and A* 7"(A; p).
(1) det A(x) xa(a)(detA + o(1)). In particular, det A* is independent of the choice

of p, although the matrix A* itselfdepen on po
(2) A(x) is upper tight (i.e., g(A) g0(A)) ifand only if A* is nonsingular.
Proof It follows from Proposition 2.5 (1) that A() is upper tight if and only if A(x)

(A; p)is upper tighto Note that A* T(A; p) 7"(A; 0)o Then Proposition 2.5 (2)implies

det A(x) detA* + o(1),

This completes the proof since g0(A) 0 by the optimality of po
Remark 2.1. In general, #(G0(A*))(= maximum size of a matching in Go(A*)) is called

the term-rank of A*, and term-rank A* > rank A* with equality in the genetic case. By
construction, term-rank A* n for p dual optimal. Hence the above proposition may be
rephrased as follows: A (x) is upper tight if and only if term-rank A* rank A*.

Example 2.2 (continued from Example 2 1). As the optimal dual variables we may take

PR O PR2 1 PR3 0; PC’ 0 PC2 0, PC3 2c

Those variables and the reduced costs are illustrated in. Fig. 2o
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PR2 PC2 --0

PR3 "-0
--2

PC3 2

FIG. 2. Reduced costs and dual variablesfor Go(A) (Example 2.2).

We have g0(A) zr(p) 3. According to (2.9) we have

(2.12) A*= 0
0

Proposition 2.6 shows that A (x) is upper tight for ot - since det A* or.

2.3. Transformation to an uppetight matrix. When the matrix A(x) is not upper
tight, the combinatorial characteristic 6o(A) gives only an upper bound on 6(A). In this
section we will show how to transform efficiently A(x) to an upper-tight matrix through
repeated unimodular row transformations. Note that the Hermite normal form (see, e.g., [30],
[35]) guarantees the existence of such an upper-ght matrix, though this fact is not used below.

Given A (x) .A/[ (IV[x, Ix]) with (A) < 0(A), we must modify A (x) to another matrix
A’(x) (AIj(x)) such that

(P1)^A’(x) U(x)A(x) with U(x) A4(F[x, l/x]), det U(x) 1;
(P2) 30(A’) _< 60(A)- 1.

In particular, (P1) implies 6(A’) (A). It should be obvious that we can get an upper-tight
matrix by repeatedly applying this transformation.

When A(x) is a polynomial matrix (belonging to .A//(F[x])), it is natural to require that
U(x) be a polynomial matrix in (P3a) below. On the other hand, (P3b) will turn out (see
5) to be convenient for bounding the worst-case complexity Thus we impose either of the
following additional conditions:

(P3a) U (x)
(P3b) U (x) .Aq(F[1/x]).
Recall that a constant matrix A* is derived from A (x) with reference to an optimal dual

variable p {PRi, PCj}, which is assumed to be integer valued. We have term-rank A* n,
while rank A* < n, since A(x) is not upper tight (cf. Proposition 2.6 and Remark 2.1). Then
there exists (cf. (2.19) below) a nonsingular constant matrix U (Ui) with det U such
that

(2.13) term-rank (UA*) < n.

Using the dual variables {PRi, Pcj} for G0(A), we define the transformation from A to
A’ by

(2.14) A’(x) U(x)A(x),
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where U(x) (Uik(x)) is given by

(2.15) Ui(x) Uik xr(i’k)

Note that

cr (i, k) PRi PRk.

U (x) diag (x" PR) U diag (x; --PR),

and hence (2.14) is equivalent to

(2.16) A’(x) UA(x)

in terms of A(x) (A; p) and A’(x) =/2(A’; p). (P1) is satisfied since p is integer valued.
We claim that property (P2) is satisfied.
PROPOSITION 2.7. Assume that p is integral dual optimal. (P2) holds ifU satisfies (2.13).
Proof Since

A’(x) UA(x) UA* 4- O(1/x)

and term-rank (UA*) < n by (2.13) we see 80 (A’) _< 1. By Proposition 2.5 this is equivalent
to

6o(A’) _< re(p)- --0(A)- 1,

where re(p) is defined by (2.7).
As for property (P3), we easily see the following.
PROPOSITION 2.8. Assume that p is integral dual optimal.
(1) (P3a) holds if [Uik : 0 == PRi >_
(2) (P3b) holds if [Uik 0 ===: PRi
The above statement says, in effect, that U should be in a triangular form if its rows and

columns are rearranged according to the orderings determined by the dual variables associated
with the rows of A(x).

A concrete choice of U that meets conditions (P 1), (P2), and (P3) is now suggested. Since
rank A* < n, there exists a nonzero vector u (ui R) (indexed by the rows) such that

(2.17) uTA* 0.

We choose u with minimal support, i.e., such that supp u {i 6 R ui 0} is minimal with
respect to set inclusion. (Such u can be computed by the Gaussian elimination on A* with
column pivoting.) Let h supp u be such that either

(2.18) (a) PRh max{PRi suppu} or (b) PRh min{pm suppu},

and define U by

Uk/Uh ifi=h,(2.19) Ui tik otherwise,

where tik denotes the Kronecker delta (6ik for k and 0 otherwise). The additional
condition (P3a) or (P3b) is satisfied accordingly as h is chosen by the criteria (a) or (b) in
(2.18).

Example 2.3 (continued from Example 2.2). Consider the case of ct 1, where A* of
(2.12) is singular. We may take u (-1, 1, 0)T with suppu {1, 2}. According to the
criterion (a) we have h 2 and

U= -1 0
0 0
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Then the matrix A is modified to

(1A’(x)=diag(1,x, 1).U.diag(1,x-,l).A(x)= 0

which is upper tight with 3o (A’) g (A’) 2.

ox2)0
2.4. Description of algorithm. Combining the procedures given above, we obtain the

following algorithm for computing g(A) for A(x) e .A/I(F[x, l/x]).

ALGORITHM FOR COMPUTING g (A) (A: NONSYMMETRIC MATRIX),
Step 0

Cmin :--- mini,j min{s Aijs 0}.
Step 1

(1): Find a maximum weight perfect matching M and integer-valued optimal dual
variables PRi (i R), Pcj (j C) for G0(A);
go(A) "= c(M) (g0(A) -cx if no perfect matching exists).

(2): If g0(A) < n Cmin, then stop with g(A) :=
Step 2

(1): Ai coefficient of xpRi+pcj in Aij(x) (i R, j C). [cf.(2.9)]
(2): If det A* - 0, then stop with g(A) := g0(A).

Step 3 [det A* 0]
(1): Find u with minimal support such that uTA* 0. [cf.(2.17)]
(2): Let h e supp u be such that either

(a): PRh max{PRi suppu} or (b): PRh min{PRi suppu}.

(3): s :--- Uh; Ui :"- Ui/S (i n).
(4):

Aij(x) "= { xa(h’k) uk Akj (X

Aij(x)

where r(h, k) PRh PRk.
(5): Go to Step 1.

if/=h,j C,
otherwise,

[cf.(2.14), (2.19)]

It follows from (P2) that the number of iterations in the above algorithm is bounded by
"’0(A())- g (A()) ifg(A()) # -c, where A) denotes the input matrix. Note that, in general,
g0(A) < n. Cmax(A), where

Cmax(A) max{degx Aij(x) e R, j C}.

The stopping criterion in Step (2) is to cope with the case of g(A)) -oe. In Step 2,
we need row elimination operations on A*. Though it requires O(n3) arithmetic operations
in F in the worst case, it can be done much faster since A* is usually very sparse in practical
applications. Other worst-case complexity issues will be discussed in 5.

Let us consider the probabilistic behavior ofthe algorithm. As already noted in Proposition
2.1, g0(A) differs from g(A) only because of accidental numerical cancellation. Let us fix
the structure (i.e., the index set {(i, j, s) Aijs 7 0} of nonzero coefficients in (2.1)) of the
input matrix A A() and assume that the numerical values of coefficients Aijs R F
can be modeled as real-valued random variables with continuous distributions. Then we have
go(A) g(A) with probability one, which means that Step 3 is performed only with null
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probability. Since the worst-case time complexity for the assignment problem is bounded by
O(n3), we obtain the following statement, indicating the practical efficiency of the proposed
algorithm. The average time complexity of the proposed algorithm (in the above sense) is
bounded by a polynomial in n (e.g., n3).

3. Symmetric matrices. In this section we consider a symmetric matrix A (x) A (x)"r

Jn(F[x, l/x]) based on the result of Murota [28]. Symmetric matrices can be treated in
a way quite similar to the previous section by means of bipartite matchings, as opposed
to skew-symmetric matrices for which nonbipartite matchings must be employed (cf. 4)
A new feature with a symmetric matrix is that in Phase 3, a congruence transformation
A’ (x) U (x)A (x)U (x)r should be used to preserve the symmetry.

3.1. Generic characterization ofdegree ofdeterminant. For a symmetric matrix A (x)
we again employ the bipartite graph G G(A) Go(A) and 0(A) of (2.3) as defined
in 2. Proposition 2.1 remains valid with an obvious modification in the second statement and
0(A) serves as a genetic characterization of (A) in spite of the algebraic dependency of the
coefficients resulting from symmetry.

PROPOSITION 3.1. Let A (x) be a symmetric matrix.
(1) (A) < 0(A).
(2) The equality holds generically, i.e., if the set of nonzero leading coefficients {Aijs

Aij(x) O, s degAij(x), < j} is algebraically independent (over a subfield of F),
provided F is not ofcharacteristic two..

Proof. (1) This is a special case of Proposition 2.1 (1).
(2) In the determinant expansion (2.4) there appear similar terms, which, however, never

cancel each other, having the same sign.
We can..design an algorithm of "combinatorial relaxation" type, as outlined in 2.1, on

the basis of 0(A). Whereas Steps and 2 of the algorithm of 2.4 remain valid, Step 3 needs
to be adapted to symmetry.

3.2. Transformation to an upper-tight matrix. We will show how to transform A(x) to
an upper-tight matrix through repeated unimodularcongruence transformations. The existence
of such an upper-tight matrix itself does not seem obvious (sere Proposition 3.3 below).

Given a symmetric A (x) .A/[ (F[x, 1/x]) with (A) < 30 (A), we must modify A (x) to
another matrix A’(x) (Aij(x)) such that

(P1-S) A’(x) U(x)A(x)U(x)T with U(x) .A//(F[x, l/x]), det U(x) 1,
and (P2) of 2.3 are satisfied. Furthermore, we sometimes impose either (P3a) or (P3b) of

2.3.
We assume that p {PRi, PCj is integer-valued dual optimal. Define a new dual variable

P’ {P’m P’cj by P m P’ci fii (i n), where

ffi (PRi + Pci)/2 (i n).

Noting that p’ is also dual optimal we consider A* T(A; p’) with respect to which we choose
u according to (2.17) and define U by (2.19) and U(x) by (2.15), where h is determined by
(2.18) with p replaced by p’. Properties (P2) and (P3) are satisfied as in 2.3, whereas (P1-S)
needs a separate consideration since p’ may not be integer valued.

PROPOSITION 3.2. (P1-S) is satisfied if p is integer-valued.
Z, fiProof For (i,j) E (p’) we have /3i- fij Z since fii 5_Z, and

i + j cij Z. The minimality of supp u implies that fii fij Z for i, j supp u (cf.
[28, proof of Lem. 7]). Hence U(x) of (2.15) belongs to .A4(F[x, l/x]).

3.3. Description ofalgorithm. The following algorithm is obtained for computing 3 (A)
for a symmetric A(x) A/I(F[x, 1/x]).
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ALGORITHM FOR COMPUTING (A) (A" SYMMETRIC MATRIX).
Step 0

Cmin "---mini,j min{slAijs 0}.
Step 1

(1)" Find a maximum weight perfect matching M and integer-valued optimal dual
variables PRi (i ...R), Pcj (j C) for G0(A);
30(A) := c(M) (30(A) - if no perfect matching exists).

(2)" If 30(A) < n Cmin, then stop with 6(A) "= -cxz.
Step 2

(1)" /i := (PRi + Pci)/2 (i n)
(2)" Ai := coefficient of xPi+PJ in Aij(x) (i R, j C). [cf. (2.10)]
(3)" If det A* :/: 0, then stop with 3 (A) "= 30 (A).

Step 3 [det A* 0]
(1)" Find u with minimal support such that uTA* 0. [cf. (2.17)]
(2)" Let h 6 supp u be such that either

(a): Ph max{p/ 6 suppu} or (b)"/5h min{/i 6 suppu}o

(3)’s "= Uh’ u :--ui/s (i n).
(4):

-.k -l xcr(h’k)+r(h’l)ukUIAkl(X) if j h,

Aij(x) ’.kXtr(h’k)UkAkj(X) if (i h, j h)
or(j =h,ih),

Aij(x) otherwise,

where tr(h, k) Ph Pk" [cf. (P1-S)]
(5): Go to Step 1.

Since this algorithm (with the criterion (a) in Step 3 (2)) terminates after a finite number
of steps, it gives a proof for the following existence theorem.

PROPOSITION 3.3 [28]. For a nonsingular symmetricpolynomial matrix A (x) .All (F[x])
there exists a unimodular matrix U(x) .A4(F[x]) such that A’(x) U(x)A(x)U(x)T is
upper tight, i.e., ((A) --) (A’) 0(A’).

4. Skew-symmetric matrices. This section is the main part of the present paper and
considers an n n skew-symmetric matrix A(x) -A(x)T .A//n(F[x l/x]) of the form
(2.1), where it is assumed that n is even and the characteristic of F is distinct from two. Since
nonnumerical (or combinatorial) cancellations of terms happen in the determinant expansion
because of skew-symmetry, 30(A) is no longer qualified as a generic substitute for 3(A). To
cope with this nonnumerical, as well as accidental numerical, cancellation we employ the
standard apparatus of nonbipartite matchings. The algorithm shares the same technique with
[27], while it contains some additional features (described in 4.2 and 4.4) for algorithmic
efficiency. Our algorithm makes substantial use of dual variables, and the integrality and
the total dual (half-) integrality of the perfect matching polytope of Edmonds [11], [12] and
Cunningham and Marsh [8] play the crucial role.

4.1. Generic characterization ofdegree ofdeterminant. As already observed by Tutte
in his pioneering work [37] and nicely expounded by Lovfisz and Plummer [22], the com-
binatorial structure of a skew-symmetric matrix A is represented by a nonbipartite graph
G G(A) G(A) defined as follows" The vertex set V V(G) is identified with the row
set R of A, which in turn has a natural one-to-one correspondence with the column set C;
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IVI IRI ICl n. The edge set E E(G)is identified with the nonzero entries of A,
i.e.,

E(G) {(i, j) V, j V, Aij(x) 0},

where (i, j) and (j, i) are not distinguished, and hence G has no parallel edges. An edge
e (i, j) E is associated with the cost Cij deg. Aij(x that represents the degree of the
corresponding entry.

For a skew-symmetric A of even order the Pfaffian of A is defined by

pfA Z ap,
P

where the summation is taken over all partitions P {{il, jl} {iv, jr}} (v n/2) of
V n} into unordered pairs and

(1 2 2v-1 2v)’IAikjk"at,=sgn jl iv j
k=l

The following relation is well known.
PROPOSITION 4.1. For a skew-symmetric A ofeven order, det A (pfA)2.
In place of o(A) of (2.3) we consider

(4.1) 3(A) 2. max{c(M) M is a perfect matching in G(A)}.

By convention wput 6(A)= -c if no perfect matching exists in G(A). Note the dis-
tinction between ;0(A) and 31 (A); the former is equal to the highest degree of a term in the
defining expansion of det A, while the latter is twice the highest degree of a term in pfA.

The following proposition parallels Propositions 2.1 and 3.1.
PROPOSITION 4.2. Let A(x be a skew-symmetric matrix.
(1) 3(A) < 3(A).
(2) The equality holds generically, i.e., if the set of nonzero leading coefficients {Aijs

Aij(x) # 0, s deg Aij(x), < j} is algebraically independent (over a subfield of F),
provided F is not ofcharacteristic two.

Proof. The proof is immediate from the observation that a perfect matching M in G
corresponds to a (nonzero) term ap in the Pfaffian.

It should, be understood that 3(A) _< 61 (A) _< 30(A) holds but that 30...(A) can be strictly
larger than ; (A) even in the genetic case (see Exarnple 4.1 below). Hence 30(A) is not suitable
for the starting point of our algorithm, whereas 3 (A) serves as the combinatorial relaxation
of 3(A).

Our algorithm ofcombinatorial relaxation type, as outlined in 2. l, takes advantage offast
algorithms for nonbipartite matchings (see [1], [2], [8], [12], [16], [17], [19], [21], [31], [36])
to compute 6 (A). Since the dual variables associated with a nonbipartite matching problem
involve not only those for vertices but also those for odd subsets (or blossoms), Phase 2 and
Phase 3 in the outlined algorithm demand substantial considerations not needed in 2 and 3.

Remark 4.1. The algorithm for a skew-symmetric matrix, which will be developed in
the rest of this paper, should be an extension of the algorithm of 2.4 for a general matrix.
Given a square matrix A we may consider a skew-symmetric matrix A- o A

-AV 0)" Then

3(,0 26(A) and 6" (A-) 230(A). Thus, from the combinatorial point of view, the notion of
skew-symmetric matrices is more general than that of general square matrices (!), as evidenced
by the generalization ofmatroid to delta-matroid (see Bouchet [4], Chandrasekaran and Kabadi
[7], and Dress and Havel [10]).
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2
C=3

i=1

6 3 0

i=3
0

FIG. 3. Graph GI(A) (Example 4.1).

i=4

i=6

Example 4.1. Consider the following skew-symmetric matrix (n 6)"

(4.2) A(x)

0 X4 + X X5 0 0 0
--X4 X 0 X6 0 X 0

--X5 --X6 0 X 0
0 0 --1 0 U

0 --X --X3 0 X4

0 0 0 ff --X4 0

with a nonzero parameter o.
The associated graph G G (A), shown in Fig. 3, has 6 vertices and 9 edges. By

inspection we see that it admits three perfect matchings with weights 8, 8, and 7, and

pfA A12A34A56 -k- AI3A25A46 AI2A35A46 (ct -+- 1)x 8
--cX

7 + X
5
--ctx4.

Accordingly, we have

16 ifa#-l,16, 3(A)= I 14 ifa=-l.

Note also that 30(A) 19, which can never be equal to 3 (A). [3

4.2. Extraction of the tight part. In this section we must design an efficient procedure
for Phase 2 by extending the idea used in 2.2. The concrete algorithm will be described in

4.4. Note that the upper tightness of a skew-symmetric A is defined with respect to 3 (A)
(and not to 30 A ).

As an extension of (2.5) and (2.7) we consider the following primal-dual pair of linear
programs. The PLP is a standard description of the perfect matching polytope,

PLP: maximize

subject to

(4.3)

’Cee,
eE

e= (i e V),
Oegi

Ze <
]Sl-1

2
(SS),

Oe_S

e>_0 (e E);
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DLP: minimize Pi "q- - IS[
---qs (=-- re(p, q)),

iV SS

(4.4) subject to Pi + Pj + Z qs > ij ((i, j) E)
S_{i,j}

qs>O (SS),

where

(4.5) S {s c_ v ISI 3 ISI is odd}.

Note that (e e 6 E) is the primal variable and (p, q) (Pi V) @ (qs S S) is
the dual variable.

With respect to q we define

(4.6) S+ $+(q) {S S lqs > 0},

which denotes the (index) set of the active dual variables qs. With abuse of terminology, we
call a member of ,9 a blossom and one of ,9+ (q) an active blossom with respect to q. ,.3+ is
said to be nested if S fq $2 :fi 0 (S 6 S+, $2 6 S+) implies either Sl

_
$2 or S1

_
$2.

The (total dual half-) integrality stated below is crucial to our algorithm.
PROPOSITION 4.3 (Edmonds [12]). (1) PLP has an integral optimal solution (with e

{0, 1} (e E)).
(2) Ifce is integerfor e E, DLP has an optimal solution (p, q) such that

(4.7) (Int2) Pi -Z (i V) and qs Z (S ,9),

(4.8) (Nest) S+ (q) is nested. [3

By virtue of the primal integrality we have (cf. (2.7))

(4.9) 3 (A) 2 min{zr(p, q) (P, q) is feasible to DLP }.

Edmonds’s primal-dual (blossom) algorithm [11], [12], [14] yields a dual optimal solution
(p, q) that satisfies (Int2) and (Nest). Throughout this paper we assume (and maintain) dual
variables satisfying the two conditions (Int2) and (Nest).

The optimality (complementarity) of a perfect matching, stated in Proposition 2.3 for
bipartite matchings, is extended as follows. For e (i, j) 6 E, the reduced cost defined in
(2.8) is modified to

(4.10) c"e C"j ij Pi Pj Qij,

where

(4.11) Oij {qs {i, j}

_
S S}.

Then (p, q) is (dual) feasible if and only ife < 0 (e 6 E) and qs >_ 0 (S 6 $). An edge e is
said to be tight (with respect to (p, q)) ife 0. We set

E* E*(p,q) {e 6 E [’’e --0}

which is the set of tight edges. We also set G* G*(p, q) (V, E*(p q)).

The total dual integrality, a stronger property than (Int2), is known (Cunningham and Marsh [8]) but half-
integrality is sufficient and relevant for the subsequent argument.
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PROPOSITION 4.4. Let M be a perfect matching in G(A) and (p, q) be a dual feasible
solution. Then both M and (p, q) are optimal (i.e., c(M) 7r(p, q)) if and only if M
E*(p, q)and [{e m 10e _c S}I-- (IS]- 1)all S S+(q).

As in 2.2 we extract the "tight" part from A(x), which is composed of the entries
corresponding to the edges in E*. For a dual feasible (p, q) we define

if (i, j) 6 E*(p, q),
(4.12) 7"(A; p, q) A* (Ai), Ai 0 otherwise.

That is,
(4.13) Aij(x) X, pi+pj+Qij (Ai + o(1)).

The "leveling" or "scaling" operation (2.11) is modified as

(4.14) /2(A; p) diag (x; -p). A(x). diag (x; -p)o

PROPOSITION,,, 4.5. Let a(x) (; p).
(1) 3(a) 3(a) 2 Yiv Pi, l(a) 6(a) 2 iv Pi.
(2) If(p, q) is dualfeasible then Aij(x) xQiJ(Ai + o(1)).
Proof (1) The first relation is immediate from (4.14). The second (well-known) fact

follows from the equality Z(i,j)rM(Cij Pi Pj) c(M) -,iv Pi, which holds true for
any perfect matching M.

(2) This is a restatement of (4.13).
Example 4.2 (continued from Example 4.1). We may take the following as the optimal

dual variables:
p 0, p2 1, P3 2, P4 --2, P5 2, P6 2;

qs 3 for S 1, 2, 3} and qs 0 otherwise. We have 6 (A) 2zr(p, q) 16.
Those variables and the reduced costs are illustrated in Fig. 4. According to (4.14) and

(4.12) we have

0 x + X 0 0 0
--X3- 0 X 0 0

--X3 --X3 0 X -1 0A(X) =/2(A; p)
0 0 -1 0 c
0 -1 -x- 0
0 0 0 --c --1 0

(4.15)

0 0 0 0
-1 0 0 0
-1 -1 0 0 0 71A* T(A; p,q)
0 0 -1 0 ot

0 -1 0 -1 0
0 0 0 --or --1 0

and

(4.16)

In analogy with Proposition 2.6 one might be tempted to claim that A(x) is upper tight
(i.e., 6(A) 61 (A)) if and only if A* is nonsingular. The following example shows, however,
that this is not the case.

Example 4o3. Consider the following skew-symmetric matrix (n 6):

(4.17) A(x)

0 X X X2 0 0
--X 0 X 0 X2 0
--X --X 0 0 0
--X2 0 0 0 fix2 0
0 --fiX

2 0 --fiX2 0
0 0 --1 0 --1 0
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qs=3 ’=0

Pl

P3 ,
0

p6=2

FIG. 4. Reduced costs and dual variablesfor G (A) (Example 4.2).

with nonzero parameters a and/3. As the optimal dual variables we may take pi 0
(i 6) and

forS-St,
qs 2 forS= $2,

0 otherwise,

where S 1,2, 3} and $2 1, 2, 3, 4, 5}. We have

(4.18)

0 0
-1 0 0 c

A*=T(A’p,q)= -1 -1 0 0 0
-1 0 0 0 /3
0 -a 0 -/ 0
0 0 -1 0 -!

0
0

0

0

Direct expansions show that

det A(x) ((/ + 1)x5
ctx4)2, det A* (/3 + a)2,

whereas 81 (A) 10. With c 2 and/3 we see that the upper tightness of A does not
imply det A* 0, and with a 2 and = -1 we see that the converse is not true either.
Thus there is no relation between the upper tightness of A and the nonsingularity of A*. [3

To derive a necessary and sufficient condition for the upper tightness we extract the "tight"
terms as follows. For a dual feasible (p, q) we define

(4.19) lg(A; p, q) A(x) (Ai(x)) Aij(x Ajxpi+pj+Q’j.

Note that A* A (1).
The following proposition states that in order to test for the upper tightness of A (x) we

can concentrate on the "tight" part A(x). The last statement (4) says that an analogy of
Proposition 2.6 holds true if S+ (q) = t3.

PROPOSITION 4.6. Let (p, q) be a dual optimal solutionfor a skew-symmetric matrix A (x)
and A () H(A p, q).

(1) 81(A) 8 (A).



COMBINATORIAL RELAXATION 781

(2) Let * denote the coefficient ofx3’(A) in det A(x), i.e.,

det A(x) x’<a)(13* + o(1)).

Then

det A(x) XA)(t3* + O(1)).

(3) A(x) is upper tight (i.e., 6(A) 6 (A)) ifand only if A(x) is upper tight.
(4) Assume q 0 and let A* 7"(A; p, q). Then/3* det A* and hence A(x) is upper

tight ifand only if A* is nonsingular.
Proof (1) By Proposition 4.4, M c_ E is an optimal matching in G if and only if M is an

optimal matching in G*.
(2) By Proposition 4.1 we have det A (pfA)2, det A (pfA)2. Recall the definition

of pfA (cf. 4.1), which is a sum of terms over all partitions or perfect matchings,

(4.20) pea Z at + Z a,
M:c(M)=8 (a)/2 M:c(M) <3 (a)/2

where aa4 4- r-l(i,j)t Aij. The first summation yields the terms of degree 61 (A)/2 and
the second yields those of lower degrees. Also, for pfA we have an expression similar to

(4.20) consisting of two summations. The first summation on the fight-hand side of (4.20) for
A is taken over all optimal matchings in G, whereas the first summation for pfA is over all
optimal matchings in G*. This implies that those summations are identical, since the optimal
matchings in G are nothing but the optimal matchings in G* as noted above. Therefore we
obtain

pfA pfA + O(Xd’(a)/2),

from which the claim follows immediately since det A (pfA)2 and det A (pfA)2.
(3) The upper tightness of A (as well as that of A) is equivalent to/3* # 0.
(4) Since q 0, Proposition 4.4 shows that M is an optimal matching in G if and only if

M is a perfect matching in G*. Hence the first summation on the right-hand side of (4.20) is

equal to X’(a)/2 pfA*. Hence/3* (pfA*)2 det A*. [3

Proposition 4.6 above does not readily lead to an efficient algorithm for testing for the
upper tightness since it does not provide a way to compute/3* when S+(q) :/: 0. Based
on the complementary slackness (Proposition 4.4), we will show in 4.4 that the test for
upper tightness of A(x) is reduced to the test for nonsingularity of a number of constant
matrices derived from A*. This makes it possible to determine efficiently (with O(n3) arith-
metic operations in F) whether or not A is upper tight. First, in 4.3 we introduce a gen-
eral modification scheme that will often be employed implicitly or explicitly in our algo-
rithm.

4.3. General modification scheme. We prepare a general modification scheme, which
will be used again and again in our algorithm. This modification scheme is nothing but a
localized and symmetrized version of the operation introduced in 2.3.

Recall that A* 7"(A; p, q) is defined by (4.12) with respect to a dual feasible (p, q).
Let T c V be such that

(4.21) A*[T, T] is singular,

where A*[T, T] means the submatrix of A* with row and column indices in T, and

(4.22) T f) S : 0, S $+(q) implies T _c S.

The latter imposes a certain "locality" of T with respect to the active blossoms.
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The modification of A(x) to, say, B(x) with respect to (T, p, q) is defined as follows.

GENERAL MODIFICATION SCHEME FOR (A, T, p, q).
Step 1" Since A*[T, T] is singular by assumption, there exists a nonzero vector u

(ui F 6 V) such that

(4.23) bl Ai 0 (j T), i.eo, u[T]iA*[T, T] 0,
i6T

where u[T] (ui T). We choose u with minimal support; in particular,
supp u c_ T.

Step 2: Let h 6 supp u be such that either

(4.24) (a)" Ph max{p/ supp u} or (b)" Ph min{pi supp u}.

The index h thus determined is sometimes referred to as (A; T, p, q).
Step 3: Divide ui (i V) by Uh (so that uh "= 1). The elimination matrix U

(Ui, i, k V) is defined by

Uk ifi=h,
fik "= ik otherwise.

Step 4: The transformation matrix U (x) is defined as

U(x) := diag (x; p) U diag (x; -p),

I Xtr(h’k)blk ifi h,(4.25) Ugh(x) I ik otherwise,

where cr (h, k) Ph Pk.
Step 5: Finally, we put

B(x) := U(x)A(x)U(x)r,
which will be referred to as D(A; T, p q). Note that Z;(B; p) U /2(A; p) Ux.

The properties of this modification scheme are summarized in Proposition 4.7 below.
PROPOSITION 4.7. Suppose (p, q) is dual feasible with the property (Int2) of (4.7). If

T c__ V satisfies (4.21) and (4.22) then thefollowing statements hold true:

(1) B(x) -B(x)v, (B) ((A).
(2) U(x) 3/[(F[x, l/x]) and hence B(x) .M(F[x, l/x]). If the criterion (a) is

adopted in Step 2, then U(x) .Ad(F[x]).
(3) Qij Qkj (i, k T; j V), where ij is defined by (4.11).
(4) (p, q) is dualfeasiblefor B, and hence ( (B) < 2zr(p, q).
(5) B* 7"(B; p, q) satisfies Bh --Bfh 0 (j T), where h (a; T, p, q).

(6) lf (p,q) is optimalfor A, then 31(B) < ’ (a).
Proof. (1) The first equality is obvious and the second follows from det U (x) 1.
(2) The matrix A* is represented by the graph G* G* (p, q), which consists of the tight

edges E*. The submatrix A*[T, T] corresponds to the vertex-induced subgraph G*[T]
(T, E*[T]) of G* induced on T, where E*[T] {(i,j) 6 E* 6 T,j T}. LetC,
C2 (Ct T) be the connected components of G*[T]. Then the submatrix A*[T, T] is a

block-diagonal matrix (or direct sum) with each diagonal block corresponding to a connected
component A*[T, T] ( A*[Ct, Ct]. Hence the minimality of suppu implies that suppu
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is contained in a single component. Therefore, if 6 supp u and j 6 supp u, the two vertices
and j are connected in G*[T] (and afortiori in G*).
On the other hand, we see that Pi Pj Z for (i, j) 6 E* since Pi -t- pj cij Qij Z

lZ,and Pi Pj 72 by (Int2). Hence Pi--Pj Z if the two vertices 6 V and j 6 V
are connected in G*. Hence we conclude that pi Pj G Z if 6 supp u and j 6 supp u. In
particular, or(h, k) Ph P, Z in the definition (4.25) of U(x).

(3) Let/ 6 T and j 6 V, and note from (4.11)that Qij Y-{qsl{i, j} c__. S S+(q)}.
If {i, j} c_ S 6,9+ (q) then T A S 5 0, which implies T c_ S by (4.22). Hence Oij Y{qs
T U {j} c_ S 6 S+ (q)}, the right-hand side of which is independent of 6 T.

(4) Put A(x) (A; p) and B(x) (B; p). Then the dual asibility of (p, q) for A
is equivalent to deg Aij < Qij and that for B is equivalent to deg Bij < aij. The claim is
obvious for (i, j) with i, j h since Bij Aij. For h, j - h we have Bhj YiT Ui Aij
and deg Aij < aij ahj for 6 T by (3) Hence deg Bhj < ahj. Thus (p, q) is feasible for
B and (4.9) implies 6L(B < 2zr(p, q)o

(5) Substituting Aij(x) xQiJ(Aj + o(1)), ij(x) xQ’./(Bi -+" o(1)) into (x)
U4(x)UT and noting (3) above, we obtain B* UA*U"r. Then the claim follows from
(4.23).

(6) The optimality of (p, q) four A impl.es 6 (A) 2zr(p, q), which is to be combined
with the inequality in (4) to derive (B) < (A). [3

4.4. Test for upper tightness. Using the general modification scheme of 4.3, we now
describe the algorithm for testing for the upper tightness of A. The algorithm is based on a
matrix version of Edmonds’s shrinking operation. It is assumed that (p, q) is optimal for A
with the properties (Int2) and (Nest) of (4.7) and (4.8). Recall that the upper tightness of A (x)
is equivalent to that of A(x) =/g(A; p, q) (cf. Proposition 4.6).

Before describing the algorithm in full generality, let us introduce the main idea by
considering a simple case where $+(q) {S, $2} with S C $2. Example 4.4 below
will illustrate the following arguments. Set B<(x) A(x), B<)(x) L/(B<); p, q),
(pO), qO) (p, q).

First we deal with S S. We apply the general modification scheme to B (x) with
T T $1. Note that the prerequisite (4.21) is met since T is odd and a skew-symmetric
matrix of odd order is singular. Also note that the "locality" (4.22) is satisfied. Let

B)(x) D(B); T, pO, qO), h 7-/(B); T, pO), qO)

and set V T hi, By Proposition 4.7 the dual variable (pO, qO)) remains feasible to
B)(x). We modify (pO), qO)) to (p), ql)) by

P() {p) + qs,/2 for 6 S h, 0 for S S,
q

pO) otherwise, qs) otherwise.

Since ,_,h,j(x)nl) --’-’jh,nl (x) 0 (j S h), the new dual variable (p), q)) is feasible

to B); we set B)(x) (B(1); p(1), q(l)). The dual objective value is invariant, i.e.,
zr(pO), qO)) 7r(p), q). Thus we have eliminated S from the set of blossoms, i.e.,
S+(q) {S2}. We have B)(x)ij "-"-B ji (x)= 0 (i V, j V- V) since qs, > 0.

Next we apply the similar procedure to S $2. Namely, we apply the general modification
scheme to B)(x) with T T2 ($2 S) t3 {h}, where IT2[ is odd. Note that "locality"

0. Let(4.22) is satisfied for q) since qs,

B(2) (x) 79(B)’, T2, p) q)), h2 7-((B)’, T2, p q))
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and set V2 T2 h2. We modify the dual variable as

2) {p)+qs,./2 fori6S2-h2,
q(s2) { 0 for S $2,

(1) qs1) otherwise.Pi otherwise,

/ (2) (X) --/ (2)Since "-’h,.j "jh,. (X) 0 (j $2 h2), (p(2) q(2)) is feasible to B (2) We also have

rr(p(l), q(1)) 7r(p(2), q(2)). Thus we have eliminated the blossoms, i.e., S+(q(2)) .
Finally, we put B(x) B(2)(x), (p’, q’) (p(2), q(2)), and V0 V (V U V2);

note that V0, V, and V2 are pairwise disjoint. We may possibly have h h2. It is very
important that the final dual variable (p’, q’) has no blossoms by construction. Note also that
B* T(B; p’, q’) takes a block-diagonal form, splitting into a direct sum

B*[Vk, Vj]-- O (k#j; k,j---0,1,2).

We are interested in the coefficient r* of X’(A) in det A(x). If (&o’, q’) remains optimal
to B, then by Proposition 4.6 (2),/3* agrees with the coefficient of x8’(a in det B(x). Since
q’ 0, we can apply Proposition 4.6 (4) to conclude

/* det B* det B*[Vo, Vo]. det B*[V, V]. det B*[V2, V2].

This expression is valid even if (p’, q’) fails to be optimal to B (as a consequence of numer-
ical cancellation) since both sides then vanish. This formula enables us to compute 3", the
nonvanishing of which is equivalent to the upper tightness of A.

Though we have derived the expression of/3* with reference to B(x), we can compute
r* directly without involving the variable x and dual variable (p, q). Let us denote by C
the matrix of coefficients of B(x), i.e., C B(1); accordingly, we set C(k) B(k)(1)
(k 0, 1, 2). If we denote by U and U2 the (constant) transformation matrices found in the
general modification scheme, i.e., E(B(1); p(0)) U E(B(); p(0)). UT, E(B(Z; p())
U2 E(B(ll; p(1)), u2"r, we see that C(’) is obtained from C(-) by first making the product
) UgC(’-1 Uk and then suppressing the submatrices (k)[Vs,, V Vsk and ()[V
Vsk, Vsk to zeroes. Obviously, C(2 B* and, therefore,

3* det C(2)[g0, Vo]" det C(2)[VI, Vii. det C(2)[V2, g2].

The operation for obtaining B* C(2) may be regarded as a matrix version ofthe shrinking
operation in Edmonds’s blossom algorithm. In particular, hk (k 1, 2) corresponds to the
bases of blossoms.

The basic idea illustrated above can be carried over to the general case by virtue of the
property (Nest) of (4.8). The algorithm consists of alternate applications of the two distinct
operations until q 0 results"

(i) Extract the tight part of B, i.e., B(x) "= L/(B; p, q).
(ii) Apply the general modification scheme to B to update B, i.e., B(x) :=

D(B; T, p, q), and adjust the dual variable (p, q).
Thus we obtain the following algorithm, which assumes that dual optimal solution (p, q)

with properties (Int2) and (Nest) is given. It is emphasized here that the whole computation
can be done with O(n3) arithmetic operations in F. The implementation details to enhance
the practical efficiency are left to the reader.
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ALGORITHM FOR TESTING FOR THE UPPER TIGHTNESS OF A.
Step 1" C "= A*; S := S+(q).
Step 2: If S 0 then go to Step 6, otherwise let S be a minimal element of S and delete

S from S;
T := (S-[-Js’s+[s] S’)U{hs, IS’ S+[SI},
where

S+[S] S’ C S S’ is a maximal member of S+ (q) properly contained in S}.

Step 3: Find a nonzero vector u (u F V) such that

uiCij 0 (j T),
iT

where we choose u with minimal support; in particular supp u __c T.
Step 4: Choose h 6 supp u arbitrarily and divide ui (i V) by Uh (so that Uh "= 1).

The elimination matrix U (Uik i, k V) is defined by

Uk ifi =h,
Uik ":

ik otherwise.

Step 5: h s "= h; Vs := T- hs;
C :-" ucuT; Cij :- Cji :-- 0 (i Vs, j V Vs); Go to Step 2.

Step 6:

V0:=V- U Vs;
SS+(q)

/if* := det C[Vo, V0]. H det C[ Vs, Vs];
SS+(q)

If/3* :fi 0 then A is upper tight, otherwise A is not upper tight.

Thus we have obtained an efficient procedure for Phase 2, in which we must decide
whether or not 3(A) 3t (A). To sum up, Proposition 4.6, which is applicable only to the
special case with q 0, is now extended to the general case as follows.

PROPOSITION 4.8. Let (p, q) be a dual optimal solution for a skew-symmetric matrix
A(x), and C be the matrix obtainedfrom A* 7-(A; p, q) by the algorithm for testing the
upper tightness ofA..

(1) det A(x) X3’(A)(I* - o(1)), where

/3* detC[V0, V0]. H detC[Vs, Vs].
SS+(q)

(2) A(x) is upper tight (i.e., (A)
Proof The argument illustrated above for the case of S+(q) {$1, $2} with S C $2

carries over to the general case. To see this, consider another case where S+ (q) St, S,
with S q S 0, St C $3, Se c $3. Then the active blossoms are "shrunk" in the algorithm
either in the order of indices SI, $2, $3, or in the other order $2, S $3. Since St and S
are disjoint, the resulting coefficient matrix is the same. Thus the essential point is already
captured in the simplest case.
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Example 4.4 (continued from Example 4.3). We apply the above arguments to the
matrix A(x) of (4.17) in Example 4.3. We have S+(q) {SI, $2}, where St {1,2,3}
and $2 {1, 2, 3, 4, 5}. The matrix B(x) and the dual variable (p, q) do not appear in the
algorithm, but are important for understanding the procedure.

We have B() (x) B() (x) A (x) for this matrix. In Step we initialize the matrix C
to A* of (4.18), and {Sl, $2}. In Step 2 we have S S, S+[S] 0, and T Tt S.
We may take uT (1, 1, l, 0, 0, 0) in Step 3 and h h 3 in Step 4. This means

0 X 0 X2 0 0
--X 0 0 0 OlX2 0
0 0 0 X2 --OlX2

--X2 0 --X2 0 fiX2 0
0 -otx2 otx2 -3x2 0
0 0 -1 0 -1 0

The dual variable is modified to

{ 2 forS=S2_l) for 1, 2, q(slPi 0 otherwise, 0 otherwise,

We have 7/’(p(1), q(l)) 5 zr(p, q). The tight part of B1) (x) with respect to the modified
dual variable is given by

Bo(l)(x =/d(B(1); p(l), q(1))

0 X3 0 0 0 0
--X 0 0 0 0 0
0 0 0 X2 --O/X 2

0 0 --X2 0 fiX2 0
0 0 cx2 -3x2 0
0 0 -1 0 -1 0

The matrix C is transformed to

C(1)

0 0 0 0 0
-1 0 0 0 0 0
0 0 0 -a
o o - o t o
0 0 a -/3 0
0 0 -1 0 -1 0

in Step 5.
Returning to Step 2 we obtain S $2, S+ [S] St }, and T T2 ($2 St) tO {h

{3, 4, 5}. Then we may take ua" (0, 0,/3, or, 1, 0) in Step 3 and h h2 5 in Step 4. This
means

O(2) (x)

0 x3 0 0 0 0
-x3 0 0 0 0 0
0 0 0 x2 0
0 0 -x2 0 0 0
0 0 0 0 0 /3+1
o o -l o -3- o

The dual variable (p(l), q(t)) is modified further to

2
3- for/=l,2,

p2) for 3, 4,
0 otherwise

q (2) 0.
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Note that yr(p(2), q(2)) 5. The matrix C is accordingly changed to

C(2)

0 0 0 0 0
-1 0 0 0 0 0
0 0 0 0 0
0 0 -1 0 0 0
0 0 0 0 0 fl+l
0 0 0 0 -t- 0

In Step 6 we obtain V {1, 2}, V2 {3, 4}, V0 {5, 6}. The matrices B(x)and C
at the termination of the algorithm are, respectively, given by B2) (x) and C). With respect
to dual variable (p’, q’) (p2, q2) we have B* 7-(B; p’, q’) C), which is in a
block-diagonal form. Finally, we obtain

/3* = det B*
det B*[V, V]. det B*[V2, V2]. det B*[Vo, Vo]
det C[VI, Vl]-det C[V2, V2]. det C[Vo, Vo]

0---det(-01 )’det( 0-1 ).det(_fl_l
(fl "4- 1)2.

fl+lo)

As claimed in Proposition 4.8, this agrees with the coefficient ofx 0, which has been obtained
by direct expansion in Example 4.3.

The final matrix B(x) is obtained from A (x) as

B(x) 7)(U(D(H(A); T)); T2).

If we were to omit the operations H as

B(x) 7)(D(A; T); T2),

we would obtain

(x)

0 X 0 X2 OX2 0
"-X3 0 0 0 gX2 0
0 0 0 x2 0

--X2 0 --X2 0 0 0
--O/X2 --OX2 0 0 0 / +
0 0 -1 0 -fl- 0

for which the final dual variable (p’, q’) is not feasible. This explains why the operation
H has been introduced. Note also that, whereas (x) = U(x)A (x)U (x)T for some uni-
modular U (x), B(x) is not obtained from A(x) by such a unimodular congruence transfor-
mation. VI

Remark 4.2. As explained for the simple situation, the algorithm above implicitly repeats
extracting the tight part and transforming it by the general modification scheme. The resulting
matrix has a dual optimal solution (p’, q’) with q’ 0. A possible alternative method is to
resort to the procedure of "resolution of blossoms", which will be explained in 4.5 and 4.6,
and which transforms A(x) to another matrix (x) = U(x)A(x)U(x)T (where det U(x) 1),
which admits a dual optimal solution (p", q") with q" 0. The latter approach, retaining all
the nontight entries, is less efficient than the algorithm above. [3

4.5. Transformation of a blossom-free matrix. When there is a gap between 8(A)
and (A), the matrix A(x) should be transformed to an upper-tight matrix through repeated
unimodular congruence transformations (Phase 3).
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The basic approach using the dual variables, as introduced in 2 and 3 for the bipartite
case of g0(A), also turns out to be effective for a skew-symmetric matrix. However, a novel
technique must be devised before it can be implemented for the nonbipartite case, in which
dual variables qs associated with blossoms are involved. The technique, which we name the
resolution of blossoms, bears resemblance to the operation of shrinking/expanding blossoms
in Edmonds’s algorithm.

Given a skew-symmetric A(x) .M(F[x, l/x]) with (A) < (A), we will show how
to modify A(x) to another matrix A’(x) such that

(P1-S)’(x) (x)A(x)U(x)T with U(x) .M(F[x, l/x]), det U(x) 1,
(P2-S) (A’) < t (A) 2.

In addition, we sometimes impose either (P3a) or (P3b) of 2.3.
The algorithm to be proposed for this modification consists of the following two stages:
Resolving blossoms: Given a dual optimal solution (p, q) for A satisfying conditions

(Int2) and (Nest) of (4.7) and (4.8), we find A’ of (P1-S) and a dual feasible solution
(p’, q’) for A’.... such that q’ 0, p’ satisfies (Int2), and zr(p, q) rr(p’, q’). This
implies that (A’) < 2zr(p’, q’) 2zr(p, q) g (A). Since there are no blossoms
(i.e., S+ (q’) 0) for the resulting matrix A’, we call A’ a blossom-free matrix and
this operation the resolution of blossoms. At the end of this stage we set A "-- A’;
(P, q) "= (p’, q’).

Decreasing gapfor blossom-free matrix: Given a nontight A (with (A) < (A)), to-
gether with a dual optimal solution (p, q) satisfying (Int2) of (4.7) and q 0, we
find A’ such that (P1-S) and (P2-S) are satisfied.

It is clear that alternate applications of these two stages result in an upper-tight matrix. We
postpone the description of the stage of resolution of blossoms to 4.6 and consider the second
stage here.

Let A be a nontight blossom-flee matrix. Assume that 8(A) < (A) and a dual optimal
solution (p, q) satisfying (Int2) and q 0 is available. Then A*[V, V] is singular by Propo-
sition 4.6, and, therefore, the general modification scheme of 4.3 can be applied to A with
T V. The resulting matrix A’ possesses the properties (P1-S) and (P2-S) as claimed below.

PROPOSrrIoN 4.9. Suppose a skew-symmetric A(x) .A4(F[x, I/x]) satisfies 8(A) <
(A), and that (p, q) is a dual optimal solution satisfying (Int2) of (4.7) and q O. Then

(P1-S) and (P2-S) are satisfied by A’(x) D(A; V, p, q). In addition, (P3a) or (P3b) is met
by the matrix U(x) according to whether criterion (a) or (b) is used.

Proof. Note that the "locality" condition (4.22) is trivially satisfied since q 0. Then
(P1-S) fo,.[llows from Propositio 4.7.

Set A(x) (A; p) a_.nd B(x) (B; p, where B(x) A’(x) D(A; V, p, q). Note
that (P2-S) is equivalent to 8 (B) < -2 since 8 (A) 0 by q 0. Using Aij(x) Aj +o(1)
(cf. Proposition 4.5 (2)) and (4.23) we obtain

 .iAi +
iV iV

For (i, j) with i, j :/: h we have Bij(x) Aij(x) Aij "Jr" o(1). Therefore 8(B) < 0, which

implies (B) < -2 since (B) 2Z by (P1-S). F1

Example 4.5 (continued from Example 4.2). Consider the following skew-symmetric
matrix (n 6)"

(4.26) A()(x)

0 X4 + X --X2 0 0 0
--X4 X 0 --X 3 0 X 0

X2 X 0 --X4 + X 0
0 0 --1 0
0 --X X4 X --1 0 X4

0 0 0 -- --X4 0
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c=3
P2 2 2

P3 "-2 P4 =-2
0

FIG. 5. Graph G1 (A)with modified A A2) (Example 4.5).

with a being a nonzero parameter. It may be mentioned that this matrix is obtained from A (x)
of (4.2) in Example 4.1 by the resolution of blossoms (to be described in 4.6), though this
fact is not used here.

The dual variables (p, q) (p0), q0)) with q0 . 0 given in Example 4.2 are also
optimal for A). The matrix A, however, admits an alternative set of optimal dual variables
(p, q) (p, q)) withq 0 and

p(l)- p,,)_ 5 pl) 2 p4,) -29 p6
)-, 2 -, P5 =2, =2,

and hence A) is blossom free. Using the blossom-free dual variable (pl), q)) we transform
A according to the proposed procedure We have

A* T(Af); p), q))

0 0 0 0 0
-1 0 0 0 0 0
0 0 0 -1 0
0 0 -1 0 c
0 0 -1 0
0 0 0 -c -1 0

Since detA* (a + 1)2, let us assume a -1 for A,)(x) to be nontight (cf. Proposition
4.6). The vector u of (4.23) is given by uT (09 0, -1, 0, 0, 1), supp u {3, 6}, and h 6
according to either criterion (a) or (b). We obtain A(2) D(AI); V, p), q))"

0 X4 + X --X2 0 0 X2

--X4 X 0 --X3 0 X3 X3

A2)(X) x2 x 0 --x4 + x 0
0 0 --1 0 0
0 -x3 x4 x3 -1 0 x3

--X2 --X 0 0 --X3 0

for which we find an (integer-valued) optimal dual variable (p, q) (p(2), q2):

pl2)-- 2, p2)= 2, p2) 2, p4
(2)-- --2, p2) 2, p2) 1;

and q(2) 0.
The associated graph G (A(2)) is depicted in Fig. 59 which shouldbe compared with G (A)

of Fig. 3. We see that A(2) is upper tight with 6(A (2)) ?J" (A (2)) 27r(p (2), q(2)) 14 since

A* 7"(A(2); p(2), q(2))

0 0 0 0 0
-1 0 0 0 0
0 0 0 -1 0
0 0 -1 0 0
0 0 -1 0
0 -1 0 0 -1 0

is nonsingular and q(2) 0.



790 KAZI.IO MUROTA

4.6. Resolution of blossoms. We present an algorithm for the resolution of blossoms,
which is introduced in 4.5 as a sort of preprocessing operation in Phase 3. In testing for
the upper tightness of A (x), we have already shown in 4.4 how to derive from A (x) another
matrix B(x) which admits an optimal dual solution (p, q) with q 0. The algorithm to be
presented here is a generalization of the same idea.

Given a skew-symmetric A(x) .A//(F[x, l/x]) along with a dual optimal solution
(p, q) satisfying the conditions (Int2) and (Nest) of (4.7) and (4.8), we will find U(x)
.A/I(F[x, I/x]) with detU(x) (cf. (P1-S)) such that A’(x) U(x)A(x)U(x)v admits
a dual feasible solution (p’, q’), which is blossom free (q’ 0), half-integral (p’ satis-

fying (Int2)), and has the same objective value (rr(p, q) zr(p’, q’)). This implies that
3 (A’) < 2zr(p’, q’) 27r(p, q) 3t (A). The resolution of blossoms can be applied irre-
spective of the upper tightness of A (i.e., 3(A) < 3 (A) is not assumed here).

Our algorithm repeats resolving a minimal member ofS+ (q) by modifying A and (p, q).
PROPOSITION 4.10. Let (p, q) be a dual optimal solution for A satisfying the condition

(Nest) of(4.8), and S be a minimal member ofS+ (q).
(1) A*[S, S] is singular, i.e., (4.21) is satisfied with T S.
(2) The "locality" condition (4.22) is satisfied with T S.
Proof (1) SI is odd and a skew-symmetric matrix of odd order is singular
(2) The proof is obvious from the minimality of S. [3

A minimal blossom S is eliminated by repeatedly changing the matrix A with the general
modification scheme of 4.3 and adapting the dual variables. Note that Proposition 4.10
shows that the modification scheme in 4.3 is applicable with T S. Recall the notations
D(A; T, p, q) and (A; T, p, q).

ALGORITHM FOR THE RESOLUTION OF A MINIMAL BLOSSOM S.
Step 1: B := A; (/3, ) := (p, q).
Step 2: Apply the general modification scheme to (B, S,/5, ) to obtain B =

D(B; S, fi, ) and h := 7Y(B; S,/, ).
Step 3: "= ming,s_h{-- deg Bhj(X) +fih + fij + Ohj}, where Ohj is defined by (4.11)

with reference to ;
2 "= 4s/2;
If < 52 then go to Step 4, otherwise go to Step 5.

Step 4: /i:=fii+ (i6S-h);s:=s-2;GotoStep2.
Step 5: fii :=/3i + 2 (i G S- h); s := s 22 (= 0); Stop.

The behaviors of the above algorithm are stated below.
PROPOSITION 4.11. Let (p, q) be a dual optimal solution satisfying (Int2) and (Nest) of

(4.7) and (4.8), and S be a minimal member ofS+(q). Referring to the above algorithm we
have thefollowing statements:

(1) At each execution of Step 3, we have l Z, > . Hence, at the beginning of
Step 2, (fi, ) satisfies the condition (Int2) of (4.7).

(2) The algorithm terminates after at most qs executions ofStep 4.
Let B, h, (fi, ) denote the variables at the termination ofthe algorithm.
(3) B(x) U(x)A(x)U(x)T with U(x) .A/[(FIx, l/x]), det U(x) 1, and, therefore,

B(x) -B(x)T, 3(B) 3(A), and B(x) A4(F[x, l/x]). If criterion (a) is adopted
consistently in the modification scheme employed in Step 2, then U (x) .A//(F[x]).

Z (i V), fii Pi (i V- S).(4) s 0, s’ qs’ (S : S’ S+ (q)), and fii "(5) zr(/, 4) zr(p, q).
(6) (fi, ) is feasible to B(x) and hence (B) < 2zr(fi, ) 27r(p, q) (A).

Z. Hence (1)Proof During the iterations of Steps 2-4, we have deg Bhj Z and t 6

and (2) are established. Then (3) follows from Proposition 4.7. In Step 5 we have 52 Z,
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which, combined with (1), implies the claims of (4). In the updates of (/5, ) in Steps 4-5,
zr(fi, 4) remains unchanged since IS hi 2 x ((ISI 1)/2). The feasibility of (/5, 4) to

B(x) claimed in (6) follows from Proposition 4.7. [3

The algorithm for the resolution of all blossoms is now presented. It is assumed that (p, q)
is a dual optimal solution satisfying the conditions (Int2) and (Nest) for a skew-symmetric
A(x) A4(F[x, l/x]). Throughout the following algorithm S- means S+(q) for the given
q, i.e., S =-S+(q). For S S- we define

$[S] S’ C S S’ is a maximal member of S- properly contained in S}o

The essence of the algorithm below is to apply the resolution algorithm for a minimal
blossom to all the members S 6 S- in an order which is consistent with the partial order
defined by set inclusion. Proposition 4.12 below shows that the relevant conditions are satisfied
by S.

ALGORITHM FOR THE RESOLUTION OF BLOSSOMS.

Step 1" B "= A; (fi, ):= (p, q); S-"= S+(q).
Step 2:If,9+() 13 then stop, otherwise let S be a minimal element of S+().
Step 3: Apply the general modification scheme to (B, S,/3, ) to obtain

B := D(B; S,/3, 4) and h := (B; S, fi, ).
Step 4: t := minjs-h {-- deg Bhj(X) + fih q- fij -+- Ohj }, where O.hj is defined by (4.11)

with reference to ;
2 :--- 4s/2;
If < 52 then go to Step 5, otherwise go to Step 6.

Step: /3i :=/3i+ (i 6 S-h);4s:=4s-2;GotoStep3.
Step 6: ffi :-- ffi q- 52 (i 6 S h); 4s :: 4s 262 (: 0);

T "= (S [,_Js, esgtSl s’) [,.J{hs, s’ e s-[s]};
h s := h; Vs := T h s; Go to Step 2.

PROPOSITION 4.12. For Step 3 of the above algorithm we have thefollowing statements:
(1) B*[S, S], where B* 7-(B; fi, ), is singular, i.e., (4.21) is satisfied.
(2) The "locality" condition (4.22) is satisfied with respect to T S and q .
(3) The condition (Int2) of(4.7) with respect to (fi, ) is satisfied.
Proof (1) SI is odd and a skew-symmetric matrix of odd order is singular.
(2) This holds because S is a minimal element of S+ ().
(3) The proof is the same as the proof for Proposition 4.11(4). [3

It should be clear that S+() decreases monotonically starting with S-, which is bounded
by n/2 in size. Hence Step 2 is executed at most n/2 times. On the other hand, Proposition
4.11 bounds the number of loops of Step 3 to Step 5. Namely, Step 3 is executed at most

Ys(qs / 1) times. Therefore the above algorithm terminates.
For completeness we summarize the properties of the matrix B(x) and the dual variable

(/, 4) at the termination ofthe above algorithm, though they follow readily from the statements
in Proposition 4.11.

PROPOSITION 4.13. Let (p, q) be a dual optimal solution satisfying (Int2) and (Nest) of
(4.7) and (4.8)for a skew-symmetric A(x) .A4(F[x, l/x]). Let B(x) and (fi, 4) be the
variables at the termination ofthe algorithmfor the resolution ofall blossoms.

(1) B(x) U(x)A(x)U(x)T with U(x) .AA(F[x, l/x]), det U(x) 1, and, therefore,
B(x) -B(x)T, a(B) 6(A), and B(x) JD/(F[x, l/x]). If criterion (a) is adopted
consistently in the modification scheme employed in Step 3, then U (x) .AA (Fix]).

(2) (fi, 4) is a feasible...solution to B(x) such that 4 --AO’ (fi, 4) satisfies (Int2), and
7r(, 4) Jr(p, q). Hence 61 (B) < 2zr(fi, 4) 2zr(p, q) 31 (A). [3
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Example 4.6 (continued from Example 4.5). As mentioned in Example 4.5, the matrix
A), as well as (p), ql)), is obtained from A(x) of (4.2) in Example 4.1 by the resolution
of blossoms. We see that h 3 (according to criterion (a)) and A)(x) U(x)A(x)U(x)T

with

0 0 0 0 0
0 0 0 0 0

U(x)-- x2 -x 0 0 0
0 0 0 0 0

[3

0 0 0 0 0
0 0 0 0 0

4.7. Description of algorithm. We summarize here the whole algorithm for computing
for a skew-symmetric A(x) .A//(Fix, 1/x ]).

ALGORITHM FOR COMPUTING (A) (A" SKEW-SYMMETRIC MATRIX).
Step 0

Cmin "--mini.j min{slAijs 0}.
Step 1

(1): Find a maximum weight perfect matching M in G(A) and a dual optimal
solution (p, q) satisfying the conditions (Int2) and (Nest) of (4.7) and (4.8);
8 (A) := 2. c(M) (8 (A) -oo if no perfect matching exists).

(2): If 8 (A) < n Cmin, then stop with 8(A) :=
Step 2

(1): Ai coefficient of xp’+p+Qij in Aij(x) (i, j V), where

aij -{qs {i, j} c_ S S}.

(2): Test for the upper tightness of A by applying the algorithm of 4.4 to A*.
[cf. Prop.4.8]

(3): If A is upper tight, then stop with 8(A) "= (A).
Step 3 [(A) - (A)]

(1): Apply to (A, p, q) the algorithm for the resolution of blossoms to obtain
(B,/, ) with 0. [cf. 4.6]

(2): If (fi, ) is optimal to B then go to Step 4, otherwise go to Step 5o
Step 4 [Decrease gap between g and g]

(1): A := B; (p, q):= (p, ).
(2): Apply the general modification scheme to (A, V, p, q) to obtain B "=

D(A, V, p, q). [cf. 4.3]
Step 5 [cf. (B) < g (A) 2]

A := B; Go to Step I.

Note in Step 3 (2) that (/3, 4) (with 0) is optimal to B if and only if there exists a
perfect matching in the tight part G*(/3, ) of G(B) (cf. Proposition 4.4).

Since this algorithm (with criterion (a) in Step 2 of the general modification scheme)
terminates after a finite number of steps, it gives a combinatorial proof for the following
existence theorem [27], which is similar to Proposition 3.3.

PROPOSITION 4.14. For a nonsingular skew-symmetric polynomial matrix A(x)
.A4(F[x]), there exists a unimodular matrix U(x) .A/I(F[x]) such that A’(x)

U(x)A(x)U(x)T is uppertight, i.e., ((A) =) ;(A’) (a’). [3

The complexity issues will be discussed in 5.
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5, Complexity. In this section we discuss the computational complexity of the algorithm
of 4.7 for a skew-symmetric polynomial matrix. Similar arguments apply to the other two
algorithms of 2.4 and 3.3 mutatis mutandis, though they are not.expounded in detail.

The finite termination of the algorithm is guaranteed since d; (A) decreases at least by
two in Step 5, and each step (in particular, the resolution of blossoms in Step 3) terminates in
a finite number of steps as discussed in 4.6. To be more specific, Step is executed at.most
nCmax/2 times, where

Cmax m.a.x deg Ai( (x)
t,J

denotes the maximum degree of an entry of the input matrix A
In Step 1, the optimal matching, as well as the optimal dual solution, can be found in

O(n3) time, or more efficiently (see [2], [8], [12], [16], [17], [21], [31]). The upper-tightness
testing in Step 2 can be done with O (n3) arithmetic operations in F by means of a variant of
the Gaussian elimination. In the case where A is upper tight, we stop at this point without
any modification operations on A. In case A should turn out to be nontight, because of
an accidental numerical cancellation, we are ready to go on to Phase 3, which consists of
Steps 3-5.

As has been emphasized several times, the proposed algorithm should enjoy the average-
case efficiency since the "lucky" case is usually executed where the algorithm terminates in
Step 2. As before, let us fix the structure (i.e., the index set {(i, j, s) Aijs 0} of nonzero
coefficients in (2.1)) of the input matrix A A) and assume that the numerical values of
coefficients Aijs E R F (i < j) can be modeled as real-valued random variables with
continuous distributions. Then the average time complexity (in this sense) of the proposed
algorithm for a skew-symmetric matrix is bounded by a polynomial in n (e.g., n3).

Let us now turn to the worst-case complexity. Step 4 of the main procedure, as well as
the resolution of blossoms in Step 3, relies on the general modification scheme of 4.3, the
complexity of which governs the overall complexity ofthe algorithm. We assume that criterion
(b) is always adopted in Step 2 of the general modification scheme. A crucial observation
follows.

PROPOSITION 5.1. Suppose that criterion (b) is consistently adopted in Step 2 of the
general modification scheme. Then we always have

max deg Aij(x) < Crnax
i,j

for the matrix A, which changes during the computation.
Proof The definition of B "D(A; T, p, q) in Step 5 of the general modification scheme

can be written componentwise as

Bhj(X) Zxa’h’k’ukAkj(X)= ZZukAkjsx’h’’+s’
kET kET sZ

where j 5 h. Criterion (b) implies or(h, k) < 0 and, therefore,

ma.x deg Bij(x) < ma.x deg Aij(x).
t,J

Hence the claim follows.
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It is remarked here that the dual optimal solutions (p, q) for A can be chosen in such a
way that they are polynomially bounded by (n, Cmax).

Steps to 4 of the general modification scheme can be done with O(n3) arithmetic
operations in F; note in particular that the vector u with minimal support in Step can be
found by a variant of the Gaussian elimination algorithm. The computation of B in Step 5
can be written componentwise as (5.1). This shows that the required amount of computation
depends on the number of terms in Akj(x). Let us assume that the number of nonzero terms
in Akj(x) is bounded, say by N. Then the general modification scheme can be done with
O(n -+- Nn2) arithmetic operations in F.

Next we consider the complexity of the resolution of blossoms, which is called for in Step
3 (1) ofthe main procedure. As we mentioned in 4.6 (see also Proposition 4.11 ), the resolution
of blossoms involves at most Ys(qs + 1) applications of the general modification scheme.
Hence the complexity of the resolution of blossoms is bounded by O((n / N)n2 Ysqs),
which is polynomially bounded by (n, Cmax, N) since, as remarked above, q is polynomially
bounded by (n, Cmax).

As for Step 3 (2) of the main procedure, we have already noted in 4.7 that the optimality
of (fi, ) (with 0) to B is equivalent to the existence of a perfect matching in the tight
part G*(fi, qT) of G(B), and the latter can be checked in O(n3) time or less by means of the
(unweighted) matching algorithm.

To sum up, the worst-case complexity of the entire algorithm is bounded by a polynomial
in (n, Cmax, N). This bound involves an upper bound N on the number of terms in Aij(x),
which changes during the computation.

To establish a complexity bound in terms of (n, Cmax) only, we will show that it suffices to
retain a polynomial number of terms for each entry of A. A similar idea was used by Murota
[26]. Then, obviously, the number of terms in each entry of A() is bounded by Cma,,, and we
always have

(5.2) 0 _< 3(A()) 8(A) < 8 (A) < (A ()) _< nCmax

provided that 3(A()) - -cx.
On the basis of Proposition 5.1 and (5.2) it is easy to see that a term of Aij (x) with degree

less than -n Cmax can be discarded without any influence on 6(A) or (A). In other words,
we retain those terms of Aij(x) having degree > -n Cmax (and < Cmax). This shows that we
may assume N < (n + 1)Cmax.

PROPOSITION 5.2. The proposed algorithmfor a skew-symmetric polynomial matrix can
be implemented to run in time polynomial in n and Cmax, where it is assumed that an arith-
metic operation in F can be done in a constant time, and N < (n + 1)Cmax for the input
matrix. [3

6. Conclusion. This paper has presented "combinatorial relaxation-" type algorithms
for computing the degree of determinant 3(A)o These algorithms have the distinguished
feature that they are based on the generic characterizations of (A) and enjoy the average-case
efficiency. The combinatorial relaxation approach can be extended to computing the maximum
degree of subdeterminants of a specified order, and hence to computing the Smith-McMillan
form at infinity of polynomial/rational matrices and the structural indices in the Kronecker
form of matrix pencils as reported in Murota [29].

For the computation of 3(A) there are a number of different algorithms available. A
standard method would be the interpolation method that substitutes numerical values, say, oti
(i K) for variable x, computes the determinants f(eti) det A(ot/) (i K)
by Gaussian elimination, and then constructs f (x) . fi x by interpolation. This method
is superior in theoretical complexity [3] to the combinatorial relaxation method. (However, it
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is not clear how to extend the interpolation method for the computation of the maximum degree
of subdeterminants of a specified order.) Another method, known in the control literature
[15], [38], is to transform a given matrix to a row- or column-proper matrix. Comparison of
theoretical and practical efficiency of various algorithms is left for future investigation.

Acknowledgments. The author thanks Masaaki Sugihara for discussion and Koichi Kub-
ota and Akihiro Sugimoto for careful reading of the manuscript. The comments of the anony-
mous referees were helpful in revision.
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SCHEDULING TASKS WITH AND/OR PRECEDENCE CONSTRAINTS*

DONALD W. GILLIES AND JANE W.-S. LIU

Abstract. In traditional precedence-constrained scheduling a task is ready to execute when all its predecessors
are complete. We call such a task an AND task. In this paper we allow certain tasks to be ready when just one of their

predecessors is complete. These tasks are known as OR tasks. We analyze the complexity of two types of real-time
AND/OR task scheduling problems. In the first type ofproblem, all the predecessors of every OR task must eventually
be completed, but in the second type of problem, some OR predecessors may be left unscheduled. We show that most
problems involving tasks with individual deadlines are NP-complete, and then present two priority-driven heuristic
algorithms to minimize completion time on a multiprocessor. These algorithms provide the same level of worst-case
performance as some previous priority-driven algorithms for scheduling AND-only task systems.

Key words, nonpreemptive scheduling, list scheduling, minimal length schedules, algorithm analysis, multipro-
cessor systems, NP-complete problems, imprecise computation

AMS subject classifications. 68M20, 68Q25, 90B35, 90C90

1. Introduction. In the traditional model of real-time workloads, dependencies between
tasks are represented by partial orders known as precedence constraints. Each task may have
several predecessors and may not begin execution until all its predecessors are completed. We
call such tasks AND tasks, and the partial order over them is known as AND-only precedence
constraints. This traditional model fails to describe many real-time applications encountered
in practice. In these applications a task may begin execution when some but not all of its
predecessors are completed. We call such a task an OR task. The resulting task system,
containing both AND and OR tasks, is said to have AND/OR precedence constraints.

In this paper we are concerned with how to schedule tasks with AND/OR precedence
constraints to meet deadlines. We investigate two variants ofthis problem, called the unskipped
and the skipped variants.

In some applications all the predecessors ofan OR task must eventually be completed, that
is, they cannotbe skipped. We call the model for this type ofapplication theAND/OR/unskipped
model. For example, in robotic assembly one out of four bolts may secure an engine head
well enough to allow further work on other parts of the engine head. However, the remain-
ing three bolts must eventually be installed. The unskipped variant also models tasks that
share resources. A task may need a resource from one of several predecessors in order to
execute and hence is ready to execute when any one predecessor is complete. Such a task
can be modeled as an OR task. Again, the other predecessors must eventually be completed.
The AND/OR/unskipped problem also arises in hard real-time scheduling when the prece-
dence constraints are too strict for tasks to meet their deadlines. By relaxing the precedence
constraints of some tasks and restructuring the application code to accommodate the relaxed
constraints, it may be possible for the tasks to meet their deadlines.

In other applications some predecessors of an OR task may be skipped entirely. We call
this the AND/OR model. One example can be found in the problem of instruction
scheduling on superscalar, multiple instruction multiple data (MIMD), or very long instruction
word (VLIW) processors. On such processors several different instruction sequences may
be used to compute the same arithmetic expression. These different sequences arise from
algebraic laws such as associativity and distributivity. Only one sequence needs to be executed
and the other sequences may be skipped. Another application that can be characterized by this
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Department of Electrical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
Department of Computer Science, University of Illinois, Urbana, Illinois 61801.

797



798 DONALD W. GILLIES AND JANE W.-S. LIU

model is manufacturing planning [5] because certain manufacturing steps obey associative
and distributive algebraic laws. The AND/OR/skipped problem also arises in hard real-time
scheduling. When there is insufficient time for a task system to meet its deadlines, we may
convert appropriate tasks to imprecise computations [3], which may be modeled as OR tasks
whose predecessors may be skipped.

We are concerned with ways to schedule AND/OR precedence-constrained tasks to meet
deadlines or minimize completion time. Most of these problems are generalizations of tra-
ditional deterministic scheduling problems that are NP-hard. In this paper we analyze the
complexity of the problems that are not known to be NP-hard. For two problems that are
known to be NP-hard, we give heuristic algorithms to minimize completion time. The algo-
rithms have small running time and good worst-case performance.

Our work is related to some previous work on deterministic scheduling to meet deadlines
[6], [8] and minimize completion time [9], [10], [13], [14]. We were inspired by an AND/OR
model that was proposed as a means of modeling distributed systems for real-time control
18]. Two recent systems incorporated AND/OR precedence constraints of some sort in their
implementation 16], 19].

The remainder of this paper is organized as follows: Section 2 describes our assump-
tions about the AND/OR scheduling problem and introduces the terminology used in later
sections. Section 3 investigates the unskipped problem with multiple deadlines and analyzes
an algorithm to minimize completion time. In 4 we investigate the skipped problem and give
a second algorithm to minimize completion time. Section 5 draws conclusions and discusses
future work. The appendix contains proofs of the theorems stated in 3 and 4.

2. The AND]OR model. All the scheduling problems considered here are variants of the
following problem: There are rn identical processors and a set of tasks T TI, T2 Tn }.
Each task T/must execute on one processor for Pi units of time and is said to have processing
time Pi. There is a partial order < defined over T. If Ti < Tj, then T/is a predecessor of Tj
and Tj is a successor of Ti. The task Ti is a direct predecessor of Tj if there is no T, such that
Ti < T, < Tj. The task Tj is an AND task if its execution may begin only after all its direct
predecessors have completed their executions The task Tj is an OR task if its execution may
begin after only one of its direct predecessors has completed its execution. The partial order
< is an in-forest if, whenever Tk < Ti and Tk < Tj, we have either Ti < Tj or Tj < Ti; the
partial order < is an in-tree if it has a unique element with no successors. A task followed by
a series of direct successors Ti < Ti2 < is called a task chain.

The partial order is also represented by a vertex-weighted and transitively reduced directed
graph G (T, A, P) called the task graph. In this graph there is a vertex T/for every task in
the set T. The set A is known as the set ofarcso If T/is a direct predecessor of T in the partial
order then (Ti, Tj) 6 A. The set P {p Pn} denotes the set of processing times. A task
graph together with a set of deadlines D ={dl dn} is a 2-tuple (G, D) that characterizes
a scheduling problem; it is called a task system. When several graphs G1, G2 are present,
the functions T(Gi), A (Gi), and P (Gi) will be used to extract the sets T, A, and P from the
graph Gi.

Let S(G, T/) TjI(T/, Tj) 6 A(G), T/ 6 T(G) denote the set of direct successors of Ti,
and let P(G, Ti) {Tj I(Tj, Ti) 6 A(G), T/ 6 T(G)} denote the set of direct predecessors of
T/. Let L(G, Tj) be the length of the longest directed path in G ending at Tj. More precisely,
L (G, Tj.) pj if Tj has no predecessors in G, and L (G, Tj pj + maxk L(G, T)I (T, Tj 6

A(G)} if Tj has predecessors. Let L*(G) max{L(G, Tj.)ITj 6 T(G)} be the length of the
longest directed path in a graph G. Let E(G, Ti) Y-r <r ,c. PJ denote the total processing
time of all the predecessors of T/in G. Let E*(G) Pi L*(G) denote the "residual"
processing time of an AND-only graph, i.e., the total processing time minus the processing
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T -( T4

TaT T5
T3 T5 T! T4T2 time

(a) Task system. (b) AND/OR/unskipped schedule.

FIG. 1. Sample problem and solution.

time of the tasks on the longest chain. Later it will be shown that AND-only graphs with
minimal L*(G) and E*(G) can be used to produce near-optimal priority-driven schedules.

All the tasks with no successors in a task graph are classified as essential; this means that
they must appear in a valid schedule. If an AND task is essential then all its direct predecessors
are essential. If an OR task Tj is essential then the scheduling algorithm must choose one
direct predecessor T/to be essential and the precedence constraint Ti < Tj must be obeyed in
scheduling the task system. If a task is not classified as essential by any successor then it is
inessential. We distinguish between two problems referred to as skipped and unskipped prob-
lems, respectively. In a skipped scheduling problem inessential tasks may be left unexecuted.
However, in an unskipped problem inessential tasks must be executed.

Figure l(a) depicts an AND/OR task system. In the figure AND tasks are depicted by
circles and OR tasks are depicted by circles within boxes. Tasks are generally labeled by
their name or by their (name length), so (Ts, e) would indicate that task T5 requires e units of
processing time. Where necessary, deadlines will be written separately, next to the associated
tasks. If the deadlines are omitted from a figure, the reader should assume that all the deadlines
are identical. Every task in this example has a processing time of one and all the tasks have
the same deadline, hence the lengths and deadlines are omitted from this figure. Figure (b)
depicts a schedule in which T3 is an essential task and T2 is an inessential task. Figure (b)
shows a schedule of the unskipped task graph from Figure (a). If Figure l(a) depicted a
skipped task graph then a skipped schedule could be obtained by deleting T2 from the end of
the schedule in Figure (b).

The scheduling algorithms in this paper are simple heuristics that never intentionally leave
processors idle. These algorithms are known as priority-driven or list-scheduling algorithms.
Whenever a processor is available, a list-scheduling algorithm schedules the ready task with
the highest priority according to a priority list. Because they try to make the best local choice at
each scheduling decision point, list-scheduling algorithms are also called greedy algorithms.
A schedule produced by a list-scheduling algorithm is known as a list schedule and the time
at which all the tasks in T are complete is the length of the schedule.

We assume that every task in T has ready time equal to zero, thus an OR task may begin
execution as soon as an essential predecessor is completed. In some situations each task Ti
has a deadline di; Ti must be completed at or before time di. A schedule is called feasible
if every task completes by its deadline. A task system that has a feasible schedule is called

feasible. Given a task system, our objective is to find a feasible schedule or determine that no
feasible schedule exists.

In other situations all the tasks share a common deadline. The problem of finding a
feasible schedule in these situations is equivalent to the problem of minimizing the overall
completion time, i.e., the time at which the last task completes.

3. Unskipped problems. In this section we discuss the complexity of the
AND/OR/unskipped scheduling problem. After showing that most natural problems with
deadlines are NP-complete on a single processor, we present a priority-driven heuristic to
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(a) Exact 3-cover problem.

Te T ,3,5

T3 T2,3,4

W4,5,6L TTTi
(b) AND/OR task system.

FIG. 2. Exact 3-cover transformation.

minimize completion time on rn processors. We then explain why no priority-driven heuristic
can provide a better worst-case performance bound than the one presented here.

3.1. Scheduling to meet deadlines on a single processor. There are well-known poly-
nomial-time algorithms [6], [8] for scheduling tasks with AND-only precedence constraints,
identical processing times, and arbitrary deadlines on one or two processors. It is natural to
ask whether the corresponding AND/OR scheduling problems may be solved in polynomial
time. Unfortunately, this extended problem is NP-complete, even when there are only two
deadlines. This fact is expressed in the following theorem.

THEOREM 3.1. The problem ofAND/OR skipped or unskipped scheduling ofa task system
in which all the OR tasks must meet a common deadline is NP-complete.

Proof. It suffices to prove that the problem is NP-complete on a single processor. The
proof is based on a reduction from exact 3-cover (X3C). Given a hypergraph H (V, E) of
3n vertices and a set of hyperedges, each of which is incident to three vertices, the problem
is to find a set of exactly n edges that covers all the vertices with no overlap. This problem is
NP-complete [7].

The exact 3-cover problem can be transformed into an AND/OR scheduling problem as
follows: Create a task system (G, D) composed entirely of unit processing-time tasks. There
is an OR task T/in the task system for each hypergraph vertex vi in H. In the task system all
3n OR tasks have deadline 4n. Create an AND task T/,j, for each hyperedge that connects

vi, vj, and v. The successors of task Ti,j, are the OR tasks Ti, Tj, and T. Figure 2 is an
example of this transformation. Now we ask if there exists a schedule in which every OR task
meets its deadline. Clearly, if the given hypergraph H has an exact 3-cover, n AND tasks
corresponding to the cover may execute in the time interval [0, n], thereby allowing all 3n OR
tasks to complete by time 4n. If no such cover exists, then at least n + edges must be used
to cover the hypergraph. Hence at least n + + 3n time units must elapse before all the OR
tasks are complete regardless of whether this a skipped or an unskipped problem. Thus, if a
scheduler produces a feasible schedule then there is an exact 3-cover, and if the scheduler fails
then no such cover exists. [3

The proof of Theorem 3.1 indicates that this scheduling problem is at least as hard as the
n-dimensional cover problem, a generalized version of n-dimensional matching. About thirty
years ago, T. C. Hu gave a polynomial-time algorithm to schedule an AND-only task system
with in-tree precedence constraints on rn processors [14]. Thus, there is some hope that if
we restrict the AND/OR/unskipped task system to have in-tree precedence constraints, there
may exist a polynomial-time algorithm. Unfortunately, the following theorem shows that this
AND/OR scheduling problem is NP-complete.
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TABLE
Complexity ofAND/OR/unskipped problems.

(a) Scheduling to meet deadlines with identical processing times on processor.

Deadline location General graph In-tree Simple in-forest
2 deadlines O (n) deadlines

onall tasks NP-C (Theorem 3.1) NP-C (Theorem 3.2) NP-C (Theorem 3.3)
on OR tasks only NP-C (Theorem 3.1) NP-C (Corollary 3.1) trivial

(b) Scheduling to minimize completion time on m processors.

Task processing time General graph In-tree
identical NP-C [15] for AND-only NP-C (Theorem 3.4)
arbitrary minimum-path heuristic minimum-path heuristic

THEOREM 3.2. The problem ofAND/OR/unskipped scheduling to meet deadlines, where
tasks have identicalprocessing times, arbitrary deadlines, and in-tree precedence constraints,
is NP-complete.

Proof The proof is contained in the appendix.
COROLLARY 3.1. The problem remains NP-complete for task systems in which only the

OR tasks have deadlines.

Proof The proof is contained in the appendix.
The proofs of Theorem 3.2 and Corollary 3.1 in the appendix make use of long chains

of AND tasks with differing deadlines. We now consider a class of task systems where only
two tasks in a chain may have deadlines. In a simple in-forest, (1) each in-tree consists
of an OR task with a deadline, no successors, and two direct predecessors and (2) each
direct predecessor of an OR task has a deadline and is the root of an in-tree of AND tasks
with no deadlines (i.e., the deadlines are infinite). A simple in-forest restricts the allowable
precedence constraints and allowable tasks with deadlines in a task system. We have found no
simpler nontrivial combination of precedence constraints and deadlines. Surprisingly, even
this simplified AND/OR scheduling problem is NP-complete

THEOREM 3.3. The problem ofAND/OR/unskipped scheduling to meet deadlines, where
the task system is a simple in-forest with identical processing times, is NP-completeo

Proof The proof may be found in [11] or [12].
Theorems 3.1-3.3 allow us to arrive at the following conclusion: Every AND/OR task

graph with k OR tasks, each of which has direct predecessors, corresponds to a set of
different AND-only task graphs. A feasible schedule of such a task system corresponds to an
implicit selection ofone ofthese k AND-only task graphs. Therefore, when there are O (log n)
OR tasks in the AND/OR task system, it is possible to enumerate in polynomial time the set
of all possible AND-only task graphs and apply an optimal AND-only scheduling algorithm
such as the one described in [8]. On the other hand, Theorems 3.1-3.3 show that many natural
scheduling problems with O (n) OR tasks are NP-complete. It follows that the complexity of
the AND/OR/unskipped problem is determined almost exclusively by the number ofOR tasks
in the task system and the complexity of the corresponding AND-only scheduling problem.
These results are summarized in Table (a).

It appears difficult to design a priority-driven scheduling heuristic with good worst-case
performance. For the simple problem studied in Theorem 3.3, we have produced examples
to show that any algorithm that only considers slacks between deadlines and nondeadline
information, one isolated in-tree at a time, may perform 4’-ff times worse than an optimal
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Input: Task graph G (T, A, P)
Step 1: For each OR task Ti with no OR predecessors:

(a) Let T, be a direct predecessor of 7 that minimizes the longest path ending at Tk. In other words,
Tk 6 P(G, T/) and for all Tj 6 P(G, T/) with j - k, L(G, 7) >_ L(G, T).

(b) Convert T/ into an AND task whose only direct predecessor is Tk.
Step 2: The resulting task system has only AND tasks. Schedule this task system using a priority-driven

algorithm and an arbitrary priority list.

FIG. 3. The minimum path heuristicfor general graphs.

algorithm. Some obvious priority-driven scheduling algorithms such as fewest predecessors
first, least slack first, and some generalizations of the algorithms in [4] neglect to compare
the deadlines among different in-trees. In the worst case these algorithms may meet only
deadlines when it is possible to meet n out of n + deadlines. For more information the reader
is referred to [11] and [12].

3.2. Scheduling to minimize completion time. We now considerthe problem ofschedul-
ing AND/OR/unskipped tasks with arbitrary processing times on rn processors to meet a
common deadline. This problem is equivalent to that of scheduling to minimize the overall
completion time. Ullman has shown this problem to be NP-complete [15] for AND-only
task systems where all the tasks have identical processing times However, Hu’s algorithm
solves this problem in polynomial time for in-tree precedence constraints. Unfortunately, the
problem becomes NP-complete when OR tasks are allowed.

THEOREM 3.4. The problem ofscheduling an AND/OR/unskipped task system to minimize
completion time on rn processors, where tasks have identical processing times and in-tree
precedence constraints, is NP-complete.

Proof The proof is contained in the appendix. [3

In Figure 3, we present a heuristic that minimizes the completion time of an
AND/OR/unskipped task system with arbitrary processing times. The basic idea is to choose an
AND-only graph that minimizes the longest path in G. The heuristic can be implemented to run
in time O (n + ]AI) by reversing the direction of the arcs in G and employing depth-first search.
Let Go (To, Ao, Po) and Wo denote the implicit AND-only graph and the completion time
ofthe task system according to an optimal schedule, respectively. Let G’ (T’, A’, P’) and W’
denote the implicit AND-only graph and the completion time of the task system according to a
schedule produced by the minimum path heuristic, respectively. The worst-case performance
of the minimum path heuristic depends on the following lemma.

LEMMA 3.1. L*(CJ’) < L*(Go).
Proof Let H TiIP (CJ’, T/) - P (Go, Ti) denote the set of tasks whose predecessors

differ between the optimal graph and the graph produced in Step of the minimum path
heuristic. If H 13, then the AND-only task graphs are identical and the lemma is established.
Otherwise, let T/ 6 H be a task for which there exists no Tj 6 H with Tj < T/ in Go. By
the construction of G’, P(G’, Ti)l P(Go, Ti)l 1o We change Ao, replacing the arc
(P (Go, T/), Ti) by (P (G’, Ti), Ti), and obtain no increase in the longest path (by Step (a)
and (b) of the heuristic). This argument is used inductively to transform Go into G’ with no
increase in the maximum path length. This establishes the lemma, lq

The following fact is proved in the well-known paper [13].
LEMMA 3.2. In any priority-driven schedule, there is a chain oftasks that executes during

all the idle periods (when one or more processors are not in use), and this chain is not longer
than the completion time ofan optimal schedule.
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If Wp denotes the total length ofall the idle periods in a schedule produced by the minimum
path heuristic, then Wp < L*(G’) < L*(Go) < Wo by Lemmas 3.1 and 3.2.

THEOREM 3.5. The worst-case performance of the minimum path heuristic is given by
W’/ Wo < 2 1/m. Moreover, this bound is tight.

Proof. Let Wb denote the total length of all the busy periods in a priority-driven schedule.
Let Wp denote the total length of all the idle periods in a priority-driven schedule. During the
idle periods, at least and no more than m tasks execute, and during the busy periods
exactly m tasks execute. It should be clear that W’ Wp + Wb. Hence, the worst-case
completion time of this heuristic may be formulated as a linear program:

Maximize Wp + Wb W

subject to Wp < L*(G’) < L*(Go) < Wo
mWb + 1Wp < mWo.

Solving the program yields Wp Wo, Wb (1 1/m)Wo, i.e., W’/Wo < 2- 1/m. [3

Examples of AND-only task systems that achieve this bound may be found in [2] and
[10]. It is known [10] that no AND-only priority-driven heuristic can avoid 2 1/m worst-
case performance (because priority-driven heuristics never intentionally idle the processor, and
sometimes intentional idling is needed). Our priority-driven heuristic will schedule AND-only
task systems as a special case. Hence, it is not possible to get better worst-case performance
from an AND/OR scheduling algorithm without a better AND-only scheduling algorithm. It
has been a long-standing open problem to find a better AND-only scheduling algorithm 15].

4. Skipped problems. In an AND/OR/skipped scheduling problem, the inessential pre-
decessors of an OR task may be skipped entirely. We first show that when the problems of 3
are formulated in the skipped model they remain NP-complete. Then we present a heuristic al-
gorithm for scheduling to minimize completion time on m processors. This heuristic algorithm
works for in-tree precedence constraints, but not for arbitrary precedence constraints.

4.1. Scheduling to meet deadlines. Theorem 3.1 showed that the problem of
AND/OR/skipped scheduling with one deadline and arbitrary precedence constraints is NP-
complete on a single processor, therefore, we immediately consider simplifying the precedence
constraints.

THEOREM 4.1. The problem ofANDscheduling to meet deadlines, where
tasks have identical processing times and in-tree precedence constraints, is NP-complete.

Proof The proof is contained in the appendix. [3

THEOREM 4.2. The problem ofAND/OR/skipped scheduling to meet deadlines, where the
task system is a simple in-forest with identical processing times, is NP-complete.

Proof The proof may be found in [11] or [12]. [3

Now we consider the case where the task system is a simple in-forest and only the OR
tasks have deadlines. For this type of task system, an algorithm for finding a feasible schedule
can examine each OR task and choose as its direct predecessor the AND task which has the
fewest total predecessors. After these choices are made, the AND-only graph is scheduled
using the earliest deadline first rule. This method always produces a feasible schedule if the
task system is feasible. If the task system is infeasible it is still possible to maximize the
number of OR tasks that simultaneously meet their deadlines and have essential predecessors.
To produce such a schedule we note that an OR task, together with one predecessor subtree
consisting of ki AND tasks, may be thought of as one large task with processing time ki + 1.
Then the algorithm of 17], which minimizes unit penalty on a single processor, may be used
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TABLE 2
Complexity ofANDproblems.

(a) Scheduling to meet deadlines with identical processing times on processor.

Deadline location General graph In-tree Simple in-forest
deadline O(n) deadlines

on all tasks NP-C (Theorem 3.1) NP-C (Theorem 4.1) NP-C (Theorem 4.2)
on OR tasks only NP-C (Theorem 3.1) NP-C (Theorem 4.1) [17] algorithm

(b) Scheduling to minimize completion time on m processors.

Task processing time General graph In-tree
identical NP-C 15] (> 3/2 O PT) NP-C (Theorem 4.3)
arbitrary no algorithm path-balancing heuristic

tO schedule tasks with processing time (ki -t- 1) to maximize the number ofOR tasks that meet
their deadline.

In summary, we find that the complexity of the skipped problem is always at least as high
as the complexity of the unskipped problem. This fact is summarized in Table 2(a).

4.2. Scheduling to minimize completion time. Table 2(b) gives the complexity of
scheduling m processors to minimize completion time. The next theorem concludes our
investigation into the complexity of AND/OR scheduling.

THEOREM 4.3. The problem ofscheduling an AND/OR task system to minimize
completion time on m processors, where tasks have identical processing times and in-tree
precedence constraints, is NP-complete.

Proof. The proof is contained in the appendix.
Now we present a heuristic algorithm that minimizes the completion time of an

AND/OR/skipped task system with in-tree precedence constraints. Let f(G) E*(G)/m
L*(G) denote a function of an AND-only precedence graph. This function is an estimate
of the worst-case completion time of a priority-driven schedule. Our algorithm converts an
AND/OR in-tree into an AND-only in-tree that minimizes this function. In a general graph
it is difficult to minimize this function quickly. If m 1, a polynomial-time algorithm to
minimize f(G) could be used to solve any exact 3-cover problem (refer to Theorem 3.1),
implying P NP. Because of this, the path-balancing heuristic described below is restricted
to in-tree task graphs. The algorithm appears in Fig. 4.

The complexity of the algorithm can be determined as follows. The O (n) possible paths
from the root to the leaves can be enumerated in time O(n) using depth-first search. Each
iteration of Step (a)-(e) can be carried out together in O(n) time using a recursive depth-first
search. Most of the work is done when returning from procedure calls. Hence, the overall
complexity of this heuristic is O (n2).

To derive the worst-case performance ofthe path-balancing heuristic we begin by showing
that Step of this heuristic minimizes f0.

LEMMA 4.1. f(G’) < f(Go).
Proof. Consider the longest path of length L*(Go) in Go. This path starts at the tree

root and ends at a leaf vertex. Clearly, the path-balancing heuristic considers this path in
some iteration of Step 1. Step (c) of the heuristic ensures that no other paths are longer than
this longest path without increasing E*(G’) more than necessary. Step (d) of the heuristic
chooses the direct predecessors of each OR task to minimize E*(G’), thus the heuristic cannot
fail to find a graph for which f(G’) is at most E*(Go)/m + L*(Go).
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Input: Task graph G (T, A, P)
Step 1: Convert the OR tasks in the in-tree G into AND tasks, to obtain an AND-only graph G that minimizes

f(Gt), as follows.
For each path Ci {Tx < Tx "< < Tx from the root to a leaf in G do begin

(a) [Copy G] Ge +-- G.
(b) [Freeze OR tasks along path Ci] For each OR task Txj Ci let Ae (Ae P(Ge, Txj)) tO

{(Tx_,, Tx)} (i.e. make Tx an AND task in Ge).
(c) [Truncate all paths longer than Ci] Let Cj - Ci be a longer path in Go. If no such Cj exists, go

to Step (d). Otherwise, let Tk be the least OR task on Cj. If no such Tk exists then go to Step (f).
For each 7 6 P(Ge, Tk) on a path longer than C/, do begin remove the arc (7), Tk) from Gc end.
If [P(Gc, Tk)[ 0 no AND-only graph exists with Ci as the longest path, so go to Step (f). Else
Repeat Step (c).

(d) [Minimize processing time] For each OR task Tk with 2 or more direct predecessors and no OR
predecessors in the graph Ge, pick as a sole predecessor of Tt, the task 7 P(G, Tk) such that
for all 7) P(Gc, T) with/5 j, E(Gc, 7)) >_ E(Gc, 7)).

(e) If the resulting AND-only graph yields a value f(Gc) < f(G’) then let G +-- Gc.
(f) end.

Step 2: The resulting task system G contains only AND tasks. Schedule this task system using a priority-
driven heuristic and an arbitrary priority list.

FIG. 4. The path-balancing heuristicfor in-trees.

THEOREM 4.4. The worst-case performance ofthe path-balancing heuristic is given by

W’
(1)

Wo rn

Moreover, this bound is tight.
Proof Any optimal schedule completes no earlier than the total processing time of the

task system divided by rn processors, and no earlier than L*(Go). Hence

E*(Go) -I- L*(Go)
L*(Go) }Wo > max

rn

and by Lemmas 3.2 and 4.1, we have

W’ < E*(G’)/m + L*(G’) _< E*(Go)/m + L*(Go).

Hence

(2)
E*(Go)/m + L*(Go)

Wo max E*(Go) + L*(Go) L*(Go)m

We simplify equation (2) in two cases.
Case 1. The max{} in (2) evaluates to its first argument. Then we have

(3)
W’ E *(Go) + L *(Go)m
< --B.
W E*(Go) + L*(Go)

Note that the max{} in (2) evaluates to its first argument if and only if L*(Go) <

E*(Go)/(m 1), so we have an upper bound on L*(Go). The derivative of the bound
in (3) is

dB E*(Go)(m- 1)
>0.(4)

dL*(Go) 2(E*(Go) + L*(Go))
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(T4,1,13)

(T4,m(m-l)/e + ’E)

(T 3,2

(T3,m ,)(
FIG. 5. A worst-caseANDin-tree.

Because the derivative of (4) is nonnegative for all rn > and E*(Go) >_ 0, a maximum
of (3) occurs when L*(Go) is as great as possible, i.e., L*(Go) E*(Go)/(m 1), thus

W’ E*(Go)(m 1) + E*(Go)m
< --2
W E*(Go)(m 1) -t- E*(Go)

Case 2. The max{} in (2) evaluates to its second argument. This occurs if and only if
E*(Go) < L*(Go)(m- 1). We substitute E*(Go) < L*(Go)(m- 1)into the numerator of
(2) to obtain ). [3

The example in Fig. 5 demonstrates that this worst-case bound is tight. Let T1
{TI, T2, T4,1 T4,m(m_l)/e+l and let T2 {T2, T3, T3,m, Ts, Ts,m}. The path-
balancing heuristic chooses between the in-trees G1 (T1, A1, P1) and G2 (T2, A2, P2),
where A1 and A2 denote the associated arc sets. The lengths of the longest paths in these
in-trees are L*(G1) L*(G2) rn + 3, respectively. Furthermore, E*(G1) E*(G2)
m2 m. Thus, the path-balancing heuristic chooses arbitrarily between these two trees, since
either one minimizes f(G’). There is a schedule of length rn + 23 for G2, but the shortest
possible schedule for G1 has length rn + rn (m 1)/ rn + 3 whenever e divides (m 1) evenly.
As d 0, the ratio of these schedule lengths approaches 2 1/m.

We now offer additional evidence that the problem of scheduling AND/OR/skipped task
systems is much harder than the problem of scheduling AND-only task systems. Consider
scheduling an AND/OR/skipped task system derived from an exact 3-cover problem, as de-
scribed in the proof ofTheorem 3.1, on a (3n + 1)-processor system. We add to the task system
an AND task with 2n + direct predecessors and ask if there is a schedule that completes in
2 units of time on 3n + processors. The task system is feasible if n tasks corresponding to

edges in an exact 3-cover, together with the additional 2n + AND tasks, begin processing at
time 0, and all the tasks corresponding to hypergraph vertices, together with the other added
AND task, begin their processing at time 1. Hence there is a schedule with a completion time
of 2 if and only if there is an exact 3-cover. It follows that unless P NP, no polynomial-
time AND/OR/skipped scheduling heuristic can guarantee a worst-case completion time of
less than 3/2 times the length of an optimal schedule. In contrast to this, if the task system
is AND-only, it is known 15] that no polynomial-time heuristic can guarantee a worst-case
completion time of less than 4/3 times the length of an optimal schedule.
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5. Conclusion. We have analyzed the skipped and unskipped variants of the AND/OR
scheduling problem with deadlines. In the skipped variant, some tasks may be left unscheduled,
but in the unskipped variant all tasks must be scheduled. When tasks had identical processing
times, and deadlines, and there is a single processor, the problem was shown to be NP-complete,
even for drastically simplified precedence constraints. We presented an efficient priority-
driven heuristic to minimize completion time on m processors, and showed that its worst-case
performance bound could not be improved by using a different priority-driven heuristic. We
also presented a heuristic to minimize the completion time ofan AND/OR/skipped task system
with in-tree precedence constraints. We derived the worst-case performance for this algorithm
and explained why the algorithm could not be extended to handle general task graphs with the
same performance unless P NP.

Throughout this paper we assumed that only one direct predecessor task had to be com-
pleted before an OR task could begin. Under a more general assumption, OR task T/can begin
once ki predecessor tasks are complete. The algorithms and theorems in this paper require
minor modifications to handle this more general case. There is also a similar AND/OR model
where individual arcs (and not tasks) can be AND arcs or OR arcs. By using tasks with a
processing time of zero, our model can simulate this other model. There are also situations
where both OR/skipped and OR/unskipped tasks are present in a single in-tree. With slight
modifications our AND/OR/skipped heuristic can be used to handle such mixed task systems.
Details of these transformations and algorithms appear in 12].

During this investigation we reached several conclusions about the complexity ofAND/OR
scheduling. Contrary to our intuition, the skipped problems we considered were generally of
higher complexity than the corresponding unskipped problems. This can be seen by com-
paring Tables and 2, and the proofs in the appendix. In the problem of scheduling to meet
deadlines, we made several observations. It was generally not helpful to restrict the in-degree
of OR tasks in the task graph. It was also not helpful to restrict deadlines to only the OR tasks,
or to restrict the task graph to an in-tree or an in-forest or even a simple in-tree, the simplest
relation possible for this type of problem.

Appendix. This appendix presents the proofs of Theorems 3.2, 3.4, 4.1, 4.3, and Corol-
lary 3.1. Proofs of Theorems 3.3 and 4.2 may be found in both 11 and 12]. Except where
noted, all proofs refer to the scheduling of a single processor.

THEOREM 3.2. The problem ofAND/OR/unskipped scheduling to meet deadlines, where
tasks have identicalprocessing times, arbitrary deadlines, and in-tree precedence constraints,
is NP-complete.

Proof Our proof is based on a reduction from 3-satisfiability (3SAT). Given an instance
of a 3SAT problem with k boolean variables and n clauses, we will create k OR tasks. For each
variable xi, which occurs in li clauses, we create an in-tree containing one OR task and two
chains of length li. One chain corresponds to truth for the associated variable and the other
corresponds to falsity. Therefore, there are 3n tasks in all chains corresponding to truth and 3n
tasks in all chains corresponding to falsity. The OR tasks are given deadlines of e 3n / k.
An example is shown in Fig. 6. This example is an in-tree for a variable x that appears in four
clauses. Deadlines are depicted above or below the tasks. Because of the deadlines of the OR
tasks, in any feasible schedule k OR tasks and k chains execute throughout the time interval
[0, e], and no other tasks may execute in this interval. This leaves k task chains to execute in
the time period [e, e + 3n] in a feasible schedule.

For each 3SAT clause we assign an interval of three time units starting at time e. Hence
the time intervals [e, e / 3], [e + 3, e + 6] [e + 3n 3, e + 3n] correspond to clause 1,
clause 2 clause n, respectively. Each interval of time is divided into two parts. In the
first two time units, tasks in leftover chains corresponding to truth or falsity in a clause may
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e+3 e+5 e+8 e+ 12

Truth

Falsity
e+2 e+6 e+9 e+ 11

FIG. 6. An in-treefor a variable x appearing in the firstfour clauses.

execute. In the third time unit, only a task corresponding to truth may execute. To enforce this
rule, we give later deadlines to the tasks/terms that would make each clause true. In Fig. 6,
variable x occurs in the first four clauses of the 3SAT expression. It appears uncomplemented
in clauses and 4, and complemented in clauses 2 and 3. If x appears in the 3SAT expression
for the th time as an uncomplemented variable in clause j, the deadline for the th task in the
truth predecessor chain is e / 3j; it is also e + 3j for the ith task in the falsity predecessor
chain. These deadlines are exchanged if the ith appearance ofx is as a complemented variable
in clause j. We give all the OR tasks a common AND successor with a deadline of infinity to
form a single tree.

If a scheduling algorithm finds a feasible schedule, then each task that executes in the
interval [e + 3j 1, e + 3j] corresponds to a variable (or a complemented variable) that is
true in clause j. If the variable is not true, then the deadline of the task expires one time
unit earlier. Furthermore, the task chains guarantee that the truth or falsity of a variable is
consistent among different 3SAT clauses. Thus, a schedule is feasible if and only if there is a

satisfying truth assignment.
All the other proofs in this appendix and in 11 and 12] are modifications of the proof

of Theorem 3.2. In particular, Theorems 3.3 and 4.2 require a large simple in-tree for each
term in a 3SAT expression,and have been omitted for brevity.

COROLLARY 3.1. Theproblem remains NP-complete ifonly the OR tasks have deadlines.

Proof We make the following changes to the proof of Theorem 3.2: replace the in-trees
of the type depicted by Fig. 6 by new in-trees such as the one in Fig. 7. This is done by adding
an AND task with a deadline of e to the beginning of each truth and falsity chain, converting
each AND task with a deadline into an OR task with one or two extra AND predecessor tasks,
and setting e 3n + 5k. As in the previous proof, the last deadline associated with a variable
in a clause is e + 3n. Note that there are exactly e / 3n tasks of the type that are shaded in
Fig. 7 in the entire task system. Becuase of their deadlines, the shaded tasks must execute in
the time interval [0, e + 3n] and the unshaded tasks must execute after time e / 3n in any
feasible schedule.

It is not difficult to verify that in a feasible schedule the tasks that execute in the time
interval [e, e + 3n] correspond to a satisfying 3SAT truth assignment.

THEOREM 4.1. The problem ofANDscheduling to meet deadlines, where
tasks have identical processing times, arbitrary deadlines on the OR tasks only, and in-tree
precedence constraints, is NP-complete.

Proof This theorem extends the previous corollary to skipped tasks. We use nearly the
same in-trees as in Corollary 3.1. However, we set e 2k, give the OR tasks at the root
of each in-tree a deadline of e + 3n / k rather than e, and replace each unshaded task by a
chain of e AND tasks. It is not difficult to check that the task chains that execute in the time
intervals [e + 3j 1, e + 3j], _< j < n, correspond to a truth assignment satisfying the
3SAT clauses.
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Truth

Falsity

FIG. 7. An in-treefor scheduling with deadlines on OR tasks only.

Truth

T*
1,3 1,6 1,3n

x x x [TI

Falsity (D-O--C)-O--O-C)--C)-.C)-(D--O--J ")Tk+l
T,I T,2 Ti,3n ,, //
T ** T

,
1,3 1,6 1,3n /

[0,3 [3,6] [6,9] [9,12] "*%--/. k

FIG. 8. In-tree task systemfor AND/OR/skipped/unskipped tasks on m processors.

THEOREM 4.3. The problem ofscheduling anANDtask system to minimize
completion time on m processors, where tasks have identical processing times and in-tree
precedence constraints, is NP-complete.

Proof. Given a 3SAT problem with k boolean variables and n clauses, we specify a system
with m k + processors. For each variable Xi we create an in-tree with one OR task Ti
at the root and two predecessor chains of length 3n + 1. One chain corresponds to truth and
the other corresponds to falsity. All the tasks T T have a common AND direct successor

T+. For each 3SAT clause we assign an interval of three units of time starting at time
zero. Hence the intervals [0, 3], [3, 6] [3n 3, 3n] correspond to clause 1, clause 2
clause n. If a variable xi appears uncomplemented (complemented) in clause j, we create

two AND tasks T/,j and Ti, and make their successors Ti,3j+ and T’i,3j (Ti,3j and Ti,3j+)’
respectively. Figure 8 illustrates a portion of the transformation for a 3SAT problem with
n 4 clauses. The variable x appears in the first, second, and fourth clauses of the 3SAT
problem instance, and x is complemented in the second clause. The predecessor chains of
length 3n + are used. to simulate multiple deadlines, which are not allowed by the problem
statement.

If a scheduling algorithm finds a feasible schedule with an overall completion time of
3n + 3, then by interchanging tasks among different processors, we can transform the schedule
so that processors one through k execute a truth or falsity chain of length 3n + in the time

interval [0, 3n + ], and processor k -t- executes only tasks of type T/,j or T/,j in the same
time interval. Then each task that executes in the time interval [3j 1, 3j], < j < n, on
processor k + corresponds to a variable or complemented variable that is true in clause j of
the 3SAT problem instance. Because only one truth or falsity chain for each OR task executes
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in the time interval [0, 3n + ], the truth or falsity of a variable is consistent among different
3SAT clauses. Thus, a feasible schedule can be found if and only if there is a satisfying truth
assignment. [3

THEOREM 3.4. Theproblem ofscheduling anAND/OR/unskipped task system to minimize
completion time on m processors, where tasks have identical processing times and in-tree
precedence constraints, is NP-complete.

Proof The proof is nearly identical to the proof of Theorem 4.3. Given a 3SAT problem,
we generate the same in-tree as in the proof of Theorem 3.4, except we add a chain of 6n / 6
AND successors to task T+l. Then we ask if there is a schedule with an overall completion
time of 9n + 9. In such a schedule k task chains of inessential tasks have plenty of time to
complete in the time interval [3n + 3, 9n + 9]. It is not difficult to see that there are tasks that
execute in the time intervals [3j 1, 3j], < j < n, that correspond to a satisfying truth
assignment. [3
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WORK-PRESERVING SPEED-UP OF PARALLEL MATRIX COMPUTATIONS*
VICTOR Y. PAN AND FRANCO P. PREPARATA

Abstract. Brent’s scheduling principle provides a general simulation scheme when fewer processors are available
than specified by the fastest parallel algorithm. Such a scheme preserves, under slow-down, the actual number of
executed operations, also called work. In this paper we take the complementary viewpoint, and rather than consider
the work-preserving slow-down of some fast parallel algorithm, we investigate the problem of the achievable speed-
ups of computation while preserving the work of the best-known sequential algorithm for the same problem. The
proposed technique, eminently applicable to problems of matrix-computational flavor, achieves its result through the
interplay of two algorithms with significantly different features. Analogous but structurally different "interplays"
have been used previously to improve the algorithmic efficiency of graph computations, selection, and list ranking.
We demonstrate the efficacy of our technique for the computation of path algebras in graphs and digraphs and various
fundamental computations in linear algebra. Some of the fundamental new algorithms may have practical value; for
instance, we substantially improve the algorithmic performance of the parallel solution of triangular and Toeplitz
linear systems of equations and the computation of the transitive closure of digraphs.

Key words, parallel algorithms, processor efficiency, work-optimal algorithms linear system of equations, path
algebras, paths in graphs
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1. Introduction. The main objective of parallel computation, which more sharply con-
trasts it against sequential computation, has traditionally been the minimization ofcomputation
time t, i.e., of the number of parallel steps required to solve a given problem. Another impor-
tant criterion, however, is the size of the equipment, expressed as the number p of processors
used in the computation. Assume, for simplicity, that a single parameter n characterizes the
problem size. When is the chosen performance criterion, frequently the resulting algorithm
running in time t(n) involves a very large number p(n) of processors (all assumed to be
identical and capable of executing one arithmetic operation in unit time). It is reasonable
to assume, however, that in general the number p of available processors will not match the
requirements of the fastest algorithm for a given problem instance, i.e., p < p(n), which
reflects the situation where the number of available processors is fixed and the choice of p is
dictated by economic as well as engineering reasons.

Thus a typical situation is one where we have far fewer processors for use than are
necessary to achieve the minimum computation time t(n); this situation is dealt with by
means of a version of Brent’s scheduling principle [Br74], [KR90], which embodies a general
simulation scheme ofa system with (n) processors by one with a fixed number p ofprocessors,
such that

< p < p(n).

Specifically, let w(n) denote the total number of operations actually executed by the larger
(faster) system in time (n). Then the smaller (slower) system can accomplish the same task
in time

(1) < t(n) + w(n)/p.
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A basic assumption for this simulation scheme is that the desired allocation of the p
processors to their tasks may be done simply; as observed in [KR90] and illustrated below,
such processor allocation is not always a straightforward matter.

This simulation scheme can be called work-preserving slow-down [PP92], since, while
the computation is slowed down (due to the limited resources), the total amount of actual
work w(n) is preserved. Relation (1) shows that p and are essentially inversely proportional.
It also shows that the computation time is just doubled if we balance the two terms in the
fight-hand side of (1), i.e., if we choose p w(n)/t(n), so that for a constant penalty in
computation time we may accrue a much more substantial equipment advantage. This point
is illustrated by the following classical example.

Example. Summation of n numbers, al, a2 an. (For simplicity, let log n and log log
n be positive integers.) The straightforward algorithm, allotting exactly one time unit to each
execution of Step 3, uses (n) log n steps and n/2 processors"

I. begin foreach n pardo aio := ai;

2. for h to do
3. foreach n pardo aih "= a2i-l,h-I + a2i,h-l;
4. s :-- ait
5. end

In this case, w(n) n 1. We may achieve balancing by slowing down the first log log n steps
of loop 2-3, so that we use only nit(n) n/log n processors at these steps. At subsequent
steps, these processors are fully adequate to simulate the original system with no slow-down.
Although this simulation implicitly refers to a PRAM model, the interpretation of"balancing"
becomes more enlightening in the network model, where the system is a binary tree network of
processors with n/(2 log n) leaves and (i) the input numbers are organized as log n wavefronts
of n/log n items each, (ii) each wavefront is separately tallied by the network, and (iii) the
global sum is accumulated at the root. In this case the alluded-to inverse proportionality of
p and becomes explicit if one uses a variant of Brent’s principle, where the work w(n) is
replaced by the product p(n). t(n), called "cost" in [J92]. Note that p(n). t(n) is the number
of executable operations if all processors are kept busy during (n) time steps, and correctly
represents a cost, since it expresses the expected return on investment. If a computation C
can be performed in time with sp processors (at a cost of tsp), each executing one arithmetic
operation in unit time, then C can be performed in time st with p processors, for any s > 1.
This statement is readily verified by noting that each time unit of the faster system can be
simulated in s time units by the slower one. Note, however, that for p <_ p(n), work and cost
are of the same order (see, e.g., [J92]).

Brent’s principle gives a straightforward general simulation scheme that preserves the
work (or cost) of some parallel computation as we decrease the number p of deployed proces-
sors. However, frequently the work w(n) of the fast parallel algorithm is substantially larger
than the work tOseq(n) of the best known sequential algorithm for the same problem instance,
i.e.,

(2) tOseq(n) o(to(n)).

Therefore, for applications for which (2) holds, it is of interest to ask the symmetric ques-
tion, which is the maximum number of processors that can be deployed while maintaining the
same amount of work Wseq (n)? We expect, of course, that, if (2) holds, the maximum number
of deployable processors will be o(p(n)), where p(n) is the number of processors used by
the fastest algorithm. It is appropriate to call such an algorithmic technique "work-preserving
speed-up," although it has been previously referred to as "supereffective slow-down," [PP92]
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tO contrast it against the "effective" slow-down achievable with Brent’s simulation (which
preserves but does not reduce the work).

As we shall show, for several important computational problems, the attainable work-
preserving speed-ups, although not achieving the maximum, are still very substantial. The
technique has been implicitly used in [BP90] for polynomial division and in [BP93] for com-
puting modulo xn the square root (and similarly the mth root for any integer m > 2) of a
polynomial p(x).

As we shall illustrate below, the technique involves the careful interplay oftwo algorithms
for the given problem, which have markedly distinct features. Such a general approachmthe
interplay of two algorithms to achieve performance improvements--is by no means new,
and has appeared in various forms in the technical literature. The earliest instance was the
adoption of an "inner/outer" algorithmic structure, frequently in the context of very-large-
scale-integration-circuit implementation. For example, for matrix multiplication, the outer
structure is systolic (slow) and the inner structure is based on the three-dimensional mesh-
of-trees (fast), i.e., a systolic algorithm involving matrix blocks, which are in turn multiplied
with the fastest algorithm. Such approach provided AT2-optimal realizations over the entire
spectrum of computation times [PV80].

Another, more sophisticated instance of the methodology is the "accelerating cascade
technique" proposed in [CV86]. Here two parallel algorithms are cascaded: the first is
(work-) optimal but slow, the second is fast but not optimal. The objective is to use the
first algorithm to reduce the problem size, so that the second algorithm can complete the task
using no more than allowed for optimality. By this careful interplay, optimal work and time
can be achieved for list-ranking [CV86]. The same strategy was applied in [SV81 to obtain a
work/time-optimal algorithm for the maximum problem on a CRCW-PRAM. Related results
on parallel graph computations are reported in [UY91 ], [$9 a], and [$91 b].

Our present approach, although belonging to this general methodology, does not adopt
the slow-optimal/fast-suboptimal strategy. In a way, it is more akin to the outer/inner structure
approach. Specifically, it adopts as an outer structure a sequential recursive algorithm, which
typically reduces a problem of size s to a problem of size s 1. If such an algorithm exists,
then, when several processors are available, the idea is to make them act on larger mathematical
objects (rather than single entries), to which a fast algorithm is applicable (thus providing the
inner structure). The objective is to carefully balance the respective works of the inner and
outer structures. In contrast to "divide-and-conquer," and, with terminological analogy, this
technique could be called "shrink-and-conquer."

We want to extend the outlined approach to some fundamental computations with matri-
ces with further application to computational problems on graphs (represented as matrices).
Our study shows that the work-preserving speed-up is possible for numerous parallel matrix
computations that effectively extend the solution of a problem of size s to one of size ks for
any positive integers s and k.

We demonstrate our techniques for only a few matrix computational problems, in par-
ticular, for the inversion and quasi-inversion of matrices and for solving systems of linear
equations. These problems are fundamental and have numerous applications to computations
for linear algebra (matrix inversion), to path algebras in graphs and digraphs (quasi-inversion),
and to various areas of symbolic computations (structured linear systems).

We believe that some of our algorithms have practical value. In particular, for computa-
tions in numerical linear algebra, such as solving triangular linear systems of equations (see
5, which can be read independently of3 and 4 and from the second half of 2), these algo-
rithms run faster than the known customary algorithms, even when the number of processors is
reasonably bounded. Furthermore, our algorithms intensively use block matrix computations,
which can be effectively implemented on loosely coupled multiprocessors.
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We organize our paper as follows. After some definitions and preliminaries in 2 and
3, we show how to apply a work-preserving speed-up to quasi-inversion of matrices over the
semirings and to their inversion over the fields. In 5, we treat the inversion of triangular
matrices and the solution of triangular linear systems of equations. In 6 we consider the
case of Toeplitz-like input matrices, having further extension to polynomial computations.
Appendix A contains some auxiliary material on basic properties of Toeplitz-like matrices.

2. Definitions and preliminary results. To have a machine-independent high-level pre-
sentation, we will assume the customary PRAM models of parallel computing [KR90], [V90].
Under such models, each processor in each step performs at most one arithmetic operation.
We shall adopt the "work-time framework" for evaluating algorithmic performance (see [J92])
and use the notation Oa (t, W) for the pair O(t) and O(w), which are, respectively, simulta-
neous asymptotic bounds on the numbers of arithmetic steps (arithmetic parallel time) and
of operations (work). It is well known that if we choose p < w!t processors to execute the
algorithm, then the number of attainable arithmetic steps is O(w/p). Our algorithms do not
actually depend upon choosing the PRAM model; in fact each of them consists of a simple
sequence of blocks, each routinely implementable on fixed interconnections. We shall say
that a parallel algorithm, with work w, is efficient if w O(//)seq), where, as above, roseq is
the work of the fastest known sequential algorithm for the same problem instance.

We will use some known facts about computations with matrices over the fields F and
semiringsR (also called dioids and path algebras). Over any field or semiring, we may compute
an m x n by n x p matrix product within the following cost bounds:

(3)

where

(4)

to

OA (log n, M(m, n, p)),

M(m, n, p) < mnp, M(n) M(n, n, n) <_ n 3,

Remark 1. Over the fields (and rings), we may theoretically improve this bound at least

M(m, n, p) <_ mnp/(min{m, n, p})3-o,
M(n) M(n, n, n) <_ n,

with co < 2.376.
The algorithms supporting the bound co < 2.376 [CW90], [P87], [BP94] are not practical,

unlike some algorithms supporting the bounds co < 2.81 and even co < 2.78, which have,
or promise to have, some limited practical value [GL89], [LPS92]. In the remainder of this
paper, however, we shall assume that both inequalities (4) hold as equalities

For the randomized inversion of an n x n matrix, over a field F, we have the following
estimates [P91], [P92], [KP91], [KP92], [BP94]:

(5) OA (y(n, q) log2 n, M(n) log n),

where M(n) is defined by (3), (4), q is the characteristic of F, and

[log n/ log q] ifq >0,
(6) ?’ (n, q)

if q 0.

For the same computational problem, we have the following deterministic estimates:

(7) Oa (log2 n, n M(n)),
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where/3 < over any field F [Be84], [Ch85]; however, if F has characteristic q 0 or
q > n, then/ < 1/2 [Cs76], [PS78], [GP89].

Over the semirings with additive operator (9, instead of matrix inverses, we compute the
quasi-inverses (A* denoting the quasi-inverse of A), as follows:

A* lim A (h) A() I, A (h) A (h-l) Ah I A @ @ Ah h 2,

where ! denotes the identity matrix in the semiring [Ca79], [PR89], [P93]. In many applica-
tions, we deal with semirings where

[log(n 1)

(8) A* A (n-l) H (I -- A2J),
j=0

for any n n matrix A. Then the bounds (3), (4) for M(n) n3 are extended to the evaluation
of A*; these bounds take the form

(9) Oa (log2 n, n3 log n),

thus yielding a parallel algorithm that is fast but not work-optimal, since in this case Wseq
O(n3) (see, e.g., [AHU74])

3. A t’actorization of a matrix and its (quasi-) inverse. Hereafter, 1 and 0 denote
the identity and the null matrices of appropriate sizes, respectively. AT" and AH denote the
transpose and the Hermitian transpose of a matrix A, respectively (see [GL89] for these
standard definitions).

We will represent an n n matrix A as a 2 2 block matrix and recall the following
factorizations of A and A-1 [AHU74]"

(10) A A21 A22 A21A-I I 0 S 0 I

(12) S A22 A21A-IlAI2
Here, A 11 is an rn x rn matrix, rn < n, and we assume nonsingularity of A, A l, and S. (S

is known as the Schur complement of Al in A). For a nonsingular matrix A, we may ensure
nonsingularity of A and S, with a high probability, by means of a simple preconditioning of
A, for instance, by the transition to the matrix UALr, where U and Lr are unit lower triangular
Toeplitz matrices with ones on their diagonals and with other entries of their first columns
chosen at random (compare [KP91 ], [BP94]) Over the real or complex fields (and over their

subfields) we may deterministically ensure the nonsingularity of A and S by shifting from
the original matrix A to the positive definite product At/A.

No extension of (10) to semirings is known, but (11) and (12) are extended as follows
([AHU74, p 205], [PR89], [P93]):

11 12 Al 0 I 0
0 1 0 S* AzlAI I

(14) S A22 + A21AAI2,
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4. Work-preserving speed-up for matrix inversion and quasi-inversion. The fastest
parallel algorithms that support the bounds (5), (7), and (9) are not efficient since Gaussian
elimination over any field and its extensions to semirings [Ca79], [PR89] support the bounds
OA (n, n3). Next, we will demonstrate that matrix inversion and quasi-inversion lend them-
selves to work-preserving speed-ups.

Let us consider a semiring such that property (8) holds for n n matrices for any n

(this implies that (9) is applicable). Let A be an n n matrix. As in the preceding section,
we partition A as a 2 2 block matrix, where the upper-left block A II is an h x h matrix
(h to be determined). The technique based on (13) and (14) reduces the computation of
A* to the computation of A’ S*, and six multiplications of pairs of rectangular matrices,
whose dimensions never exceed n and one of which has at least one dimension equal to h.
Therefore, these multiplications have global performance OA(lOgn, n2h) (see (3) and (4)).
If we explicitly compute Al and all matrix products we reduce the original problem to the
(recursive) computation of S*. By (8), A is computed at the cost OA (log2 h, h log h). Thus,
the nonrecursive part of the computation satisfies the cost bound

(15) Oa (max(log2 h, log n), max(h log h, n2h)).

It follows that the performance of the global computation is obtained by multiplying by n/h
each of the terms of (15). Next, we impose the condition h logh < n2h, which yields
max(h3 logh, n2h) n2h. If, specifically, we select h n/(logn) /2 (which satisfies the
preceding condition), then we have (n/h) max(log2 h, log n) (n/(n/(log n)/2)) log2 n
log5/2 n and (n/h) max(h logh, n2h) (n/h)n2h n3, so that we arrive at the solution A*
of the original problem with the following (work-optimal) performance"

(16) Oa ((log n)5/2, n3).

The parallel algorithm that supports (15) is efficient, according to our definition, and still
quite fast, for it fails to attain just by a factor O((logn) /2) the time of the fastest known
algorithm for this problem (see (9)).

Over the fields of characteristic q, a similar approach based on (5), (10)-(12) [where we
choose h n/(logn) /2 (see (5)) as the dimension of block A I and where we precondition
A to avoid the singularities] yields the bounds

Oa ((log n)5/2’(n, q), n3)

on the randomized complexity of the inversion of an n n matrix.
When we operate over the fields of characteristic 0, we deterministically ensure nonsin-

gularity in all such recursive computations by using AnA in lieu of A (since A- is easily
obtained through the identity A- (AnA)-An) (compare [BP94]). Then we may also
apply (7) (in this case with/3 1/2), and (10)-(12). If we choose h n4/5, the same
techniques enable us to compute the inverse A- of an n n nonsingular matrix A with the
performance

(17) OA (n /5 log2 n, n3).

Note that (7), and consequently (17), are deterministic bounds. Again, we obtain an efficient
algorithm, although in this case the speed-up falls substantially short, of the maximum (the
attainable time is n /5 log2 n, rather than log2 n).

Remark 2. The latter estimate relies on (7) with/ 1/2. For/3 < 1/2, we may decrease
the time bound, preserving the work n3.



SPEED-UP OF PARALLEL MATRIX COMPUTATIONS 817

As an exercise, the reader may work out the extension of (15) and (16) based on the
estimates of Remark 1. Then the asymptotic estimate for the work will decrease but will not
reach the bound h since (according to equations (10)-(12)) this involves rectangular matrix
multiplication, which generally is not asymptotically as fast as square matrix multiplication
(refer to Remark 1).

5. Triangular matrix inversion and solution of triangular linear systems. Let A be
an n n nonsingular triangular matrix. Then we may improve the estimates of the previous
section for the inversion of A as follows [BM75, p. 146]:

(18) Oa (log2 n, n3).

Indeed, represent A and A-1 as 2 2 block matrices

(19) A All 0 A_l All
A2! A22 A A12A-{ A

Assume for convenience that n 2k, for an integer k, and that All is an (n/2) x (n/2)
block and note that (19) reduces the inversion of A to the concurrent inversions of the half-
size matrices All and A22 and to two subsequent multiplications of (n/2) x (n/2) matrices.
Recursively apply the same observations to invert All and A22. Using (3), (4), and Brent’s
principle, we obtain a fast and efficient Oa (log2 n, n3) algorithm.

We may now use this algorithm to achieve a work-preserving speed-up for the solution
of the triangular linear systems

(20) Ax b,

since x A-lb. Note that the computation of A-1 is not required to obtain x; if we first
compute A- to subsequently obtain x, the resulting algorithm is not efficient, since the
simple (forward or back) substitution algorithm yields the bounds OA (n, he). We next explore
whether a work-preserving speed-up is achievable for this problem.

We assume now that A is an h h matrix (again, h is a parameter to be selected) and
let br [br, b], where bl is a vector of dimension h. From (19) we deduce that

These relations suggest to compute e at the cost Oa (log2 h, h3) (see (18)) and subsequently
to compute f at the cost Oa (log h, nh). By so doing, we have reduced the original problem to
the problem of computing A-2 f, that is, to solving the triangular linear system A22Y f of
n h equations. Iterating this approach, we could successively reduce this system to triangular
systems of n 2h, n 3h equations, and thereby solve the original system (20). However,
to avoid the inefficiency deriving from the imbalance between the computation times of e and
f given above (O (log2 h) vs. O (log h)), we propose the following more efficient strategy.
The computation is carried out as a sequence of n/(h log h) major iterations, each consisting
of log h minor iterations, essentially as described above, the only difference being that the
inversions of the log h diagonal blocks are carried out, concurrently, at the beginning of the
major iterations, at the cost OA (log2 h, h log h). It follows that the overall cost is

n
log2 h

n
(h h))Oa

h log h h log h’ max log h, nh log
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which leads to selecting h n 1/2 and to the estimate

(22) Oa(n 1/2 logn, n2).

Note that the algorithm is efficient (the work equals n2), but we do not know how to avoid
inefficiency if is polylogarithmic in n or even if n /4 (for example).

Remark 3. We may obtain (theoretical) asymptotic improvements of the bounds (22) by
applying the estimates of Remark 1. Then we just need to set h n/- and arrive at.
the bounds Oa (n log2 n, n2), ot (o9 1), so that o9 < 2.378 implies that c < 0.28.
Clearly, a polylogarithmic time bound is achieved only for ot 0 implied by the value o9 2.

6. Solving structured linear systems and further applications. In this section we will
refer to computations over the complex field of constants, so that fast Fourier transform (FFT)
on m points can be performed at the cost OA (log m, m log m). We will show a work-preserving
speed-up for solving a linear system (20) in the special case where A denotes an n n Toeplitz
or Toeplitz-like matrix represented by its displacement generator of length O (1).

We refer to Appendix A for the definition and basic properties of Toeplitz-like matrices
and their displacement generators. By using these representations and their properties, one
may devise two algorithms that compute a short displacement generator of the inverse of a
nonsingular n n Toeplitz-like matrix A at the cost bounded by OA (n, n log2 n), [BAS0],
[MS0], and OA (log2 n, n2 log n) [P92], respectively.

Then, after this preprocessing stage and independent ofthe Vector b, the solution x A- b
to the linear system Ax b can be immediately computed at the cost OA (log n, n log n).
Adopting the latter of the two cited algorithms, one should proceed as in 4, noting, however,
that the matrix AtIA, as well as the matrices AI A]- A2, A2 A22, and S of (10)-(12)
are now Toeplitz-like matrices, to be represented in terms of their displacement generators of
lengths O (1). Much less computational work is involved when operating with such matrices
than when dealing with general matrices as in 4.

In this way, one will finally obtain an algorithm that computes A-b within the bounds

(23) Oa(n -a log2 n, n TM log n),

for any a, 1/2 < a _< 1. For instance, (23) turns into Oa (n 1/2 log2 n, n3/2 log n) for a

1/2. To achieve this result, for a given a, one should choose as n n the size of the
leading block Al in (10)-(12), thereby obtaining a Schur complement S of A1 in A of size
(n na) (n na) at the cost Oa (log2 n, n2a log n), and, similarly, for each of the subsequent
n 1-a iterations. Note, however, that one never explicitly computes the n2 entries of A-1 (of
which (n + 1)n/2 may be distinct even when A is a Toeplitz matrix), but only recursively
expresses the displacement generators of A- via those of A]- and S-; furthermore, S- is
a trailing principal submatrix of A-, and similarly are the Schur complements in S (and in
its trailing blocks), arising in the outlined process of the recursive factorization of A-I

These bounds can be immediately extended to the solution of linear systems with n n
Hankel-like, Hilbert-like, and Vandermonde-like matrices (see [P90]), to the evaluation of
greatest common divisor and least common multiple of two polynomials of degrees O(n) (see
[P92]), and to several other fundamental computations with matrices and polynomials (see
[BP94]).

Appendix A. Some basic properties of Toeplitz and Toeplitz-like matrices. In this
appendix we recall some basic properties of Toeplitz and Toeplitz-like matrices (compare
[KKM79], [CKL87], [BP94], [Pg0], [P92], [P92a]).

The n n matrix Z [zi,j], which is 0 everywhere except for all l’s on the first
subdiagonal, is called the n n lower shift (displacement) matrix. (Note that Zn 0.) Z



SPEED-UP OF PARALLEL MATRIX COMPUTATIONS 819

n-1 zigenerates the algebra of n x n lower triangular Toeplitz matrices, {Yi=0 ai L (a)}, and
similarly, Zr generates the algebra of n x n upper triangular Toeplitz matrices,

{ LT (b) bi(zT)i }
where a (ao an_l) T and b (b0 b,, 1) T. An n x n Toeplitz matrix T [ti,j] is a
matrix representable as the sum L (a) 4- LT (b) for any fixed pair of vectors a and b. (Note that
ti,j ti+l,j+k for any triple i, j, k, where i, j, + k, j + k are within the range 1, 2 n.)
More generally, a pair G [g gd], H [ht hd] of n x d matrices generates the
matrices

(A.1)
d

A L(gi)Lr(hi),
i:l

d

(A.2) B Lr(gi)L(hi).
i=1

The pair (G, H) is called either the (ZZr)-displacement generator of length d for A or the
(Zr Z)-displacement generator of length d for B. (Note the simple transition from (A.1),
(A.2) to the displacement generators for A t4, B /). For a given A, the smallest possible length
d* of its displacement generators is called the displacement rank of A.

THEOREM A.1 [KKM79]. Equation (A.1) holds ifand only ifA ZAZr GHr; (A.2)
holds ifand only if B ZrBZ GHr.

By Theorem A.1, matrices can be represented by their displacement generators, which
reduces the storage requirements if the generators are short (i.e., of small length). Moreover,
recalling that multiplication of a Toeplitz matrix by a vector reduces to polynomial multipli-
cation (convolution of vectors) and can be performed at the cost Oa (log n, n log n), one can
multiply either A or B, given by (A.1) and (A.2), by a vector at the cost Oa (log n, dn log n)
(since each such multiplication is resolved into 2d multiplications of a Toeplitz matrix by a
vector). If d O(1), then A and B are called "Toeplitz-like."

The sum, difference, and product of two Toeplitz-like matrices U and V are Toeplitz-
like matrices, whose displacement generators are explicitly expressed via the homologous
generators of U and Vo Moreover, similar properties hold for all the leading and trailing
principal submatrices of U and V. Finally, if U V I, then the displacement rank of U
equals the displacement rank of V [KKM79], and for a Toeplitz-like matrix A represented
with its displacement generator (G, H) according to (A.1), one may effectively compute its
shortest ZZr- and Zr Z-displacement generators, and similarly for the matrix B represented
according to (A.2) [BA80], [P92], [P93a].

Acknowledgment. The authors wish to thank David Eppstein for his interest in the sub-
ject of this paper and for his useful comments.
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INTEGER LINEAR PROGRAMS AND LOCAL SEARCH FOR MAX-CUT*
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Abstract. The paper deals with the complexity of the local search, a topic introduced by Johnson, Papadimitriou,
and Yannakakis. One consequence of their work, and a recent paper by Schfiffer and Yannakakis, is that the local search
does not provide a polynomial-time algorithm for finding locally optimum solutions for several hard combinatorial
optimization problems. This motivates us to seek "’easier" instances for which the local search is polynomial.
In particular, it has been proved recently by Schiffer and Yannakakis that the max-cut problem with the FLIP
neighborhood is polynomial-time local search (PLS) complete, and hence belongs among the most difficult problems
in the PLS class. The FLIP neighborhood of a 2-partition is defined by moving a single vertex to the opposite class.
We prove that, when restricted to cubic graphs, the FLIP local search becomes "easy" and finds a local max-cut in
O(n2) steps. To prove the result, we introduce a class of integer linear programs associated with cubic graphs and
provide a combinatorial characterization of their feasibility.

Key words, local search, local optima, max-cut, cubic graph, integer linear program
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1. Introduction. Local search is a frequently used practical strategy for finding good
feasible solutions for hard combinatorial optimization problems. Starting from an arbitrary
initial solution, a sequence of feasible solutions is iteratively generated so that a consecutive
feasible solution is always chosen in the neighborhood of the current one, and has a strictly
better cost. When no improvement within the neighborhood is possible, a local optimum is
found. Some well-known examples of local search are the Lin-Kernighan heuristic for graph
partitioning, 2-exchange for the traveling salesman problem, and the simplex method of linear
programming.

Very often the local search needs only a few number of steps to terminate, but the number
of steps is exponential in the worst case for most problems.

The theoretical importance of the local search was recognized by Johnson, Papadimitriou,
and Yannakakis [4], who introduced a complexity class polynomial-time local search (PLS) in
order to capture the essence of the local search and study its complexity. An important concept
is that of a neighborhood structure, because one can consider several different neighborhood
structures for the same optimization problem. For example, 2-exchange and 3-exchange are
different neighborhoods for the traveling salesman problem, and they also lead to different
local optima in general. For the purpose of our paper we do not need to present the detailed
definition of the PLS class. Let us only recall that a problem P belongs to the class PLS if a
triple of polynomial-time algorithms is given: (i) an algorithm generating an initial feasible
solution, (ii) an algorithm computing an integral cost of a given feasible solution, and (iii)
an algorithm which, given a feasible solution, either finds a better neighboring solution or
determines that the current solution is a local optimum.

A crucial question posed in [4] was whether there is a polynomial-time algorithm for
finding a local optimum for a PLS problem. Local search itself does not provide such an
algorithm since the number of its steps need not be polynomially bounded. On the other hand,
interior point algorithms for linear programming show that local search is not the only option
for finding a local optimum (which is also global in case of the linear programming) and,
morever, provide a polynomial-time algorithm.

*Received by the editors March 10, 1993; accepted for publication (in revised form) March 14, 1994.
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The main results of [4] were that the class PLS contains complete problems, which include
both interesting and practical problems. (A problem P in PLS is said to be complete if the
existence of a polynomial-time algorithm for finding local optima for the instances of P
implies the existence a polynomial-time algorithm for all problems in PLS.) This first PLS-
complete problem was the graph partitioning under the Kerninghan-Lin neighborhood. Later,
several other PLS-complete problems were found [6], [10], [8]. However, the question of
the complexity of finding local optima remains unsolved, and there are several arguments
indicating that its complexity may lie "somewhere between" the polynomial-time and the
NP-complete problems (cf. [4], [9]).

Our paper is motivated by an opposite goal, namely, the following question: Which
problems in the class PLS are easy? Following a certain analogy with the P=NP? problem,
one can say that the investigation of polynomial-time solvable problems gained in significance
simply because of the theory of NP-completness, and it is also considered important to find
polynomial-time algorithms for restricted versions of NP-hard problems.

We study the problem of locally maximum cuts in weighted graphs. The FLIP neigh-
borhood of a cut consists of the cuts obtained by moving a single vertex in the opposite class
of the 2-partition. Schiffer and Yannakakis 10] proved that the problem of local max-cut
with the FLIP neighborhood is PLS-complete. An immediate consequence is that FLIP local
search requires an exponential number of steps in the worst case. Our main result is that the
FLIP local search becomes easy when restricted to cubic graphs. We prove that the FLIP
local search cannot be longer than 6n2 steps for a weighted cubic graph on n vertices. This
contrasts with the optimization versionmthe max-cut problem, which remains NP-complete
even when restricted to cubic graphs (see [11]). The case of cubic graphs was first studied
by Loebl [7], who proved that a FLIP local max-cut can be found in polynomial time for a
cubic graph with nonnegative edge weights. However, his algorithm avoids local search, and
he conjectured (personal communication) that local search might be exponential even in cubic
graphs. Now the existence of a polynomial-time algorithm immediately follows from our
result since the local search itself is polynomial. Another extension of [7] is that our result is
valid for arbitrary, edge weights, while Loebl [7] considered only nonnegative weights.

Loebl [7] claims that his algorithm can be implemented in linear time. Let us remark that
a linear-time algorithm can also be obtained from the analysis of our paper.

A natural question is whether the FLIP local search also remains easy for the graphs with
bounded maximum degree D for D > 3. have been informed by one ofthe referees that this is
not true. He remarked that a consequence of the result of Krentel [5] is that there exits a degree
Do such that for every D > Do, there is an infinite family of weighted graphs of maximum
degree D and corresponding initial 2-partitions, such that every local search from the initial
solution takes exponential time. A related result which already shows an increased complexity
for 4-regular graphs (with edge- and node-weights) is by Haken and Luby [3]. They presented
an infinite family of 4-regular graphs together with initial 2-partitions for which the greedy
local search (FLIP the vertex that yields the most improvement) is exponential. Thus, the
results of [5] and [3] indicate that FLIP local search and FLIP local max-cut might already be
difficult for 4-regular graphs, but the problem remains open. On the other hand, the method
of our paper does not seem to allow extension to 4-regular graphs.

Let us briefly explain the approach of our paper. Assume we are given a cubic graph with
nonnegative integer edge weights c,, e E. It is easy to see that any FLIP local search is
bounded by the total sum of all edge weights since the weight of the cut is strictly increasing in
each step of the local search. However, ,eE c does not provide a polynomial upper bound
on the local search since it can be exponential in the size of the binary encoding of G and
c. Our goal is to show that every c can be replaced by some other bounded integer function
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w for which the FLIP local search runs precisely the same way as for c. That is, we will
construct w such that every w, e 6 E, is bounded by O(n). Since there are O(n) edges,
the total edge weight is O (n-). Every step of local search strictly improves the weight of the
current solution, and thus the maximum possible length of a sequence of local search is at

most O(n2). The order of the polynomial n is the best possible. We present an example of
an infinite family of cubic graphs that admit () steps of local search, which establishes that
local search in cubic graphs is of order (+(n2).

The new edge weights w are found as a solution of a system of linear inequalities in
variables &,, e 6 E, which is determined by c. We call such a system of linear inequalities a
local linear program since the constraints are associated with the vertices of the graph, and
every variable Xij occurs only in the constraints corresponding to or j. The following ideas
lead to the definition of a local linear program. A vertex is said to be c-happy in some
2-partition if flipping does not increase the weight of the cut. Let e, f, and g denote the
triple of edges incident to a vertex i. The "happiness" of a vertex depends on the mutual
inequalities between ce, cf, and Cg rather than on their actual values. We observe that only
two cases have to be distinguished. Either (i) none of {ce, ft, Cg is larger than the sum of the
remaining two, or (ii) one of {ce, cf, c,} is strictly larger than the sum of the remaining two.
In the former case, a vertex is happy if and only if at least two of its edges are in the cut. In
the latter case, a vertex is happy if and only if the "heaviest" edge is in the cut.

Thus, constraints (i) and (ii) provide necessary and sufficient conditions for w to be
equivalent with c. However, it is not immediately obvious how to construct w so that it is
bounded. We proceed as follows: It appears convenient to "forget" about the original weights
c and study only the system of linear inequalities determined by it. That means that we
introduce an abstract local linear program not necessarily associated with any edge weight
function, and hence possibly infeasible. We provide a combinatorial characterization of the
feasibility of the (abstract) local linear programs and, as a by-product, we conclude that if a
local linear program is feasible, then it has a bounded integral solution. The characterization
of the feasibility is formulated in terms of the mutual relation between the structure of the
underlying graph and the linear constraints associated with the vertices of the graph.

The paper is organized as follows: The notion of a local linear program is introduced in
2, where we also formulate the result on the existence of bounded integer solutions. Sec-
tion 3 is devoted to the main application, the FLIP local search in cubic graphs. In 4 we
provide a combinatorial characterization of local linear programs associated with cubic graphs.
A consequence of this characterization is the existence of the bounded integer solutions for
feasible local linear programs.

2. Local linear programs. We consider graphs without loops and multiple edges. A
graph is called cubic if the degree of every vertex is three. Let G (V, E) be a cubic graph
on n vertices, where V {1 n}. Let x (Xe), e E, be a vector of variables associated
with the edges of G. A system of inequalities

(1) Aix > bi

is called a block of vertex if it has one of the forms (2) or (3).
Let e, e2, and e3 be the triple of edges adjacent to i, and let x,,., x,,2, and x,, be the

corresponding variables. A block associated with vertex is either a system of three inequalities

(2)
Xel + Xe Xe3 O,
Xel Xe2 q’- Xe3 _. O,

--Xel -- Xe2 + Xe O,
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FIG. !. A local linear program associated with K4.

or.just one inequality

(3) Xej--Xe--Xe,. > l, where {j, k, e} {l, 2, 3}.

In other words, the meaning of (2) is that none of Yel, Xe2 Xe3 is larger than the sum of the
remaining two, and (3) says that one specified variable from the triple is strictly larger than
the sum of the remaining two.

Observe that (2) and (3) are mutually exclusive. For any nonnegative integer values of
xe,, Xe., and Xe3 (2) is valid if and only if (3) is not valid.

DEFINITION 2.1. A local linear program (LLP) associated with a cubic graph G V, E)
is a system of linear constraints

(4)
Aix > bi (i n),
x>_0,

where each Ai > bi is a block associated with vertex n.
We can associate 4" distinct local linear programs with a given cubic graph since there are

three options in (3). Not every local linear program is feasible. Let us present two examples
of infeasible local linear programs.

EXAMPLE 2.2. Consider the following LLP associated with K4:

XI2 > XI3 "+" XI4 -’I-
X23 > Y 12 + X24 "I"
XI3 > X23 "+" X34 "-l"

X14 < X24 + X34 /
.t724 _< X14 "+ X34

X34 < X14 + X24

X12, X13, X14, X23, X24, X34 >_ O.

block of vertex 1,
block ofvertex 2,
block of vertex 3,

block of vertex 4,

This LLP is infeasible, since summing thefirst three inequalities gives x4-l--x24-I-x34 -3,
which contradicts the nonnegativity constraint.

It is convenient to depict a given LLP directly on the underlying graph. This is done so
that an edge e ij is oriented from to j whenever the block of the vertex j is the constraint
(3) saying that xe is larger than the sum of the other two variables. In this way we obtain a
graph with some oriented and some unoriented edges, which fully describes a given LLR The
orientation of K4 corresponding to the LLP of Example 2.2 is shown in Fig. 1.
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lo

FIo. 2. Graph G Io.

EXAMPLE 2.3. Consider the LLP given in Fig. 2 by the graph G 1o and the partial orien-
tation of its edges. This LLP is infeasible, which will be shown later in Example 4.6.

An important property of local linear programs is that a program is feasible if and only if it
has an integer solution where every variable is bounded by 2n 1. This result will be proved in

4. As a by-product, we will obtain a combinatorial characterization of the feasibility of local
linear programs (cf. condition () in Theorem 4.5). For technical reasons, it is convenient, to

introduce a notion of a generic vector.
DEFINITION 2.4. A vector z (e) is called generic if(i) is strictly positive, i.e., > 0

for every e, and (ii) =/= zf + Zg for eve triple ofedges e, f, g incident to a common vertex.

THEOREM 2.5. Let G V, E) be a cubic graph together with an associated local linear
program (4). Thefollowing are equivalent:

() The LLP is feasible.
() LLP has a generic integerfeasible solution x (xe), which is bounded such that

x2n- lforevee.
The proof will be given in 4.

3. FLIP loenl search in cubic graphs. Let G (V, E) be a cubic graph and c e Zf

be a vector of integer edge weights. Any subset S C V determines a 2-partition (S, V S) of
vertices and a cut 3(.S) "= {ij e E e S, j S}. The weight of a cut 3(S) is defined as

ee6(s)

The max-cut problem asks one to find a subset S for which c(6(S)) is maximum. The max-
cut problem is NP-complete even when restricted to cubic graphs with c identically for all
edges (see [11]). The FLIP local search (defined below) is the simplest local search heuristic
for max-cut, and some more involved heuristics (e.g., the Kernighan-Lin neighborhood) may
bring better quality of local optima.

We say that a 2-partition (T, V \T) is in the FLIP neighborhood of (S, V\ S) if SZX T 1,
where SAT denotes the symmetric difference of sets S and T. In other words, the FLIP
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(a) nongeneric c. (b) generic w.

FIG 3

neighborhood consists of the 2-partitions obtained by moving a single vertex of S or V \ S into
the opposite class. A sequence of 2-partitions

(6) (So, v \ So) {s,, v \ s,)

is called a FLIP local search if (Si, V \ Si) is in the FLIP neighborhood of (Si-i, V \ Si-)
and c(((si)) > c(3(si_)) for every n. Integer N is called the number of steps or
the length of the local search (6). Observe that we do not require that (SN, V \ SN) be a local
optimum,

Since the FLIP neighborhood is the only neighborhood structure used in the paper, we
will omit the term "FLIP" in the rest of the paper. Hence, local search and local max-
cut will always mean the local search and the local maximum cut with respect to the FLIP
neighborhood, respectively. On the other hand, we will often need to distinguish the local
search with respect to different edge weight functions. In that case we will write c-local
search to denote the local search with respect to c. Furthermore, we will adopt the following
terminology: A vertex is said to be c-happy with respect to S if moving to the opposite
partition class of (S, V \ S) does not increase the weight of the cut. That is, is c-happy if
and only if

(7) c(3(SAi)) < c(3(S)).

Since a 2-partition (S, V \ S) is fully determined by one partition class, we will write a c-local
search as a sequence S (So, S SN), where S,+I ASt {6} and vertex it is not c-happy
in 3 (St), 0 N 1. Let us illutrate the local search in the following example.

EXAMPLE 3.1. Consider K4 with the edge weights c given in Fig. 3(a). The sequence
({3 }, {3, 4 }, 2, 3, 4 }, 2, 3 }, 2 }) is a FLIP c-local search since

c({3}) 5 < c(3{3, 4}) 7 < c(6{2, 3, 4}) l0 < c(6{2, 3}) 12 < c({2}) 13.

The last set in the sequence is a c-local max-cut. In case we consider the edge weights
w given in Fig. 3(b), the local search sequence can be extended by one more member, i.e.,
({ 3 }, {3, 4}, {2, 3, 4 }, {2, 3 }, {2}, 2, 4}) is a FLIP w-local search since the corresponding se-
quence ofthe weights w(8(S)) is (5, 6, 7, 8, 9, 10).

Our main result is the following theorem.
THEOREM 3.2. Let G be a cubic graph with an edge-weightfunction c.

(i) Then any FLIP local search has length at most 6n2.
(ii) If the edge-weights c are nonnegative, then it has length at most 3n 2.
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Before proving Theorem 3.2 we need to prepare some auxiliary lemmas. It is convenient
to prove the result first for cubic graphs with nonnegetive integer edge weights. Given a vector
c (Ce) 6 Z+e of nonnegative integer edge weights, we define the local linear program
determined by c, denoted by LLP(c), as the system of linear inequalities consisting of the
nonnegativity constraint

x>0

and a block of the following constraints for every vertex (where e, f, and g is the triple of
the incident edges):

Xf + Xg X C.[ + Cg Ce,
(8) X + Xg Xf if and only if Ce + Cg >_ cf

Xe + Xf > X, C + C1 > Cg,

or

(9) xe >_ X.f "Jr-Xg + if and only if ce >_ cf + cg + 1,

where e, f, and g denote the triple of the edges incident to a vertex i. The local linear program
LLP(c) has the following trivial properties.

LEMMA 3.3. (i) The vector c is a feasible solution ofLLP(c).
(ii) A nonnegative integer vector w (We) is a feasible solution ofLLP(c) ifand only if

LLP(c) LLP(w).
Proof Part (i) follows immediately from the definition since the inequalities are defined

so that each of them is satisfied by c. If LLP(c)=LLP(w), then w is a feasible solution of
LLP(c) by part (i). Conversely, if w is not feasible for LLP(c), then there exists a vertex
such that, say, w satisfies (8) and c satisfies (9). Then w and c define different local linear
programs, which differ in the block associated with vertex i. This proves part (ii). [3

The feasible solutions of an LLP(c) do not uniquely determine the structure of locally
maximum cuts, because if w and c have LLP(w)=LLP(c), they may still have distinct local
maxima. As an example, consider K4 with edge weights c and w given in Figs. 3(a) and
3(b). Then LLP(c)=LLP(w) but the local max-cuts are not the same. That is, the 2-partition
({2}, 1,3, 4}) is a local max-cut with respect to c but not with respect to w. However, such a
situation cannot occur when we restrict ourselves to the generic feasible solutions. We have
the following lemma.

LEMMA 3.4. Let w be a genericfeasible solution ofLLP(c). Then every w-happy vertex
is c-happy with respect to any subset S C V.

Proof Let S be a given subset of vertices. Assume that a vertex is not c-happy. We
have to show that is not w-happy either. Let e, f, and g be the edges incident to i. We have
to distinguish two cases.

(i) Assume Ce > cf / Cg. Then e 3(S), since otherwise would be c-happy. Since w is
feasible and generic for LLP(c), we have we > wf + tUg -- I. Hence vertex is not w-happy
in S either.

(ii) Assume ce < cf + Cg. Then [3(S) A {e, f, g}l < I, since otherwise would be
c-happy. Since w satisfies

We + Wf Wg > 1,

(10) we tuf + tUg 1,
--We -Jr- tuf -Ji- tUg 1,

w>_l,

is not w-happy in S either.
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An immediate consequence of Lemma 3.4 is the following corollary.
COROLLARY 3.5. IfS (So, S SN is a c-local search and to is a genericfeasible

solution ofLLP(c), then the sequence ,9 is a c-local search as well.
Proof. By the definition of the local search, l) Si A Si-i is not c-happy for any

n. By the above lemma, vi is not w-happy either. Hence the sequence S is a w-local
search as well.

Let us remark that the converse of Corollary 3.5 is not true. A counterexample was
presented in Example 3.1. Now we are able to present the proof of our main result in case the
edge weights are nonnegative.

Proofof Theorem 3.2 (ii). Given a cubic graph G and nonnegative integer edge weights
c (ce), Theorem 2.5 guarantees that LLP(c) has a generic integer solution w, which is
bounded so that < toe < 2n for every e. Since G has 3n edges, any local search in
(G, w) can take at most 3n2 steps, because every flipping increases the weight of a current
cut by at least one, and the total weight of all edges is bounded by 3n2. Because of Corollary
3.5, the same bound also applies to any local search in (G, c), because any local search with
respect to c is a local search with respect to w.

Now, we extend the result to cubic graphs with arbitrary, i.e., not necessarily nonnegative,
weights. We will make use of an operation of switching (see below), and the upper bound 3n2

will be replaced by 6n2 for the general case. From now on, the integer edge weights c (Ce)
are arbitrary, i.e., possibly negative.

Let SA S’ denote the symmetric difference of sets S and S’. Given c 6 Z and S C V,
the S-switching of c is the vector cs (Ces) defined by changing the sign of the weight on the
edges in the cut 6 (S), i.e.,

S { --C for e 6 6(S),
(11) Ce "=

Ce otherwise.

Switching has been introduced by several authors for different purposes. We will employ
switching to modify a given c to cs such that a specified vertex becomes incident only to
nonnegative edges in cs.

Let us mention that, in general, a weighted cubic graph cannot be reduced to nonnegative
weights by switching. The "best" we can achieve by switching is that every vertex is incident to
at most one negative edge. Switching a vertex (more precisely, the one element set consisting
of a single vertex) which is incident to two or three negative edges reduces the total number
of negative edges of the cubic graph.

The following lemma is well known and easy to check.
LEMMA 3.6. Let S, S’ C V, and cs be the switching ofa weightfunction c. Then

(i) [1] cS(8(S’AS)) c(8(S’)) c(8(S));
(ii) a vertex is c-happy in 3(S’) ifand only if it is cS-happy in 3(S’AS);
(iii) 3( S’) is a local maximum with respect to c ifand only if3( S’ AS) is a local maximum

with respect to cs.
Proof. Part (i) is proved, e.g., in [1] and can easily be checked. Part (ii) is derived from

(i) as follows: Assume that a vertex v is cS-happy in S’A S. Then, by the definition

(12) cS(3(S’ASAv)) < cS(3(S’AS))

and part (i), we have

cS((S’zXS,v)) cS((S’zXv)) c((S)).
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Hence c(6(S’)) >_ c(3(S’Av)) is equivalent to (12). Part (iii) is an immediate consequence of
(ii). [3

Proof of Theorem 3.2 (i). Given c Zm, let ? (?e) 6 Zm be defined by ?e Icel for
every e 6 E. Consider the LLP(?), the local linear program determined by :. Since LLP(?)
is feasible (? is a solution), it also has a bounded generic solution by part (/3) of Theorem
2.5. Let us define w (we) by

(13) -e ifce <0,
we:= ,. ifCe>0.

Let ,9 (S0, S1 SN) be a local search with respect to w. We claim that N _< 6n -. Since

Iwel <2n- for everye, and_n(2n- 1) < 3n- we have-3n < w(6(S)) < 3n2 Since
w(3(St+ )) > w(6(St)) for every t, N is bounded by 6n2. This proves the claim.

It remains to show that any local search S with respect to c is a local search with respect
to w. In other words, we have to show that if a vertex is not c-happy, then it is not w-happy
either. This is easy to see when c, and thus also w, are nonnegative. In order to simplify the
proof for a general c, we employ the operation of switching.

Assume that a vertex is not c-happy in St. Let e, f, and g be the edges incident to i.
s cs cs areLet cs be a switching of c with respect to the set S {j cij < 0}. Then all ce, f, g

nonnegative since the switching changes the sign of the weight on the edges in the cut 8(S).
Since -ce ceS, -d.t c.,. -(g csg (we recall that the bar means the absolute value for the

s w s s are also nonnegative by the definition of w. Since is not c-happyentries of c), We, .t" 113g
in St, is not cS-happy in SASt. Using Lemma 3.4 with cs, ws and SASt instead of c, w,
and S, respectively, we conclude that is not wS-happy in SASt. Using Lemma 3.6 again,
is not w-happy in St. Hence, any c-local search is a w-local search as well. Since the number
of steps for the w-local search is bounded by 6n2, the same bound is valid as the upper bound
on the length of a c-local search.

Remark. There are instances of weighted cubic graphs where the local search for a local
maximum cut may take O(n2). This shows that the bound of Theorem 3.2 is asymptotically
optimal.

EXAMPLE 3.7. Let P,, be a path on n vertices with edge weights c where ci,i+l i,
1, 2 n 1. We show that there is a local search on P,, which requires (2) steps. This
result presents a lower bound on the worst casefor cubic graphs as well. For n even, the path
Pn can be embedded into a cubic graph, and the weights of the additional edges are set as
zero.

Proof. Assume that n is even. (The proof for n odd is quite analogous, hence we omit it.)
We will describe a FLIP local search sequence with the following properties"

(i) The initial set of the sequence is 1,2 n}.
(ii) The final set of the sequence is {2, 4, 6 n}.
(iii) At each step, the weight of the cut is increased precisely by 1.

It immediately follows from properties (i), (ii), and (iii) that the length of the con-
structed sequence is (2), since the weight of the initial cut is 0 and the weight of the final

cut c(6({ 1,2 n})) is z..,i= (’). Observe that the final cut is the max-cut. The local
search sequence is generated by the following algorithm:

S := {1,2 n} (initialization)

For j "= n step -1 to 2 do

For/’= to j- do

S := SA{i}
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We claim that the above algorithm has the properties (i), (ii), and (iii). In order to analyze
the correctness of the algorithm, let us define sets Sij, < < j < n, as follows:

{i,i+1 j-1 j}U{j+2, j+4 n-2, n}
Sij "= {1,2,.. 1}tAi.]+ 1, j-t-3 n

for j even,
for j odd.

Now, the following is easy to check:

(i) S,, {1,2 n} (the initial set),
(ii) SijA{i} S+,L if/ < j- 1,
(iii) SijA{i} S,j_ if/ j 1,
(iv) SI2A{1} {2, 4, 6 n} (the final set).

The weight of the cut increases by both in steps (ii) and (iii).

4. A combinatorial characterization of feasibility. Our goal is to provide a combina-
torial criterion of solvability of local linear programs (4). We have to introduce several notions
in order to formulate the combinatorial condition (?,) in Theorem 4.5, which extends the result
formulated in Theorem 2.5. (A reader may follow all these notions in Fig. 2 and Example
4.6.) Assume that a local linear program associated with a cubic graph G (V, E) is given.
Graph G and LLP are considered fixed. We will classify the vertices and edges with respect
to a given LLP. For a vertex i, let e, f, and g denote the triple of the edges incident to i. Let
us say that an edge e (or f or g, respectively) dominates at if xe > xf + x + is the block
of the given LLP.

Classification ofvertices. If one of the incident edges dominates at a vertex i, the vertex is
said to be dominated. If none of the incident edges dominates at i, the vertex is called undom-
inated. The set of dominated and undominated vertices is denoted by D and U, respectively.

Classification ofedges. An edge e ij which dominates at one or both of its end vertices
is called dominating. The set of edges dominating at one end vertex is denoted by E. The

set of edges dominating at both end vertices is denoted by E. The nondominating edges are

called plain and are denoted by E. Thus, we have E E t3 E t3 E. Let us remark that a
local linear program associated with a cubic graph G (V, E) is fully determined by the

decomposition E E t3 E t3 E.
The edges from E are called bidirected. The edges from E are called directed and are

oriented towards the vertex where they dominate. The plain edges E are further classified as
inner, outer, and border. The set of inner plain edges is defined as/ {ij - i, j U}.
The set of border plain edges is defined as {ij 6 E 6 U, j 6 D}. Finally, the set of outer

plain edges is defined as {ij 6 E i, j 6 D}. (We do not introduce any symbols for the latter
two sets.)

Auxiliary subgraphs ofG. We introduce several auxiliary subgraphs of G (V, E). The

set E of domin.ating edges spans a digraph G (V, E). (The set E of bidirected edges does
not belong to G.) Observe that the indegree of every,vertex of G is at most one, since at most
one edge can dominate at a vertex. The vertices of G of indegree zero are called roots.

The set of plain edges E spans an undirected graph G (V, E). The set of inner plain
edges/ spans an undirected graph ( (U, ’).

A mixed path is a path P (vt v.,) such that each pair (vi, t)i+l is either a directed
edge of E or an undirected edge of E, where the directed edges can be used only in the
direction of P. (Bidirected edges are not used in a mixed path.)

The following lemma formulates the first necessary condition on the feasibility of (4).
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LEMMA 4.1. If E contains a directed cycle, then the LLP (4) is infeasible. (Bidirected
edges are not considered as cycles.)

Proof Assume that contains a directed cycle consisting of edges e ek, k > 3.
Then, by the definition of set 7, together with x > 0, we have

Xet Xet, "21- (t k- 1),

Xe >_ Xe + 1,

which proves that (4) is infeasible.
As an example, consider the LLP given in Fig. and discussed in Example 2.2. We will

call E acyclic if it does not contain any cycle. A rooted tree which is directed out of the root
is called a,branching. The following lemma is straightforward because the indegree of every
vertex of E is at most one.

LEMMA 4.2. Assume that E is acyclic:. Then
(i) every connected component of E is a branching;
(ii) every root ofG is root ofa br_.anching.

From now, we will assume that E is acyclic. Hence every component T of G is a
branching. Each branching T has a uniquely determined root, which is denoted by r(T). The
outdegree of a root can be one, two, or three; the directed edges leaving r(T) are called root

edges.
Let us denote by K(T) the connected component of the graph ( which contains the root

r(T). K(T) is called the root component of T. (Recall that the root r(T) is undominated
and K(T) consists of undirected edges only.) Let T1 Tp be the connected components
of E. We will classify the components T Tp of E as saturated or unsaturated. The
saturated components are either basic saturated, which are defined as those satisfying one
of the conditions (sl)-(s4) below, or reachable in the sense of (s5) from a basic saturated
component.

DEFINITION 4.3. A component T of E is called basic saturated, if at least one of the
following conditions (s 1)-(s4) is satisfied."

(sl) The root r(T) ofT is incident to a bidirected edge.
(s2) The outdegree ofthe root r(T) ofT is greater than one.
(s3) The root component K(T) contains, besides r(T), a root r(T’) ofa distinct branching

Tt"
(s4) The outdegree ofthe root r(T) is one and the root component K(T) ofT contains a

cycle.
DEFINITION 4.4. A component T ofE is called saturated, ifeither (i) T is basic saturated

or (ii)condition (s5) holds, where
(s5) there exists a mixed path P (v v,,) terminating in the root v, r(T) of

T such that the initial vertex v is either (i) a root r(T’) v of a basic saturated
component T’, or (ii) incident to a bidirected edge.

Examples of branchings satisfying (sl)-(s5) are given in Figs. 4-8 below, Now we can
present an extension of Theorem 2.5.

THEOREM 4.5. Let G V, E) be a cubic graph together with an associated local linear
program (4). The following are equivalent:

(or) LLP (4) is feasible;
(t3) LLP (4) has a generic integer feasible solution x (Xe), which is bounded such

that < x < 2n for every e;

(?’) digraph G is acyclic, and every component T ofG is saturated.

Proof The implication (/3) := (c) is trivial, since every generic feasible solution is
feasible.



LOCAL SEARCH FOR MAX-CUT 833

Part (u) :=> (F). Assume that (4) is feasible. Then G is acyclic by Lemma 4.1. For
a contradiction, assume that not all the components of are saturated. Let T Te be
the list of all unsaturated components of G. We recall that every component Tt has a unique
vertex called a root and a unique root edge (since the outdegree of a root of an unsaturated
component is one). Let K := K(T) Ke := K(Te) denote the root components of

T! Te defined above. Since the unsaturated components do not meet (s4), we have that

(14) every Kt, 6, is a tree.

Let Bt, , denote the subset of border plain edges incident to Kt. Since T, meets

neither (s l) nor (s2), we have that

(15) the degree of r (T,) in K tO Bt is two, .
On the other hand, let Ft denote the border plain edges which are incident to T,, .
Set F := [..J=, Ft and B "= [..J=, B,. We claim that

(16) B C F.

Claim (16) follows from the fact that the set of border edges cannot be incident to any saturated
component. If it were, it would provide a mixed path by means of which some of Tt is hung
on a saturated component, contradicting our assumption that all Tt are unsaturated.

Let at denote the root edge of an unsaturated component r (T). We claim that

(17) x,, < Z Xe.
eBt

By (15), there are two plain edges, say f and g, incident to r (T); since r (T) is an undominated
vertex, the inequality x,, < xf /Xg should be valid. Then (17) follows by repeated application
of inequalities (2) to the root r(T,) and all its descendants in the tree Kt.

On the other hand, repeatedly applying (3) to the vertices of the tree T, we obtain

(18) Xa, > Z xe
e Ft

for every g. Now (18) and (17) together give

(19) x(F) ZXe < Z Xat E EXe EXe x(B).
eF t=l t=l eBt eEB

Hence x(F) < x(B), which contradicts B C F by (16). This concludes the proof of
()o

EXAMPLE 4.6. We will illustrate our notions and the proof of in.feasibility on the LLP
associated with the graph G 1o given in Fig. 2. We have
D {2, 3, 4, 5, 6, 7} the set o.fdominated vertices,
U {1,8, 9, 10} the set ofundominated vertices,
E 12, 23, 34, 25, 56, 57} directed edges,

E-- 0 bidirected edges,
E {(1, 8), (1, 9), (3, 8), (4, 9), (4, 10), (6, 7), (6, 10), (7, 9), (8, 10)} plain edges,
/} 1, 8), 1, 9), (8, 10) inner plain edges,
{(3, 8), (4, 9), (4, 10), (6, 10), (7, 9)} border plain edges.
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The digraph (f/, ) has only one component T with the root r(T) 1. The root

component K(T) is identical with E. Since K(T) is a tree and T has only one root edge,
branching T is not saturated. Hence the LLP is infeasible by Theorem 4.5. Let us apply the
proofto our example. Consider the following inequalities involving the dominating edges."

Xl.2 > X2,3 nt-x2.5,
X2.3 > X3.4 - X3.8,

X3.4 > X4,9 nt- X4.10,
X2,5 > X5,6 -t- X5,7,
X5,6 > X6,7 X6,1(),
X5,7 > X6, -nt- X7,9.

As a consequence of the above system and the nonnegativity, we have

(20) XI,2 > X4,8 -t" X4,9 + X4,10 -t’-X6,10 -1- X7,9.

On the other hand, consider the following system of inequalities associated with the plain
vertices:

Xl,2 _< Xl,8 @Xl,9,
Xl,8 X3,8 "1- X8,10,

X8,10 < X4,10 "-I-- X6,10,
Xl,9 _< X4,9 --I- X7,9.

As a consequence ofthe above system and the nonnegativity, we have

(21) Xl,2 < X4,8 + X4,9 + X4,10 "+" X6,10 "1" X7,9,

which contradicts (20). This proves that the given LLP associated with G lo is infeasible.
Part (?’) =, (/3). Let us assume that G is acyclic and all its components are saturated. Let

us say that an integer vector x satisfying < x < 2n isfeasible for a vertex if Aix > 1.
Clearly, an integer vector x is generic and feasible for the given LLP if and only if it is feasible
for every vertex i. We will construct a feasible generic vector x in two stages. In stage one we
define an integer vector x which is feasible for all vertices but the roots. In stage two x will
be iteratively augmented until it is feasible for all vertices. Let us note that during the whole
process of creating it, the constructed x will have the property that, for every vertex of V,
X Xf > Xg for the edges incident to i.

Stage 1. Set

/ for ij E (undirected edge),
(22) xij := 2v(i, j)- for (i, j) (directed edge),

2M for (i, j) (r, r2) (bidirected edge),

where M max(v(r, r2), v(r_, ri)) and v(i, j) is the number of vertices in the subtree
of G consisting of the edge (i, j) and all descendants of j in G. (If (i, j) (r, r2) is a
bidirected edge, then the value of Xr,,r_ is defined as the maximum of the two values which are
obtained for the branching, consisting of directed edge (r, rz) and all descendants of re, and
directed edge (r, r) and all descendants of r. An example of the labeling by (22) is given
in Fig. 4.

We claim that

(23)
x defined by (22) is feasible for all vertice_s
distinct from roots of the components of G.
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FIG. 4. Labeling defined in Stage 1.

Proofofthe claim. We have to distinguish several cases. (i) If is an undominated vertex
which is not a root, then all three edges incident to it have weight in x, and is feasible.

(ii) If e ij is an edge dominating at a leaf.of a branching, then Xe 2 2 3
by (22). Since the other two edges incident to leaf j have weight 1, we have 3 > + 1, and
hence the leaf j is feasible in x.

(iii) Let be a dominated vertex which is not a leaf and has an outdegree 2 in G. Let
e be the dominating edge entering i, and f and g be dominating edges leaving i. Since
v(e) v(f) + v(g) we have

X 2v(e) (2v(f) 1) + (2v(g) 1) + xf + Xg + 1,

and hence is feasible in x.
(iv) Let be as in case (iii) but with outdegree in G. Let e be the dominating edge

entering i, f be the dominating edge leaving i, and G be the plain edge incident to i. Since
v(e) v(f) + and Xg 1, we have

Xe 2v(e) (2v(f) 1) + Xg + xf + Xg "Jr- 1,

and hence is feasible in x.
(v) Let (rl, r2) be a bidirected edge. Let f/, gi denote a pair of the edges incident to ri

but not to rj, where 1, 2 and j {1, 2} \ i. Applying a proper case of (ii)-(iv), we have

Xr,,r 2v(rj, ri) > x. + Xg

for 1, 2. Hence both r and r2 are feasible in x. This concludes the proof of the claim.
Stage 2. In order to construct a solution that is also feasible for the roots, we will repeatedly

augment x on some edges. The augmentation will be defined so that. the new x always remains
feasible for all the vertices for which the old x was feasible. We distinguish several cases,
depending on which of the conditions (sl)-(s5) saturates a component.

(i) In this step, x will be augmented to become feasible for the roots of components
saturated by condition (s5).

The definition of the components saturated because of property (s5) can be alternatively
formulated as follows: Let S initially denote the set of basic saturated components. Choose
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a pair T, T’ of components such that T’ E ,9 and T ff S, and the mixed path P from the
root r(T’) to the root r(T) has the smallest possible number of edges in G. If such a pair is
selected, add T to the set ,.3 and say that T hangs on T’ by P. Then repeat the process with
another pair of components until all the components are in S.

In order to augment x, take a component T which is not basic saturated, and such that no
other component hangs on T. Let T’ be the (unique) component on which T hangs and P be
the mixed path from the r(T’) to r(T) by which T hangs. Since P has the minimum possible
number of edges in G, it is easy to see that P consists precisely of one initial directed segment
going through T’ and an undirected segment connecting a vertex of T’ to the root r(T). Let
denote the current value of Xr(T).j, where (r(T), j) is the root edge of r(T). Let us augment
x by

(24)
Xe+

Xe max(xe, se)
Xe

if e is a directed edge of P,
if e is an undirected edge of P,
if e does not belong to P.

It is easy to check that x becomes feasible for the root r(T) and remains feasible for all
the previous vertices. Repeat the augmentation (22) for other components that are not basic
saturated. An example of updating by (24) is given in Fig. 5.

The only fact we have to check is that all the entries of x remain bounded by 2n 1. We
prove this claim by the induction on the number p of the components of G. If p 0 then x
is identically by (22). If p then maxeee xe 2]Tl] by (22), where ]TI denotes the
number of vertices of a branching T. Now let p > 2. In order to avoid the technical details,
consider the first application of (24) when a branching T is hung on a branching T’. Let e
and e’ denote the root edges of T and T’, respectively. By (22), the old value of Xe and x,
is 2ITI and 2IT’I 1, respectively. After augmenting x by (24) the edge e’ becomes the
heaviest edge of T t2 T’ t2 P, and the new value of x, is 2(ITI -+- IT’I) 1. This shows that
the value of the heaviest edge remains bounded as required.

Before we present details of the augmenting procedure for the remaining cases (ii)-(iv),
let us mention some features common to all three cases.

Unlike case (i), the maximum value of the weight is not changed. This means that
the upper bound x < 2n also remains valid after updating x.
All undominated vertices incident to some edges with updated weight have the
following property after updating: if e, f, and g denote the triple of edges incident
to and Xe > xf > Xg, then

(25)

An immediate consequence of (25) is that x satisfies the block (2), and hence x is
feasible for i.
If the value of xe is increased on a root edge e ri and the value on the other two
edges incident to are retained, then x remains feasible for i, because inequality (3)
is still valid.

(ii) In this step, x will be augmented to become feasible for the roots of components
saturated by condition (s2). Let T be a component whose root r(T) has outdegree 2 or 3.
Let ei, I, denote the the root edges of T, where III 2 or 3. Set " := maxit Xei, and
augment x by

(26) Xe "= / if e is a root edge of T,

I .re otherwise.
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(a) Stage labeling ofa branching saturated by (s5),

21

(b) Stage 2 updating ofa branching saturated by (s5).

FIG. 5

7

(a) (b)

FIG, 6. Stage labeling and Stage 2 updating ofa branching saturated by (s2).

In other words, all the root edges receive the same (maximum) value, and x is unchanged
elsewhere. It is easy to check that x becomes feasible for the root r(T) and remains feasible
for all the previous vertices. An example of updating by (26) is given in Fig. 6.

(iii) In this step, x will be augmented to become feasible for the roots of components
saturated by condition (s3).
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(a) Stage labeling ofa branching saturated by (s3).

(b) Stage 2 updating ofa branching saturated by (s3).

FG. 7

The condition (s3) defines a transitive relation on the pairs (T, T’). If both T, T’ and
T’, T" meet (s3) then T, T" meet it as well. Hence the relation (s3) is an equivalence.

Let T, T2 Te be a maximal collection (i.e., an equivalence class) of components of
G which pairwise meet (s3). It is easy to see that we can find a tree L which is a subgraph
of G and such that the leaves of L are precisely the roots r(T) r(Te). Let ei denote the
unique root edge of T/and set "= max(xei ). Let us define the new x by

ife=eifor/=
(27) Xe max(xe, ) ife 6 L,

Xe elsewhere.

An example of updating by (27) is given in Fig. 7.
(iv) In this step, x will be augmented to become feasible for the roots of components

saturated by condition (s4).
Let T be a basic saturated component resulting from (s4) but not (s3). Let L C U P be

a subgraph of G which is a l-sum of a cycle C and a path P, such that r(T) is one end-vertex
of P and the other is in C. (P may have zero length, in which case L C and r (T) is a vertex
of C.)

Let e0 denote the unique root edge of T and set "= Xe,,. Let us define the new x by

/ for e 6 L,
(28) Xe I xe otherwise.

An example of updating by (28) is given in Fig. 8.

Acknowledgments, The author thanks an anonymous referee for many helpful comments
concerning the details of the presentation.
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(a) (b)

FIG. 8. Stage labeling and Stage 2 updating ofa branching saturated by (s4).
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EASILY CHECKED GENERALIZED SELF-REDUCIBILITY*

LANE A. HEMASPAANDRAt AND RICCARDO SILVESTRI

Abstract. This paper explores two generalizations within NP of self-reducibility: Arvind and Biswas’s kernel
constructibility and Khadilkar and Biswas’s committability. Informally stated, kernel constructiblc sets have (gener-
alized) self-reductions that arc easy to check, though perhaps hard to compute, and committable sets arc those sets
for which the potential correctness of a partial proof of set membership can bc checked via a query to the same set
(that is, via a self-reduction). Wc study these two notions of generalized self-reducibility on nondcnsc sets. We show
that sparse kernel constructible sets are of low complexity, extend previous results showing that sparse committable
sets are of low complexity, and provide structural evidence of interest in its own right--namely, that if all sparse
disjunctively self-reducible sets are in P then FewP q coFewP is not P-bi-immunemthat our extension is unlikely to be
extended further. We obtain density-based sufficient conditions for kernel-constructibility: sets whose complements
are captured by nondense sets are perforce kernel constructible. Using sparse languages and Kolmogorov complexity
theory as tools, we argue that kernel constructibility is orthogonal to standard notions of complexity.

Key words, self-reducibility, sparse sets, kernel constructibility, committable sets, ambiguity-bounded compu-
tation

AMS subject classifications. 68Q15, 03D 15

1. Introduction. Self-reducibility, the ability to convert the task of solving an instance
of a problem to the task of solving (usually simpler) instances of the same problem, is a key to
the modem understanding of complexity classes and their most important natural problems.
Many of the most powerful results for NP can be viewed as by-products of the self-reducibility
of the standard NP-complete problem SAT; for example, perhaps the most illuminating proof
of the result of Karp and Lipton that "the polynomial hierarchy equals NPNP if there exists a
sparse NP-hard set" is the approach of using the base NP machine to guess the sparse set and
the NP oracle to check that the guessed sparse set is consistent with SAT’s self-reducibility tree
both internally and at the leaves [25], [22]. Joseph and Young [23] have written an excellent
survey on the importance of self-reducibility in computational complexity theory.

Motivated by the increasingly appreciated importance of self-reducibility and the widely
acknowledged importance of the class NP, researchers have sought to understand the structure
of self-reducibility within NP. Disjunctive self-reducibility, a type of self-reducibility pos-
sessed only by NP sets and possessed by SAT, is perhaps the most thoroughly investigated
self-reducibility. However, in recent years researchers have studied many other reducibilities
of varying levels of generality or restrictiveness (for example, the logspace self-reducibility of
Balcfizar, which led to results on space efficiency and sparse hard sets [20], and the strictly one
word decreasing self-reducibility of Ogihara and Lozano [33], which also yields results about
sparse hard sets [33]). The present paper is concerned with two particularly elegant generaliza-
tions of disjunctive self-reducibility: Arvind and Biswas’s kernel constructibility [2], [3] and
Khadilkar and Biswas’s committability [26]. Each has the advantage of being possessed only
by sets in NP--probably the most interesting domain on which to study self-reducibility---and
of being provably at least as inclusive as disjunctive self-reducibility.
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Informally, a set is kernel constructible if it has an easily recognizable subset, its "kernel,"
to which every element of the set is connected via a short path each of whose edges can easily
be checked.

DEFINITION 1.1 ([3], based on [2]). We say that a set L is kernel constructible if there
exist a set K, such that K c__ L and K P, a polynomial-time computable relation R, and a

polynomial q, such that
1. for every x and y, ifxRy and x is in L then y is in L;
2. for every string x L K, there exist a natural number and strings Yo Ye,

such that
(a) yoK,
(b) for each < < , Yi-1Ryi,
(c) Ye x, and
(d) e and each lYi[ are at most q(Ixl).

We’ll describe a path oftheform above as a length e path.
Following Arvind and Biswas, we’ll refer to R as a constructing relation (for L) and K

as a kernel (for L). KC denotes the class of all kernel constructible sets In some sense, each
application of R can be thought of as a nondeterministic self-reduction existing within the
framework of a global constraint on the length of the self-reduction chain.

It is immediate from the definitions that P _c KC c_ NP and all disjunctively self-reducible
sets are kernel constructible [2], [26]. Interestingly, kernel constructibility is also clearly a

generalization, within NP, of paddability, as first noted by Khadilkar and Biswas [26] and
restated below in a slightly stronger form noted by Torin (personal communication).

PROPOSITION 1.2 (TorS.n). Everypaddable NP set is kernel constructible via a constructing
relation that is symmetric and such that every nonkernel element of the set has a length one

path.
The proof of the above proposition simply makes the kernel consist ofeach instance of the

problem padded with each solution of the instance, and makes the relation link such padded
instances to the corresponding instances (and vice versa to obtain a symmetric relation). An
example from Arvind and Biswas [2] that perhaps gives a better hint of the flavor of kernel
constructibility considers the kernel consisting of graphs consisting of (only) a cycle among all
the graph’s nodes, and the relation "G R G2 if and only if G2 is G with a single edge added";
this kernel and constructing relation clearly yield the NP-complete problem of Hamiltonian
cycles.

However, even though all paddable sets are kernel constructible (and thus many NP-
complete sets are kernel constructible as a result of the paddability results of Berman and
Hartmanis [4]), many interesting sets are not paddable. For example, Joseph and Young
constructed a specific artificial "k-creative" NP-complete set that has not yet been proven to be
paddable (though many other k-creative sets such as the tiling problem of Homer are paddable
[21 ]), and very recently it has been shown [27] that the decision version of the Reconstruction
Conjecture (see [13])---considered by many to be the most important problem in applied
graph theory in the wake of the resolution of the Four-Color Conjecturemis a seemingly

That is, there is a polynomial-time computable set R, which we’ 11 view as a binary relation: for (o, .), a standard
pairing function as discussed in the proof ofTheorem 2.3, we’ll be interested in whether (x, y) 6 R and, to emphasize
that it is a relation, we’ll sometimes write this as xRy.

2Note that self-reductions here need not always reduce strings to smaller elements. One can find in the literature
other examples of self-reducibilities that don’t always map to smaller strings, such as autoreducibility ([5]; see also
[39]) and the self-reducibilities central in the study of polynomially enumerable sets 16].

3A set A is paddable [4] if it is a P-cylinder: A x {0, is polynomial-time isomorphic to A [32].
4In these two examples, we did not discuss the issue of the choice of the polynomial q (.) from the definition of

kernel constructibility, as it is clear that choosing such a polynomial is easy.
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nonpaddable set in NP that is provably Graph-Isomorphism-hard. Furthermore, sparse sets,
sets with polynomially many elements at each length, are never paddable, and thus one cannot
hope to prove such sets kemel constructible via paddability. In fact, 2.1 proves that sparse
kernel constructible sets are quite simple: they can be accepted by a polynomial-time machine
given a database for some set of low nondeterministic ambiguity (that is, they are in pFewP).
Section 2.1 also proves that any NP set whose complement is a subset of a simple nondense
set is kernel constructible and establishes other sufficient conditions for kernel construct-
ibility.

Section 2.2 explores the relationship between kernel constructibility and complexity
classes based on nondeterministic machines. Although almost all familiar NP-complete sets
are clearly kernel constructible ([2] via [4]), we show that such weak classes as UP N coUP
are not robustly (i.e., with respect to all oracles) kemel constructible and, in fact, cannot
even be robustly approximated by kernel constructible sets: there is a relativized world
in which UP N coUP is KC-immune, and one can even witness this immunity via a sparse
set. We also present results showing that co-sparse sets can also witness the weakness of
kernel constructibility, and trivializing kernels does not suffice to trivialize kernel construct-
ibility.

Section 3 discusses the related concept ofcommittability [26], a notion of self-reducibility
that attempts to characterize the class of problems 1"I for which one can reduce the question,
"Is X a prefix of a solution to an instance zr of I-I ?" to a question to FI; that is, one can check
(via self-reduction) whether one has made a "good start" towards finding a proof. We link
two seemingly different notions by proving that if all sparse disjunctively self-reducible sets
are in P, then FewP coFewP is not P-bi-immune (i.e., for each FewP G coFewP set, there
is a P set that approximates well in the sense of finding an infinite subset of either the set or
the set’s complement). It follows from this that no extension of Khadilkar and Biswas’s [26]
Fortune-like [9] statement, "if a committable set A many-one reduces to a co-sparse set then
A is in P," to the Mahaney-like [31 statement, "if a committable set A many-one reduces to a
sparse set then A is in P," is possible, unless FewP coFewP is not P-bi-immune (an event we
consider unlikely). We extend Khadilkar and Biswas’s Fortune-like result right up to the edge
of this limitation. Section 3 also establishes a result connecting disjunctive self-reducibility,
committability, and kernel constructibility; although it is not known whether all committable
sets are kemel constructible (after all, if P NP, they all trivially are), it does, nonetheless,
hold that, if there is a set that is committable but not disjunctively self-reducible, then there is
a set that is committable and kernel constructible but not disjunctively self-reducible.

2. Density and kernel constructibility. Section 2.1 studies the complexity of sparse KC
sets and provides a number of sufficient conditions for kernel constructibility. For example, all
NP sets whose complements are subsets ofany nondense P set are kemel constructible. Section
2.2 provides evidence that kemel constructibility is orthogonal to "class-based" notions of
complexity: though some very hard sets are kernel constructible, some relatively simple classes
are not robustly kernel constructible. Section 2.2 stresses separations via sparse languages
and suggests the use of Kolmogorov complexity (as opposed to generalized Kolmogorov
complexity) as a proof tool.

2.1. Sparse sets and sufficient conditions. The following definition makes the natural
notion of relativized kernel constructibility explicit and allows one to speak of languages with
kernels and constructing relations in classes beyond P. Note that it is identical to the definition
(Definition 1.1 of this paper) ofArvind and Biswas, except that the kernel and the constructing
relation are made members of potentially more general classes.
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DEFINITION 2.1. We say that a set L is in (C1, C2)-KC if there exist a set K such that
K L and K Ct, a C2-computable relation R, and a polynomial q, such that

1. for every x and y, ifxRy and x is in L then y is in L;
2. for every string x L K, there exist a natural number g. and strings Yo Ye,

such that
(a) Y0 K,
(b) for each <_ < ., Yi-1Ryi,
(c) Ye x, and
(d) e and each [Yil are at most q(Ixl).

We’ll describe a path oftheform above as a length path.
Thus, a set is kernel constructible in the sense of Arvind and Biswas exactly if it is

in (P, P)-KC, and thus, following their notation, we’ll continue to denote (P, P)-KC by
KC. Similarly, we’ll use KCA as a shorthand for (pa, pA)_KC. Various trivial statements
immediately follow from the definition.

Observation 2.2.
1. For every pair of classes (7 and D, C c_ (C, D)-KC.
2. If class C is closed downwards under many-one reductions, then C c_ ({Sill all _<

1}, C)-KC.
3. NP (P, NP)-KC (NP, P)-KC (NP, NP)-KC.

The following result says that sparseness, combined with kernel constructibility, puts
severe limitations on the complexity of sets. Recall that a set L is pC-printable if a deterministic
oracle machine M and a set A C exist such that MA, on input On, prints all the elements
of L of length at most n. (Note that, although all sparse NP sets are PNp-printable, it is not
known (and not likely) that all sparse NP sets are pFewp-printable, because of the ambiguity
of certifying membership.)

THEOREM 2.3. IfA is sparse and in (FewP, FewP)-KC, then A is pFewp_printable.
The proof of Theorem 2.3 first finds the kernel and then "grows" outward from the kernel.

However, there are a number of perils that must be avoided. Of course, were we ever to binary
search for census values, we might introduce great ambiguity, since ((n/2)) is exponential in
n. Also, we can’t (in any obvious way) guess a proof that a given string is a member of our
kernel constructible set, since there might be an exponential number of (short, legal) distinct
paths from the kernel to that element, and thus the check would be an NP one rather than a
FewP one. Even given a specified path, we can’t (in any obvious way) check its validity in
FewP, since every segment of the path can be certified in a polynomial number of ways and
(nO(l)) (n()) is not always n().

Though this is a more subtle point, we can’t just iteratively feed the "distance j from the
kernel" strings to our oracle and ask for prefixes of things that the constructing relation links
to it; this is true because, although the fact that the set is sparse ensures that, for every x in the
kernel constructible set, it holds that Cx {Yl (x, y) 6 R /x ]Yl _< q(lxl)} is ofpolynomially
bounded cardinality, there is no reason to assume that, for x not in the kernel constructible
set, it holds that Cx is even subexponential in size. One might say that, since we’re growing
iteratively, in the actual run of the algorithm we can indeed avoid ever passing an x outside
of the set to the oracle; this is correct but does not help, as the FewP oracle must be FewP on
every input, even on inputs that will never be asked on any actual run of the algorithm! (The
class pSWp, obtained when one asks only for "Few-like" behavior only on queries actually
obtained during an actual run of the algorithm, has been studied by Cai, Hemachandra, and

5That is, there is a set R C2, which we’ll view as a binary relation: for (., .) a standard pairing function as
discussed in the proof of Theorem 2.3, we’ll be interested in whether (x, y) R, and, to emphasize that it is a
relation, we’ll sometimes write this as x Ry.
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Vysko6 [7] and motivated by work of Grollmann and Selman 12], and their evidence suggests
that this class is very powerful indeedmso powerful that a pFew’ result such as that of Theorem
2.3 is certainly much preferable to a peW, result.)

Proofof Theorem 2.3. Let A 6 (FewP, FewP)-KC fq SPARSE. Choose some K and R
so that K 6 FewP is a kernel of A and R 6 FewP is a constructing relation for A built upon
kernel K. Let q(o) be the related polynomial from the definition of kernel constructibility
bounding the lengths of the "short paths of short strings" that lead to each string in A and
the lengths of the strings along those paths. Let (., ")2 be a 2-ary pairing function with
the standard nice properties (a bijection between E* E* and E* that is polynomial-time
computable and polynomial-time invertible, and is honest with respect to both arguments).
Let (., ")m be a multi-arity honest polynomial-time computable "pairing" function with
the standard nice properties: although possibly not surjective, we can tell in polynomial
time whether a given string is in the image of the function, and given (x Xz)m, we can

compute z and x Xz in time polynomial in I(x Xz)ml. For simplicity, we’ll drop
the 2 and m subscripts, since it will be clear from context which function we’re referring to;
places where there can only be 2-ary pairs will implicitly be (., ")2, and other pairings will
be (., ")m" Let Q be a polynomial-time binary predicate and kQ be an integer such that
(x, y)[((x, y) 6 R (:lz) [[zl I(x, y)l’e + ka A ((x, y), Z) Q]) A (ll{zl Izl
I(x, y)lk + ka /x ((x, y), z) - Q}II < [(x, y)lke + ka)]; since R 6 FewP, such Q and kQ
can be found (and one can, without loss of generality ensure, as implicitly assumed above,
that the witness length bound and sparseness upper bound are the same).

We will now describe a pFewP procedure that, on input 0t, will print all the elements of
A of length at most M. First, our procedure will obtain K<-q(M) via queries to the following
FewP set: L {(On, pre, (s sz))l there is a string y q[ {s Sz} in K <-n whose prefix
is pre}. Note that we do not use binary search, since that would cause too much ambiguity.
(Of course, our prefix search via L will discover long strings first, since short strings that are

prefixes of longer strings will be obscured until the long string is made an si .)
For each m N, let us say that a string is in lengthm (0) if it is in K-<m; thus, we have

already found lengthq(t (0). For > and m N, let us say that a string is in length (i) if
it is not in [,.J <i lengthm (e) and its membership in A is certified by a path of length6 at most

(and thus no less than, because of the earlier part of this definition) i, where the value of and
the lengths of all strings along the path are at most m.

Suppose we have already found lengthq(t (j) lengthq(t (0) and, for each string in
any of these sets, we have found an appropriate type of certificate for the string’s membership
in its set. That is, for a string cte lengthq(M)(), < j, we will have found kemel string or0,

a string a in lengthq(t(1) a string ote_ in lengthq(t( 1), such that (ct0, or1) R,
(te-., ae_) R, and (ote_, ce) R, as well as certificates with respect to Q for each

of the inclusions in R. We will now show how to extend this information to obtain the same
information up to and including all of lengthq(t (j + 1)o

For each string w lengthq(t (j), do the following: Compute all strings z, Izl _< q(M),
such that (w, z) R holds and z I,.J o<_i<_j lengthq(t(i), via queries to the set L2 below.
(Note that from different strings w lengthq(4(j), we may obtain the same string z
lengthq(t (j / 1). After doing the following procedure for each w, we associate with each
string z lengthq(t (j + 1) exactly one of the ways ofreaching it; altematively, in the queries
to L2 we could always include as si’s all strings in lengthq(4(j / 1) that had been found for
previous w’s.)

L2 OH, (YO, Yz), pre, (w, WZ), (SI Sz,), prewit)

6That is, the of Definition 2.1.
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1. Y0 Yz, S Sz,, and pre are each of length at most H, and
2. Y0 K, and
3. (i" < < z)[I(Yi-, Yi)l kQ q-kQ --Iwil / ((Yi-1, Yi), YOi) Q], and
4, (o)[Iol _< H/ pre is a prefix of v / v {s Sz,} / (u)[lul I(Yz, )1k +

ka / prewit is a prefix of u / ((Yz, o), u) Q]] }.

Note that L2 FewP. The search using this set is the natural one. That is, z will be j; Yz will
be w; the yi’s will be the path we know to w; the wi’s will be our witnesses of the R relations
along that path; the si’s will be all strings in lengthq(M)(j + 1) that the current w has yielded
so far plus all strings in [..J o<_i<_j lengthq(M) (i); and prewit will remain e while we find all of
the lengthq(M (j / 1) strings that w generates.

Thus, using the above procedure, after cycling over each string w lengthq(M (j), we
have collected all of lengthqM (j + 1). As noted above, let us associate with each string in

lengthqM (j / 1) a single w yielding it. Now we can use L2 again, via manipulating prewit,
to obtain witnesses with respect to membership in R connecting each lengthqM) (j + 1) string
with the w we associated with it. (It is important to do this after lengthqM (j + 1) is completely
obtained, so that when searching for the witness of a string/3, we can include as si’s all the
strings in [..J 0<i<j/l lengthqM (j / 1) except/3.) Thus, using this procedure, in pFewP we can

find all the strings in A<-q(M) whose membership in A<-q(M) is certified by kernel elements,
path elements, and path length, whose lengths, lengths, and value, respectively, are at most
q(M). So by the definition of kernel constructibility, this set intersected with E -<M is exactly
ATM

COROLLARY 2.4. IfA KC fq SPARSE then A pFewP.
The following two theorems present density-based sufficient conditions for kernel con-

structibility. Theorem 2.6 uses Valiant’s [38] "evaluation" and "checking" classes. Note that

PC __. PEtt’ is a relatively strong assumption; clearly, PCtt’
___

PEtp = P NP fq coNP (which
even holds in the stronger version in which the functions are not polynomially output length
bounded [38, Prop. 5]).

DEFINITION 2.5 ([38]).
1. PEte is the class oftotal multivaluedfunctions ffor which there exist a polynomial-

time function g and a polynomial p such that, for any x, g(x) f(x) andfor any
y f(x), lYl _< p(Ixl).

2. PCtp is the class of total multivaluedfunctions f such that the length of the outputs
off is bounded by a polynomial and the language (x, Y) Y f(x) belongs to P.

THEOREM 2.6. Suppose that PCtp
___

PEep. If L NP is such that there is a k such that
(Vn) [ll Enll < 2n--n/k], then L is kernel constructible.

Proof Since L NP, a polynomial-time relation S and a nondecreasing polynomial p
exist such that, for every x,

x e L (:lw) [Iwl p(Ixl)/ x aw].

Consider the multivalued function .f defined for every x e by

f(x) {xywl lYl Ixl2k/ Iwl-- p(Ixyl) / xySw}

and having f(e) {e}. Since f is checkable in polynomial time, in order to show that

f PCtp, it is enough to verify that fis2total. By hypothesis, I N ]n+n2k 2n+n2t-(n+n2t)l/k

It follows that I1 En+nzll < 2nk for all n > 1o This implies that, for every x with

Ixl n > 0, there exists at least one string y such that lYl Ixl2 and xy L; thus a string
w exists such that xyw f (x).
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Let
Since PCtp _c PEtp, a polynomial-time function g exists such that, for any x, g(x) f(x).

K {z[ z xy with lyl Ix]za/x g(x) xyw for some w}.

If e L, put the empty string into K as well. Let R be the relation defined by, for every
z and x,

zRx = (z K/x x Sh(z)),

where h is the function defined as follows:

u if z uv with Iol lul 2k,h(z)= 0 otherwise.

We show that K and R witness that L is kernel constructible. Clearly, K P and K c__ L. It
is also clear that, for any z and x, zRx implies x L. Now, let x L K. Let w be a string
such that x Sw. Consider the string g(w) wuv with lul Iwl2k and Iol p(Iwul). It
holds that wu K and, since h(wu) to, we have xSh(wu). Hence, we have wuRx.

THEOREM 2.7. Suppose that L NP and a set E P exists such that L c_ E and, for
some k, it holds that (n) [liE Enll < 2n-nt/k]; then L is kernel constructible.

Observe that from Theorem 2.7, we have the following corollary.
DEFINITION 2.8 (natural generalization of the NP-capturability of [6]). For any class C

and any set A, we say that A is C-capturable ifthere is a sparse set B C such that A c_ B.
COROLLARY 2.9. If a set L NP is such that L is P-capturable, then L is kernel

constructible.
Finally, we have two non-density-based sufficient conditions for kernel constructibility.

We omit the proofs of Theorems 2.7, 2.10, and 2.11; interested readers may find the proofs in
[18].

THEOREM 2.10. Let L be a language in NP. If there exists a function f such that
f(E*) c_ L, f(E*) P, f is one-to-one, and f-t is polynomial-time computable, then L is
kernel constructible.

THEOREM 2.11. If L1 is kernel constructible and f is a polynomial-time computable,
honest function such that f(L2) L and f(L2) c_C_ L, then L2 is kernel constructible.

2.2. Relativization results: Location of KC. Of course, KC is a subset of NP. Fenner,
Fortnow, and Kurtz [8] have recently constructed an oracle relative to which all NP-complete
sets are isomorphic, and thus relative to which all NP-complete sets are kernel constructible.
Looking in the other direction, we show, via Kolmogorov complexity, that many classes of
relatively low complexity are not robustly kernel constructible and indeed cannot even be
robustly approximated by kernel constructible sets.

Kolmogorov complexity can be a powerful tool in oracle constructions (see [29]) as
first shown by Hartmanis [14] and as further explored, for example, by Gavaldh et al. [11]

7By this we mean that (! a polynomial-time computable function g)(y f(E*)) [f(g(y)) y]. Note that
this flexible definition allows g to output any junk it likes on inputs that are not in the range of f. In many cases,
the difference between inverses of this form and inverses that detect when their input is not in the image is trivial;
for example, it is here given our assumption that f(E*) P. However, note that in the model of inverse that we are
assuming, we cannot drop the f(E*) P assumption; the fact that we have not assumed that f is in P precludes the
standard trick of taking a purported preimage and seeing if it maps back from where it came.

8We’ll say that a (possibly non-one-to-one) function f is honest if there is a polynomial q such that for every x
and y, it holds that f(x) y = q(lYl) > Ixl.
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and Gavaldt 10]. Most commonly, generalized Kolmogorov complexity, that is, resource-
bounded Kolmogorov complexity, is used in such constructions. However, we feel that stan-
dard (nonresource-bounded) Kolmogorov complexity provides at least as clean a tool for
proving oracle results. The proof of Theorem 2.12 demonstrates the use of Kolmogorov
complexity in such a context.

It perhaps is worth spending a moment considering the merits of generalized Kolmogorov
complexity, rather than dismissing it offhand. The only argument we can think of that would
favor generalized Kolmogorov complexity over standard Kolmogorov complexity is that the
latter tends to yield nonrecursive oracles, while the former often yields recursive oracles.
But are recursive oracles any more interesting than nonrecursive oracles? The desire for
recursive oracles is probably driven by a hope that recursive oracles are more valid predictors
of the real world than nonrecursive oracles. We know of no evidence supporting this hope,
and note in passing that in each case we know of involving nonrelativizable results [36],

9], the oracle that differs from the real world is, or can easily be made, a recursive oracle.
Thus, we fail to find any compelling evidence that recursive oracles are inherently more
desirable than nonrecursive oracles. The extent to which any oracle results give insight into
the structure of computation is open to debate in light of the rise of nonrelativizable results;
however, the scope of nonrelativizable techniques is currently quite limited, and Allender has
argued persuasively that oracle constructions still yield valuable information about problems
in complexity theory ([ ], see also [15]).

As first suggested by Hartmanis for the case of generalized Kolmogorov complexity, for
standard Kolmogorov complexity one also finds that immunity constructions come surpris-
ingly easily. The oracle constructions in the proofs of Theorems 2.1 2 and 2.1 3 are extremely
clean and simple, though the proofs of the correctness of the constructions are somewhat
sensitive. One must be very careful in creating such constructions; not all Kolmogorov oracle
arguments in the literature are devoid ofproblems. We note that our two Kolmogorov construc-
tions contain no explicit diagonalizations; in contrast, Hartmanis’s seminal paper 4] uses an

explicit diagonalization, which somewhat taints its use of Kolmogorov complexity, in light
of Hartmanis’s tremendously perceptive insight that "Kolmogorov complexity is prepackaged
diagonalization."

THEOREM 2.12. There is a relativized world A in which UPa N coUPa is KCa-immune.
Indeed, there is a sparse set in UPa f-) coUPa witnessing the immunity.

Of course, in the above relativized world KCa NPa and not all NPa sets (or even
all UPa f’) coUPA sets) are disjunctively self-reducible. We also note that the proof’s sparse
UPa N coUPa set that is KCa-immune is in fact "almost" kernel constructible. For some string
x0, this set is ({x0}, UPa fq coUpA)-KC via a constructing relation R that is unambiguous:
for each x 6 E*, it holds that II{Yl xey}ll <_ 1.

Proof of Theorem 2.12. Let K[f(n)] indicate all strings x such that there is a y, lYl _<
f(Ixl), such that Muniv(Y) prints x and halts, where Muniv is a fixed machine universal for Kol-
mogorov complexity (see [29]). Note that in this proof we won’t use relativized Kolmogorov
complexity (KA [.]), relative Kolmogorov complexity (K(xl z)), or generalized (i.e., resource-
bounded) Kolmogorov complexity; we will only use standard Kolmogorov complexity. Let

0/1 2 -t-222
0/2 2 +2222

0/3 2 +22222
etc.

9For any class of sets C, we say that a set B is C-immune if B is infinite yet has no infinite subsets in C; we say
that a class D is C-immune if some infinite set in 79 is C-immune (see [35]). Intuitively, if 79 is C-immune, C is so

weak relative to 79 that not only does C fail to contain 79, but also C sets cannot even "approximate infinitely often
from the inside" some 79 set.
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and let L {0/1, 0/2 }o For each 6 L, put into A the lexicographically smallest length
string in K[15n/16]. This completes the construction of the oracle A.

We now show that A has the desired behavior. We’ll use size-of(H) to denote the number
of bits in the representation of H (H will always be a machine or a finite set), where we
assume some standard and reasonably succinct convention on sizes of encodings of machines
and finite sets. Let T {xl (:ly) [lYl Ix[ A xy A]}. Note that T 6 UPa N coUPa. It
is not hard to see that for some string x0, T is ({x0}, UPa (q coUpA)-KC via a constructing
relation R that is unambiguous: for eachx 6 E*, it holds that [[{y[ xRy}[[ < 1, since one can
just walk up the chain of strings in A with the first half of the smallest string in A being the
kernel.

CLAIM 1o T is pa-immune.

Proof of Claim 1o Suppose S is an infinite pa subset of To Let S L(MiA), where,
without loss of generality, deterministic polynomial-time machine Mi runs in time at most
n -F regardless of its oracle. Let x be any string in S such that Ixl > size-of(M/)
and Ix[ -t- < 0/z+l, where Ixl 0/z/2. Note that E Ixl O L(Mia-z) E Ixl f"l L(MiA),
since, because of the wide spacing of A’s strings, Mi on length Ix strings cannot possibly
query any element of A of length greater than 0/zo On the other hand, though we know that
lIE Ixl L(M/A-"z)II 1, it is plausible, offhand, that E Ixl A L(M[-z-l) might have some
other number of strings; thus, we cannot go straight to Case 2 below, but must first dispose of
Case 1.

Case 1. There is a length Ixl string w so that at some point in the run of M[ (w), Mi
queries the (unique) length 0/z string in A.

Note that in this case, we can describe the length 0/z string in A as "the string that
M}O, v2 v_l (w) queries on step foo," where the vi’s are all the z strings of A<-z- and

foo is the first step on which Mia-z (w) queries the length 0/z string in A. Note that the size
of this description is at most about size-of(M/) + 0/z/2 + log((0/z/2) + i) + size-of(A-<z-’ )+
const, where the constant is globally fixed;l because of the wide spacing of A, this is less than
150/z/16, contradicting the fact that the length 0/z string of A was in K[15n/16]o Thus, Case
is excluded.

Case 2. For no length Ixl string w does Mia-z (w) query the length 0/z string in A
In this case, clearly Elxl L(Mia-) Elxl O L(MiA<-z-). Thus, in this case x has a

short name (one could make the name even shorter by writing the bits of z rather than the bits
of o/z, but there is no need to)" "the unique string of length 0/z/2 in L(Mt’ 2 o-.tl)., This
name is of size at most about size-of(A-<- + size-of(M/) + [log(o/z/2)] + const, where the
constant is globally fixed. This is much smaller than Ixl Cz/2, and so it follows that vz,
the length 0/z string in A, also has a short name because of the fact that its first half is x" "the
string whose last half is u and whose first half is described by foo2" where u is the last half
of Vz (thus it takes Ix[ bits to write u inside the name) and foo2 is the short name for x (in the
short name for Vz, we actually write in the entire name for x). Thus Vz is not in K[ 15n! 16],
and so our supposition that T is not pa-immune is contradicted.

CLAIM 2. T is KCa-immune.
Proofof Claim 2. Using Claim 1, we will now show that T has no infinite KCa subset.

Suppose, by way of contradiction, that S

___
T is in KCA and S is infinite. Let K 6 pa and

R pa be a purported kernel and a constructing relation proving that S KCa, (If the set
constructed by K and R is not S then clearly these are not viable candidates; henceforth, we
can assume that K and R do construct S, and thus are an infinite subset of T o) Let R L (M/a),
where, without loss of generality, Mi runs in time at most n -+- regardless of its oracle, and

Throughout this paper all logarithms are base 2.
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let q (.) be the associated polynomial of the definition of KC. By Claim 1, K is a finite set. Let
string r S be some string such that (1) r is very large relative to size-of(K) and size-of(M/),
(2) r also is so large that for all strings to with Itol _< Irl it holds that I(w, r)I + is much shorter
than the shortest string in A whose length is greater than 21rl (a string which, if Irl z/2, is
of length az+), and (3) q(Irl) < az+/2, where Ir] az/2. By our assumptions, there must
be an rn > 2 and q, q2 qm-1 such that

1. m, Iql, Iq21 Iqm-l are each at most q(Irl),
2. q 6 K, and
3. (q, q2) R (qm-2, qm-1) R, and (qm-1, r) R.

Without loss of generality, we may assume that r ’ {qt qm-1 (otherwise, truncate the
path at the first occurrence of r). Note that by our assumptions, the length (az+)/2 string
in T (and thus any string in S of length greater than az/2) is much too long to be a qi (since
otherwise, either the fact that Iqil < q(lrl) is violated or the fact that S

___
T is violated).

Since S T, we thus know that Iqm- is much shorter (at least about exponentially shorter)
than Irl.

The argument is now similar to that of Claim 1. If, for some y, lYl Irl, it holds that

Mr* ((qm_ l, Y)) queries the length Cz string in A, then much as in Case of Claim 1, this gives
the length az string in A a short name that contradicts its membership in K[ 15n! 16]. On the
other hand, if for no string lYl, lYl Irl, does Mf((qm_l, y)) query the length Cz string in A,
then, much as in Case 2 of Claim 1, we can also argue that the length Cz string in A is not in
K[ 15n! 16], since its first half has the short name "the unique length z/2 string ’w’ such that
MV,, o2 oz_. ((qm-, ’w’)) accepts," where the vi’s are the z strings in A-<’.-’ and ’to’ is
not some bit-string but rather a variable name. U

Thus, the result is established.
The above result implies that there is a world in which some NPa set has only finite

KCa subsets. The first part of the proof of Theorem 2.12 makes the kernel finite (via making
NP P-immune in the oracle world). Would that have sufficed to prove Theorem 2.12? The
following shows that even if one forces all kernels to be finite (via immunity), one still may
have hard KC sets.

THEOREM 2.13. There is an oracle A and a set L UPa N coUPa such that L is infinite,
L is pa-immune, yet L KCa. Indeed, the language L can be chosen to be sparse.

COROLLARY 2.14. There is a relativized world A in which SPARSE f3 KCa pa.
The proof of Theorem 2.13 uses standard Kolmogorov complexity. We’ll carefully in-

terweave the structure of L and A, via definitions that repeatedly truncate and concatenate
strings from L and A, in order to add new strings to L. Before proving Theorem 2.13, we
state an intuitively clear lemma saying that one can find sequences of Kolmogorov complex
strings that have strong independence properties. This result, Lemma 2.16, is proved via an
easy counting argument.

When we speak of relative Kolmogorov complexity, e.g., K(ci+l Oi, Oi-1, Oi-2
c0), to be truly rigorous we must specify exactly what our model is of how the strings
O/i 19/0 are fed to the universal machine. Almost any reasonable model will work equally
well for the purposes of our proof, but for clarity we specify a particular definition. (Note
below that (., ")m is (easily) computable and invertible, so it doesn’t do any particular
damage (beyond a constant, a level of flexibility already lost in fixing a universal machine).)

l In what follows (in particular, in the proof of Theorem 2o13), we’ll often include the first few terms of a series,
instead ofjust the first and last. This is because in some cases a term will be skipped, and we’ll want to make it clear
when this is the case. By specifying a large number of terms, we do not mean to imply that the series need have
that number of terms. For example, when we write K(o/i+l [O/i, O/i--l, O/i-2 O/0), it will be perfectly valid for to

equal 0, in which case the written expression should be taken as a shorthand for K(O/ IO/0).
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DEFINITION 2.15 (see, e.g., [28]). For any z >_ and any strings x xt xz, define

K(xl xt xz)
min{nl (=ly) [lYl n / Muniv((Y, Xl Xz)m) prints x and then halts]}.

Whenever we write K(... S), it will be the case that S is a finite set and K(... S) in
this case will be a shorthand for K(... ZlISII, ZlISII-1 Zl), where z <ex <ex ZlISII are
the elements of S. K(... Y, S) for y a string and S a finite set is, similarly, a shorthand for
K( Y, ZllSII, ZllSIl-I Zl), where z <ex <ex ZlISII are the elements of S.

LEMMA 2.16. There is a sequence ofstrings oto, O/1 such that
1. (i > 0) [Io/il 3.21+i],
2. (i > -1) [K(o/i+ll {o/ali > a > 0}) > -01+l], and

3. (i >_ 1) [K(ai[ {O/a[ a + or > a > 0}) > ]’010/i1 ],

Proof Inductively, suppose we’ve already chosen a0 O/e, satisfying the unquantified
statement inside part of the lemma for every 0 < < , the unquantified statement inside
part 2 of the lemma for every < < 1, and the unquantified statement inside part 3 of
the lemma for every 0 < _< 1. (The base case 0, that is, choosing an O/0 of length
3 2 whose Kolmogorov complexity relative to the empty set of helping strings is at least
9__2_9.3.2t is trivial.) As a shorthand define, for each > 0, ni 3.210+i Let vo Vm-100
be any rn strings. For each length nm+l string m+, at most 2 l(9/10)nm]+l length nm strings
w can satisfy K(wl m+, {Val rn > a >_ 0}) < nm. So, among all length nm strings, at most

(21(9/lO)nmj+l 1) 2nm+’/(2nm+’/2) 2 (2/(9/)nm]+l 1) strings w satisfy: "For at least
of all length nm+l strings/3, it holds that K(wl/3, {Val rn > a >_ 0}) < onm.

Note that we can easily build a fixed machine that, whenever given any m strings v0

Vm- with Ivil ni, recursively enumerates all length nm strings w such that for at least- 2"m+t length strings/ is K(wl/, {Val rn > a > 0}) < nm, and the position within this
2
enumeration gives any such string w a short name relative to {Va rn > a > 0}. In particular,
any such w satisfies K(w] {Val rn > a > 0}) < log(2 (2[(9/10)nm]+l 1))+ low-order terms.

99Since, by our assumption, O/e satisfies K(O/el {O/al e > a > 0}) > ]-6ne, O/e cannot be such a w
(relative to {O/al e > a >_ 0}). Thus, we may conclude that, for at least half of all length ne+l
strings/, it holds that

9
(1) K(O/el/3, {O/al e > a >_ 0}) >

It/

1.2ne+, strings/3 satisfying equation (1), note that for at most 2(99/lO0)ne+’Among the at least

10 2ne+ > there isit can hold that K(/I {O/al > a > 0}) < ne+. Since ( 2n+’

some/3 that, taken as O/e+l, satisfies IO/e+l ne+, K(O/e+l {O/al > a >_ 0}) > --oone+, and

K(cel oe+, {O/al > a > 0}) > ne. [3

ProofofTheorem 2.13.

Start of oracle construction.
Let A {O/0, O/ }, where the O/i are the strings of Lemma 2.16.
End of oracle construction.

The reader can see very clearly here the truth of Hartmanis’s claim that Kolmogorov
complexity is prepackaged diagonalization! We have only to verify that the A constructed
above satisfies the requirements of the theorem. Let L be the set constructed from the finite
kernel 12 via the clearly pa-computable relation defined by
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aRb == (:li, pl, P2, q, q2) [lal 210+i A Ibl 210+i+1 A IPI
--llbl /x IP21 31bl /x PiP2 b A P2 o/i-1 / Iqll Iq21 lal/2
/Xqq2 a /x q2 P].

That is, the eth string of L is made by concatenating the last half of the (e 1)st string of
L and the string cte-2. Note that, for every > 1, L will have exactly one string at length
21+i; L will have no strings at any other lengths. Thus, we now know that L is an infinite,
sparse set that is in KCa. Furthermore, L is in UPa fq coUPA, since clearly we can build an
unambiguous [38] strong [30] machine for L that guesses (and checks via A) all the ci of size
at most the input size, and by the construction of L, the length 21+i string in L for > 3 is
the last two thirds of the bits of Cti_3 followed by cti_2.

It remains only to show that L is pA-immune. Suppose, by way of contradiction, that there
is a set S such that S is infinite, S 6 pA, and S _c L. Let Mi, without loss of generality running
in time n q-- for every oracle, satisfy L(M) S. Choose some string x 6 S such that

Ixl >_ 1000, Ixl +i << 2(/l)lxl, and/+size-of(M/)+ const + const2+ const3 < log log Ixl,
where the three constants are independent of x and M/and will be implicitly defined below.
Since x 6 S _c L, it holds that Ix 2+J for some j.

Case 1. There is a length 2+J string w for which M/a (w) at some point in its computation
queries a member of {otj_, otj, ctj+ }.

Let Otz be the member of {cj_, tj, ctj+l touched earliest in the run of Mia(w) and
suppose ot is first queried on step s. Then, clearly,

"the string that M j--.21 (w) queries on step s"

(note that we actually write into this name the actual values of each variable mentioned) is a
short name proving that

K(ctzl otj_z or0) _< size-of(M/) + Iwl + log([wl + i) + const.

It follows from our assumptions above that

K(ctz cj_2 c0)
2

< size-of(M/) + lzl + log(211) + const

_< log log ICz

(2)2
However, noting that z- j 2, this contradicts the fact that K(tz z-1 O0) Icz I.
Thus, Case is excluded.

Case 2. Case does not hold and, for some length 2+j-2 string ?,, it holds that M/a (?,
cj_2) queries Ctj_3 at some point in its computation.

Note that M/a-j-2 (, O/j_2) must also query oj_3, since the failure of Case means that
longer "alpha" strings can’t be touched here. Let s be the first step on which O/j_3 is queried.
In this case Oj_ has the name

"the string that M] ’:}(y Oj_2) queries on step s."

Note that this name proves that

K(cj-31 otj_2, ctj_4, oj_5 00) I1 + size-of(M/)+ log((2+J) + i)+ const2.
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Thus, from our assumptions it follows that

K(otj_310j-2, O/j-4, O/j-5 O0)

2
< lcj-3[ + size-of(M/) + (1 + i(10 + j)) + const2

232 23 (log log [)) (3 +log ( ]tj-3]
< Iotj_3l -F log log (--f Icj_3l) -F (1 -t- (-- Oj-3 3 )))"

This contradicts the fact that K(otj._3] o/j_2, o/j_4, oj-5 O0) loej-3[. Thus Case 2 is
excluded.

Case 3. Case does not hold and, for no length 2l+j-2 string ,, does M/A(? crj_2)
query oj_ at some point in its computation.

Thus, for no length 210+j-2 string ?, does M/A( oj_2) query Oj_3, Oj-1, or Oj
This gives the last two thirds of aj_3 the short name

"the unique string ’?,’ of length two raised to the 10 + j 2 for which

M,0 ,j-5, aj-4, ,-.21 (, ’"cj-2) accepts."

This implies that

K(otj_3l oj_2, oj-4, oj_5 00) < lotj-31 + size-of(M/) -+- log(10 + j 2) + const3o

It follows that

K(crj_3l 0j-29 Oj-4, Oj-5 19/0)

< Icj-3l-+- log log(2+j) + log(10 + j 2)

log(2 +lg( ))< Icj-3l + log + log 3 + log 2

This contradicts the fact that K(crj_3l oj_2, oj-4, oj-5 O0) -f260 Icj-31. Thus, Case 3 is
excluded.

Thus our assumption that L has an infinite pa subset is contradicted. Thus L is indeed
pa_immune. [3

The next result shows the existence of a relativized world in which the condition E 6 P in
Theorem 2.7 is necessary. Also, just as Theorem 2.1 2 showed that sparse sets can escape kernel
constructibility, this theorem shows that co-sparse NP sets need not be kernel constructible
(note that showing a world where NP has co-sparse P-immune sets does not suffice, since
the possibility of infinite KC sets with finite kernels must also be eliminated); thus, from the
following, we see that the claim "all co-sparse NP sets are kernel constructible" does not hold
robustly.

THEOREM 2.17. There exists an oracle H and a set L NPt4 such that L is co-sparse
and L KCt4.

Proof Let M, M2 be a standard enumeration of deterministic polynomial-time or-
acle Turing machines. We assume that M/x runs in time Pi, regardless of the oracle X,
where pi(n) n -F i. We can define an enumeration of polynomial-time oracle rela-
tions in the following way: for each and oracle X, let Rix denote the relation defined
by (x y)[x xR y Mix ((x, y)) accepts ].

Our goal is to construct an oracle H so that the language LH {xl (By) [lYl 81xl and
xy H]} is co-sparse and L t4 ’ KCt4, In order to guarantee that L t4 ’ KCt/, oracle H will
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be such that L t-/ is Pt-/-immune (so that any kernel for Ln must be a finite set) and, for any
i, either strings x, y exist such that x 6 L/4, y ’ L/4, and x Ri/4 y or, for any sufficiently long
string z and any to L/4 with Iwl < Izl wRffz does not hold. Thus, in either case, relation

Rff cannot witness that L/4 6 KC/4.
We need the following notation. For each index and oracle X, we say that a string x is

an MiX-killer if x g[ Lx and M/x (x) accepts. Furthermore, we say that x is afirst Mff-killer if
x is an M/X-killer and, for any string y such that lyl Ixl and y < x, y is not an MiX-killer.
Similarly, we say that x is an RiX-killer if x g Lx and there exists a z such that Izl < Ixl,
z 6 Lx, and z RiXx. Finally, we say that x is afirst RiX-killer if x is an RiX-killer and, for any
string y such that lyl Ixl and y < x y is not an R-killer.

The oracle H will be constructed in stages. For each n > 0, let Hn represent the set of
strings in H at the end ofthe nth stage of the construction. At each stage n, we will diagonalize
against all the machines Mi and relations Ri with < log n, adding to H,,-1 all the strings z
for which there exist an x and a y so that (1) z xy, Ixl n, and lYl 8n, (2) x is neither
a first M/X-killer nor a first R/X-killer, and (3) z does not belong to the set of strings queried
during all the computations that have been considered in the previous stages and present stage.
In order to specify this set of queries we introduce the following notation. For each index i,
oracle X, and string x, let Q(Mix (x)) denote the set of strings queried during computation
Mix (x). For each n and oracle X, let

Qn(X)’-- U (Q(Mff(z))t3 U Q(Mix((w’z))))
i<logn, Izl<n Iwl<n

The set of queries in question is equal to Q (H,,_
Stage 0. H0 "= t3.
Stage n > 0. Consider the set In definedby In {xl Ixl n/x (i < logn) [eitherx is

a first Mff"-’-killer or x is a first R//4" -killer ]}. We then set Hn "= H,._ U{xyl Ix n
and lYl 8n and x q In and xy f[ Qn(Hn-)}.

Clearly, L/4 6 NP/4.
The above construction is shown to be correct by the following claims.
CLAIM 3. Ln is a co-sparse set.

Proof of Claim 3. First of all, we show that, for each n, IIa(nn-)ll <_ 27no In fact, it
holds that

I]Qn(Hn-1)ll < IIQ(Mi (z))ll / IIa ))11
i<logn, Izl<n Iwl<n

<--

_ - (llQ(Min"(z))l, + -- IlQ(Mff-’((w,z)))")
i<logn k<_n Izl=k h<_n Iwl=h

<__ - -(2kpi(k)+2k+hpi(k+h,)
i<logn k<n h<_n

_< 2n222’ ((2n) + i)
<log

< 2n222n (log n)2(2n)lgn

< 27n"
From this fact and the definition of H it follows that, for any x with Ix n, if x ’ In
then x 6 L/4 (indeed, if Ix n and x In then, from the definitions of H and L/4, it
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follows that x E L14 iff there is a string y such that lYl 8n and xy Qn(Hn-). Since
IIQn(nn-)ll < 27n and II{xyl lYl 8n}ll 28", there exists at least one string y such that

lYl 8n andxy ’ Qn(Hn_), and this implies thatx E LH). Thus, since II/,11 _< 21ogn, L14
is a co-sparse set. [3

CLAIM 4.
(a) For each n > 1, < log n, and x with [xl < n, it holds that Min"-’ (x) Mff (x).
(b) For each n > 1, < log n, and x, y with ]xl, lY] < n, it holds that x Rff"-y

xR y.

Proof of Claim 4. (a) Note that it suffices to show that Mi14"-’ (x) Mff" (x)o This is

ensured by the fact that, at stage n, no string that is queried during computation Mff"-’ (x) is
added to Hn-l.

(b) The proof is similar to the proof of (a)o [3

CLAIM 5. L 14 is P14-immune.
Proof of Claim 5. From Claim 3, LH is an infinite set. Let be an index such that

IL(M/14)II . Then a string x exists such that log Ix >_ and M/14 (x) accepts. From

part (a) of Claim 4, it also follows that Mi14x-’(x) accepts. Thus, a string y exists such that

[Yl Ixl and y llx I. (Since Mi141xl- (x) accepts and x ’ L141xl-,, string x is an M/141x--killer.
Thus, a string y must exist such that lYl Ixl and y is a first M/nx-’-killer. This implies that

Y llxl.) It follows that y ’ L14 and M(y) accepts. Hence L(Mff) L14. [3

CLAIM 6. Let be any index. Suppose that, for any x, y, it holds that x L I4 and x Ri14 y
imply that y L14" then for any z, to with log Izl >_ i, Iwl < Izl, and w L14, toRi14z does
not hold.

Proofof Claim 6. Assume that, for any x, y, it holds that x E L 14 and x R/14 y imply that
y 6 L14. Let z, w be two strings such that log Izl >_ i, Iwl < Izl, and to 6 L14o Suppose
that wRffz holds. Then, by part (b) of Claim 4, it holds that wRin-z. Thus, at stage n with

n Izl, there exists a string x such that Ixl n and x In (since z is an Rff"--killer.) It
follows that, at stage n, no string of the type xy with lYl 8n is added to Hn-, and thus x is
an R/n-killer, but this contradicts the assumption. [3

CLAIM 7o L 14 ’ KC14.
Proofof Claim 7. The proof follows from Claims 5 and 6. [3

Thus, the result is established.

3. Committability. Khadilkar and Biswas [26] introduced committability, a notion for-
malizing the class of sets such that the plausible correctness of a partial proof of membership
in the set can be checked via an easily computed query to the set.

DEFINITION 3.1 ([26]).
1. We call a polynomial-time relation R an eligible defining relation for A iffor no u and

v does u R v hold, and, for some polynomial p(.), it holds that x A = (3y)
[lYl _< p(Ixl) /x (y v y E 0E*)/ xRy]. Note that every NP set has an eligible
defining relation. A string y as above is called a witness for x 6 A with respect to
the relation R (or, when the context is clear, simply a witness.)

2. A set A in NP is said to be committable if for some polynomial-time relation R
that is an eligible defining relationfor A, there exists a polynomial-time computable
function Witness-check: E*x E* ---+ E* such that(x, y)[Witness-check(x, y)
A = x A, and either y is a witness for x or yO is a prefix of a witness for x
with respect to the eligible relation R].

Khadilkar and Biswas [26] give examples of committable sets (for example, clearly all
NP-complete sets are committable, regardless of paddability) and argue for the naturalness
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of their definition. They go on to prove the committability analog of Fortune’s work on
sparseness [9].

THEOREM 3.2 ([26]). Ifa committable set A is _<Pm-reducible to a co-sparse set, then A is
in P.

We note in passing that one can strengthen this by paralleling Ukkonen’s work on sparse-
ness [37] and, with some slight modifications to Yesha’s proof, Yesha’s work on sparseness
[40], obtaining, respectively, the following propositions.

<PPROPOSITION 3.3. If A is committable and A --disjunctive coSPARSE then A P.
PROPOSITION 3.4. If A is committable and A <P

--bounded-positive-truth-table coSPARSE then
AP.

This raises the question of exactly which of the series of results superseding those of
Fortune, Mahaney, and Yesha--results such as those of Mahaney, Ogihara, and Watanabe
([31 ], [34]; see the survey 17])mcan also be applied to committability.

The following result puts sharp limits on any such attempted extensions. Theorem 3.6 can
be interpreted as saying that Theorem 3.2 cannot be strengthened from "co-sparse" to "sparse"
(that is, cannot be strengthened from the analog of Fortune [9] to the analog of Mahaney [31 ]),
unless every infinite FewP coFewP set has an infinite P subset or its complement does (this
follows from the fact that all disjunctively self-reducible sets are committable; the limitation
thus applies notjust to extending the Khadilkar-Biswas claim, but even to any similar claim for
disjunctively self-reducible sets). (Definition 3.5 is a standard definition from the literature.)

DEFINITION 3.5.
1. A partial order -< on E* is OK ifthere are polynomials p and q such that

(a) everyfinite -<-decreasing chain is shorter than p ofthe length of its maximum
element, and

(b) x -< y implies Ixl _< q(lyl) for all x, y E*.
2. A set A is said to be disjunctively self-reducible ifthere is a deterministicpolynomial-

time oracle Turing machine M and an OKpartial order such that L(MA) A and,
on any input x,
(a) M does not query the oracle at all, or ifit does, then x is accepted iffany ofthe

queried strings is in the oracle set, and
(b) M asks the oracle only about strings strictly less than x in the OKpartial order

THEOREM 3.6. Ifthere is a P-bi-immune set in FewP fq coFewP then there is a sparse set in
NP P (indeed, even in FewP- P) that is disjunctively self-reducible (and thus committable).

Proof. Let L be a P-bi-immune set in FewP N coFewP. Since L FewP t coFewP, it
is not hard to see that there exist a polynomial-time relation S, a polynomial-time function h,
and a nondecreasing polynomial p such that, for every x,

1. x L = (y) [y W(x) = h(x, y) 1],
2. x . L (y) [y W(x) = h(x, y) 0],
3. 0 < IIW(x)ll _< p(Ixl),

where W(x) {Yl lYl p(lx[)/xxSy}.
Our goal is to define a sparse set T such that, given x 6 T, it is possible to compute a

"witness" for x 6 L or x 6 L (i.e., a string in W(x)) making at most a polynomial number
of queries to T. One way to do this is to define the set T so that, for every x and y with

lYl _< p(Ixl),

[x, y] T (x T and y is a prefix of a string in W(x)),

where [., .] is the encoding of pairs of strings defined below. The encoding [., .] will be
defined in view of the sparseness of T. Let r be a strictly increasing polynomial such that
(n) [r(n) >_ (p(n))4] (without loss of generality, we assume that (n) [p(n) > n].) For each
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pair of strings x and y with lyl _< p(lxl), define [x, y] xy lOr(Ixl)-Ixyllo We define the set T
as follows: set e ’ T, 0 6 T, ’ T, and, for every z with Izl >_ 2,

Z T === (3k > 1)(3yl Yk, ul uk) [z [’" [[0, Yl], Y2]"" Y]/x ylu

W(O) A y2u2 W([0, y]) A... A y,uk W([... [[0, Yl], Y2] Y,-I])].

From this definition it is clear that, for every x and y with lYl < p(lxl),

[x, y] T = (x T/x yu W(x) for some u).

Thus, if y is not a witness for x (observe that this can be verified in polynomial time) then
[x, y] 6 T if and only if either [x, y0] 6 T or [x, y 1] 6 T. Furthermore, there exists an OK
partial order --< on E* such that, if y is not a witness for x then [x, y0], [x, y -< [x, y]. Such
a partial order can be defined as follows: for every z and z’,

z -< z’ = (3x, y, u) [lyul p(Ixl)/ z Ix, yu] A z’ [x, y]]o

Hence, T is disjunctively self-reducible.
Now, we show that T 6 FewP P. Given z [... [[0, y], y2] Yk], the number of ac-

cepting paths for z (that is, the number of sequences ul Uk such that yu
W([0, yl]) ykuk W([... [[0, y], Y2] Yk-])) is bounded by p(r()(1))p(r()(1))...
p(r(k-)(1)), since, for any i, IIW([... [[0, y], Y2]... Yi])II < P(ri)(1)), where r)(1)
andri)(1) r(ri-l(1)) for/ > 1. It is easy to see, by induction on k, that p(r()(1))p(rl(1))

p(r(-l(1)) < rk)(1). Thus, since r’)(1) Izl, the accepting paths for z are at most Izl,
hence T 6 FewP.

Suppose that T 6 P;then T tq L andT A LbelongtoPo In fact, givenx 6 T, it
is possible by prefix search to compute a string y 6 W(x); thus it is possible to decide, in
polynomial time, whether x 6 L. Furthermore, since T is an infinite set, either T L or
T L is an infinite set, contradicting the assumption that L is P-bi-immune.

It remains to show that T is a sparse set. From the definitions of the encoding [., -] and the
set T, it is clear that, foreveryn > 1,ifn ’ {rk(1)lk > 1} then T "]n . Thus, itsuffices
to consider T (q Er()(l) for all k > 0. Since if[x, y]
and y is a prefix of a string in W(x), it holds that

liT Er<k)(1)ll < liT f3 Er<’)<)[I. (p(r(k-1)(1)))2.

From this and the fact that liT tq Er<))ll 1, it is easy to show, by induction on k, that

liT q Er(k)(1)[[ _< r()(1). It follows that (n)[liT
Theorem 3.6, which shows that the existence of certain bi-immune sets would imply the

existence in NP P of disjunctively self-reducible sets, should be contrasted with work by
K/imper [24] showing that the existence of certain immune sets would imply the existence in
NP P of sets that are not disjunctively self-reducible.

Stating the theorem in its more natural contrapositive form, we have the following corol-
laries.

COIOLLAP,Y 3.7 If all disjunctively self-reducible sparse sets are in P, then FewP
coFewP is not P-bi-immune.

COROLLARY 3.8. (Every committable set that <_Pm-reduces to a sparse set is in P)
(FewP fq coFewP is not P-bi-immune).

Actually, it is possible to give somewhat stronger evidence for this statement. In fact, we
can make the following observation.

Observation 3.9. If there exists a sparse set S in FewP-P then there exists a sparse set S’
in FewP-P that is also disjunctively self-reducible.
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It suffices to consider the set S’ {(x, Y)I (3z lYzl p(Ixl)) [xRyz]}, where R is a
polynomial-time relation (with the associated witness-size polynomial p(.)) witnessing that
S FewP.

The fact that the hypothesis about the existence of P-bi-immune sets in FewP f) coFewP is
stronger than the one about the existence of sparse sets in FewP-P, is ensured by Theorem 3.6
(as the set T constructed in the proof of that theorem belongs to FewP-P). Thus, the value of
Theorem 3.6 is to state a somewhat surprising and bizarre connection between P-bi-immune
sets in FewP A coFewP and sparse sets in FewP-P.

Finally, we mention the following connection between disjunctive self-reducibility, com-
mittability, and kernel constructibility.

THEOREM 3.10. Ifthere is a set that is committable but is not disjunctively self-reducible,
then there is a set that is committable and kernel constructible but not disjunctively self-
reducible.

Proof. Let L be a set that is committable but not disjunctively self-reducible. Consider
the set D L @ E*. Clearly, D is still committable but cannot be disjunctively self-reducible
(since otherwise L would be disjunctively self-reducible). Furthermore, by Theorem 2.10 it
follows that D is also kernel constructible. [3
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APPROXIMATING THE MINIMUM EQUIVALENT DIGRAPH*

SAMIR KHULLERt, BALAJI RAGHAVACHARI, AND NEAL YOUNG

Abstract. The minimum equivalent graph (MEG) problem is as follows: given a directed graph, find a smallest
subset of the edges that maintains all teachability relations between nodes. This problem is NP-hard; this paper gives
an approximation algorithm achieving a performance guarantee of about 1.64 in polynomial time. The algorithm
achieves a performance guarantee of 1.75 in the time required for transitive closure.

The heart of the MEG problem is the minimum strongly connected spanning subgraph (SCSS) problem--the
MEG problem restricted to strongly connected digraphs. For the minimum SCSS problem, the paper gives a practical,
nearly linear-time implementation achieving a performance guarantee of 1.75.

The algorithm and its analysis are based on the simple idea of contracting long cycles. The analysis applies
directly to 2-EXCHANCE, a general "local improvement" algorithm, showing that its performance guarantee is 1.75.

Key words, directed graph, approximation algorithm, strong connectivity, local improvement
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1. Introduction. Connectivity is fundamental to the study of graphs and graph algo-
rithms. Recently, many approximation algorithms for finding minimum subgraphs that meet
given connectivity requirements have been developed [1], [9], [11], [15], [16], [24]. These
results provide practical approximation algorithms for NP-hard network-design problems via
an increased understanding of connectivity properties.

Until now, the techniques developed have been applicable only to undirected graphs. We
consider a basic network-design problem in directed graphs [2], [12], [13], [18], which is as
follows: given a digraph, find a smallest subset of the edges (forming a minimum equivalent
graph (MEG)) that maintains all reachability relations of the original graph

When the MEG problem is restricted to strongly connected graphs we call it the minimum
strongly connected spanning subgraph (SCSS) problem. When the MEG problem is restricted
to acyclic graphs we call it the acyclic MEG problem. The MEG problem reduces in linear
time [5] to a single acyclic problem given by the so-called strong component graph, together
with one minimum SCSS problem for each strong component (given by the subgraph induced
by that component). Furthermore, the reduction preserves approximation in the sense that
c-approximate solutions to the subproblems yield a c-approximate solution to the original
problem.

Moyles and Thompson 18] observe this decomposition and give exponential-time algo-
rithms for the restricted problems. Hsu 13] gives a polynomial-time algorithm for the acyclic
MEG problem.

The related problem of finding a transitive reduction of a digraph--a smallest set ofedges
yielding the same reachability relationswis studied by Aho, Garey, and Ullman [2]. Transitive
reduction differs from the MEG problem in that the edges in the transitive reduction are not

required to be in the original graph. However, the transitive reduction problem decomposes
just like the MEG problem into acyclic and strongly connected instances. For any strongly
connected instance, a transitive reduction is given by any Hamilton cycle through the vertices.
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For an acyclic instance, the transitive reduction is unique and, as Aho, Garey, and Ullman
observe, equivalent to an MEG: it consists of those edges (u, v) for which there is no alternate
path from u to v. In fact, Aho, Garey, and Ullman show that the transitive reduction problem
is equivalent to the transitive closure problem. Thus, the acyclic MEG problem reduces to
transitive closure.

The acyclic MEG problem can be solved in polynomial time, whereas the minimum
SCSS problem is NP-hard [8], [20]. Consequently, this paper focuses on approximation
algorithms for the minimum SCSS problem. By the observations of the preceding paragraphs,
the performance guarantees obtained for the minimum SCSS problem carry over to the general
MEG problem with the overhead of solving a single instance of transitive closure.

1.1. Our results. Given a strongly connected graph, our basic algorithm finds as long
a cycle as it can, contracts the cycle, and recurses. The contracted graph remains strongly
connected. When the graph finally collapses into a single vertex, the algorithm returns the set
of edges contracted during the course of the algorithm as the desired SCSS.

The algorithm achieves a performance guarantee of any constant greater than 7r2/6
1.645 in polynomial time. We give a nearly linear-time version that achieves a performance
guarantee of 1.75. We give examples showing lower bounds on the performance guarantees
of the algorithm. For the general algorithm, the lower bounds are slightly above 1.5. For the
nearly linear-time version, the lower bound is 1.75, matching the upper bound.

The performance guarantee analysis extends directly to a simple "local improvement"
algorithm called 2-EXCHANGE. 2-EXCHANGE starts with the given digraph and performs the
following local improvement step as long as it is applicable: find two edges in the current graph
that can be replaced by one edge from the original graph, maintaining strong connectivity.
Similar local improvement algorithms are natural candidates for many optimization problems
but often elude analysis. We prove that the performance guarantee of 2-EXCHANGE is 1.75.

A natural improvement to the cycle-contraction algorithm is to modify the algorithm to
solve the problem optimally once the contracted graph has no cycles longer than a given
length c. For instance, for c 3 this modification improves the performance guarantee to

:rr2/6 1/36 1.617. We use SCSSc to denote the minimum SCSS problem restricted to

digraphs with no cycle longer than c. The minimum SCSS2 problem is trivial. The minimum
SCSS3 problem can be solved in polynomial time as shown by Khuller, Raghavachari, and
Young [14]. However, further improvement in this direction is limited: we show that the
minimum SCSS5 problem is NP-hard. In fact, we show that the minimum SCSS7 problem is
MAX SNP-hard. This precludes the possibility of a polynomial-time approximation scheme,
assuming PNP [4].

1.2. Otherrelatedwork. The union ofany incoming branching and any outgoing branch-
ing from the same root yields an SCSS with at most 2n 2 edges (where n is the number
of vertices in the graph). This is a special case of the algorithm given by Frederickson and
JfiJi [6] that uses minimum weight branchings [7] to achieve a performance guarantee of 2 for
weighted graphs. Since any SCSS has at least n edges, this yields a performance guarantee of
2 for the SCSS problem.

Any minimal SCSS (one from which no edge can be deleted) has at most 2n 2 edges
and yields a performance guarantee of 2. The problem of efficiently finding a minimal SCSS
is studied by Simon [21 ]. Gibbons et al. 10] give a parallel algorithm.

A related problem in undirected graphs is to find a smallest subset of the edges forming
a biconnected (respectively, bridge-connected (i.e., 2-edge-connected)) spanning subgraph
of a given graph. These problems are NP-hard. Khuller and Vishkin [15] give a depth-

forfirst-search- (DFS-) based algorithm that achieves a factor of for biconnectivity and
bridge-connectivity. Garg, Santosh, and Singla [9] subsequently improve the approximation
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factor for biconnectivity, using a similar approach, to . None of these methods appear to
extend directly to the minimum SCSS problem.

Undirected graphs having bounded cycle length have bounded tree width. Arnborg,
Lagergren, and Seese [3] have shown that many NP-hard problems, including the minimum
biconnected-spanning-subgraph problem, have polynomial-time algorithms when restricted
to such graphs.

2. Preliminaries. To contract a pair of vertices u, v of a digraph is to replace u and v (and
each occurrence of u or v in any edge) by a single new vertex and delete any subsequent self-
loops and multiedges. Each edge in the resulting graph is identified with the corresponding
edge in the original graph or, in the case of multiedges, the single remaining edge is identified
with any one of the corresponding edges in the original graph. To contract an edge (u, v) is
to contract the pair of vertices u and v. To contract a set S of pairs of vertices in a graph
G is to contract the pairs in S in arbitrary order. The contracted graph is denoted by G!S.
Contracting an edge is also analogously extended to contracting a set of edges.

Let OPT(G) be the minimum size of any subset of the edges that strongly connects G.
In general, the term cycle refers only to simple cycles.

3. Lower bounds on OPT(G). We begin by showing that if a graph has no long cycles,
then the size of any SCSS is large.

LEMMA 3.1 (Cycle lemma). For any strongly connected directed graph G with n vertices,

ifa longest cycle ofG has length C, then

C
OPT(G) > (n- 1).

C-1

Proof. Starting with a minimum-size subset that strongly connects the graph, repeatedly
contract cycles in the subset until no cycles are left. Observe that the maximum cycle length
does not increase under contractions. Consequently, for each cycle contracted, the ratio of

cthe number of edges contracted to the decrease in the number of vertices is at least C-l"
Since the total decrease in the number of vertices is n 1, at least (n 1) edges are
contracted. U

Note that the above lemma gives a lower bound which is existentially tight. For all values
of C, there exist graphs for which the bound given by the lemma is equal to 0797-(G). Also
note that C has a trivial upper bound of n and, using this, we get a lower bound of n for
0797"(G), which is the known trivial lower bound.

LEMMA 3.2 (Contraction lemma). For any directed graph G and set ofedges S,

079:T(G) > OPT(G/S).

Proof. Any SCSS of G contracted around S (treating the edges of S as pairs) is an SCSS
of G/S.

4. Cycle-contraction algorithm. The algorithm follows. Fix k as any positive integer.

CONTRACT-CYCLESk (G)
for/=k,k-l,k-2 2

2 while the graph contains a cycle with at least edges
3 Contract the edges on such a cycle.
4 return the contracted edges

In 6, we will show that the algorithm can be implemented to run in O (mot(m, n)) time
for the case k 3 and in polynomial time for any fixed value of k, where rn is the number
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of edges. It is clear that the edge set returned by the algorithm strongly connects the graph.
The following theorem establishes an upper bound on the number of edges returned by the
algorithm.

THEOREM 4.1. CONTRACT-CYCLESk(G) returns at most ck 079"T(G) edges, where

yg2 2
--<Ck< +6 - (k- 1)k

Proof. Initially, let the graph have n vertices. Let ni vertices remain in the contracted
graph after contracting cycles with or more edges (i k, k 2).

How many edges are returned? In contracting cycles with at least k edges, at most
(n nk) edges are contributed to the solution. For < k, in contracting cycles withk-1

edges, _l(ni+l ni) edges are contributed. Thus the number of edges returned is at most

k

k-1
-li ( 1)ni -1

(n-n)+i_i (ni+l-ni)< 1+ 2--_1 n+
(i-1)(i-2)’= i=3

Clearly OPT(G) > n. For 2 < < k, when ni vertices remain, no cycle has more than
i-1edges. By Lemmas 3.1 and 3.2, OPT(G) > _2(ni 1). Thus the number of edges

returned, divided by OPT(G), is at most

(1 + k__i_) n k ni-1 (1 + k___ll)n k ni-1 k-I

/3 (i-1,(i-2,li-.t--’, k /1(i-1)(i-2) < -I-
"hi

+ ck"OPT(G) + OPT(G)- n"= "= i-2 "=

Using the identity (from [17, p. 75]) y4C=l 1/i2 2/6, we get

2 2
<Ck--

6-

<
-6 k-1

6
2

6

k- 2

/k (i + 1)

k-1 k

(k 1)k

If desired, standard techniques can yield more accurate estimates of c, e.g., c zre/6 +
1/2k2 + O(1/k3). If the graph initially has no cycle longer than ( > k), then the analysis
can be generalized to show a performance guarantee of (k-1 -1)/(1 k-1) +i 1/ie.
For instance, in a graph with no cycle longer than 5, the analysis bounds the performance
guarantee (when k 5) by 1.424.

Table gives lower and upper bounds on the performance guarantee of the algorithm for
small values of k and in the limit as k cx. The lower bounds are shown in the next section.

4.1. Lower bounds on the performance ratio. In this section, we present lower bounds
on the performance ratio of CONTRACT-(]YCLESk(G). The graph in Fig. has groups
of vertices. Each group consists of a (2k 2)-cycle "threaded" with a k-cycle.

In the first iteration, CONTRACT-CYCLESk(G) can contract the k-cycle within each
group, leaving the graph with only 2-cycles. The algorithm subsequently must contract all the
remaining edges. Thus, all the (3k 2) 2 edges are in the returned SCSS. The graph
contains a Hamilton cycle and the optimal solution is thus n. Hence, for arbitrarily large n,
+ 2/n is a lower bound on the performance guarantee of CONTRACT-CYCLESk (G).

As k approaches oe, the lower bound tends to 1.5.
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TABLE
Bounds on the performance guarantee.

1.750
1.694
1.674
1.645

Upper bound Lower bound

1.750
1.666
1.625
1.500

FIG. 1. Bad examplefor CONTRACT-CYCLESk (G).

5. 2-ExcrIANGE algorithm. In this section, we use the cycle-contraction analysis to
show that 2-EXCHANGE has a performance guarantee of 1.75. 2-EXCHANGE is a special case
of k-EXCHANGE, which is defined as follows.

k-EXCHANGE(G (V, E)) Local improvement algorithm.
Et---E

2 while the following improvement step is possible
3 Pick a set Ek of k edges in E’ and a set Ek-1 of up to k edges in E

such that the set of edges E" (E’ E) U Ek-1 forms an SCSS.
4 E’ - E".
5 return E’

Note that for fixed k, each step can be performed in polynomial time and reduces the
size of E’, so k-EXCHANGE runs in polynomial time. The following theorem shows that the
approximation factor achieved by 2-EXCHANGe; is 1.75.

THEOREM 5.1. The performance guarantee of2-EXCHANGE is 1.75.

Proof We will show that the edges output by 2-EXCHANGI(G) could be output by
CONTRACT-CYCLES3(G). Thus, the performance guarantee of 1.75 for CONrrtACa-CYCLES3 carries over to 2-EXCHANGE.

First we show that the performance guarantee is at most 1.75. Let E’ be the set of
edges returned by 2-EXCHANGE(G (V, E)). Run CONTRACT-CYCLES3 on the graph
G’ (V, E’). Let H be the set of edges contracted during the first iteration when cycles of
at least three edges are contracted. The resulting graph G’/H is strongly connected and has
only 2-cycles. Such a graph has a tree-like structure. In particular, an edge (u, v) is present if
and only if the reverse edge (v, u) is present.
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ooo

Edges returned by 2-Exchange

->- Edges not used by 2-Exchange

FIG. 2. Worst-case examplefor 2-EXCHANGE.

The important observation is that G/H is equivalent to G’/H. Clearly G’/H is a subgraph
of G/H; to prove the converse, suppose that some edge (u, v) of G/H was not in G’/H.
Consider adding edge (u, v) to G’/H. By the structure of G’/H, u and v are not adjacent in
G’/H, and for each edge on the path from v to u, the reverse edge is also in G’/H. If (u, v) is
added to G’/H, these (at least two) reverse edges can be deleted from G’/H without destroying
the strong connectivity of G’/H. Consequently, the original edge in G corresponding to (u, v)
can be added to G’, and the original edges in G’ corresponding to the reverse edges can be
deleted from G’, without destroying the strong connectivity of G’. This contradicts the fact
that E’ was output by 2-EXCHANGE(G), since E’ is eligible for an improvement step.

Next consider executing CONTRACT-CYCLES3(G). Since G/H is equivalent to G’/H,
the sequence of cycles chosen in the first iteration of CONTRACT-CYCLES3 (G’) could also be
chosen by the first iteration of CONTRACT-CYCLES3(G). Similarly, the second iteration in
CONTRACT-CYCLES3 (G’) could be mimicked by CONTRACT-CYCLES3(G), in which case
CONTRACT-CYCLES3(G) would return the same edge set as CONTRACT-CYCLES3(G’).
Since E’ is minimal (otherwise an improvement step applies), the edge set retumed is exactly
E’. Thus, the upper bound on the performance guarantee of CONTRACT-CYCLES3 from.
Theorem 4.1 is inherited by 2-EXCHANGE.

For the lower bound on the performance guarantee, given the graph in Fig. 2,
2-EXCHANGE can choose a number of edges arbitrarily close to 1.75 times the minimum.

" groups with four vertices in each group. First observe that the graph has a directedThere are
Hamilton cycle. The edges marked in Fig. 2 form a solution with which 2-EXCHANGE could
terminate. This solution clearly has edges. This gives the lower bound of 1.75 on the
performance of the algorithm. [3

6. Implementation. For any fixed k, CONTRACT-CYCLESk can be implemented in
polynomial time using exhaustive search to find long cycles. For instance, if a cycle of
size at least k exists, one can be found in polynomial time as follows: For each simple path
P of k edges, check whether a path from the head of P to the tail exists after P’s internal
vertices are removed from the graph. If k is even, there are at most mk/2 such paths; if k is
odd, the number is at most n rn (k-)/2. It takes O (m) time to decide if there is a path from the
head of P to the tail of P. For the first iteration of the for loop, we may have O (n) iterations
of the while loop. Since the first iteration is the most time consuming, the algorithm can be
implemented in O(n m l+k/2) time for even k and O(n2 m(k+l)/2) time for odd k.

6.1. A practical implementation yielding 1.75. Next we give a practical, near linear-
time implementation of CONTRACT-CYCLES3. The performance guarantee achieved is c3
1.75. CONTRACT-CYCLES3 consists of two phases: (1) repeatedly finding and contracting
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cycles ofthree or more edges (called long cycles) until no such cycles exist, and (2) contracting
the remaining 2-cycles.

High-level description ofthe algorithm. To perform phase (1), the algorithm does a DFS
of the graph from an arbitrary root. During the search, the algorithm identifies edges for
contraction by adding them to a set S. At any point in the search, G’ denotes the subgraph of
edges and vertices traversed so far. The rule for adding edges to S is as follows: when a new
edge is traversed, if the new edge creates a long cycle in G’/S, the algorithm adds the edges
of the cycle to S. The algorithm thus maintains that G’!S has no long cycles. When the DFS
finishes, G’/S has only 2-cycles. The edges on these 2-cycles, together with S, are the desired
SCSS.

Because G’/S has no long cycles and the original graph is strongly connected, G’/S
maintains a simple structure.

LEMMA 6.1. After the addition ofany edge to G’ and the possible contraction ofa cycle
by adding it to S, (i) the graph G’/S consists ofan outward branching and some ofits reverse
edges, (ii) the only reverse edges that might not be present are those on the "active" path:
from the supervertex containing the root to the supervertex in G’/S containing the current

vertex ofthe DFS.
Proof. Clearly the invariant is initially true. We show that each given step of the algorithm

maintains the invariant. In each case, if u and w denote vertices in the graph, then let U and
W denote the vertices in G’/S containing u and w, respectively.

When the DFS traverses an edge (u, w) to visit a new vertex w, we have the following:
Vertex w and edge (u, w) are added to G’. Vertex w becomes the current vertex. In G’/S,
the outward branching is extended to the new vertex W by the addition of edge (U, W). No
other edge is added and no cycle is created. Thus, part (i) of the invariant is maintained. The
supervertex containing the current vertex is now W, and the new "active path" contains the
old "active path." Thus, part (ii) of the invariant is also maintained.

When the DFS traverses an edge (u, w) and w is already visited, we have thefollowing:
If U W or the edge (U, W) already exists in G’/S, then no cycle is created, G’/S is
unchanged, and the invariant is clearly maintained. Otherwise, the edge (u, w) is added to
G and a cycle with the simple structure illustrated in Fig. 3 is created in GI/S. The cycle
consists of the edge (U, W) followed by the (possibly empty) path of reverse edges from W
to the lowest common ancestor (lca) of U and W, followed by the (possibly empty) path of
branching edges from lca(U, W) to U. Addition of (U, W) to G’/S and contraction of this
cycle (in case it is a long cycle) maintains part (i) of the invariant. If the "active path" is
changed, it is only because part of it is contracted, so part (ii) of the invariant is maintained.

When the DFSfinishes visiting a vertex w, we have thefollowing: No edge is added and
no cycle is contracted, so part (i) is clearly maintained. Let u be the new current vertex, i.e.,
w’s parent in the DFS tree. If U W, then part (ii) is clearly maintained. Otherwise, consider
the set D of descendants of w in the DFS tree. Since the original graph is strongly connected,
some edge (x, y) in the original graph goes from the set D to its complement V D. All
vertices in D have been visited, so (x, y) is in G’. By part (i) of the invariant, the vertex in

G’!S containing x must be W, while the vertex in G’/S containing y must be U. Otherwise
the edge corresponding to (x, y) in G’/S would create a long cycle. 71

The algorithm maintains the contracted graph G’/S, using a union-find data structure [22]
to represent the vertices in the standard way and three data structures to maintain the branching,
the reverse edges discovered so far, and the "active path." When a cycle arises in G’/S, it must
be of the form described in the proof of Lemma 6.1 and illustrated in Fig. 3. Using these data
structures, the algorithm discovers it and, if it is long, contracts it in a number of union-find
operations proportional to the length ofthe cycle. This yields an O (mot (m, n))-time algorithm.
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root

inactive
active

/

inactive
W

, active
inactive

FIG. 3. Contracted graph G’/ S.

The vertices of G’/S are represented in union-find sets as follows:
MAInE-SEa’(v). Adds the set {v} corresponding to the new vertex of G’/S.
FIND(v). Returns the set in Gt!S that contains vertex v.
UNIOr(u, v). Joins into a single set the two sets corresponding to the vertices in G’/S

containing G"s vertices u and v.
The data structures representing the branching, reverse edges, and the active paths, re-

spectively are as follows:
from-root[W]. For each branching edge (U, W) in G’/S, from-root[W] (u, w) for

some (u, to) (U W) fq E.
to-root[U]. For each reverse edge (U, W) in G’/S, to-root[U] (u, w) for some
(u,w)(U W) fqE.

to-active[U]. For each vertex U on the "active path" in G’/S, to-active[U] (u, w),
where (u, w) 6 (U W) N E and W is the child of U for which the recursive
DFS call is currently executing, unless no recursive DFS is executing, in which case
to-active[U] current.
For all other vertices, to-active[U] nil.

Pseudo code for the algorithm is given in Figs. 4 and 5.
By the preceding discussion, the algorithm implements CONTRACT-CYCLES3. It is

straightforward to show that it runs in O(mu(m, n)) time. Hence, we have the following
theorem.

THEOREM 6.2. There is an O (mct (m, n))-time approximation algorithmfor the minimum
SCSS problem achieving a performance guarantee of 1.75 on an m-edge, n-vertex graph.

Here c(m, n) is the inverse-Ackermann function associated with the union-find data struc-
ture [22].

Example to illustrate algorithm. In the example in Fig. 6, the algorithm begins the DFS
from vertex 1. It visits vertices 2,3,4 and then traverses the reverse edge (4, 2). Since this
edge creates a 3-cycle (2, 3), (3, 4), (4, 2) in G’/S, it contracts the cycle. Next it traverses
the reverse edge (3, 1), but does not contract it, since it forms only a 2-cycle in the contracted
graph. Continuing the DFS, it visits vertices 5 and 6. When it traverses the edge (6, 4), it
discovers and contracts the cycle (3, 1), (1, 5), (5, 6), (6, 4). Next it visits vertices 7 and 8,
traversing the reverse edges (8, 7) and (7, 6). Traversing the edge (6, 8), it discovers and
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CONTRACT=CYCLES3(G (V, E))- Pseudocode.
s{}
Choose r E V.
DF$(r)
Add 2-cycles remaining in G’/S to S.
return S

DFS(u)
to-active[FIND(u)] 4- current

2 for each vertex w adjacent to u traverse edge (u, w)
3 if (w is not yet visited) new vertex
4 MAKE-SET(W)
5 to-active[FIND(u)] 4- from-root[FIND(w)] 4- (u, w)
6 DFS(w)
7 to-active[FIND(U)] 4- current
8 else --edge creates cycle in G’/S
9 if (FIND(U) FIND(W)) cycle length at least 2
10 (x, y) 4- from-root[FIND(u)]
11 if (FIND(x) FIND(w)) length two cycle through parent, U W U
12 to-root[FIND(u)] 4- (u, w) record edge to parent
13 else
14 (x, y) 4- from-root[FIND(w)]
15 if (FIND(x) FIND(u)) not aforward edge to child; length ofcycle > 3
16 CONTRACT-CYCLE(t0)
17 S 4- S U {(u, w)}
18 to-active[FIND(u)] 4- nil

FIG. 4. Practical implementation ofCONTRACT-CYCLES3o

CONTRACT-CYCLE(//))

8
9
10
11
12
13

while (to-active[FIND(w)] # current) do
if (to-active[FIND(w)] nil) then Go up towards lca along reverse edges.

(c, p) 4- to-root[FIND(w)]
a 4- to-active[FIND(p)]

else Go downfrom lca along active path.
(p, c) 4- to-active[FIND(w)]
a 4- to-active[FIND(c)]
Contract parent p and child c.

f 4- from-root[FIND(p)]
4- to-root[FIND(p)]

UNION(p, c)
to-active[FiND(w)] 4- a
from-root[FIND(w)] 4- f
to-root[FIND(w)] 4-

FIG. 5. Subroutine CONTRACT-CYCLE.

contracts the 3-cycle (8, 7), (7, 6), (6, 8). In this example, no 2-cycles remain, so it returns

just the contracted edges.

7. Potential improvement of CONTRACT-CYCLESk. A natural modification to

CONTRACT-CYCLESk would be to stop when the contracted graph has no cycles of length
more than some c and somehow solve the remaining problem optimally.

For instance, for c 3, by following the proof of Theorem 4.1, one can show that
this would improve the performance guarantee of CONTRACT-CYCLESk to c 6 (for
k >_ 4), matching the lower bound in Table 1. (The lower bound given holds for the modified
algorithm.)
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Graph G

o5

6

o7

*8
After traversing edge (3,1)

8
After traversing edge (6,4)

5

8
After traversing edge (7,6)

l’’3
..-’,,

8
8

After traversing edge (6,8) Edges in C

FIG. 6. Examplefor illustrating execution ofalgorithm.

This leads us to consider the minimum SCSSc problem--the minimum SCSS problem
restricted to graphs with cycle length bounded by c. The following theorem is shown in 14].

THEOREM 7.1. There is a polynomial-time algorithmfor the SCSS3 problem.
We make no conjecture concerning the SCSS4 problem. However, we next show that the

SCSS5 problem is NP-hard and the SCSS7 problem is MAX SNP-hard.

7.1. NP-hardness of SCSSs. We prove the following theorem.
THEOREM 7.2. The minimum SCSS5 problem is NP-hard.

Proof The proof is by a reduction from SAT [8]. Fix an arbitrary formula F in conjunctive
normal form (CNF). We will build a rooted digraph such that any SCSS contains all the edges
out of the root (d of them) and F is satisfiable if and only if there exists an SCSS E’ in which
each of the remaining n nonroot vertices has out-degree equal to one. Thus the formula
will be satisfiable if and only if there is an SCSS with n + d edges.

The graph has a fixed root vertex r and a vertex for each clause in F (these vertices are not
shown in Fig. 7). Each clause vertex has a return edge to the root. For each variable in F, the
graph has an instance of the gadget illustrated in Fig. 7. The edges into the gadget come from
the root. Each such edge is present in any SCSS. The edges out of the gadget are alternately
labeled + and For every clause with a positive instance of the variable, one of the + edges
goes to the clause vertex. For every clause with a negative instance of the variable, one of the

edges goes to the clause vertex. Unassigned / and edges go to the root. (The gadget is
easily enlarged to allow any number of occurrences.)
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Root Root

+

Variable gadget. Incoming edges from root, ---->
outgoing edges to clause vertices.

Edges in SCSS for variable=TRUE.

FIG. 7. Variable gadgetfor NP-hardness proof.

The key property of the gadget is that if every (nonroot) vertex has out-degree one in
some SCSS, then either all of the counterclockwise edges are in the SCSS (corresponding to
the variable being true) or all of the clockwise edges are in the SCSS (corresponding to the
variable being false). Thus, given any SCSS of d + n edges, where d is the out-degree
of the root and n is the number of vertices in the digraph constructed, it is easy to construct a
satisfying assignment for F. Conversely, given any satisfying assignment for F, it is easy to
construct an SCSS of size d 4- n 1. [3

7.2. MAX SNP-hardness of SCSS7. Next we consider the MAX SNP-hardness of the
problem. To prove this we do a reduction from the vertex-cover problem in bounded-degree
graphs to the SCSS problem. Since the proof closely follows the reduction from vertex cover
to Hamiltonian circuits (see [8]), it is suggested that the reader study this reduction before
reading this section. It is known that the problem of finding a minimum vertex cover is MAX
SNP-hard in graphs whose maximum degree is bounded by seven [19].

Let G be a connected, undirected graph whose maximum degree is bounded by seven.
Let G have rn edges and n vertices. We construct a digraph D with 2m 4- vertices and no
cycle longer than 17. Any vertex cover of G of size s will yield an SCSS in D of size 2m 4- s
and vice versa. We then show that, since G has O (n) edges, this yields an L-reduction (i.e.,
an approximation-preserving reduction 19]).

7.2.1. The construction ofD. Applying Vizing’s theorem [23], color the edges of G in
polynomial time with at most eight colors so that no two edges incident to a vertex share the
same color. Let the colors of the edges be chosen from the set 1, 2 8 }.

The construction begins with a special "root" vertex r in D.
As the construction proceeds, each vertex in G will have a "current vertex" in D, initially

the root vertex. We process edges in each color class starting with color 1. For each edge
(u, v), add a "cover-testing gadget" to D as illustrated in Fig. 8. Specifically, add two new
vertices x and y. Add two edges into x: the first, labeled u+, from the current vertex of u; the
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u+ x u+

0+

FIG. 8. A cover-testing component.

second, labeled u-, from y. Similarly, add two edges into y: the first, labeled v+, from the
current vertex of v; the second, labeled v-, from xo Make y the new current vertex of u; make
x the new current vertex of v. Finally, after all edges of G have been considered, for each
vertex v in G, add an edge labeled v+ from its final current vertex to the root. The gadgets
are implicitly layered with each gadget assigned to a layer corresponding to the color of the
associated edge in G.

LEMMA 7.3. The graph D constructed above has no cycle with more than 17 edges.
Proof We first assign numbers to the vertices of D. The root r is assigned the number

0. The construction above proceeds in order of increasing color of the edges of G. When
considering an edge (u, v) of color c, we add two new vertices: x is added to v’s path and
y is added to u’s path. We assign the vertices x and y the number c. Consider any cycle X
of length greater than two in D. It is clear that such a cycle must pass through r, since D
is layered. Hence the cycle is of the form (r, x, x2 xk, r). Because we considered the
edges in order of increasing color, the numbers assigned to the vertices in X increase at least
every two steps in any path in D (not including r). In other words, the numbers assigned to
the vertices x xk form a nondecreasing sequence in which no three consecutive vertices
get the same number. Since the edges of G were colored with 8 colors, the numbers assigned
to the vertices of D range from 0 to 8 (only r gets the number 0). Combining all these, the
length of the cycle X is at most 17.

7.2.2. The analysis. We now show that every vertex cover of G has a corresponding
SCSS in D. The proof is similar to the corresponding proof (in the reduction from vertex
cover to Hamiltonian circuits) that every vertex cover has a corresponding Hamiltonian circuit.
Consider an arbitrary vertex cover S of G. The idea is to choose the paths in the SCSS
corresponding to S in D. The paths of the vertices of V S are not yet connected. Since S
forms a vertex cover, the vertices in the paths of V S can be connected using the cover-testing
components.

LEMMA 7.4. Given a vertex cover of size s in G, an SCSS of D of size 2m + s can be
constructed.

Proof. Construct a subgraph H of D as follows. For each vertex u in G, let d be the
degree of u in G. If u is in the vertex cover, add the du + edges labeled u+ in D to H.
Otherwise, add the du edges labeled u- in D to H. It is easy to verify that H has the following
properties:

l. H has 2m + s edges.
2. H has no cycles of length 2.
3. Every vertex of H has at least one outgoing and one incoming edge.

As mentioned earlier, D is layered and every cycle oflength greater than 2 contains r. Therefore
property 2 above implies that every cycle of H passes through r. By the above conditions, H
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contains a path from r to every vertex v and another path from v to r, and is therefore strongly
connected. To obtain a path from any v to r, start from v and keep traversing an outgoing
edge (which exists by property 3) from the current vertex. Such a path must eventually reach
r because r is contained in every cycle of H. Hence H satisfies the lemma.

We now show that every SCSS of D corresponds to a vertex cover of G. The proof works
by showing that any SCSS can be converted into a "canonical" SCSS, whose size is no larger,
that corresponds to a vertex cover of G.

LEMMA 7.5. Given an SCSS in D of size 2m + s, a vertex cover of G of size s can be
constructed.

Proof. As long as some nonroot vertex y has both of its incoming edges in the SCSS,
modify the SCSS as follows: Let (x, y) be the edge labeled v- for some v. Remove the edge
(x, y) and add the other edge out ofx if it is not already present. Alternatively, if some nonroot
vertex x has both of its outgoing edges in the SCSS, remove the edge (x, y) and add the other
edge into y. Repeat either modification as long as applicable.

By the layering of D, each modification maintains the strong connectivity of the SCSS.
Clearly none of the modifications increase the size. Each step reduces the number of edges
labeled u- for some u in the SCSS, so after at most 2m steps neither modification applies, and
in the resulting SCSS every nonroot vertex has exactly one incoming edge and one outgoing
edge in the SCSS.

An easy induction on the layering shows that for any vertex v in G, either all of the edges
labeled v+ in D are in the SCSS or none are in the SCSS, in which case all of the edges labeled
v- are in the SCSS. Let C be the set of vertices in G of the former kind. It is easy to show
that the size of the SCSS is 2m + ICI, so that ICI _< s. For every edge (u, v) in G, the form
of the gadget ensures that at least one of the two endpoints is in C. Hence, C is the desired
cover.

THEOREM 7.6. The minimum SCSS7 problem is MAX SNP-hard.
Proof. Let G be an arbitrary undirected graph G whose maximum degree is bounded by

seven. Let G have rn edges and n vertices. Construct the digraph D as shown earlier. By
Lemma 7.3, D has no cycles greater than 17. By Lemma 7.4, any vertex cover in G of size s
can be used to obtain an SCSS of D of size 2m + s. Conversely, by Lemma 7.5 an SCSS of
D of size 2m -I- s can be used to obtain a vertex cover of G of size s. Since the degree of G
is bounded, rn O(n) O(s) and it is easily verified that this yields an L-reduction from
degree-bounded vertex cover to the minimum SCSS7 problem.

8. Open problems. An obvious problem is to further characterize the various complex-
ities of the minimum SCSSk problems.

The most interesting open problem is to obtain a performance guarantee that is less than
2 for the weighted strong connectivity problem (as mentioned earlier, the performance factor
of 2 is from Frederickson and JSJi [6]). Such an algorithm may have implications for the
weighted 2oconnectivity problem 15] in undirected graphs as well.

The performance guarantee of k-EXCHANGE probably improves as k increases. Proving
this would be interesting--similar "local improvement" algorithms are applicable to a wide
variety of problems.

Acknowledgments. We thank the referees for useful comments.

REFERENCES

Ao AGRAWAL, P. KLEIN, AND R. RAVI, When trees collide: An approximation algorithm for the generalized
Steiner problem on networks, Proc. 23rd ACM Symposium on Theory of Computing, New Orleans, LA,
1991, pp. 134-144.



872 SAMIR KHULLER, BALAJI RAGHAVACHARI, AND NEAL YOUNG

[2] A.V. AHO, M. R. GAREY, AND J. D. ULLMAN, The transitive reduction ofa directed graph, SIAM J. Comput.,
(1970), pp. 131-137.

[3] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Easy problemsfor tree-decomposable graphs, J. Algorithms, 12
(199 l), pp. 308-340.

[4] S. ARORA, C. LUND, R. MOTWANI, M. SUDAN, AND M. SZEGEDY, Proofverification andhardness ofapproximation
problems, Proc. 33rd IEEE Symposium on Foundations of Computer Science, Pittsburgh, PA, 1992,
pp. 14-23.

[5] Z. n. CORMEN, C. E. LEISERSON, AND R. L. RIVEST, Introduction to Algorithms, MIT Press, Cambridge, MA,
1989.

[6] G.N. FREDERICKSON AND J. JAJA, Approximation algorithmsfor several graph augmentation problems, SIAM
J. Comput., 0 (198 l), pp. 270-283.

[7] H. N. GABOW, Z. GgLIL, Z. SPENCER, AND R. E. TARJAN, Efficient algorithms forfinding minimum spanning
trees in undirected and directed graphs, Combinatorica, 6 (1986), pp. 109-122.

[8] M. R. GAREY AND D. S. JOHNSON, Computers and intractability: A guide to the theory of NP-completeness,
W. H. Freeman, San Francisco, CA, 1979.

[9] N. GARG, V. SANTOSH, AND A. SINGLA, Improved approximation algorithms for biconnected subgraphs via

better lower bounding techniques, Proc. 4th Annual ACM-SIAM Symposium on Discrete Algorithms,
Austin, TX, 1993, pp. 103-111.

10] P. GIBBONS, R. M. KARP, V. RAMACHANDRAN, D. SOROKER, AND R. E. TARJAN, Transitive compaction in parallel
via branchings, J. Algorithms, 12 (1991), pp. 110-125.

1] M. GOEMANS AND D. WILLIAMSON, A general approximation technique for constrained forest problems,
Proc. 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, Orlando, FL, 1992, pp. 307-316.

12] E HARARY, R. Z. NORMAN, AND D. CARTWRIGHT, Structural models: An introduction to the theory ofdirected
graphs, John Wiley, New York, NY, 1965.

[13] H.T. Hsu, An algorithm forfinding a minimal equivalent graph ofa digraph, J. Assoc. Comput. Mach., 22
(1975), pp. 1-16.

14] S. KHULLER, B. RAGHAVACHARI, AND N. YOUNG, On strongly connected digraphs with bounded cycle length,
UMIACS-TR-94- 0/CS-TR-3212, University of Maryland, 1994.

15] S. KHULLER AND U. VISHKIN, Biconnectivity approximations and graph carvings, Proc. 24th ACM Symposium
on Theory of Computing, 1992, pp. 759-770; J. Assoc. Comput. Mach., 41 (1994), pp. 214--235.

[16] P. N. KLEIN AND R. RAVl, When cycles collapse: A general approximation technique for constrained two-

connectivity problems, Proc. 3rd Integer Programming and Combinatorial Optimization Conference,
Mathematical Programming Society, Erice, Italy, 1993, pp. 39-56.

17] D.E. KNUTH, Fundamental Algorithms, Addison-Wesley, Menlo Park, CA, 1973.
[18] D. M. MOYLES AND G. L. THOMPSON, An algorithmforfinding the minimum equivalent graph ofa digraph, J.

Assoc. Comput. Mach., 16 (1969), pp. 455-460.
19] C.H. PAPADIMITRIOU AND M. YANNAKAKIS, Optimization, approximation, and complexity classes, J. Comput.

System Sci., 43 1991), pp. 425-440.
[20] S. SAHNI, Computationally related problems, SIAM J. Comput., 3 (1974), pp. 262-279.
[21] K. SIMON, Finding a minimal transitive reduction in a strongly connected digraph within linear time, in

Proc. 15th International Workshop WG’89, Lecture Notes Comput. Sci. 411, Springer-Verlag, 1989,
pp. 245-259.

[22] R. E. TARJAN, Data Structures and Network Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1983.

[23] V. G. VIZING, On an estimate of the chromatic class of a P-graph, Diskret. Anal., 3 (1964), pp. 25-30. (In
Russian.)

[24] D.P. WILLIAMSON, M. X. GOEMANS, M. MIHAIL, AND V. V. VAZIRANI, A primal-dual approximation algorithm
for generalized Steiner network problems, Proc. 25th ACM Symposium on Theory of Computing, San
Diego, CA, 1993, ppo 708-717.



SIAM J. COMPUT.
Vol. 24, No. 4, pp. 873-921, August 1995

() 1995 Society for Industrial and Applied Mathematics
012

FIXED-PARAMETER TRACTABILITY AND COMPLETENESS I: BASIC
RESULTS*

ROD (3. DOWNEY AND MICHAEL R. FELLOWS

Abstract. For many fixed-parameter problems that are trivially soluable in polynomial time, such as
(k-)DOMINATING SET, essentially no better algorithm is presently known than the one which tries all possible
solutions. Other problems, such as (k-)FEEDBACK VERTEX SET, exhibit fixed-parameter tractability: for each
fixed k the problem is soluable in time bounded by a polynomial of degree c, where c is a constant independent of k.
We establish the main results of a completeness program which addresses the apparent fixed-parameter intractabil-
ity of many parameterized problems. In particular, we define a hierarchy of classes of parameterized problems
FPT

_
W[I] c_ W[2]

___ ___
W[SAT] c_ W[P] and identify natural complete problems for W[t] for > 2. (In

other papers we have shown many problems complete for W[ ].) DOMINATING SET is shown to be complete for
W[2], and thus is not fixed-parameter tractable unless INDEPENDENT SET, CLIQUE, IRREDUNDANT SET, and
many other natural problems in W[2] are also fixed-parameter tractable. We also give a compendium of currently
known hardness results as an appendix.

Key words, fixed-parameter tractable, W-hierarchy, parameterized complexity, DOMINATING SET,
t-NORMALIZED SATISFIABILITY

AMS subject classifications. Primary, 03D15, 68Q15, 68Q25; Secondary, 03DI0, 03D20, 03D30, 03D80,
68R10

1. Introduction. Many natural computational problems have input that consists of a pair
of items. For example, the GRAPH GENUS problem is that of determining for an input pair
(G, k), where G is a graph and k is a positive integer, whether the graph G embeds on the
genus k surface. The problem of MINOR TESTING is that of determining for an input pair
of graphs (G, H) whether H is a minor of G.

One of the reasons for our interest in parameterized problems is that while many of these
problems are NP-complete PSPACE-complete, or even provably intractable, it is sometimes
the case that only a small range of parameter values are really important in practice, so that the
(apparent) intractability of the general problem may be unduly pessimistic information. For
many parameterized problems, we now have encouraging and perhaps useful fixed-parameter
tractability results, such as the following.

THEOREM 1.1 (Robertson and Seymour [108]). For everyfixed graph H it can be deter-
mined in time O(n3) whether a graph G oforder n has a minor isomorphic to H.

THEOREM 1.2 (Bienstock and Monma [15]). For every fixed k, it can be determined in
time 0 (n) whether a graph G oforder n can be embedded in the plane so that k faces cover
all the vertices.

THEOREM 1.3 (Bodlaender [16]). For every fixed k, it can be determined in time O(n)
whether a graph G oforder n has a spanning tree with at least k leaves.

THEOREM 1.4 (Lagergren [95]). For everyfixed k, it can be determined in time 0 (n log2 n)
whether a graph G oforder n has treewidth at most k.

THEOREM 1.5 (Plehn and Voigt [102]). For everyfixed graph H oftreewidth w, it can be
determined in time O(nt+l) whether a graph G oforder n has a subgraph isomorphic to H.
(Note that here the parameter is (a coding of) H.)
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THEOREM 1.6 (Fellows and Langston [74]). For every fixed k, it can be determined in
time O(n) whether a graph G oforder n has a cycle of length at least k.

THEOREM 1.7 (Bodlaender [17], Downey and Fellows [55]). For everyfixed k, it can be
determined in time 0 (n whether a graph G oforder n contains k vertex-disjoint cycles.

For other parameterized problems, such as DOMINATING SET (given a graph G and a
positive integer k is there a set of k vertices in G such that every vertex either belongs to the
set or has a neighbour in the set) we have the contrasting situation where essentially no better
algorithm is known than the "trivial" one which just exhaustively tries all possible solutions.
For each fixed k, k- DOMINATING SET is soluable in this way in time O(ng+).

We make the following definitions in order to frame these complexity issues.
DEFINITION 1.8. A parameterized problem is a set L c_ E* x E* where E is a fixed

alphabet.
For a parameterized problem L and y E* we write Ly to denote the associated fixed-

parameter problem (y is the parameter) Ly {xl(x, y) L}. We refer to Ly as the yth slice
of L.

DEFINITION 1.9. A parameterized problem L is ((weakly) uniformly) fixed-parameter
tractable if there exists a constant a and an algorithm to determine if (x, y) is in L in time
f(ly[) Ixl", where f N --+ N is an arbitraryfunction. If f is recursive then we say that
L is strongly uniformly fixed-parameter tractable. Finally, we say that L is nonuniformly
f.p. tractable if there is a family of algorithms {qx x N} and a function f such that qx
determines if(x, y) is in L in time f(lyl)" Ixl.

In recent years a variety of methods useful for demonstrating fixed-parameter tractability
have emerged, such as the well-quasiordering results of Robertson and Seymour 106], 107]
108], and general algorithmic methods for bounded treewidth (e.g., Abrahamson and Fellows

[4], [5]; Arnborg [7]; Arnborg, Lagergren, and Seese [10]; Bern, Lawler and Wong [13];
Courcelle [49]; and Wimer, Hedetniemi, and Laskar [118]).

The reader should note an important detail of the definition of fixed-parameter tractability
given above. The results of Theorems 1.2-1.7 (and our Theorem 2.1 below) are clearly
uniform; the proofs of these results can be implemented as a single algorithm that works for
every parameter value. Consider, contrastingly, the consequence ofTheorem 1.1 and the graph
minor theorem 108] that for each fixed k, it can be determined in time O (n3) whether a graph G
of order n embeds on the surface of genus k. It is not immediately clear how these (infinitely
many) distinct O(n3) algorithms, each based on a different finite obstruction set, can be
combined into a single finite algorithm. This can done, however, by the two different methods
of Fellows and Langston [74], [75]. Almost all of the known fixed-parameter tractability
results are (or can be made) uniform. While it is possible to construct examples (Downey and
Fellows [58]) that show that the notions of tractability are indeed provably distinct, we also
remark that there are natural examples of apparently all flavours of tractability. For instance
consider the following examples.

PLANAR IMPROVEMENT
Instance: A graph G.
Parameter: k.
Question: Is G a subgraph of a planar graph G’ of diameter at most k?

GRAPH LINKING NUMBER
Instance: A graph G.
Parameter: k.
Question: Can G be embedded in 3-space so that at most k disjoint cycles are topologically
linked?
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We remark that both of these examples are known to be fixed-parameter tractable via
the Robertson-Seymour theorems. But at present PLANAR IMPROVEMENT is known only
to be weakly uniformly tractable and GRAPH LINKING NUMBER is known only to be
nonuniformly tractable.

The difference between the known fixed-parameter complexity of DOMINATING SET
and the problems addressed in Theorems 1.1-1.7 and the two examples, is analogous to the
apparent complexity difference between NP-complete problems and problems in P. For most
NP-complete problems we essentially know no better algorithm than the "trivial" one requiring
exponential time which tries all possible solutions.

If P NP then DOMINATING SET is fixed-parameter tractable. A converse to this
statement is not known and is perhaps unlikely. The reasonable (we think) conjecture that
DOMINATING SET is not fixed-parameter tractable is thus apparently stronger than the
conjecture that P - NP. Certainly there is oracle evidence to perhaps support this claim
(Downey and Fellows [58]). The graph minor theorem has the consequence that for each fixed
surface we can decide graph embedability by employing finitely many minor tests. Thus the
fixed-parameter tractability of MINOR TESTING leads to the fixed-parameter tractability of
the GRAPH GENUS problem. This may be kept in mind as a motivating example for the
following definition.

DEFINITION 1.10 (uniform reduction). A (uniform) reduction ofa parameterizedproblem
L to a parameterized problem L’ is an oracle algorithm A that on input (x, y) determines
whether x Ly and satisfies

(1) There is an arbitraryfunction f N --+ N and a polynomial q such that the running
time ofA is bounded by f(lYl)q(lx[).

(2) For each y E* there is a finite subset Jy cc_ E* such that A consults oracles only
forfixed-parameter decision problems L where w Jy.

Of course in the above an oracle computation takes only one unit of time. If the oracle
is consulted only once by A, then we will term the reduction many: 1. As with the notion
of tractability, there is a strong version. If the function f and the map taking y to Jy are
both recursive, we say that the reduction is strongly uniform. (Similarly there is a notion of
nonuniform reduction, which we do not consider in detail here.) All of the results we prove
in this paper hold for all of the frameworks, with the single exception of Theorem 4.1.

LEMMA 1.11. Ifthe parameterized problem L reduces to the parameterized problem Lt,
and if L’ is fixed-parameter tractable, then L isfixed-parameter tractable.

Proof Let f(lyl)q(lxl) be the bound on the running time of the reduction from L to L’,
and suppose Lo is decidable in time g(lw[), n=. Without loss of generality, we can take f and
g to be increasing. Let y 6 E* and let Jy c_ E* be the associated finite subset of E* for the
reduction. Then we can determine if (x, y) 6 L in time O(f(lYl)q(Ixl)g(m)(f(lYl)q(Ixl))
where rn max{IT[ w Jy}. [-]

Working definition. Actually for the sake of most naturally occuring concrete reduc-
tions, we can take a simpler definition than the above. Most concrete reductions are m-
reductions of the form (x, k) (x’, f(k)) with x’ depending upon x and k, running in time
h(k)lxl with f and h recursive. The reason for this is that most natural problems are smooth
in the sense that one has a natural encoding of the slices with parameters below k into the
kth slice and hence we only need to look at one slice f(k) for any input (x, k). The general
definition is useful at times, and is certainly needed for structural theorems. It does the reader
no harm to take the simplified definition for the remainder of the paper.

Remark: Alternative definition. Another view of the ideas above is provided by Cai et
al. [41 ], the advice view. In that paper, Cai et al. prove that if L is a parameterized language,
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then L FPT iff there is a function f N E* (the advice function) and a P-time oracle
(deterministic) Turing machine , such that for all (x, k),

(x, k) L iff (f(k)(x) accepts.

That is, if we allow for each k a finite piece of advice, then we can solve all the instances in
time Ix 1. There is similarly a relativized version for the reductions. We refer the reader to
Cai et al. [41 for more details.

The plan of this paper is as follows. In 2 we prove a particular combinatorial problem
reduction that plays a key role in our main theorem, which is presented in 3. Section 4
summarizes our results and discusses open problems. During the time this paper was under
consideration many new hardness and completeness results have been found, and we see that
this theory seems to have wide-ranging consequences for the classification of parameterized
hardness results. This is particularly true of, for instance, problems in molecular biology
where one is often interested in a small parameter (e.g., the number of strands ofDNA) yet the
problem is very large (e.g., the length of the strand), and in very large scale integration design
where we might have a small number of wafers of very large size. In the appendix we give a
list of currently known hardness results, as well as a list of open classification problems.

Related work and historical remarks. To conclude this section we give some brief
remarks concerning related investigations. As far as we are aware, the first person to suggest
that something might be interesting in the fact that DOMINATING SET seems to require
time fg(nk+) was Ken Regan [104], in some comments in that paper. Regan did not pursue
this issue. There have been investigations into "nondeterminism in P" such as the Kintala-
Fischer/-hierarchy [93] and the work ofBuss and Goldsmith [35] but these and similar related
investigations were mainly structural, and looked at problems for a single k. One then cannot

use P-time reductions since the class is in DTIME(nf(k) and usually DTIME(n). These
authors instead used small reductions such as quasilinear (e.g., Gurevich and Shelah [86])
time reductions, which are of course machine dependent. The only paper to truely study the
asymptotic parameterized behavior (i.e., the issue of n versus nf(k) with f(k) cx) is
Abrahamson et al. [3]. (Some of these results were recast in [35].) In that paper the objects
were P-checkable, P-indexed relations, called (polynomial time) generator tester pairs. For
each k, one needed to be able to generate a P-time list of potential candidates for solutions
that were easy to test. The actual definition is very involved but the following example gives
the flavour.

If we consider the problem VERTEX COVER, then for an instance G and a parameter
k, the potential witnesses would be pairs consisting of G and a vertex cover V with the index
of V _< j () /... / (). The ideas only seemed to apply to relations in NP. While
there is a notion of parameterized tractability in [3], it is roughly equivalent to our notion of
nonuniform fixed-parameter tractability and hence suffers from the problem that the tractable
classes can be nonrecursive. The real problem with that paper is that the notion of reducibility,
which is defined on relations rather than parameterized languages, is rather unnatural and very
unwieldy, and the notion of intractability is that of (essentially) being P-complete (or "dual
P-complete") under logspace reducibility "by the slice." That is, in [3], problems are PGT-
complete (in their notation) only when for each k they are more or less P-complete. Of course
this means that the Abrahamson et al. [3] ideas cannot address things such as DOMINATING
SET and INDEPENDENT SET, nor apparently anything in the W[t] classes below. We remark
that the Abrahamson et al. [3] results can be easily placed in our setup because they give W[P]-
completeness results (see, e.g., Abrahamson, Downey, and Fellows ], [2]). We see our major
contributions as identifying the correct notions of reducibility, identifying the correct setting
for the study of parameterized intractibility, and finally identifying some "good" problems
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with which to measure hardness. The number of problems that have now been identified
as W[1] hard, and hence apparently intractable, would seem to support our claims. (W[1]
hardness is not analysed in the present paper, but in Downey and Fellows [56].) At this stage
we will only remark that quite a number of parameterized problems have been shown to be
W[ ]-complete. (See the appendix.) We also have a sort of Cook-Levin theorem for W[
which we feel strongly suggests its intractability. Cai et al. [40] have shown that the following
very generic problem is W[ complete.

SHORT TURING MACHINE ACCEPTANCE
Input: A nondeterministic Turing machine M and a string x.
Parameter: k.
Question: Does M have an accepting computation for x in k or fewer steps?

To conclude, we reiterate the remark that the notion of parameterized tractability is not a
refinement of the classical notions arising from NP-completeness, despite the fact that many
of our examples arise from this arena. Problems can be PSPACE complete (e.g., ALTERNAT-
ING HITTING SET; see Abrahamson, Downey, and Fellows [2]) and yet have parameterized
versions that are FPT. Also there are problems that are almost certainly not NP-complete un-
less some unlikely collapse occurs such as NP to LOGNP and yet their parameterized versions
can be W[2] or W[ 1] hard (e.g., the VAPNIK CHERVONENKIS DIMENSION; see Downey,
Evans, and Fellows [54], Downey and Fellows [59], and Papadimitriou and Yannakakis 100]).
Finally take any set A and consider the parameterized problem {(x, x) x 6 A}. Then this
problem is just as hard as A classically, so it can even be provably intractable, and yet it is
trivially FPT. These examples show that the parameterized complexity of problems and their
unparameterized versions are pretty well unrelated, and thus our investigations point to a new
dimension in the structure of problems.

2. A key combinatorial reduction. Neither of the well-known computational problems
of (1) determining whether a graph G has a dominating set of size k (DOMINATING SET), and
(2) determining whether a graph G has an independent set of size k (INDEPENDENT SET)
is know to be fixed-parameter tractable, and it is perhaps a reasonable conjecture that they are
not. The reader skeptical of this conjecture and willing to challenge it, will be advised by the
results of this section to begin by working on INDEPENDENT SET, since a consequence of
Theorem 2.1 is that INDEPENDENT SET reduces to DOMINATING SET (and so the latter
is "apparently harder" with respect to fixed-parameter tractability). Presently the best known
results for these problems are the trivial O(nk+) algorithm for DOMINATING SET and a
nontrivial algorithm for INDEPENDENT SET due to Nesetril and Poljak [99], requiring time
O(nlC(2+E)/3), where 2 + represents the best known exponent for fast matrix multiplication.

We show that WEIGHTED CNF SATISFIABILITY (defined below) reduces to DOM-
INATING SET. By the weight of a truth assignment to a set of boolean variables, we mean
the number of variables assigned the value true, in the same way that the weight of a binary
vector means the number of l’s in the vector. Since INDEPENDENT SET (and many other
parameterized problems) easily reduce to this problem, we have the consequence claimed
above. For example, a graph G (V, E) has a k-element independent set if and only if the
expression 1-Iuoe(ff + 7) has a weight k truth assignment. The notion of reduction that we
use is (the working reduction) defined in 1.

WEIGHTED CNF SATISFIABILITY
Instance: A boolean expression X in conjuctive normal form.
Parameter: k.
Question: Is there a truth assignment of weight k that satisfies X?



878 ROD G. DOWNEY AND MICHAEL R. FELLOWS

’X 2k+1
"enforcers"

Truth setting
connected
to all

clique. 1 _2 n vertices in
clique.

2k+1
Gap clique "enforcers"

connected
to all gap
cliques.

t, Gap enforcement line.

Next truth

2

setting ,,, o.block.

Missing edges are denoted by dotted lines.

Ovals denote cliques.

FIG. 1. Gadgetfor CNFSAT <f.p.DOMINATING SET,

THEOREM 2.1. WEIGHTED CNF SATISFIABILITY strongly uniformly reduces to DOM-
INATING SET.

Proof Let X be a Boolean expression in conjuctive normal form consisting of m clauses
C Cm over the set of n variables x0 x,_. We show how to produce in polynomial-
time by local replacement a graph G (V, E) that has a dominating set of size 2k if and only
if X is satisfied by a truth assignment of weight k.

A diagram of the gadget used in the reduction is given in Fig. 1. The idea of the proof is
as follows. There are k of the gadgets arranged in a circle. Each of the gadgets has three main
parts. Taken clockwise from top to bottom, these are variable selection, gap selection, and
gap enforcement. The variable selection component is a clique and the gap selection consists
of n cliques which we call columns. Our first action is to ensure that in any dominating set
of 2k elements, we must pick one vertex from each of these two components. This goal is
achieved by the 2k sets of 2k + enforcers, vertices from V4 and Vso (The names refer to the
sets below.) Take the set V4, for instance. For a fixed r, these 2k + vertices are connected
to all of the variable selection vertices in the component A (r), and nowhere else. Thus if they
are to be dominated by a 2k dominating set, then we must choose some element in the set
A(r), and similarly we must choose an element in the set B(r) by virtue of the V5 enforcers.
Since we will need exactly 2k (or even < 2k) dominating elements it follows that we must

pick exactly one from each of the A(r) and B(r) for r k.
As the name suggests these will be picked by the variable selection components, A (r),

r 0 k 1. Each of these k components consists of a clique of n vertices labeled
0 n 1, the intention being that the vertex labeled represents a choice of variable
being made true in the formula X. Correspondingly in the next B (r) we have columns (cliques)

0 n 1. The intention is that column corresponds to the choice of variable in
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the preceding A (r). The idea then is the following. We join the vertex a[r, i] corresponding
to variable i, in A(r), to all vertices in B(r) except those in column i. This means that the
choice of in A(r) will cover all vertices of B(r) except those in this column. It follows that
we must choose the dominating element from this column and nowhere else. (There are no
connections from column to column.) The columns are meant to be the gap selection that says
how many O’s there will be until the next positive choice for a variable. We finally need to
ensure that if we chose variable in A(r) and gap j in column from B(r) then we need to
pick + j + in A (r / 1). This is the role of the gap enforcement component which consists
of a set of n vertices (in V6.) The method is to connect vertex j in column of B(r) to all
of the n vertices d[r, s] except to d[r, + j + ]. The point of this is that if we choose j in
column we will dominate all of the d[r, s] except d[r, + j + ]. Since we will only connect
d[r, s] additionally to a[r + 1, s] and nowhere else, to choose an element of A[r + and still
dominate all of the d[r, s] we must actually choose a[r + 1, + j + ].

Thus the above provides a selection gadget that chooses k true variables with the gaps
representing false ones. We enforce that the selection is consistent with the clauses of X via
the clause variables V3. These are connected in the obvious ways. One connects a choice in
A[r] or B[r] corresponding to making a clause Cq true to the variable Cq. Then if we dominate
all the clause variables too, we must have either chosen in some A[r] a positive occurrence of
a variable in Cq or we must have chosen in B[r] a gap corresponding to a negative occurrence
of a variable in Cq, and conversely. We now turn to the formal details.

The vertex set V of G is the union of the following sets of vertices:

V1- {a[r,s] O < r < k- l, O < s < n 1},
V2--{b[r,s,t]’O<r <k- l,O<s <n-l, <t <n-k+ l},

V3 {c[j]" < j < m},

V4 {a’[r, u] O < r <k-l, < u < 2k + },

Vs {b’[r,u] O < r <k-l, < u < 2k + },
V6 {d[r,s] "O < r < k- l,O < s <n-l}.

For convenience, we introduce the following notation for important subsets of some of
the vertex sets above. Let

A(r) {a[r, s]’0 < s < n 1},
B(r) {b[r,s,t] O < s <n-l,1 < < n k + },

B(r,s) {b[r,s,t] < < n-k + }.

The edge set E of G is the union of the following sets of edges. In these descriptions we
implicitly quantify over all possible indices.

El {c[j]a[r, s] Xs Cj },

E2 {a[r, s]a[r, s’] s s’},
E3 {b[r, s, t]b[r, s, t’] t’},
E4 {a[r, s]b[r, s’, t] s s’},
E5 {b[r, s, t]d[r, s’] s’ =/: s + (mod n)},
E6 {a[r, s]a’[r, u]},

E7 {b[r, s, t]b’[r, u]},
E8 {c[j]b[r,s,t] 3i r Cj,s < < s + t},

E9 {d[r, s]a[r’, s] r’ r + (mod n)}.
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Suppose X has a satisfying truth assignment 7: ofweight k, with variables Xio, xi, xik_
assigned the value true. Suppose i0 < i2 < < i_. Let dr ir+l(mod k) ir (mod n) for
r 0 k 1. It is straightforward to verify that the set of 2k vertices

D {a[r, ir] 0 < r < k 1} t.9 {b[r, ir, dr] 0 < r <_ k 1}

is a dominating set in G.
Conversely, suppose D is a dominating set of 2k vertices in G. The closed neighborhoods

of the 2k vertices a’[0, 1] a’[k 1, 1], b’[0, 1] b’[k 1, 1] are disjoint, so D must
consist of exactly 2k vertices, one in each of these closed neighborhoods. Also, none of
the vertices of V4 U V5 are in D, since if a’[r, u] D then necessarily a’[r, u’] D for
< u’ < 2k + (otherwise D fails to be dominating), which contradicts that D contains

exactly 2k vertices. It follows that D contains exactly one vertex from each of the sets A (r)
andB(r) for0<r<k-1.

The possibilities for D are further constrained by the edges of E4, E5, and E9. The vertices
of D in V represent the variables set to true in a satisfying truth assignment for X, and the
vertices of D in V2 represent intervals of variables set to false. Since there are k variables
to be set to true there are, considering the indices of the variables mod n, also k intervals of
variables to be set to false.

The edges of E4, E5, and E9 enforce that the 2k vertices in D must represent such a choice
consistently. To see how this enforcement works, suppose a[3, 4] 6 D. This represents that
the third of k distinct choices of variables to be given the value true is the variable x4. The
edges of E4 force the unique vertex of D in the set B(3) to belong to the subset B(3, 4). The
index of the vertex of D in the subset B(3, 4) represents the difference (mod n) between the
indices of the third and fourth choices of a variable to receive the value true, and thus the vertex

represents a range of variables to receive the value false. The edges of E5 and E9 enforce
that the index of the vertex of D in the subset B(3, 4) represents the "distance" to the next
variable to be set true, as it is represented by the unique vertex of D in the set A (4).

It remains only to check that the fact that D is a dominating set ensures that the truth
assignment represented by D satisfies X. This follows by the definition of the edge sets El
and E8. [3

Because DOMINATING SET can be easily reduced to WEIGHTED CNF SATISFIABIL-
ITY with no negated literals, the above theorem shows the surprising fact that WEIGHTED
SATISFIABILITY reduces to MONOTONE WEIGHTED CNF SATISFIABILITY. (The re-
duction is straightforward. Let {xt xn denote the set of vertices of the given graph G,
and we will interpret them as input variables for our circuit C(G). Have a layer of Or gates
directly below the variables. These are also one per input variable and we will label them
g gn. Make xi and input to the Or gate gj precisely in the case that (xi, xj) is an edge
of G. Now to complete the circuit, we have one large And gate with inputs from each of the
Or gates. It is easy to see that satisfying assignments correspond directly to dominating sets
and conversely.) Interpreted in terms of circuits, this combinatorial reduction plays a crucial
role in the fundamental completeness results surveyed in the next section. We can use this
reduction in the main theorem (Theorem 3.7) because the reduction proves rather more than
is stated in Theorem 2.1 and the relavant properties we need are stated in the remark below.
(It is also used to generalize Theorem 2.1 to MONOTONE 2t-NORMALIZED BOOLEAN
FORMULAE in Corollary 3.8.)

Remark. An important fact about the above proof is the following. For our fixed k
the enforcement gadgetry causes us to choose the 2k vertices, k from the A(r)’s and k from
the B’s, and there is a 1-1 correspondence between weight k assignments to X and size
2k sets that dominate the graph G’ which denotes the gadget, that is, G without the clause
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connections and vertices. Define a weak dominating set to be a set of (2k) vertices that
dominates the gadget of G. The fact we will use in the proof of the normalization theorem is
that under the 1-1 correspondence between weight k assignments to X and weak dominating
sets, if a clauses Ci Cip are the subset of the set of clauses satisfied by some weight k
assignment, then ci Cip are exactly the clause vertices dominated by the corresponding
size 2k weak dominating set in G. That is, not only is there a correspondence between weight
k satisfying assignments for X and weight 2k dominating sets in G, but in fact there is an exact
correspondence between all weight k assignments together with the clauses they satisfy, and
with all weak dominating sets and the clause vertices they dominate.

The DOMINATING SET reduction also allows for a number of other applications. For
instance, consider the problem below.

WEIGHTED {0, }-INTEGER PROGRAMMING
Instance: A binary matrix A and a binary vector b
Parameter: k.
Question: Does A x > b have a binary solution of weight k?

We have the following corollary.
COROLLARY 2.2. WEIGHTED CNF SATISFIABILITY reduces to WEIGHTED {0, }-

INTEGER PROGRAMMING.
Proof Let (X, k) be an instance ofMONOTONEWEIGHTEDCNF SAT. Let C Cp

list the clauses of X and x Xm list the variables. Let A be the matrix {ai,j
p, j m} with ai,j if xj is present in Ci and ai,j 0 otherwise. Let b

be the vector with in the jth position for j p. It is easy to see that A. x > b
has a solution of weight k iff X has a satisfying assignment of weight k (and the reasoning is
reversible).

In passing we remark that the situation of Corollary 2.2, where a classical reduction can
easily be modified for a normal parameterized case, is exceedingly rare. It seems to be that it
is almost never the case that a classical reduction gives rise to a parameterized one.

3. A completeness theory for fixed-parameter intractability. In order to frame a com-
pleteness theory to address the apparent fixed-parameter intractability ofDOMINATING SET
and other problems, we need to define appropriate classes of parameterized problems. As one
might expect, satisfiability occupies a central role in our investigations. But now the situation
is apparently much more complex than in the classical case. For instance, while classically
there is no difference between CNF SATISFIABILITY and SATISFIABILITY for general
formulae in propositional logic, there seems to be no parameterized reduction computing gen-
eral SATISFIABILITY from CNF SATISFIABILITY and hence they do seem to be genuinely
of different complexity from a parameterized point of view. Considerations such as these lead
to the conclusion that there seem to be many different parameterized degree classes of natural
problems. This is quite different from the situation in classical, say, NP-completeness results
where virtually all natural problems which are not in P seem to be NP complete.

Current measure of intractability. At the present time if we wish to prove parame-
terized intractability, we show that the problem at hand can compute WEIGHTED 3CNF
SATISFIABILITY. This is the class we call W[ and as we said before, we seem to have very
strong evidence that it is intractable. We refer the reader to Downey and Fellows [56].

t-normalized formulae. In fact, there does not seem to be any reduction from param-
eterized CNF to 3CNE This leads naturally to the realization that the logical depth of a
propositional formula affects its parameterized complexity. Thus if CNF is thought of as
products-of-sums of literals, then we can define a propositional formula to be t-normalized
if it is of the form products-of-sums-of-products of literals with t-alternations. (Hence
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2-normalized is the same as CNE) Now we believe that for all t, WEIGHTED SATISFIA-
BILITY for t-normalized formulae is strictly easier than WEIGHTED SATISFIABILITY for
+ 1-normalized formulae. This suggests a hierarchy based on the complexity of t-normalized

formulae. It turns out that this hierarchy is quite useful for the classification of the complexity
of many natural problems, and t-normalized formulae do give quite a bit more computational
power. We make this more precise through the introduction of the circuit-based classes below.

The classes that we define below are intuitively based on the complexity of the circuits
required to check a solution. The size of a circuit is as usual the number of gates in the circuit.

We first define decision circuits in which some gates have bounded fan-in and some have
unrestricted fan-in. It is assumed that fan-out is never restricted.

DEFINITION 3.1o A circuit is of mixed type if it consists of circuits having gates of the
following kinds:

(1) Small gates: not gates, and gates and or gates with boundedfan-in. We will usually
assume that the bound onfan-in is 2for and gates and or gates, and for not gates.

(2) Large gates: And gates and Or gates with unrestrictedfan-in.
We will use lowercase to denote small gates (or gates and and gates), and uppercase to

denote large gates (Or gates and And gates).
DEFINITION 3.2 (depth and weft). The depth ofa circuit C is defined to be the maximum

number ofgates (small or large) on an input-output path in C. The weft ofa circuit C is the
maximum number oflarge gates on an input-output path in C.

DEFINITION 3.3. We say that afamily ofcircuits has bounded depth ifthere is a constant
h such that every circuit in thefamily S1c. has depth at most h. We say that " has bounded weft

ifthere is constant such that every circuit in thefamily .T" has weft at most t. " is monotone

if the circuits of" do not have not-gates. A circuit C is a decision circuit if it has a single
output. A decision circuit C accepts an input vector x ifthe single output gate has value on

input x.
DEFINITION 3.4. Let .T" be afamily ofdecision circuits. We allow that 2F may have many

different circuits with a given number of inputs. To .T" we associate the parameterized circuit
problem L {(C, k) C .T" accepts an input vector ofweight k}.

DEFINITION 3.5. A parameterized problem L belongs to W[t] (monotone Wit]) if L
uniformly (m-)reduces to the parameterized circuit problem Ly for the family J:h,t of depth
h, mixed type (monotone) decision circuits of weft at most t.

DEFINITION 3.6. We denote the class offixed-parameter tractable problems as FP T.
Thus we have the containments

FPT c_. W[I]

___
W[2] __....

and we conjecture that each ofthese containments is proper. We term the union ofthese classes
together with two other classes W[SAT] c_ W[P], the W-Hierarchy. Here W[P] denotes the
class obtained by having no restriction on depth, i.e., P-size circuits, and W[SAT] denotes
the restriction to boolean circuits of P-size. We do not explore W[SAT] or W[P] here but
do so in Abrahamson, Downey, and Fellows [1 ], [2].

Our main result shows that WEIGHTED CNF SATISFIABILITY is complete for W[2]
and that similar problems are complete for each level of the W-Hierarchy of parameterized
problem classes. This theorem, Theorem 3.7, plays a role in our theory analogous to Cook’s
theorem for NP-completeness, in the following sense. Usually proofs of membership in a
particular W[t] class are easy, so the circuit definition is easy to reduce to, whereas the t-

normalized formulae provide problems that are easy to reduce from to establish hardness.
The other view of the Cook(-Levin) theorem is that it connects a generic problem from Turing
machines to SATISFIABILITY and hence SATISFIABILITY is very unlikely to be tractable.
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This other view of the Cook(-Levin) theorem is not pursued here but is established for W[
in Downey and Fellows [56], as we mentioned earlier. The present paper, and particularly
Theorem 3.7, provide an important technical framework for hardness results.

It is interesting that the combinatorial reduction of Theorem 2.1, and the subsequent
remark play a key role (as a "change of variables") in our proof of Theorem 3.7. Thus the
entire argument thatDOMINATING SET is complete for W[2] actually uses this combinatorial
reduction twice. Recall the notion of t-normalized formula we discussed earlier, It naturally
gives rise to the following problem.

WEIGHTED t-NORMALIZED SATISFIABILITY
Input: A t-normalized boolean expression X.
Parameter: A positive integer k.
Question: Does X have a satisfying truth assignment of weight k?

THEOREM 3.7. For > 2 WEIGHTED t-NORMALIZED SATISFIABILITY is many:
completefor W[t ]o

Proof Let L W[t]. Let .T" be the family of circuits of depth bounded by h and weft
bounded by to which L reduces. It suffices to reduce L: to WEIGHTED t-NORMALIZED
SATISFIABILITY. An instance of the latter problem may be viewed as a pair consisting of a
positive integer k and a circuit having alternating layers ofAnd and Or gates corresponding
to the t-normalized expression structure P-o-S-o-P- and having a single output And gate.
Thus the argument essentially shows how to "normalize" the circuits in ’.

Let (C, k) be an instance of L-. We show how to determine whether C accepts a weight
k input vector by consulting an oracle for WEIGHTED t-NORMALIZED SATISFIABILITY
(viewed as a problem about circuits) for finitely many weights k’. The algorithm for this
determination will be uniform in k, and run in time f(k)n where n is the size of the circuit
C. The exponent c will be a (possibly exponential) function of h and t. This is permissible,
since every circuit in 9r" observes these bounds on depth and weft.

Step 1. The reduction to tree circuits.
The first step is to transform C into a tree circuit C’ (or formula) of depth and weft

bounded by h and t, respectively. In a tree circuit every logic gate has fan-out one. (The input
nodes may have large fan-out.) The transformation is accomplished by replicating the portion
of the circuit above a gate as many times as the fan-out of the gate, beginning with the top
level of logic gates and proceeding downward level by level. (We regard a decision circuit as
arranged with the inputs on top and the output on the bottom.) The creation of C’ from C may
require time O(n(h)) and involve a similar blow-up in the size of the circuit. The tree circuit
C’ accepts a weight k input vector if and only if the original circuit C accepts a weight k input
vector.

Step 2. Moving the not gates to the top ofthe circuit.
Let C denote the circuit we receive from the previous step (we will use this notational

convention throughout the proof). Transform C into an equivalent circuit C’ by commuting
the not gates to the top, using DeMorgan’s laws. This may increase the size of the circuit by
at most a constant factor. The tree circuit C’ thus consists (from the top) of the input nodes,
with not gates on some of the lines fanning out from the inputs. In counting levels we consider
all of this as level 0, and may refer to negated fan-out lines from the input nodes as negated
inputs. Next, there are levels consisting only of large and small and and or gates, with a single
output gate (which may be of either principal logical denomination at this point).

Step 3. Homogenizing the layers.
The goal of this step is to reduce to the situation where all of the large gates are at the

bottom of the circuit, in alternating layers of large And and Or gates. To achieve this we work
from the bottom up, with the first task being to arrange for the output gate to be large.
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Let C denote the circuit received from the previous step. Suppose the output gate z is
small. Let C[z] denote the connected component of C including z that is induced by the
set of small gates. Thus all gates providing input to C[z] are either large or are input gates
of C. Because of the bound h on the depth of C, there are at most 2h inputs to C[z]. The
function of these inputs computed by C[z] is equivalent to a product-of-sums expression Ez
having at most 22h sums, with each sum a product of at most 2h inputs. Let C’ denote the
circuit equivalent to C obtained by replacing the small gate output component C[z] with Ez,
duplicating subcircuits of C as needed to provide the inputs to the depth 2 circuit representing
Ez. (The "product" gate of Ez is now the output gate of C’.) This entails a blow-up in size
by a factor bounded by 22’. Since h is an absolutely fixed constant (not dependent on n or k)
this blow-up is "linear" and permitted. Note that Ez and therefore C’ are easily computed in
a similar amount of time to this size blow-up.

Let p denote the output and gate of C’ (corresponding to the product in Ez). Let sl Sm
denote the or gates of C’ corresponding to the sums of Ez. We consider all of these gates to
be small, since the number of inputs to them does not depend on n or k. (Equivalently, if the
gates of these two levels were replaced by binary input gates, we would see that the reduction
of C to C’ has increased circuit depth from h to 2h.)

Each or gate si of C’ has three kinds of input lines: those coming from large And gates,
those coming from large Or gates, and those coming from input gates of C’. We will use
the same symbol to denote an input line, the subcircuit of C’ that computes the value on that
line, or the Boolean expression corresponding to the subcircuit (since C’ is a tree circuit, it is
equivalent to a Boolean expression). Let these three groups of inputs be denoted, respectively,
by

Si,/ {Si[/X, j]: j mi,A},

Si,v {si[v, j]: j mi,v},

Si,T {si[-T, j]: j mi,T},

and define

S/= S/,A U S/,v U S/,T,

For each line si[V j] of C’ coming from a large Or gate u, let

Si,v,j {si[v, j, k] k 1,..., mi,v,j}

denote the set of input lines to u in C’. Similarly, for each line si[/, j] of C’ coming from a
large And gate v, let

Si,^,j {si[/x, j, k] k mi,/,j}

denote the set of input lines to v in C’o
Let

The integer k’ is the number of or gates (counting both large and small gates) that are either
part of C[z] or directly supply input to C[z]. Note that k’ is bounded above by 2h 22h.
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We describe how to produce a weft circuit C" from C’ that accepts an input vector of
weight k" k + k’ if and only if C’ (and therefore C) accepts an input vector of weight k.
The tree circuit C" will have a large And gate giving the output.

Let X Xn denote the inputs to C’. The circuit C" has additional input variables that,
for the most part, correspond to the input lines to the or gates singled out for attention above.
The set V of new input variables is the union of the following groups of variables:

i=1 i=1 j=l

where

V/ {vi[A, j] < j < mi,/} U {vi[v, j] < j < mi,v} U {l)i[m, j] < j < mi,T}

and

Vi,j {yi[v, j, k] < k < mi,v,j} U {n[i, j]}.

The circuit C" is represented by the Boolean expression

C" E1 E2. E3. E4. E5 E6- E7,

where

E1 --/1-l.= u

i=1 u#v, u,veVi

(--u + --,v),

’= j=l

m mi, u,vEVi,j

E4-- HH H (--U"J--’I))’
i=1 j=l u=/=v

m mi,^ mi,^,j

E5 HH H (Si[A’ j’ k] + ""l)i[/k j]),
i=1 j--1 k=l

m illi,v

e6 l-I I-I (-,vi[v, j] +-,n[i, j]),
i=1 j=l

mi,v mi,v,j

E7 fl H fl (si[V’ j’ k] -" -Pi[v’ j’ k]
i=1 j=l k=l
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The size of C" is bounded by IC’[ 2.
Claim 1. The circuit C" has weft t.
To see this, note first that since > 2, any input-output path beginning from a new

input variable (in V) that has at most two large gates as the expression for C" is essentially a
product-of-sums. In E5 and E7 the sums involve subexpressions of C’; any input-output path
from an original input variable (of C’) passes through one of these or gates. Observe that in
C these subexpressions have weft at most 1. The sums of E5 and E7 are small, so these
paths further encounter only the bottommost large And gate.

Claim 2. The circuit C" accepts an input vector of weight k" if and only if C’ accepts an
input vector of weight k.

First note that any input vector of weight k" accepted by C" must set exactly one variable
in each of the sets of variables V/ (for m) and Vi,j (for m and j

mi,v) to and all of the others in the set to 0 in order to satisfy E1 E2 E3 E4. It
follows that any such accepted input must set exactly k of the original variables of C’ to 1, by
the definition of k".

The role of the (new) variables set to in the sets of variables that represent inputs to or
gates is to indicate an accepting computation of C’ on the weight k input of old variables. The
expressions E5 E7 enforce the correctness of this representation in C" of the computation
of C’.

The expression E5 ensures that if the new variable vi[/x, j] is set to 1, indicating that the
subexpression si[/x, j] of C’ evaluates to 1, then every argument si[/x, j, k] must evaluate to 1.
(Note that subexpressions si[/x, j, k] appear in C" while the subexpressions si[/x, j] do not.
The computations performed in C’ by the latter are simply represented by the values of the
input variables in V.) The role of the variables n[i, j] is to represent that "none of the inputs"
to the or gate has the value 1. The expression E6 enforces that if this situation is represented,
then the output of the gate is not represented as having the value 1. The expression E7 ensures
that if the new variable vi[x/, j, k] has the value 1, indicating that the subexpression si[v, j, k]
of C’ evaluates to 1, then this subexpression must in fact evaluate to 1.

By the above, we may now assume that the circuit we are working with has a large output
gate (which may be of either denomination). Renaming for convenience, let C denote the
circuit we are working with under this assumption.

If g and g’ are gates in C of the same logical character (/x or x/) with the output of g going
to g’, then they can be consolidated into a single gate without increasing weft if g is small and
g’ is large. We term this a permitted contraction. Note that if g is large and g’ is small then
contraction may not preserve weft. We will assume that permitted contractions are performed
whenever possible, interleaved with the following two operations.

(1) Replacement ofbottommost small gate components.
As at the beginning of Step 3, let C Cm denote the bottommost connected compo-

nents of C induced by the set of small gates and having at least one large gate input. Since
the output gate of C is large, each Ci gives output to a large gate gio If gi is an And gate, then
Ci should be replaced with product-of-sums circuitry equivalent to Ci. If gi is an Or gate,
then Ci should be replaced with equivalent sum-of-products circuitry. Note that in either case
this immediately creates the opportunity for a permitted contraction. As per the discussion at
the beginning of Step 3, this replacement circuitry is small, and this operation may increase
the size of the circuit by a factor of 22h This step will be repeated at most h times, as we are
working from the bottom up in transforming C.

(2) Commuting small gates upward.
After (1), and after the permitted contractions, the bottommost small gate components

are each represented in the modified circuit C’ by a single small gate hi giving output to gi.
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Without loss of generality, all of the arguments to hi may be considered to come from large
gates. (The only other possibility is that an input argument to h; may be from the input level
of the circuit, but there is no increase in weft in treating this as an honorary large gate for
convenience.) Suppose that gi is an And gate and that hi is an or gate (the other possibility is
handled dually).

There are three possible cases:
(i) All of the arguments to hi are from Or gates.
(ii) All of the arguments to hi are from And gates.
(iii) The arguments to hi include both large Or gates and large And gates.

In case (i), we may consolidate hi and all of the gates giving input to hi into a single large
Or gate without increasing weft.

In case (ii), we replace the small x/(hi) of large/x’s with the equivalent (by distribution)
large/x of small x/’s. Since hi may have 2h inputs, this may entail a blow-up in the size of the

n2hcircuit from n to This does not increase weft, and creates the opportunity for a permitted
contraction.

In case (iii), we similarly replace hi and its argument gates with circuitry representing a
product-of-sums of the inputs to the arguments of hi. The difference is that in this case, the
replacement is a large/ of large (rather than small) /gates. Weft is preserved when we take
advantage of the contraction now permitted between the large/ gate and gi.

We may achieve our purpose in this step by repeating the cycle of (1) and (2). At most
h repetitions are required. The total blow-up in the size of the circuit in this step is crudely
bounded by n2hz

Step 4. Removing a bottommost Or gate.
By a Turing reduction, we can determine whether a tree circuit giving output from an Or

gate accepts a weight k input vector by simply making the same determination for each of the
input branches (subformulae) to the gate.

In order to accomplish this step by a many: reduction, we do the following. Let b be the
number of branches of the circuit C with bottommost Or gate that we receive at the beginning
of this step. We modify C by creating new inputs x x [b]. The purpose of these input
variables is to indicate which branch of C accepts a weight k input vector. Let C Ct, be
the branches of C, so that C is represented by the expression C + + Co. The modified
circuit C’ is represented by the expression

C’ (x[1] +...-i-x[b]). H (--,x[i] +--,x[j]) l-I (ci +’-’x[i]).
l<i<j<b l<i<b

The first two product terms of the above expression ensure that exactly one of the new
variables must have value in an accepted input vector. The modified circuit C’ accepts a
weight k / input vector if and only if C accepts a weight k input vector. For weft at least
two, the transformation is weft-preserving and yields a circuit C’ with bottommost And gate,
but possibly with not gates at the lower levels. Thus it may be necessary’ to repeat Steps 2 and
3 to obtain a homogenized circuit with bottommost And gate.

Step 5. Organizing the small gates.
The tree circuit C received from the previous step has the following properties: (i) the

output gate is an And gate, (ii) from the bottom, the circuit consists of layers which alternately
consist of only And gates or only Or gates, for up to layers, and (iii) above this, there are
branches B of height h’ h consisting only of small gates. Since a small gate branch B
has bounded depth, it has at most 2h’ gates, and thus in constant time (since h is fixed), we
can find either (1) an equivalent sum-of-products circuit with which to replace B, as required
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by Case of Step 6 below, or (2) an equivalent product-of-sums circuit, as required by Case
2 of Step 6.

In this step, all such small gate branches B of C are replaced in this way, appropriately
for the relevant case of Step 6. In Case 1, the depth 2 sum-of-products circuits replacing the

221,small gate branches B have a bottomost or gate go of fan-in at most and the and gates
feeding into go have fan-in at most 2h’, so the weft of the circuit has been preserved by this

transformation, which may increase the size of C by the constant factor 22h’ The topmost
level of large gates (to which the branches B are attached in C) consists of Or gates, in Case 1,
so that the gates go can be merged into this topmost level. Merging is performed similarly in
Case 2, where the replacing circuits are products-of-sums, and the topmost level of large gates
consists of And gates. For the next step we consider two cases, depending on whether the
topmost level of large gates consists of Or gates or And gates. (Essentially, this corresponds
to whether weft is even or odd.)

Step Ii. A monotone change of variables (two cases).
In this step (in both cases) we employ a "change of variables" based on the combinatorial

reduction of Theorem 2.1. The goal is to obtain an equivalent circuit that has the property
that either all the inputs are MONOTONE (Case 1) (i.e., no inverters in the circuit), or all the
inputs are negated with no other inverters in the circuit, which we call ANTIMONOTONE.
(Actually in this case we will have some of the inputs positive but these will only be enforcers
as we will see. So we should call this case NEARLY ANTIMONOTONE) (Case 2). The
point of this step becomes apparent in the next step when we use the special character of the
circuit thus constructed to enable us to eliminate the small gates.

Consider the reduction of Theorem 2.1, especially in the light of the remark following
the proof. This reduction consists of two parts. The first is the ring of selection gadgets which
allow variable choice, gap choice, and then gap enforcement; the second part is consistency
obtained by clause wiring. The idea is to "hard wire" the selection and consistency parts of the
construction into the circuit, the point being that we can replace positive instances of variable
fan-out in the original circuit by outputs corresponding to choice of that variable in the positive
selection component. We can replace negative fan-out in the original circuit by the appropriate
sets of gap variables. Finally we can wire in the fact that we need a dominating set and other
enforcements by using the facts that we will only look at a weight 2k input, and an And of
Or’s, which will not add to the weft of the circuit. We argue more precisely below, and also
prove in two parts that the whole process cn be accomplished without increasing weft, given
that the weft is > 2.

Suppose the inputs to the circuit C received at the beginning ofthis step are x[ x[n],
and suppose that the output gate of C is an And gate. Let Y denote the boolean expression
having 2n clauses, with each clause consisting of a single literal, and with one clause for each
of the 2n literals of the n input variables. The reduction of Theorem 2.1 allows us to translate
Y into a monotone formula via dominating set, thus capturing monotonically all the relevant
input settings. Thus, let Gr be the graph constructed for this expression as in the proof of
Theorem 2.1. Note that only part of Gv will actually be wired into C.

Keeping this in mind, and using the variable (vertex) set obtained from Gr, the change
of variables is implemented for C as follows. (1) Create a new input for each vertex of G v
that is not a clause vertex. (2) Replace each positive input fan-out of x[i] in C with an Or
gate having k new input variable arguments corresponding to the vertices to which the clause
vertex for the clause (x[i]) of Y is adjacent in Gv. (3) Replace each negated fan-out line of
x[i] with an Or gate having O (n2) new input variable arguments corresponding to the vertices
to which the clause vertex for the clause (-x[i]) of Y is adjacent in Gr. (4) Merge with the
output And gate of C a new circuit branch corresponding to the product-of-sums expression,
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FIG. 2. A topmost layer oflarge Or gates.

where the product is taken over all nonclause vertices of G r, and the sum for a vertex u is the
sum of the new inputs corresponding to the nonclause vertices in N[u] (this is the dominating
set and other enforcements).

The modified circuit C’ obtained in this way accepts a weight 2k input vector if and only
if the original circuit C accepts a weight k input vector. The proof of this is essentially the
same as for Theorem 2.1. If all of the not gates of C are at the top, then the circuit C’ will
be MONOTONE. However, to see that this change of variables can be employed to obtain
a monotone or nearly antimonotone circuit without increasing weft, we must consider two
cases.

Case 1. The topmost large-gate level consists ofOr gates.
Let C denote the circuit obtained from Step 5 and perform a change of variables as

described above. The sequence of transformations of C for this step is shown schematically
in Fig. 2.
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The result is a circuit C’ with no not gates. The input weight we are now concerned with
is 2k, and the construction of C’ from C may involve quadratic blow-up.

Next, we move the small and gates on the second level upward past the Or gates introduced
by the change of variables, and then merge the Or gates down to the topmost large layer (of
Or gates).

Case 2. The topmost large-gate level consists ofAnd gates.
Here we use a similar argument, beginning with a trick. Below each gate of the topmost

large-gate level (of And gates), a double negation is introduced (equivalently). One of the
not gates is moved to the top of the circuit (by DeMorgan’s identities). This is followed by
a change of variables based on Theorem 2.1, as in Case 1o The second level and gates are
commuted upwards, and the Or gates of the second and third levels are merged, as in Case
1. So now the circuit has no negated inputs and no inverters except the residual ones below
the top layer of Or gates. Finally, these remaining not gates are commuted to the top. Note
that this means that all fanouts are negated except the ones to the enforcement Or gate added
during Step 4.

We are now in position for the last step.
Step 7. Eliminating the remaining small gates.
Ifwe regard the inputs to C as variables, this step consists ofanother"change of variables."

Let k be the relevant weight parameter value supplied by the last transformation. In this step
we will produce a circuit C’ corresponding directly to a t-normalized boolean expression (that
is, consisting only of alternating layers ofAnd and Or gates) such that C accepts a weight k
input vector if and only if C’ accepts a vector of weight k’ k 2k+ + 2ko

Suppose that C has m remaining small gates. In Case 1, these are and gates and the inputs
are all positive. In Case 2, these are or gates and the inputs to these gates are all negated. For

m we define the sets Ai of the inputs to C to be the sets of input variables to these
small gates. The central idea for this step is to create new inputs representing the sets Ai of
inputs to C.

For example, suppose (Case 1) that the output of the small and gate gi in C is the boolean
product (abcd) of the inputs a, b, c, d to C. Thus Ai {a, b, c, d}, The gate gi can be
eliminated by replacing it with an input line from a new variable v[i] which represents the
predicate a b c d 1. (This representation, of course, will need to be enforced by
additional circuit structure.) Similarly (Case 2) if gi computes the value ( + + + d) then
gi can be replaced by a negated input line from v[i].

Let x[j] for j s be the input variables to C. We introduce new input variables
of the following kinds"

(1) One new variable v[i for each set Ai for m to be used as indicated above
(2) For each x[j] we introduce 2k+l copies x[j, 0], x[j, 1], x[j, 2] x[j, 2k+l 1].
(3) "Padding" consisting of 2g meaningless variables (inputs not supplying output to any

gates) z[ z[2k].
We add to the circuit an enforcement mechanism for the change of variables. The nec-

essary requirements can be easily expressed in P-o-S form, and thus can be incorporated into
the bottom two levels of the circuit as additional Or gates attached to the bottommost (output)
And gate of the circuit.

We require the following implications concerning the new variables:
(1) The s 2+1 implications, for j s and r 0 2+ 1,

x[j, r] = x[j, r + (mod 2k+)].

(2) For each containment Ai Ai,, the implication

v[i’] = v[i].
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(3) For each membership x[j] Ai, the implication

v[i] := x[j, 01.

(4) For m the implication

H x[j,O]) = vii].
x[j]Ai

It may be seen that this transformation increases the size of the circuit by a linear factor
exponential in k. We make the following argument for the correctness of the transformation.

If C accepts a weight k input vector, then setting the corresponding copies x[i, j] among
the new input variables accordingly, together with appropriate settings for the new "collective"
variables v[i] yields a vector of weight between k 2+ and k 2+l + 2 that is accepted by
C’. The reason the weight of this corresponding vector may fall short of k’ k 2+ / 2k is
that not all of the subsets of the k input variables to C having value may occur among the
sets Aio An accepted vector of weight exactly k’ can be obtained by employing some of the
"padding" input variables z[i] to C’

Note that the seemingly simpler strategy of creating a new input variable for each set of at
most k inputs to C would not serve our purposes, since it would involve increasing the size n
of the circuit to possibly nk. (We are limited in our computational resources for the reduction
to f(k)n. The constant a can be an arbitrary function of the depth and weft bounds h and
but not k.)

For the other direction, suppose C’ accepts a vector of weight k’. Because of the implica-
tions in (1) above, exactly k sets ofcopies of inputs to C must have value in the accepted input
vector. Because of implications (2)-(4), the variables v[i] must have values in the accepted
input vector compatible with the values of the sets of copies. By the construction of C’, this
implies there is a weight k input vector accepted by C.

COROLLARY 3.8. (i) For > O, MONOTONE W[2t] W[2t].
(ii) For > 0 WEIGHTEDMONOTONE2t-NORMALIZED SATISFIABILITYis W[2t]-

complete.
(iii) For > O, MONOTONE 2t + 1-NORMALIZED SATISFIABILITY is in W[2t].
Proof (i) The proof come from the analysis of Step 6, Case 1.
(ii) After Step 7, we can apply Step 6, Case (again) to a 2t-normalized formula. The

result is a 2t normalized monotone formula. (This time all small gates go away by gluing the
DOMINATING SET reduction, or Theorem 2.1.)

(iii) This result follows by the transformations ofStep 7, applied to the a 2t+ 1-normalized
monotone formula.

We remark that Corollary 3.8 leads one to conjecture that MONOTONE W[2t + 1]
W[2t].

We also remark that in Downey and Fellows [56] we have proven the complementary result
for W[2t + by showing that W[2t + contains ANTIMONOTONE 2t +2-NORMALIZED
SATISFIABILITY. It is an open question whether ANTIMONOTONE CNFSAT is in W[ ].
The problem is that the relevant gadgets seem to need two levels to enact. Note that the
above theorem fails to identify a problem complete for W[ ]. In [56] we will also show that
INDEPENDENT SET and a number of other natural parameterized problems are complete
for W[ ]. There we show that W[ W[ 1, 2] where W[ 1, 2] is equivalent to the problem
of, given a formula X in conjunctive normal form and of clause size two, does X have a
satisfying assignment of weight k? While the unparameterized problem that considers (X, k)
is NP-complete (easy reduction from INDEPENDENT SET), variations of this are classically
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P-time or FPT. For instance the problem that asks if there is any satisfying assignment is
well known to be P-time, and the problem that asks if there is a satisfying assignment of
weight less than or equal to k is FPT as follows. Let X be the 2 CNF formula and let k
be given. If X has no clause without negated literals, we are done since the assignment with
all false works. Otherwise choose some clause C with only positive literals. One of these
must be made true so we begin a tree of possibilities. Continue inductively in this way. As
the clause size is bounded here by 2 this only gives a factor of 2k.

The W[t] hierarchy reflects, in a finely resolved way, the difficulty of"solution checking."
What happens if, more bluntly, we simply address fixed-parameter complexity for problems for
which solutions can be checked in polynomial time? To study this question, as we mentioned
earlier, it is natural to define the following complexity classes.

DEFINITION 3.9. A parameterizedproblem L belongs to W[P W[SAT]) (MONOTONE
W[P]) if L uniformly reduces to the parameterized circuit problem Lf for some family of
(Boolean) (monotone) circuits J.

Note that W[t] is contained in W[P] for every t, and that W[P] FPT if P NP.
With Karl Abrahamson, ], [2], we have been able to show that all of the problems identified
in Abrahamson et al. [3] as complete for PGT are uniformly complete for W[P]. (For the
reasons mentioned before, we would argue that the present theory offers a better framework
for those results and allows us to address much wider parameterized issues.) We have also
identified a number of further natural complete problems. These results and some aspects
of the structure of W[P] as well as parameterized PSPACE are reported in Abrahamson,
Downey, and Fellows [1], [2]. For PSPACE there are very interesting problems that seem
hard and are natural ones that relate to winning strategies for k-move games.

4. Summary and open problems. We have presented in this paper a basic framework
and fundamental completeness results for the study of fixed-parameter tractability. We view
the exploration of this topic as a large project, of which this constitutes only the initial step.
As can be seen from the appendix and the reference list, in the time that this paper has
been in the refereeing/publication process, there has already been quite a bit of work using
our classification. We believe that our techniques are of particular interest in the area of
molecular biology, and because of the fact that although problems may have no polynomial
time approximation scheme unless P NP, they can certainly still be in FPT.

In some ways, the study of fixed-parameter tractability and completeness addresses the
subject ofcomputational infeasibility inside of P. For related work from a different perspective
see Buss and Goldsmith [35] and the references cited there. Many ofthe approaches and issues
concerning the standard complexity classes have natural analogues in this setting that are thus
far unexplored.

Consider, for example, the issue of parallel complexity. Trivially, there is a parallel
algorithm running in time O (log n) and using nk processors to determine if a graph G on n
vertices has a dominating set of size k, for each fixed k. For a contrasting result, Lagergren [95]
has shown that for each fixed k, it can be determined in time O(log3 n) with O(n) processors
whether a graph has treewidth at most k. This suggests a natural fixed-parameter analogue of
NC. Similar remarks apply to randomized complexity. With Ken Regan, the authors have
made a little progress with randomized complexity [64].

For another example, consider approximation algorithms. One of the fundamental results
ofRobertson and Seymour (apart from their work on graph minors) is that there is an algorithm
that in time f(k) n2 finds, for a graph G of order n, either (1) a tree decomposition of width
at most 5k, or (2) evidence that the treeewidth of G is greater than k. (Of course this is now
replaced by Bodlaender’s linear time algorithm [23].) An analogous result for DOMINATING
SET might be an algorithm running in time f(k) nc that finds either (1) a dominating set
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of size O(k), or (2) evidence that the minimum size of a dominating set for G is greater
than k. Such an algorithm is presently unknown. It may even be that the existence of such
an algorithm would imply the collapse of the W-Hierarchy, much as the existence of a P-
time relative approximation algorithm for the TRAVELING SALESPERSON problem would
imply P NP (Garey and Johnson [81 ]).

Many interesting structural questions concerning the W-Hierarchy remain to be explored.
For instance we have established some connections between classical classes and our parame-
terized classes. Thus if W[2t] FPT, then 2t-NORMALIZED SATISFIABILITY is soluable
in time p(n)2(), where n is the size of the input, p is a polynomial, and v is the number
of variables. For this result and other structural results along these lines, see Abrahamson,
Downey, and Fellows [2]. Nevertheless, the precise relationship between classical classes
and the parameterized one is still unclear. We also are not aware of an oracle separating the
W-Hierarchy, nor do we know if collapse propogates upwards. (That is, if FPT W[t]
implies FPT W[t + ], for instance.)

From a concrete point of view, we also do not know if a problem such as the following
belongs to W[t] for any t.

TWO PLAYER DOMINATING SET
Instance: A graph G (V, E) and a positive integer k.
Question: Is it true that for every k-element subset V’

___
V, there is a k-element subset

V" V such that V’ tO V" is a 2k-element dominating set for G?

We have been able to prove the following density theorem.
THEOREM 4.1. For the strong uniform reduction hierarchy, ifany ofthe containments

FPT C_C_ W[I] c__ W[2] c

is proper, then there are infinitely many intervening equivalence classes of parameterized
problems with respect to strong uniform reductions.

Actually, we can prove a much stronger result along the lines of the full Ladner [94]
theorem. Also Downey and Fellows [58] contains quite a number of other structural and
relativization results. For instance we know that there is an oracle with P - NP yet the W-
Hierarchy collapses. It is an open question whether an analogue of Theorem 4.1 holds in the
uniform case. We remark that the setting of parameterized problems introduces some technical
challenges for density results. Our proof of Theorem 4.1 [58] employs techniques from the
infinite-injury priority method. Technically while the standard polynomial time reductions
are E2 (on recursive languages), the fact is that strong uniform reducibility is E3-complete,
and the other two reductions are En-complete [61 ]. (The last result needs a tree of strategies
infinite injury priority argument.)

Finally, we think the primary value ofour theory offixed-parameter tractability is that there
is, for many parameterized problems, a compelling practical interest. There are many natural
parameterized problems that may well be complete for various levels of the W-Hierarchy.
Demonstrations of such completeness would provide an explanation of why, although they are
soluable in polynomial time for each fixed parameter value, these problems resist attempts to
show fixed-parameter tractability.

5. Appendix: A problem compendium and guide to W-Hierarchy completeness,
hardness, and classification, and some open questions. This appendix contains problem
definitions and summaries of most of the presently known completeness and hardness results,
and information concerning fixed-parameter tractability for restrictions of problem instances.
References are given where appropriate. The problems discussed are grouped (more or less)
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according to level in the W-Hierarchy. Our list for FPT is obviously incomplete, but the
given examples should provide the reader with the flavour of such results.

5.1. In FPT.
Remark. The following is only a small list of the known FPT problems. Many more can

be obtained by Courcelle’s theorem applied to classes of bounded tree width, in conjunction
with Bodlaender’s theorem on Treewidth k recognition. (See e.g., Abrahamson and Fellows
[4], [5], Courcelle [49], Downey and Fellows [61 ], or Van Leeuwen 115].)

CROSSING NUMBER FOR MAX DEGREE 3 GRAPHS
Instance: A graph G all of whose vertices have max degree 3.
Parameter: A positive integer k.
Question: Does G have a an embedding with crossing number < k?

This is O(n3) by [69] via [106] [107].

ALTERNATING HITTING SET
Instance: A collection C of subsets of a set B with Icl _< kl for all c 6 C, an integer k2.
Parameter: A positive integer kkl, k2o
Question: Does player one have a forced win in < k2 moves in the following game played on
C and B? Players alternate choosing a new element of B until, for each c 6 C, some member
of c has been chosen. The player whose choice causes this to happen loses.

The general version of this problem is PSPACE-complete by a reduction from QBF (see
Garey and Johnson [81, Bp7]). This problem is in FPT by Abrahamson, Downey, and Fellows
[2]. Soluable in O(n) time for fixed kl and k2.
CUTWIDTH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is the cutwidth of G < k?

The general version of this problem is NP-complete by a reduction from SIMPLE MAX
CUT (see Garey and Johnson [81, GT44]). This problem is in FPT by Fellows and Langston
[75]. Soluable in O(n) time for fixed k (Bodlaender [17]).

DIAMETER IMPROVEMENT FOR PLANAR GRAPHS
Instance: A planar graph G (V, E).
Parameter: A positive integer k.
Question: Can G be augmented with additional edges in such a way that the resulting graph
G’ remains planar and the diameter of G’ is at most k?

This problem is in FPT by Downey and Fellows [59] after Robertson and Seymour 106].
Soluable in O (n) time for fixed k (Bodlaender 17]).

MINIMUM FILL-IN
Input: A graph G.
Parameter: A positive integer k.
Question: Can we add < k edges to G and cause G to become chordal?

The general problem is NP complete by Yannakakis [119]. Soluable in time O(ck.lEI)
and O(kSIEIIVI / f(k)) by Kaplan, Shamir, and Tarjan [91].

DISJOINT PATHS
Instance: A graph G (V, E), s sk V start vertices, t tk V erd vertices.
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Parameter: k
Question: Do there exist vertex disjoint paths P1 ek such that Pi starts at vertex Si and
ends at vertex ti for k?

The general version of this problem is NP-complete by a reduction from 3SAT (see Garey
and Johnson [81, ND40]). This problem is in FPT by Robertson and Seymour 106]. Soluable
in O(n3) time for fixed k.

FEEDBACK VERTEX SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set U of k vertices of G such that each cycle of G passes through some
vertex of U?

The general version ofthis problem is NP-complete by a reduction fromVERTEXCOVER
(see Garey and Johnson [81, GT7]). This problem is in FPT by Downey and Fellows [59]
and Bodlaender 16]. Soluable in O (n) time for fixed k.

GATE MATRIX LAYOUT
Instance: A boolean matrix M.
Parameter: A positive integer k.
Question: Is there a permutation of the columns of M so that, if in each row we change to
every 0 lying between the row’s leftmost and rightmost 1, then no column contains more than
k l’s and ,’s?

This problem is in FPT by Fellows and Langston [77]. Soluable in O (n) time for fixed
k Bodlaender [17]. Equivalent to GRAPH PATHWIDTH.

GRAPH GENUS
Instance: A graph G (V, E).
Parameter: A positive integer ko
Question: Does G have genus k?

The general version of this problem is NP-complete. This problem is in FPT by Fellows
and Langston [74] via Robertson and Seymour [106]. Soluable in time O(n3) for fixed k by
the results of Robertson and Seymour.

LONG CYCLE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have a cycle of length > k?

The general version of this problem is NP-complete by a reduction from HAMILTON
CIRCUIT (see Garey and Johnson [81, ND28]). This problem is in FPT by Fellows and
Langston [74]. Soluable in O(n) time for fixed k.

MAX LEAF SPANNING TREE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have a spanning tree with k or more leaves?

The general version of this problem is NP-complete by a reduction from DOMINATING
SET (see Garey and Johnson [81, ND2]). This problem is in FPT by Downey, and Fellows
[59] and Bodlaender [16]. In LOGSPACE + Advice by Cai et al. [41]o Soluable in O(n)
for fixed k.
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MINIMUM DISJUNCTIVE NORMAL FORM
Instance: A set X {x, X2 Xn of variables, a set A

_
{0, }n of implicants, a positive

interger m.
Parameter: AI.
Question: Is there a DNF expression E over X, having no more than m disjuncts, such that
E is true for precisely those truth assignments in A and no others?

The general version of this problem is NP-complete by a reduction from SET COVER
(see Garey and Johnson [81, LO9]). This problem is in FPT by [66]. Soluable in O(21aln)
time for fixed A.

MINOR ORDER TEST
Instance: Graphs G (V, E) and H (V’, E’).
Parameter: H
Question: Is H minor G?

The general version of this problem is NP-complete by a reduction from HAMILTON
CIRCUIT (see Garey and Johnson [81, OPEN2]) This problem is in FPT by Robertson and
Seymour 106]. Soluable in O (n3) time for fixed k.

PLANAR FACE COVER
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Can G be embedded in the plane so that there are k faces which cover all vertices?

The general version ofthis problem is NP-complete by a reduction fromVERTEXCOVER
(Fellows [70]). This problem is in FPT by Bienstock and Monma [15]. Soluable in O(n)
time for fixed k.

SEARCH NUMBER
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Are k searchers sufficient to ensure the capture of a fugitive who is free to move
with arbitrary speed about the edges of G?

The general version of this problem is NP-complete. This problem is in FPT by Fellows
and Langston [75]. Soluable in O(n) time for fixed k (Bodlaender [17]).

STEINER TREE
Instance: A graph G (V, E), a set S of at most k vertices in V, an integer m.
Parameter: k
Question: Is there aset of vertices T _c V S such that ITI _< m and G[StA T] is connected?

The general version of this problem is NP-complete by a reduction from EXACT COVER
(see Garey and Johnson [81, ND12]) [82]. This problem is in FPT by Dreyfus and Wagner
[65]. Soluable in time o(3kn + 2kn2 + n3) by the Dreyfus-Wagner algorithm (Wareham
[117]).

TREEWIDTH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have treewidth k?

The general version of this problem is NP-complete [8]. Soluable in O(n) time for fixed
k (Bodlaender [23]).
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VERTEX COVER
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have a vertex cover of size < k?

The general version of this problem is NP-complete by a reduction from 3SAT (see Garey
and Johnson [81, GT1 ]). This problem is in FPT by Downey and Fellows [59] and Buss [34];
and in fact in LOGSPACE + Adoice by Cai et al. [41]. Soluable in O(2n) or O(n + k)
time.

k-PERFECT MATCHINGS
Input: A graph G.
Parameter: A positive integer k.
Question: Does G have at least (or exactly) k perfect matchings?

The general problem offinding the maximum number ofperfect matchings is #P complete
(in the size of G) even for bipartite graphs by Valiant [113]. For k 1, the problem is in P
for bipartite graphs by the old work of Ford and Fulkerson, and for general graphs by the work
of Edmonds. The problem is O (k.e), where e denotes the number of edges, for any fixed k
by Itai, Rodeh, and Tanimoto [89]. For weighted graphs one finding the best k matchings is
FPT by, for instance, Chegireddy and Hamacher [46].

SHORT 3DIMENSIONAL MATCHING
Input: A graph G _c X Y Z with IXl IYI IZI
Parameter: A positive integer k.
Question: Does there exista subset G’

_
G such that IG’I k and for all (x, y, z) # (x’, y’, z’

both in G’, we have x :fix’, y :fi y’, and z # z’?
The general problem with k varying is NP complete and is one of Garey and Johnson’s

six basic problems. For k fixed the problem is FPT by Downey and Fellows [61 ].

5.2. In FPT(nonuniform).

GRAPH LINKING NUMBER
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Can G be embedded into 3-space such that the maximum size of a collection of
topologically linked disjoint cycles is bounded by k?

This problem is in FPT(nonuniform) by Fellows and Langston [74] after Robertson and
Seymour 106]. Soluable in O (n3) time for fixed k.

5.3. In randomized FPT.

BOUNDED FACTOR FACTORIZATION
Instance: An n-bit positive integer N.
Parameter: A positive integer k.
Question: Is there a prime factor p of N such that p < n ?

This problem is in randomized FPT by Fellows and Koblitz [72], [73].

LINEAR EXTENSION COUNT
Instance: A poser (P, _<).
Parameter: A positive integer k.
Question: Does P have at least k linear extensions?
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This problem is in randomized FPT by Brightwell and Winkler [32], [33]. Not known
to be in FP T.

POLYNOMIALLY SMOOTH NUMBER
Instance: An n-bit positive integer N.
Parameter: A positive integer k.
Question: Is N nk-smooth, i.e., is every prime divisor of N bounded by n’ ?

This problem is in randomized FPT by Fellows and Koblitz [72], [73]. nk-smoothness of
n-digit numbers is a natural number-theoretic property that arises in the study of polynomial-
time complexity. For example, the concept plays a central role in the demonstration that
primality is in UP f co-UP.

SMALL PRIME DIVISOR
Instance: An n-bit positive integer N.
Parameter: A positive integer k.
Question: Does N have a nontrivial divisor less than n’?

This problem is in randomized FPT by Fellows and Koblitz [72], [73]

5.4. W[l]-complete.

THRESHOLD STABLE SET
Instance: A directed graph G (V, A).
Parameter: A positive integer k.
Question: Does G have a stable set of size k? (A stable set is a set of vertices V

___
V such

that for every vertex v of V V’, there are fewer than vertices u 6 V’ with uv A.)

This problem is W[ ]-complete by a reduction from INDEPENDENT SET. Complete for
W[ 1] by Downey and Fellows [61 ].

BINARY CLADISTIC CHARACTER COMPATIBILITY
Instance: A set C of n binary cladistic characters over m objects.
Parameter: A positive integer k.
Question: Is there a subset C’ c_ C, C’l k, such that all pairs of characters in C’ are
compatible?

The general version ofthis problem is NP-complete by a reduction from CLIQUE (Day and
Sankoff [52]). This problem is W[ ]-complete by the same reduction (Wareham 117]). The
unconstrained-character version of this problem is also W[1]-complete (Wareham
[117]). If k ICI, one obtains the problem TRIANGULATING COLORED GRAPHS
(PERFECT PHYLOGENY).

BINARY QUALITATIVE CHARACTER COMPATIBILITY
Instance: A set C of n binary qualitative characters over m objects.
Parameter: A positive integer k.
Question: Is there a subset C’

___
C, C’l k, such that all pairs of characters in C’ are

compatible?

The general version of this problem is NP-complete by a reduction from BINARY
CLADISTIC CHARACTER COMPATIBILITY (Day and Sankoff [52], Wareham [117]).
This problem is W[ ]-complete by the same reduction. The unconstrained-character version
of this problem is W[ ]-hard (Wareham 117]).



FIXED PARAMETER TRACTABILITY 899

CLIQUE
Instance: A graph G (V, E), a positive integer k.
Parameter: A positive integer k.

uestion: Is there a set of k vertices V’ __. V that forms a complete subgraph of G (that is, a
clique of size k)?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, GT19]). This problem is W[1]-complete by a reduction from
INDEPENDENT SET by Downey and Fellows [56]. Fixed-parameter tractable for planar
graphs and for graphs of maximum degree f (k) for any fixed function f.
INDEPENDENT SET
Instance: A graph G (V, E), a positive integer k.
Parameter: A positive integer k.
Question: Is there a set V’

___
V of cardinality k, such that Yu, v V’, uv E?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, GT20]). This problem is W[ ]-complete by a reduction from
ANTIMONOTONE W[1, 2] by Downey and Fellows [56]. Fixed-parameter tractable for
planar graphs.

LONGEST COMMON SUBSEQUENCE (I)
Instance: A set of k strings X1 X, over an alphabet E, a positive integer m.
Parameter: k, m
Question: Is there a string X E* of length at least m that is a subsequence of Xi for
i=1 k?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SR10]). This problem is W[1]-complete by a reduction from
CLIQUE by Bodlaender et al. [25].

d-RED/BLUE NONBLOCKER
Instance: A graph G (V, E) of maximum degree d where V is partitioned into two color
classes V Vred U Vblue.
Parameter: A positive integer k.
Question: Is there is a set of red vertices V’

___
Vred of cardinality k such that every blue vertex

has at least one neighbor that does not belong to V’?

This problem is W[ ]-complete by a reduction from W[ 1, s] (Downey and Fellows [56]).

SEMIGROUP EMBEDDING
Instance: A semigroup (S, .).
Parameter: A positive integer k and a semigroup (H, x).
Question: Can H be embedded into S?

This problem is W[ ]-complete by a reduction from CLIQUE (Downey and Fellows [61 ]).

SEMILATTICE EMBEDDING
Instance: A semilattice L.
Parameter: A positive integer k and a semilattice H.
Question: Is H embeddable into L?

This problem is W[ ]-complete by a reduction from CLIQUE (Downey and Fellows [61 ]).
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SET PACKING
Instance: A finite family of sets S S Sn, an integer k.
Parameter: k
Question: Does S contain a subset R of k mutually disjoint sets?

The general version of this problem is NP-complete by a reduction from X3C (see Garey
and Johnson [81, SP3]). This problem is W[ ]-complete by a reduction from INDEPENDENT
SET (Ausiello, D’Atri, and Protasi 11 ], Wareham 117]).

SHORT CONTEXT SENSITIVE DERIVATION
Instance: A context-sensitive grammar G (N, E, I7, S), a word x
Parameter: A positive integer k.
Question: Is there a G-derivation of x of length at most k?

The general version of this problem is PSPACE-complete by a reduction from LINEAR
BOUNDED AUTOMATON ACCEPTANCE (see Garey and Johnson [81, AL20]). This
problem is W[ ]-complete by a reduction from CLIQUE (Downey et al. [62], [63].)

SHORT TURING MACHINE ACCEPTANCE
Instance: A nondeterministic Turing machine M operating on alphabet E, a word x E*.
Parameter: A positive integer k.
Question: Is there a computation of M on input x that reaches an accept state in at most k
steps?

The general version of this problem is undecidable (see for example Hopcroft and Ullman
[88]). This problem is W[1]-complete by a reduction from CLIQUE (Downey et al. [63],
Cesati [44]). In FPT if either the size of the alphabet or the number of nondeterministic
transition possibilities out of a given state is bounded.

SHORT POST CORRESPONDENCE
Instance: A Post system 17.
Parameter: A positive integer k.
Question: Is there a length k solution for I-I ?

The classical POST CORRESPONDENCE problem is a well-known undecidable prob-
lem. This problem is W[ ]-complete by a reduction from SHORT UNRESTRICTED GRAM-
MAR DERIVATION (Cai et al. [40].)

SHORT UNRESTRICTED GRAMMAR DERIVATION
Instance: An unrestricted phrase-structure grammar G, a word x.
Parameter: A positive integer k.
Question: Is there a G-derivation of x of length at most k?

The general version of this problem is undecidable (see for example Hopcroft and Ullman
[88]. This problem is W[ ]-complete by a reduction from CLIQUE (Cai et al. [40]).

SQUARE TILING
Instance: A set C of "colors," a collection T

___
C4 of "tiles" (where (a, b, c, d) denotes a

tile whose top, right, bottom, and left sides are colored a, b, c, and d, respectively), a positive
integer k < C.
Parameter: k
Question: Is there a tiling of an k x k square using the tiles in T, i.e., an assignment of a
tile A(i, j) T to each ordered pair i, j, < < k, < j < k, such that (1) if f(i, j)
(a, b, c, d) and f(i + 1, j) (a’, b’, c’, d’), then a c’, and (2) if f (i, j) (a, b, c, d) and
f(i, j + 1) (a’, b’, c’, d’), then b d’.
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The general version of this problem is NP-complete by a reduction from DIRECTED
HAMILTON PATH (see Garey and Johnson [81, GP13]). This problem is W[ 1]-complete by
Cai et al. [40], Downey and Fellows [61].

VAPNIK-CHERVONENKIS (VC) DIMENSION
Instance: A family of subsets F of a base set X.
Parameter: A positive integer k.
Question: Is the VC dimension of F at least k? (The VC dimension of a family of subsets F
of a base set X is the maximum cardinality of a set S _c X such that for each subset S’ _c S,
3Y F such that S f3 Y S’.)

The general version of this problem is LOGSNP-complete (Papadimitriou and Yan-
nakakis [100]). This problem is W[1]-complete by a reduction from CLIQUE (Downey,
Evans, and Fellows [54]). Membership of W[ 1] is proven by a generic reduction in [59].

WEIGHTED q-CNF SATISFIABILITY
Instance: A q-CNF formula X, i.e., a CNF formula such that each clause has no more than q
literals.
Parameter: A positive integer k.
Question: Does X have a satisfying assignment of weight k?

This problem is W[ ]-complete by a reduction from INDEPENDENT SET (Downey and
Fellows [56]).

5.5. W[1]-hard, in W[2].

PERFECT CODE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does G have a k-element perfect code? (A perfect code is a set of vertices V’ c_ V
with the property that for each vertex v V there is precisely one vertex in N[v] N V’.)

This problem is W[ ]-hard by a reduction from INDEPENDENT SET and in W[2] by
(Downey and Fellows [56]). We believe that it may be difficult intermediate between W[ 1]
and W[2].

WEIGHTED EXACT CNF SATISFIABILITY
Instance: A boolean expression E in conjunctive normal form.
Parameter: A positive integer k.
Question: Is there a troth assignment of weight k to the variables of E that makes exactly one
literal in each clause of E true?

This problem is W[ ]-hard by a reduction from PERFECTCODE and in W[2] by (Downey
and Fellows [56]). Equivalent to PERFECT CODE (Downey and Fellows [56]). A related
problem is UNIQUE WEIGHTED CNF SATISFIABILITY below

UNIQUE WEIGHTED CNF SATISFIABILITY
Instance: A boolean CNF formula X.
Parameter: A positive integer k.
Question: Is there a unique weight k satisfying assignment for X?

Clearly this is in W[2]. There are obvious versions of the above for normalized satisfia-
bility at any level of the W-Hierarchy. For the CNF situation above, the problem is clearly in
the natural analogue of Dp. The reader should recall that Dp consists of the class of languages
L that can be expressed as the interchapter of a language in NP and one in co-NP. Clearly we
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can similarly define Dp[2] (or, more generally Dp[t]) as for Dp but with W[2] in place of NP.
Then this problem is in Dp[2], as we see below. Before we prove this we remark that using the
Valiant-Vazirani technique 114] we can show that UNIQUE WEIGHTED CNF SATISFIA-
BILITY for arbitary boolean formulae is the same as WEIGHTED CNF SATISFIABILITY
for boolean formulae under randomized reductions. However, on the face of it, it is not clear
if this is true for any finite level of the W-Hierarchy since for instance weight is lost in the
[VV] proof. Nevertheless using a new argument based on coding theory (Hadamard codes)
together with Ken Regan the authors [64] have shown that a weighted version of [114] holds
for all > 2. This seems a very fruitful area to analyse.

UNIQUE WEIGHTED CNF SATISFIABILITY is in Dp[2]

It suffices to describe how to say that a CNF expression has at least two satisfying expres-
sions in W[2]. Let C be the circuit corresponding to X. Take two copies of C. Add oIxI
many gates to express the fact that the first copy of C has a satisfying assignment different
from the second. Now for k choose q and r appropriately and take q copies of the the left
circuit and r copies of the right. Add new gates to express the fact that the inputs of the left q
must all be equal and the fact that the inputs of the right r must all be equal. Now accept C if
the new circuit has a weight (q / r)k accepting input. Then for the correct choice of (q, r),
depending only on k, C has two or more accepting inputs if and only if the new circuit has
one of weight (q + r)k.

We remark that this seems to be where UNIQUE DOMINATING SET would lie. We do
not at present know if there are Dp[t] complete problems.

5.6. W[l]-hard, in W[P].

PERMUTATION GROUP FACTORIZATION
Instance: A set A of permutations A Sn, x Sn.
Parameter: A positive integer k.
Question: Does x have a factorization of length k over A?

This problem is W[ 1]-hard by a reduction from PERFECT CODE and in W[P] by Cai
et al. [40].

SUBSET SUM
Instance: A set of integers X {xl Xn}, integers s, k.
Parameter: k
Question: Is there a subset X’ __c X of cardinality k such that the sum of the integers in X’
equals s ?

The general version of this problem is NP-complete by a reduction from Partition (see
Garey and Johnson [81, SP13]). This problem is W[1]-hard by a reduction from PERFECT
CODE Downey and Fellows [56] and in W[P] by Fellows and Koblitz [73]. Not known to
belong to W[t] for any t.

5.7. W[1]-hard.

c-BALANCED SEPARATOR
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does there exist a set of vertices S, SI _< k, such that every component of G[ V S]
has at most otl V vertices?

This problem is W[ 1]-hard by a reduction from CLIQUE by Kaplan and Shamir [90].
This problem is W[ ]-hard for every fixed c.
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COLORED PROPER INTERVAL GRAPH COMPLETION
Instance: A graph G (V, E), a vertex coloring c V k}.
Parameter: k
Question: Does there exist a proper interval supergraph of G which respects c?

This problem is W[1 ]-hard by a reduction from INDEPENDENT SET by Kaplan and
Shamir [90].

COLORED UNIT INTERVAL GRAPH COMPLETION
Instance: A graph G (V, E), a vertex coloring c V k}.
Parameter: k
Question: Does there exist a graph G’ (V, E’) such that E’

_
E, G’ is a unit interval graph

and G’ is properly colored by c?

The general version of this problem is NP-complete by Kaplan and Shamir [90]. This
problem is W[ ]-hard by Kaplan and Shamir [90].

EXACT CHEAP TOUR
Instance: A weighted graph G (V, E), a weight function w E Z.
Parameter: A positive integer k.
Question: Is there a tour through at least k nodes of G of cost exactly S?

The general version of this problem is NP-complete by a reduction from HAMILTON
CIRCUIT (see Garey and Johnson [81, ND22]). This problem is W[ ]-hard by [56]. See the
related SHORT CHEAP TOUR problem.

INVMAX
Instance: A circuit C, an initial configuration conf0 describing the placing of inverters on
connections between gates in G.
Parameter: A positive integer k.
Question: Is there a subset A of the gates in G to which DeMorgan’s rules can be applied
such that the resulting circuit will have at least k gates without any inverters attached to their
output lines?

The general version of this problem is NP-complete by a reduction from INDEPENDENT
SET (Simon 109]). This problem is W[ ]-hard by the same reduction.

PROPER INTERVAL SANDWICH WITH BOUNDED CLIQUE SIZE
Instance: A sandwich instance S (V, E l, E3).
Parameter: A positive integer k.
Question: Does there exist a sandwich G for S which is a proper interval graph such that the
size of largest clique is at most k?

The general version of this problem is NP-complete by Kaplan and Shamir [90]. This
problem is W[ ]-hard by a reduction from COLORED INTERVAL GRAPH COMPLETION
by Kaplan and Shamir [90].

REACHABILITY DISTANCE FOR VECTOR ADDITION SYSTEMS (PETRI NETS)
Instance: Aset T ofm lengthn integer-valued vectors T {x (x Xn) 1, < < m},
a nonnegative starting vector s (s Sn), a nonnegative target vector (t tn).
Parameter: A positive integer k.
Question: Is there a choice of k indices i ik, < ij < m for j k such that

s + Y’= xij and such that every intermediate sum is nonnegative in each component,

that is, Sr + q ij
j_..iXr >0forq kandr n?

This problem is W[1]-hard by a reduction from CLIQUE (Downey et al. [63]).
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SHORT TAPE NDTM COMPUTATION (I)
Instance: An/-tape nondeterministic Turing machine M operating on alphabet E, a word
xEE*.
Parameter: A positive integer k.
Question: Is there a computation of M on input x that reaches an accept state in at most k
steps?

The general version of this problem is undecidable (see Hopcroft and Ullman [88]). This
problem is W[1]-hard by a reduction from SHORT TURING MACHINE COMPUTATION
(Cesati [44]).

SHORT TAPE NDTM COMPUTATION (II)
Instance: An/-tape nondeterministic Turing machine M operating on alphabet E, a word
x E E*, a positive integer k.
Parameter: k,
Question: Is there a computation of M on input x that reaches an accept state in at most k
steps?

The general version of this problem is undecidable (see Hopcroft and Ullman [88]). This
problem is W[ ]-hard by a reduction from SHORT TURING MACHINE COMPUTATION
(Cesati[44]).

SUBSET PRODUCT
Instance: A set of integers X {x Xn }, integers a m, k.
Parameter: k
Question: Is there a subset X’

_
X of cardinality k such that the product of the integers in X’

is congruent to a mod m?

The general version of this problem is NP-complete by a reduction from X3C (see Garey
and Johnson [81, SP14]). This problem is W[l]-hard by a reduction from PERFECT CODE
by Fellows and Koblitz [72], [73].

COLORED GRAPH AUTOMORPHISM
Instance: A 2-colored (bipartite) graph Go
Parameter: A positive integer k.
Question: Is there an automorphism preserving colors moving exactly k blue vertices?

W[ ]-hard by a reduction from ANTIMONOTONE 2SAT (Downey and Fellows [61 ]).

5.8. W[2]-complete.

DOMINATING SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’ _c V with the property that every vertex of G either
belongs to V’ or has a neighbor in V’?

The general version of this problem is NP-complete by a reduction from VERTEX
COVER (see Garey and Johnson [81, GT2]). This problem is W[2]-complete by a reduction
from WEIGHTED CNF SATISFIABILITY (Downey and Fellows [55], this paper). Fixed-
parameter tractable for planar graphs (Downey and Fellows [59]). Problem is W[2]-hard if
the dominating set V’ is required to be either connected or total, i.e., for each vertex in V there
is an edge to some vertex in V’ (Bodlaender and Kratsch [30].
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HITTING SET
Instance: A finite family of sets S S Sn comprised ofelements from U {u blm }.
Parameter: A positive integer k.
Question: Is there a subset T

___
U of size k such that for all Si S, Si A T 7 0?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SP8]). This problem is W[2]-complete by a reduction from SET
COVER (Ausiello, D’Atri, and Protasi 11 ], Wareham 117]).

INDEPENDENT DOMINATING SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’

___
V that is both an independent set and a dominating

set in G?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, GT2]). This problem is W[2]-complete by Downey and Fellows
[55]. Fixed-parameter tractable for planar graphs (Downey and Fellows [59]).

SET COVER
Instance: A finite family of sets S S1 Sn.
Parameter: A positive integer k.
Question: Is there a subset R c__ S whose union is all elements in the union of S?

The general version of this problem is NP-complete by a reduction from X3C (see Garey
and Johnson [81, SP5]). This problem is W[2]-complete by a reduction from DOMINATING
SET by Paz and Moran 101 ], Wareham 117].

TOURNAMENT DOMINATING SET
Instance: A toumament T.
Parameter: A positive integer k.
Question: Does T have a dominating set of cardinality at most k?

The general version of this problem is LOGSNP-complete (Papadimitriou and Yan-
nakakis [100]). This problem is W[2]-complete by a reduction from DOMINATING SET
(Downey and Fellows [59]).

WEIGHTED BINARY INTEGER PROGRAMMING
Instance: A binary matrix A, a binary vector b.
Parameter: A positive integer k.
Question: Does A x > b have a binary solution of weight k?

The general version of this problem is NP-complete by a reduction from 3SAT (see
Garey and Johnson [81, MP1 ]). This problem is W[2]-complete by a reduction from MONO-
TONEWEIGHTED CNF SATISFIABILITY (Downey and Fellows, this paper). The problem
WEIGHTED EXACT BINARY INTEGER PROGRAMMING asks that equality hold is hard
for WIll.

5.9. W[2]-hard, in W[P].

MONOCHROME CYCLE COVER
Instance: An edge-colored graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’

___
V with the property that every monochrome cycle

in G contains a vertex in V’?
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This problem is W[2]-hard and in W[P] by Downey and Fellows [61]. Not known to
belong to W[t] for any t, but easily shown to be in W[P].

MONOID FACTORIZATION
Instance: A set A of self-maps on [n], a self-map h.
Parameter: A positive integer k.
Question: Is there a factorization of h of length k over A?

This problem is W[2]-hard by a reduction from DOMINATING SET and in W[P by Cai
et al. [40].

5.10. W[2]-harfl.

DOMINATING CLIQUE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’ _c V that forms a complete subgraph of G and is also
a dominating set for G?

This problem is W[2]-hard by a reduction from DOMINATING SET (Bodlaender and
Kratsch [30]). Problem is in FPT if V’ is also required to be efficient, i.e., each vertex not in
V’ is dominated by exactly one vertex in V’ (Bodlaender and Kratsch [30]).

LONGEST COMMON SUBSEQUENCE II
Instance: A set of k strings X1 Xk over an alphabet , a positive integer m.
Parameter: k, m
Question: Is there a string X 6 * of length at least m that is a subsequence of Xi for
i=l

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SR10]). This problem is W[2]-hard by a reduction from DOM-
INATING SET (Bodlaender, et al. [25]).

MAXIMAL IRREDUNDANT SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set V’ __. V of cardinality k such that (1) each vertex u 6 V’ has a private
neighbor and (2) V’ is not a proper subset of any V"

_
V which also has this property? (A

private neighbor of a vertex u 6 V’ is a vertex u’ (possibly u’ u) with the property that for
every vertex v V’, u v, u’ N[v].)

This problem is W[2]-hard by a reduction from DOMINATING SET (Bodlaender and
Kratsch [30]). Originally proven to be W[ 1] hard by Downey and Fellows (see [61 ]).

PRECEDENCE CONSTRAINED k-PROCESSOR SCHEDULING
Instance: A set T of unit-length tasks, a partial order -< on T, a positive integer deadline D,
a number of processors k.
Parameter: k
Question: Is there a map f T -+ {1 D}, such that for all t, t’ T, -< t’ implies
f(t) < f(t’), and for all i, < _< D, if-1 (i)[ < k?

The general version of this problem is Open (Garey and Johnson [81, OPENS]). This
problem is W[2]-hard by a reduction from DOMINATING SET (Bodlaender, Fellows, and
Hallett [28]).
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STEINER TREE
Instance: A graph G (V, E), a set S of at most k vertices in V, an integer m.
Parameter: k, m
Question: Is there aset of vertices T c_ V S such that ITI _< m and G[StA T] is connected?

The general version of this problem is NP-complete by a reduction from EXACT COVER
(see Garey and Johnson [81, ND 12, GKR]). This problem is W[2]-hard by a reduction from
DOMINATING SET (Bodlaender and Kratsch [30]).

5.11. W[3]-hard, in W[4].

DOMINATING THRESHOLD SET
Instance: A graph G (V, E).
Parameter: Positive integers k, r.
Question: Is there a set V’ _c V of at most k vertices such that for every vertex u, N[u]
contains at least r elements of V’?

This problem is W[3]-hard and in W[4] by Fellows [69].

5.12. W[t]-complete.

WEIGHTED t-NORMALIZED SATISFIABILITY
Instance: A t-normalized boolean expression X.
Parameter: A positive integer k.
Question: Does X have a satisfying truth assignment of weight k?

This problem is W[t]-complete by Downey and Fellows (this paper).

< k WEIGHTED t-NORMALIZED SATISFIABILITY
Instance: A boolean formula X.
Parameter: A positive integer k.
Question." Does X have a satisfying assignment of weight < k?

For >_ 2 this problem is W[t]-complete by Cai and Chen [37]-[39] This fact also
follows by the main lemma of this paper. For the problem is in FPT.

5.13. W[t]-hard, for all t, in W[P].

SHORT PHONOLOGICAL SEGMENTAL DECODING
Instance: An integer k, a simplified segmental grammar s (F, S, D, R, cp, C) such that
the number of mutually exclusive rule sets in R, [Rm.e. 1, is at most k, string s S+.
Parameter: k
Question: Is there a string u D such that g (u) s?

The general version of this problem is NP-complete by a reduction from CLIQUE Ristad
105]. This problem is W[t]-hard by a reduction from WEIGHTED t-NORMALIZED SATIS-
FIABILITY and in W[P] by Downey et al. [63]. See Downey et al. [63] and Ristad 105] for
definitions of simplified segmental grammars. The same proof also implies the W[t]-hardness
and membership in W[P] of SHORT PHONOLOGICAL SEGMENTAL ENCODING.

5.14. W[t]-hard, for all t.

BANDWIDTH
Instance: A graph G (V, E)o
Parameter: A positive integer k.
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Question: Is there a 1"1 linear layout f V {1 IV I} such that u v E implies
If(u)- f(v)l < k?

The general version ofthis problem is NP-complete by areduction from 3PARTITION (see
Garey and Johnson [81, ND40]). This problem is W[t]-hard by a reduction from UNIFORM
EMULATION ON A PATH (Bodlaender, Fellows, and Hallett [28]). Remains W[t]-hard for
all when given graph is directed and layout must respect arc direction, or when given graph
is a tree ([28]). The related problem CUTWlDTH is FPT (Fellows and Langston [74]).

COLORED CUTWIDTH
Instance: A graph G = (V, E), an edge coloring c E --+ {1 r }o
Parameter: A positive integer k.
Question: Is there a 1" linear layout f V {1 vI} such that for each color j
{1 k} and for each i, < _< IVI 1, we have I{uv c(uv) j and f(u) < and

f(v) > + 1}1 _< r?

This problem is W[t]-hard by a reduction from LONGESTCOMMON SUBSEQUENCE
II (Bodlaender, Fellows, and Hallett [28]).

DOMINO TREEWIDTH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is the domino treewidth of G at most k?

The general version of this problem is NP-complete by a reduction from LONGEST
COMMON SUBSEQUENCE II by Bodlaender and Engelfriet [27]. This problem is W[t]-
hard by the same reduction.

FEASIBLE REGISTER ASSIGNMENT
Instance: A directed acyclic graph G (V, E), a positive integer k, a register assignment
r" V {R1 Rk}.
Parameter: k
Question: Is there a linear ordering f of G, and a sequence So, Sl Siv of subsets of V,
such that So 0, Sly contains all vertices of in-degree 0 in G, and for all i, < < IVI,
f-l (i) Si, Si {f-l(/)} c_ Si-i and Si-i contains all vertices u for which (f-l (i), u) E,
and for all j, < j _< k, there is at most one vertex u Si with r(u) Rj ?

The general version of this problem is NP-complete by a reduction from 3SAT (see
Garey and Johnson [81, PO2]). This problem is W[t]-hard by a reduction from LONGEST
COMMON SUBSEQUENCE II (Bodlaender, Fellows, and Hallett [28].)

INTERVALIZING COLORED GRAPHS (DNA PHYSICAL MAPPING)
Instance: A graph G (V, E), vertex coloring c V {1 k}.
Parameter: k
Question: Does there exist a supergraph G’ (V, E’) where E _c E’ and G’ is properly
colored by c and is an interval graph?

The general version of this problem is NP-complete by a reduction from BETWEEN-
NESS (Golumbic, Kaplan, and Shamir [85]) and INDEPENDENT SET (Fellows, Hallett, and
Wareham [71]). This problem is W[t]-hard by a reduction from COLORED CUTWIDTH
(Bodlaender, Fellows, and Hallett [28]). No polynomial time algorithm is known for fixed k.

LONGEST COMMON SUBSEQUENCE II
Instance: A set of k strings X1 X, over an alphabet E, a positive integer m.
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Parameter: k
Question: Is there a string X 6 E* of length at least m that is a subsequence of Xi for
i=1 k?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SR10]). This problem is W[t]-hard by a reduction from MONO-
TONE WEIGHTED t-NORMALIZED SATISFIABILITY (Bodlaender, Fellows, and Hallett
[28]).

LONGEST COMMON SUBSEQUENCE III
Instance: A set of k strings XI Xk over an alphabet E, a positive integer m.
Parameter: k, E[
Question: Is there a string X 6 E* of length at least m that is a subsequence of Xi for
i=1 k?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, SR10]). This problem is W[t]-hard by a reduction from Bod-
laender et al. [24].

PROPER INTERVAL GRAPH COMPLETION PROBLEM WITH MINIMUM
CLIQUE SIZE
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does there exist a graph G’ (V, E’), E’

___
E, such that G’ is an interval graph

and has minimum clique size k?

The general version of this problem is NP-complete by Kaplan and Shamir [90]. This
problem is W[t]-hard by Kaplan and Shamir [90]. Equivalent to the BANDWIDTH problem
by Kaplan and Shamir [90] (also Hallett [87]).

PROPER INTERVAL GRAPH COMPLETION WITH BOUNDED CLIQUE SIZE
Input: A graph G.
Parameter: A positive integer k.
Question: Is there a G’

_
G which is a proper interval graph and has clique size at most k?

The general problem is NP-complete and the parameterized problem hard for W[t] for
all by Kaplan, Shamir, and Tarjan [91 ].

RESTRICTED COMPLETION TO A PROPER INTERVAL GRAPH WITH BOUNDED
CLIQUE SIZE
Input: A graph G together with a set E of edges prohibited from G’ below.
Parameter: A positive integer k.
Question: Is there a G’ D G which is a proper interval graph and has clique size at most k,
and G’ has no edges from E?

TRIANGULATING COLORED GRAPHS
Instance: A graph G (V, E), vertex coloring c V -- {1 k}o
Parameter: k
Question: Does there exist a supergraph G’ (V, E’) where E __G_ E’ and G’ is properly
colored by c and G’ is triangulated?

The general version of this problem is NP-complete by a reduction from INDEPENDENT
SET (Bodlaender, Fellows, and Hallett [28]). This problem is W[t]-hard by a reduction from
LONGEST COMMON SUBSEQUENCE II [28]
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UNIFORM EMULATION ON A PATH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does there exist a function f V {1 Vl!k} such that for all u v E
implies If(u) f(v)l < and for all i, If-l(i)l < k?

This problem is W[t]-hard by a reduction from MONOTONE WEIGHTED t-NORMAL-
IZED SATISFIABILITY (Bodlaender, Fellows, and Hallett [28]). Remains W[t]-hard for all
when given graph is a tree [28].

5.15. W[P]-complete.

k-BASED TILING
Instance: A tiling system with distinguished tiles
Parameter: A positive integer
Question: Is there a tiling of the n n plane using the tiling system and starting with exactly
k distinguished tiles in a line ?

Reduction consists of a generic simulation of a Turing machine (see Downey and Fellows
[611).

k-INDUCED 3CNF SATISFIABILITY
Instance: A 3CNF formula
Parameter: A positive integer k.
Question: Is there a set of k variables and a truth table assignment to those variables that
causes o to unravel?

This problem is W[P]-complete by a reduction from CHAIN REACTION CLOSURE
(Abrahamson, Downey, and Fellows [2]) (also Abrahamson et al. [3]).

k-INDUCED SATISFIABILITY
Instance: A boolean formula
Parameter: A positive integer k.
Question: Is there a set of k variables and a truth table assignment to those variables that
causes q) to unravel?

This problem is W[P]-complete by a reduction from k-INDUCED 3CNF SATISFIABIL-
ITY (Abrahamson, Downey, and Fellows [2]).

CHAIN REACTION CLOSURE
Instance: A directed graph D (V, A).
Parameter: A positive integer k.
Question: Does there exist a set V’ of k vertices of D whose chain reaction closure is D? (A
chain reaction closure of V’ is the smallest superset S of V’ such that if u, u’ S and arcs ux,
u’x are in D then x S.)

This problem is W[P]-complete by a reduction from WEIGHTED MONOTONE CIR-
CUIT SATISFIABILITY (Abrahamson, Downey, and Fellows [2]).

DEGREE 3 SUBGRAPH ANNIHILATOR
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set of k vertices V’

_
V such that G V’ has no subgraph of minimum

degree 3?
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This problem is W[P]-complete by a reduction from WEIGHTED MONOTONE CIR-
CUIT SATISFIABILITY (Abrahamson, Downey, and Fellows [2]).

LINEAR INEQUALITIES
Instance: A system of linear inequalities.
Parameter: A positive integer k.
Question: Can we delete k of the equalities and get a system that is consistent over the
rationals?

This problem is W[P]-complete by a reduction from WEIGHTED MONOTONE CIR-
CUIT SATISFIABILITY taken from Abrahamson et al. [3] (Abrahamson, Downey, and
Fellows [2]).

MINIMUM AXIOM SET
Instance: A finite set S of sentences, an implication relation R consisiting of pairs (A, t)
whereAC Sandt S.
Parameter: A positive integer k.
Question: Is there a set So __c S with IS01 _< k and a positive integer n such that if we define
Si, < < n, to consist of exactly those 6 S for which either Si- or there exists a set
U c_ Si- such that if (U, t) R then Sn S?

The general version of this problem is NP-complete by a reduction from X3C (see Garey
and Johnson [81, L017]). This problem is W[P]-complete by a reduction from WEIGHTED
CIRCUIT SATISFIABILITY (Downey et al. [63] and Abrahamson, Downey, and Fellows
[2]).

SHORT CIRCUIT SATISFIABILITY
Instance: A boolean circuit C with n gates and at most k log n inputs and one output.
Parameter: k
Question: Is there a setting of the inputs that cause C to output 1 ?

This problem is W[P]-complete by a reduction from WEIGHTED CIRCUIT SATISFI-
ABILITY (Abrahamson et al. [3], also Abrahamson, Downey, and Fellows [2]).

SHORT SATISFIABILITY
Instance: A formula o on n variables, a list of at most k log n variables of
Parameter: k
Question: Is there any setting of the distinguished varaibles that causes o to unravel?

This problem is W[P]-complete by a reduction from SHORT CIRCUIT SATISFIABIL-
ITY (Abrahamson, Downey, and Fellows [2]).

THRESHOLD STARTING SET
Instance: A directed graph D (V, A).
Parameter: A positive integer k.
Question: Does G have astarting set of size k? (A starting setis a set of vertices V’ _c V with
the property that if we begin with a pebble on each of the vertices in V’ and subsequently place
pebbles on any vertex having at least incoming arcs from pebbled vertices then eventually
every vertex of the graph is pebbled.)

This problem is W[P]-complete by a reduction from WEIGHTED MONOTONE CIR-
CUIT SATISFIABILITY (Abrahamson, Downey, and Fellows [2]).

WEIGHTED MONOTONE CIRCUIT SATISFIABILITY
Instance: A boolean monotone circuit C.
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Parameter: A positive integer k.
Question: Is there a weight k input vector accepted by C?

This problem is W[P]-complete by a reduction from MINIMUM AXIOM SET (Downey
et al. [63] and Abrahamson, Downey, and Fellows [2]).

WEIGHTED PLANAR CIRCUIT SATISAFIABILITY
Instance: A planar decision circuit C.
Parameter: A positive integer k.
Question: Does C have a satisfying assignment of weight k?

This problem is W[P]-complete by a reduction from WEIGHTED CIRCUIT SATISFI-
ABILITY (Abrahamson, Downey, and Fellows [2]).

Comment. The following classes are not discussed in this paper but are listed for com-
pleteness. They are analogues of the QBFSAT and PSPACE in some sense and correspond as
we see to the complexity of k-move games. They are discussed at length in ], [2]. In each
case the first problem defines the class.

5.16. AW[SAT]-complete.

PARAMETERIZED QBFSAT
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables a
boolean formula X involving the variables s tO tO Sr, integers k kr.
Parameter: k kr
Question: Is it the case that there exists a size k subset t of s such that for every size k2
subset t2 of s2 there exists a size k3 subset t3 of s3 such that (alternating quantifiers) such
that, when the variables in t tO to tr are made true and all other variables are made false,
formula X is true?

PARAMETERIZED MONOTONE QBFSAT
This is the same as PARAMETERIZED QBFSAT except that the formulae are monotone

(Abrahamson, Downey, and Fellows [2]).

PARAMETERIZED ANTIMONOTONE QBFSAT

This is the same as PARAMETERIZED QBFSAT except that the formulae are antimono-
tome (Abrahamson, Downey, and Fellows [2]).

5.17. AW[SATl-hard.

COMPACT DTM COMPUTATION I
Instance: A deterministic Turing machine M operating on tape alphabet E, a word x 6 E*.
Parameter: A positive integer k.
Question: Does M on input x accept after visiting at most k work tape squares?

This problem is A W[SAT]-hard by a reduction from PARAMETERIZED QBFSAT (r,
kl kr) (Cesati [44]).

COMPACT DTM COMPUTATION II
Instance: A deterministic Turing machine M operating on tape alphabet E, a word x 6 E*.
Parameter: A positive integer k, Ix [.
Question: Does M on input x accept after visiting at most k work tape squares?

This problem is A W[SAT]-hard by a reduction from PARAMETERIZED QBFSAT (r,
kl kr) (Cesati [44]).



FIXED PARAMETER TRACTABILITY 913

5.18. AW[Pl-complete.

PARAMETERIZED QCSAT
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables, a
circuit X with the variables s tO tO sr as inputs, integers k kr.
Parameter: r, k kr.
Question: Is it the case that there exists a size k subset t of s such that for every size k2
subset t2 of s there exists a size k3 subset t3 of s3 such that (alternating quantifiers) such
that, when the inputs in t tO tO tr are set to and all other inputs are set to 0, circuit X
outputs ?

PARAMETERIZED MONOTONE QCSAT
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables, a
montone circuit X with the variables s tO tO Sr as inputs, integers k kr.
Parameter: r, k kr.
Question: Is it the case that there exists a size k subset t of s such that for every size k2
subset t2 of s2 there exists a size k3 subset t3 of s3 such that (altemating quantifiers) such
that, when the inputs in t tO tO tr are set to and all other inputs are set to 0, circuit X
outputs ?

This problem is A W[P]-complete by a reduction from PARAMETERIZED QCSAT
(Abrahamson, Downey, Fellows, [2]) and MINIMUM AXIOM SET (Downey et al. [63]).

PARAMETERIZED ANTIMONOTONE QCSAT

This is the same as PARAMETERIZED QCSAT except the circuit must be antimono-
tone. A W[P] complete by a reduction from PARAMETERIZED MONOTONE QCSAT.
(Abrahamson, Downey, and Fellows [2]).

5.19. AW[P]-hard.

COMPACT TURING MACHINE COMPUTATION
Instance: A nondeterministic Turing machine M operating on tape alphabet E, a wordx 6 E*.
Parameter: A positive integer k.
Question: Is there an accepting computation of M on input x that visits at most k work tape
squares?

This problem is AW P]-hard by a reduction fromPARAMETERIZEDQCSAT (r, k
kr) (Abrahamson, Downey, and Fellows [2]).

COMPACT TURING MACHINE COMPUTATION II
Instance: A nondeterministic Turing machine M operating on tape alphabet E, a wordx 6 E*.
Parameter: A positive integer k, Ix 1.
Question: Is there an accepting computation of M on input x that visits at most k work tape
squares?

This problem is AW[P]-hardby a reduction fromPARAMETERIZED QCSAT (r; k
kr) (Abrahamson, Downey, and Fellows [2]).

5.20. AW[*]=AW[1] -----AW[t]-complete. Note that Abrahamson, Downey, and Fellows
proved that A W[.] A W[2] in [1 ], [2]. This was recently improved to show that AW[.]
AW[ 1] (and in fact N[.] N[ ]) by Downey, Fellows, and Regan [64].
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PARAMETERIZED QBFSATt
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables, a
boolean formula X involving the variables s tA tA Sr which consists of altemating layers
of conjunctions and disjunctions with negations applied only to variables, integers k kr.
Parameter: r, k kr.
Question: Is it the case that there exists a size k subset t of s such that for every size k2
subset t2 of se there exists a size k3 subset t3 of s3 such that (alternating quantifiers) such
that, when the variables in t tA U tr are made true and all other variables are made false,
formula X is true?

UNITARY PARAMETERIZED QBFSAT/
Instance: An integer r, a sequence s Sr of pairwise disjoint sets of boolean variables, a
boolean formula X involving the variables s tA tA Sr which consists of alternating layers
of conjunctions and disjunctions with negations applied only to variables.
Parameter: A positive integer k.
Question: Is it the case that there exists a variable t of s such that for every variable t of

se there exists a variable t3 of s3 such that (alternating quantifiers) such that, when the
variables in t tr are made true and all other variables are made false, formula X is true?

This problem is A W[t]-complete by Abrahamson, Downey, and Fellows ], [2].

SHORT GENERALIZED GEOGRAPHY
Instance: A directed graph D (V, A), a specified vertex v0 V.
Parameter: A positive integer k.
Question: Does player one have a winning strategy in k moves for the following game?
Players altemately choose a new arc from A. The first arc chosen must have its tail at o0 and
each subsequently chosen arc must have its tail at the vertex that was the head of the previous
arc. The first player unable to choose a new arc loses.

The general version of this problem is P SPACE-complete by a reduction from QBFSAT
(see Garey and Johnson [81, GP2]). This problem is A W[.]-complete by a reduction from
UNITARY PARAMETERIZED QBFSAT/(Abrahamson, Downey, and Fellows [2]).

SHORT NODE KAYLES
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Does player one have a winning k-move strategy in the following game? That is,
players pebble a vertex not adjacent to any pebbled vertex. The first player with no play loses.
Player one plays first.

The general version of this problem is P SPACE-complete by a reduction from QBFSAT
(see Garey and Johnson [81, GP3]). This problem is A W[.]-complete by a reduction from
UNITARY PARAMETERIZED QBFSAT/(Abrahamson, Downey, and Fellows [2]).

5.21. In W[1].

IRREDUNDANT SET
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a set V’

___
V of cardinality k having the property that each vertex u V’

has a private neighbor? (A private neighbor of a vertex u 6 V’ is a vertex u’ (possibly u’ u)
with the property that for every vertex v 6 V’, u # v, u’ N[v].)

IRREDUNDANT SET is in W[ 1] by Downey and Fellows [55].
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5.22. Open problems.

BOUNDED HAMMING WEIGHT DISCRETE LOGARITHM
Instance: An n-bit prime, a generator g of F;, an element a
Parameter: A positive integer k.
Question: Is there a positive integer x whose binary representation has at most k l’s (that is,
x has a Hamming weight of k) such that a g?

Candidate for membership in randomized FPT (Fellows and Koblitz [72], [73]). This
problem is of practical significance because the use of exponents of fairly small Hamming
weight has been suggested in order to speed up cryptosystems based on discrete log (see [72],
[73], and references).

DIRECTED FEEDBACK VERTEX SET
Instance: A directed graph D (V, A).
Parameter: A positive integer k.
Question: Is there a set S of k vertices such that each directed cycle of G contains a member
of S?

The general version ofthis problem is NP-complete by a reduction from VERTEXCOVER
(see Garey and Johnson [81, GT8]). This can be solved in O(n+) by brute force for each
fixed k. A related problem DIRECTED FEEDBACK ARC SET asks for a set A of at most k
arcs such that every directed cycle contains at least one arc from A. These problems can be
shown to have the same <m-degree. The undirected version of this problem is in FPT.

IMMERSION ORDER TEST
Instance: A graph G (V, E).
Parameter: A graph H (V’, E’).
Question: Is H _<i G where _<i denotes the immersion ordering?

JUMP NUMBER
Instance: A poset P (P, <).
Parameter: A positive integer k.
Question: Is the jump number of P < k?

The general version of this problem is NP-complete (See Pulleybank 103]). By E1-Zahar
and Schmerl [67], there is an O(n+) algorithm.

PLANAR t-NORMALIZED WEIGHTED SATISFIABILITY
Instance: A planar t-normalized formula X.
Parameter: A positive integer k.
Question: Does X have a satisfying assignment of weight k?

This question is of some interest for since it might be a candidate for an intractable
problem that is not W[ 1] hard.

PLANAR MULTIWAY CUT
Instance: A weighted planar graph G (V, E) with terminals {x x }.
Parameter: k
Question: Is there a set of edges of total weight < k’ whose removal disconnects each terminal
from all the others?

The general version of this problem is NP-complete (Dalhaus et al. [50]). Best known
complexity is O((4)n2- logn) by [50] where it is asked if the problem is FPT.
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POLYMATROID RECOGNITION
Instance: A k-polymatroid M.
Parameter: A positive integer k.
Question: Is M hypergraphic?

See Vertigan and Whittle [116].

RESTRICTED VALENCE ISOMORPHISM
Instance: Two graphs G (V, E) and H (V’, E’).
Parameter: A positive integer k.
Question: Are G and H isomorphic graphs such that the valences of the vertices of both G
and H are bounded by k?

Luks [97] has shown that there is an O(rt f(k)) algorithm to decide the parameterized
version. The question is whether the problem is FPT. If this problem is W[1]-hard then
GRAPH ISOMORPHISM is not in P unless the W-Hierarchy collapses. The reader should
note that this may give an ingress into the GRAPH ISOMORPHISM problem, in the sense
one might be able to demonstrate intractability (i.e., assuming that W[1]# FPT) of the
unparameterized version by considering some parameterized version instead. The point is
that we have already seen many instances where the "complexity" of the unparameterized
version is quite different than the parameterized one.

SHORT CHEAP TOUR
Instance: A graph G (V, E), an edge weighting w E Z.
Parameter: A positive integer k.
Question: Is there a tour through at least k nodes of G of cost at most S?

The general version of this problem is NP-complete by a reduction from HAMILTON
CIRCUIT (see Garey and Johnson [81, ND22]). Known to be hard for W[1] if we ask that
the tour cost exactly S (Downey and Fellows [56]).

SHORT GENERALIZED HEX
Instance: A graph G (V, E) with two distinguished vertices Vl and 02.
Parameter: A positive integer k.
Question: Does player one have a winning strategy of at most k moves in the following game?
Player one plays with white pebbles and player two with black ones. Pebbles are placed on
nondistinguished vertices alternately by player one then player two. Player one wins if he can
construct a path of white vertices from Vl to v2.

The general version of this problem is P SPACE-complete by a reduction from QBF (see
Garey and Johnson [81, GP1]). Candidate for A W[.]-completeness (Abrahamson, Downey,
and Fellows [2]).

SMALL MINIMUM DEGREE 4 SUBGRAPH
Instance: A graph G (V, E).
Parameter: A positive integer k.
Question: Is there a subgraph of G of minimum degree at least 4 and of cardinality at most k?

TOPOLOGICAL CONTAINMENT
Instance: A graph G (V, E).
Parameter: A graph H.
Question: Is H topologically contained in G?

This can be solved in O(n(le’l) time by brute force together with the k-DISJOINT
PATHS algorithm of Robertson and Seymour 106].
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WEIGHTED MONOTONE PLANAR BOOLEAN CIRCUIT SATISFIABILITY
Instance: A monotone planar decision circuit C.
Parameter: A positive integer k.
Question: Does C have a satisfying assignment of weight k?

Candidate for W[SAT]-completeness (Abrahamson, Downey, and Fellows [2]).

Acknowledgments. Thanks to Karl Abrahamson for useful early discussions about this
work, and for suggestions on improving the exposition. Special thanks to Mike Hallett and
H. Todd Wareham, who prepared the final version of the appendix.
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Abstract. The computational complexity of bounded sets of the two-dimensional plane is studied in the discrete
computational model. We introduce four notions of polynomial-time computable sets in R and study their relation-

ship. The computational complexity of the winding number problem, membership problem, distance problem, and
area problem is characterized by the relations between discrete complexity classes of the NP theory.
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1. Introduction. Computational complex analysis studies the algorithmic aspects of the
theory of functions of complex variables. While the design and analysis of efficient algorithms
plays a central role in the theory, the study of the computational complexity of basic problems
in the theory is also an important subject. A noteworthy example is the recent progress on
the study of the computational complexity of the fundamental theorem of algebra, including
Smale [19], Sch6nhage [18], and Neff [13] to name just a few.

In this paper, we are concerned with a basic problem in the complexity theory of com-
putational complex analysis: how to measure the complexity of a subset of the plane Re, In
particular, we are interested in the precise notion of polynomial-time computable sets S c_ R2.
The notion of polynomial-time computability has played an important role in the development
of the discrete complexity theory. We expect that an analogous notion in computational com-
plex analysis is also fundamental in the sense that the complexity of problems in this field can
be characterized by this notion and its extensions.

Computational problems involving real-valued functions have been studied in many differ-
ent settings. Depending upon the motivations and applications, each approach uses a different
computational model. In this paper, we are interested in the interplay between real-valued
computation and the complexity notions of the discrete NP theory and, therefore, we study
these problems using the discrete model of Ko and Friedman 11 ]. In this model, a real num-
ber is represented by a converging sequence of rational numbers and the complexity of an
algorithm is measured by the number of bit-operations operated by the algorithm. (See 2 for
the formal definitions and discussions on computational models for real-valued computation;
see also [9] for a complete treatment.) Following this approach, there are several natural ways
to define the notion of polynomial-time computable sets in R2o We will introduce four such
notions and study their relationship.

The first notion is that of polynomial-time approximable sets in R2. Informally, a subset
S c_ R2 is polynomial-time approximable if there is a machine M which, on a given point
z 6 R2 and an integer n, determines whether z is in S within time polynomial in n and admits
errors only on a set E

_
R2 of measure _< 2-". This notion is motivated by the concept of

recursively approximable sets developed in recursive analysis, and has been studied in the
one-dimensional case in [7]. The second notion is the polynomial-time recognizable sets in
R2. A set S _c R2 is polynomial-time recognizable if there is a machine M which, on a given
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point z 6 R2 and an integer n, determines whether z is in S within time polynomial in n
and admits errors only on points z that are within a distance 2--" of the boundary of S. This
definition is more useful for bounded open sets. The relation between the above two notions
of polynomial-time computable sets has a close connection to the well-known open question
of whether polynomial-time probabilistic computation (on integers) is strictly stronger than
polynomial-time deterministic computation (on integers).

Note that the above two definitions allow the machines M to make two-sided errors
If we make the further restriction that the machines M can only make one-sided errors, so
that M must output the correct answer when z 6 S, then we obtain strongly polynomial-
time approximable and strongly polynomial-time recognizable sets. It is interesting to point
out that the class of strongly polynomial-time recognizable sets precisely characterizes the
zeros of polynomial-time computable functions defined on R2 (with a polynomial inverse
modulus at zeros). This characterization allows us to derive complexity bounds for the zeros
of polynomial-time computable functions defined on R2,

A basic object in computational complex analysis is a bounded, simply connected region;
that is, a bounded, connected open set with no hole (or, equivalently, whose complement is
connected). The boundary curve is a natural representation for such a set. We study some
fundamental issues concerning such regions with polynomial-time boundary curve representa-
tionso The most critical problem is the membership problem: Must a simply connected region
with a polynomial-time computable boundary curve be polynomial-time recognizable? This
question turns out to be closely related to the winding numberproblem of computing the wind-
ing number of a given curve. We show that the complexity of the winding number problem can
be characterized by the counting complexity class #P. Namely, if a curve is polynomial-time
computable then the winding number problem is solvable in polynomial-time using a function

f 6 #P as an oracle; conversely, a polynomial-time computable curve could be designed in
such a way that its winding number problem encodes a discrete #P-complete problem. For
the membership problem, it immediately follows that it can also be solved in polynomial time
relative to an oracle f 6 #P. In addition, we can show that it is not necessarily polynomial-
time recognizable unless weak one-way functions do not exist (more precisely, P UP). It
remains an open question whether the gap between the upper bound P#; and the lower bound
UP could be narrowed.

In addition to the membership problem, we also investigate the distance problem of
determining the distance between a polynomial-time computable curve and a given point in

R2 and the areaproblem ofdetermining the measure ofa simply connected region (represented
by a polynomial-time computable boundary curve) The distance problem is easily seen as
equivalent to the minimization problem on one-dimensional real functions We show that the
distance problem is polynomial-time solvable if and only if P NP. For the area problem,
we show that the area of a region with a rectifiable boundary curve (ioeo, a curve of a finite
length) must be polynomial-time computable if and only if FP #P In contrast, it is
interesting to note that if the boundary curve is nonrectifiable, then the area of a region with a
polynomial-time computable boundary curve could be noncomputable at all (see [10]).

The above results demonstrate an interesting relation between the continuous problems
on two-dimensional regions and the complexity theory of discrete computation. They serve as
the first step toward an understanding of the complexity of problems in computational complex
analysis

.2 Preliminaries.

2,1o Notation and terminology, This paper deals with both discrete computation on
strings in {0, 1}* and continuous computation on real numbers. The basic computational
ob.jects in discrete computation are integers and strings. The length of a string w is denoted
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by g(w). We write (wl, LD2) to denote the pairing function on L01 and t/.) 2. The complement of
a set S is written as Se.

The basic computational objects in continuous computation are dyadic rationals D
{m/2 m Z, n N}. Each dyadic rational d has infinitely many binary representations
with arbitrarily many trailing zeros. For each such representation s, we write g(s) to denote
its length. If the specific representation of a dyadic rational d is understood (often the shortest
binary representation), then we write g(d) to denote the length of this representation. We let
D,, denote the class of dyadic rationals with at most n bits in the fractional part of its binary
representation.

For real numbers x and y, we write (x, y) to denote a point in the R2 space. We often write
z to denote a point in R2. For a real number x, Ix denotes its absolute value. For convenience,
we use the L-metric for the space R2; thus, for two points Zl (Xl, yl), z2 (x2, Y2) G R2,
IZl z21 denotes their distance max{Ix1 x21, lYl Y21}. For any point z 6 R2 and any set
S c_ R2, we let (z, S) be the distance between z and S; i.e., 3(z, S) inf{Iz Yl Y 6 S}.
We write N(z; e) to denote the open neighborhood of the center z and radius e; using the
Lo-metric, this is the open square centered at z and having length 2 at each side. For a set
S

___
R2, we let*(S) be the outer measure of S and #(S) be the measure of S if S is measurable.
In this paper, we will consider only bounded subsets of R2. A subset S of the two-

dimensional plane R2 is called a region if it is nonempty, open, and connected. A bounded
region is simply connected if it does not have "holes" or, equivalently, its complement is also
connected. The boundary of a bounded, simply connected region is a simple, continuous,
closed curve.

2.2. Complexity classes. The fundamental complexity class we are interested in is the
class P of sets acceptable by deterministic polynomial-time (Turing) machines. The following
is a list of other important complexity classes we will use in this paper:

NP: the class of sets acceptable by nondeterministic polynomial-time machines,
UP: the class of sets acceptable by unambiguous nondeterministic polynomial-time ma-

chines (machines that have at most one accepting computation on any input),
BPP: the class of sets acceptable by polynomial-time probabilistic machines,
FP: the class of functions (mapping strings to strings) computable by deterministic

polynomial-time machines, and
#P: the class of functions that count the number of accepting computations of nondeter-

ministic polynomial-time machines.
Other nonstandard complexity classes will be defined when they are needed. In addition,
relativized complexity classes are also used. The reader is referred to [9] for a review of these
complexity classes and their relationship.

2.3. Computational model for real functions. The concept of polynomial-time com-
putable real functions used in this paper was first introduced by Ko and Friedman 11 ]. This
concept is an extension of the notion of recursive real functions used in recursive analysis
[16], based on the bit-operation complexity measure defined on Turing machines. This com-
putational model is consistent with the ones used in many other works involving real-valued
computation, including 18], 12], and 15]. It is different from the real random access machine
(RAM) model used in, e.g., [20] and [2]. Ko [9] contains more discussions on the models for
continuous functions.

We give a short summary of the basic notions in this theory. A real number x R
is represented by a Cauchy function 4 N -+ D that binary converges to x in the sense
that 4 (n) D,, and 14 (n) x < 2-n. If the function 4 further satisfies the condition that
qS(n) _< x < 4(n) + 2-", then we call q the standard Cauchyfunction for x and write bx for

4. Another representation for real numbers is the left cut representation. For each Cauchy
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function 4 representing x, we let L be the set of strings of the form s.t that represent dyadic
rationals d such thatd < q(n), where n g(t). The left cut Lb.,. associated with the standard
Cauchy function bx is called the standard left cut ofx, and is denoted by Lx.

A real number x is recursive, or computable, if there exists a computable Cauchy function

4 that binary converges to x. A Cauchy function 4 N -- D is polynomial-time computable
if there exist a Turing machine M and. a polynomial p such that M(n) computes 4(n) in
time p(n). A real number x is polynomial-time computable if there exists a polynomial-time
computable Cauchy function that binary converges to x or, equivalently, if there exists a left cut
ofx in P. (In the following, we will write "P-computable" to mean the term "polynomial-time
computable.")

The computational model for real functions is the oracle Turing machine. An oracle
Turing machine M is an ordinary Turing machine equipped with an extra query tape and two
extra states" the query state and the answer state. The machine M makes a query to an oracle
function 4 N --+ D as follows" First, it writes an integer k on the query tape, then enters
the query tape and waits for the answer 4 (k). The oracle 4 then reads the input k, replaces
the integer k by the dyadic rational number q(k), and places the machine M on the answer
state. After the machine M enters the answer state, it continues like ordinary machines; in
particular, it can read 4(k) off the query tape. The action from the query state to the answer
state counts only one machine step.

We say an oracle Turing machine M is polynomial time-bounded if there exists a poly-
nomial p such that for all inputs n and all oracles 4, M4’ (n) halts in time p(n).

DEFINITION 2.1o (a) A function f [0, R is recursive, or computable, ifthere exists
an oracle Turing machine M such that for any oracle function c that binary converges to a
real number x [0, 1] and any integer n the machine M outputs a dyadic rational e such
that [e f(x)[ < 2-n. In other words, the oracle machine computes the operator that maps
a Cauchyfunctionfor x to a Cauchyfunctionfor f(x).

(b) A function f [0, 1] --+ R is P-computable if it is computable by an oracle Turing
machine that operates in polynomial time.

An equivalent definition for P-computable real functions f will be used in this paper. We
say a function f [0, 1] R has a polynomial modulus if there exists a polynomial p such
that Ix y[ < 2-p(n) implies If(x) f(y)[ < 2-’,

PROPOSITION 2.2. A function f [0, 1] --+ R is P-computable iff
(i) f has a polynomial modulus, and
(ii) there exist a Turing machine M and a polynomial p such thatfor any dyadic rational

number d of length < n, and any integer n, M(d, n) outputs in time p(n) a dyadic rational
number e such that [e f (d) < 2-n.

The above definition and proposition can be extended to functions mapping [0, to R2 or
functions mapping [0, ]2 __+ R in a natural way. That is, the machine computing a function
from [0, 1] to R2 will output two dyadic rationals el and e2 such that [(el, e2) f(x)[ <

2-n, and the machine computing a function from [0 ]2 to R will use two oracles q and ,
representing two real numbers x and y such that ]M4’’’ (n) f((x, y))[ < 2-n (We say
(4, 7t) represents the point (x, y) in R2 if 4 represents x and represents y).

3. Polynomial-time recognizable sets. We are interested in characterizing the class of
sets S

_
R2 whose membership problems are solvable in polynomial time. Intuitively, the

membership problem of a subset S of R2 is solvable if there exists a machine M that, for
each given point z 6 R2, determines whether z is in S, that is, if there is a machine M that

It would be more convenient to define L, as a set of dyadic rationals. However, since each dyadic rational may
have many different representations, each of a different length, the above definition is technically most accurate. The
standard left cuts, nevertheless, can be defined in terms of dyadic rationals. That is, Lx {d 6 D d < x}.
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computes the characteristic function Xs of S. In our computational model, the point z (x, y)
is naturally presented to the machine as two oracle functions 4 and p that binary converge to
x and y, respectively, and the machine M is an oracle Turing machine. In addition, we note
that the oracle machine M cannot solve the membership problem for set S absolutely correctly
because, within a finite number of moves, it does not have the ability to distinguish between
two close but distinct points in R2. More precisely, we observe that an oracle machine M
always computes a continuous function (Proposition 2.2). Since the only subsets of R2 whose
characteristic functions are continuous are 0 and R2, only these two sets are computable with
absolutely no error. Thus, for a nontrivial theory, we must allow the machine M to make errors,
while we require that the errors are under control. In this and the next sections, we discuss a
few different formulations of polynomial-time solvable subsets of [0, ]2 and consider their
relationship. (We only consider bounded sets S).

First, we consider the following definition, which is a simple generalization of one-
dimensional polynomial-time approximable sets of [7] and [9].

DEFINITION 3.1. A set S R- is polynomial-time approximable (P-approximable) if
there exist an oracle Turing machine M and a polynomial p such thatfor any oracles (49, )
representing a point z (x, y) R2 (i.e., ck and p binary converge to x and y, respectively)
and any input n, M outputs eitherO or in p(n) moves such that thefollowing set En(M) has
size lz* En (M)) < 2

En (M) {z R2 there exists (qb, representing z such that M4 (n) : Xs(Z) }.

When the machine M is understood, we write E,, for En (M).
In other words, a set S is P-approximable if we can approximately determine the mem-

bership of S with the runtime polynomially dependent on the error size. This appears to be
an interesting approach for polynomial-time computable sets; some interesting properties of
one-dimensional P-approximable sets have been studied in [7]. In particular, the following
characterization of P-approximable sets demonstrate that they can be approximated by simple
sets.

DEFINITION 3.2. A sequence {Sn} offinite unions of rectangles is said to be uniformly
polynomial-time computable if

(i) the corners ofeach rectangle in S are in Dp(,,) Dp(n)for some polynomial p, and
(ii) there exists a polynomial-time Turing machine M that, on each input (d, n), where

d (dl, d2) E D D, determines whether d is an interior point of S,,, an exterior point of
Sn, or is on the boundary of Sn.

THEOREM 3.3. A set S c_ [0, 1] [0, 1] is P-approximable iff there exists a uniformly
polynomial-time computable sequence S offinite unions ofrectangles such that ,*(SA S) <

We first make a fundamental observation on the behavior of oracle machines Recall
that b. is the standard Cauchy function for x. For x y 6 [0, ], we write Mx, (n) to denote

LEMMA 3.4. Let M be an oracle machine that P-approximates a set S. Assume that
M has a polynomial-time complexi bound p. Let d (dl, d2) with d, d2 Dp(n). Then,

’c1 (n) 1, and N(d; 2-p’’) c_ set3 En(M) ifMa"a(n)N(d; 2-p0’) SO E,,(M) ifM’
0.

Proof Assume that d, d2 E Dp(n) and M’",a(n) 1. For each z such that Iz -dl <
2-p(’’), we observe that there exists an oracle representation (q, p) forz such that 4(i) ba (i)
and p(i) ba2(i) for all < p(n). Thus, the computation of M4’(n) works exactly the
same as that of M’’’2 (n), and hence it outputs l. That means either z 6 S or z 6 E,, (M).

2This lemma also holds for P-recognizable sets as defined in Definition 3.5.
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The other case is similar. 71

ProofofTheorem 3.3. First assume that S is P-approximable. Let M be an oracle machine
that approximates S in time p(n) for some polynomial p. For each point d (dl, d2) E

Dp(n) x Dp(n), let Ra denote the square [dl 2-p(’z), di + 2-p(’’)] [d2 2-p(’’), d2 -+- 2-p(n)].
Define

Sn U{Ra d, d2 Dt,, C3 (0, 1), M’t’ ,,2 (n) }.

Then, it is easy to see that {S,, is uniformly P-computable as defined in Definition 3.2. We
claim that Sn A S __. E,, (M), and hence #* (S, A S) < 2-".

Assume that z 6 [0, 112 is in S,, S. Then, there exist d, d2 6 l)p(n) fq [0, 1] such that

IZ (dl, d2)[ _< 2-p(n) and Ma"a2(n) 1. By Lemma 3.4, z 6 E,,(M). Similarly, we can
show that if z is in S S,, then z 6 E (M). So the claim is proven.

Conversely, assume that {S, is a uniformly P-computable sequence of finite unions of
rectangles such that #* (S, A S) _< 2-". Let p be a polynomial such that all corners ofrectangles
in S,, are in I)p(n) l)p(n). Let r(n) p(n + 1) + n + 2. Consider the following"

MACHINE M. With oracles (p, p) representing a point z 6 R2 and on input
n, output iffthe point d (q(r(n)), p(r(n))) is an interior point of S.+.l.

Note that if z has a distance > 2-r(’) to the boundary of S,+, then M must accept z
on inputn iffz 6 S,+. Thus, a point z is in E,(M) only ifz 6 Sn+lASorziswithin
a distance 2-r(’) to the boundary of S,+. The boundary of S,,+ is contained in the set
B {(x, y) x 6 I)p(n+l) O [0, 1] or y 6 I)p(n+l) f-) [0, 1]}. Since the set of points z within
distance 2-r(n) to B is of measure 2-r(n) 2p(+)+ 2-(n+), the total error E,(M) has a
measure < 2-". [3

Although the notion ofP-approximable sets appears interesting from the measure-theoretic
point of view, it does not provide strong control over where the errors may occur. That is, two
sets S and $2 are essentially regarded as the same set here if they differ by at most a set of
measure 0. While a set of measure 0 is negligible from the measure-theoretic point of view,
it could be an important factor in other computational problems, for instance, the problem of
determining the complexity of isolated zeros of a function. The following definition further
controls the errors by requiring that errors occur only close to the "boundary" of the set. For
any set S _.c R2, we let Fs be the set of all points z in R2 such that for any r > 0, the neigh-
borhood N(z; r) {y 6 R2 ]z y] < r} intersects both S and S. For a simply connected
region S, Fs is its boundary.

DEFINITION 3.5. A set S c_ R2 is polynomial-time recognizable (P-recognizable) if there
exist an oracle Turing machine M and a polynomial p such that M4)’’ (n) computes Xs(Z)
in time p(n) whenever (dp, ,) represents a point z whose distance to Fs is > 2-n" i.e.,
E,(M) c_C_ {z" 3(z, Fs) < 2-"}.

That is, a set S is P-recognizable if it is approximable by a machine M such that the
errors can occur only close to its boundary with the run time of the machine M polynomially
dependent on the distance between the given point and the boundary. We intend to use this
definition to identify the complexity of simply connected regions. The following example
shows that this approach is natural for simple sets. We use the term rectangle to denote a set

[a, b] [c, d] for some real numbers a _< b, c _< d. We say a rectangle [a, b] x [c, d] is
degenerate if a b or c d.

EXAMPLE 3.6. A nondegenerate rectangle [a, b] [c, d] is P-recognizable iff all real
numbers a, b, c, d are polynomial-time computable.

Proof. The backward direction is obvious For the forward direction, we assume that
[a, b] [c, d] is P-recognizable. For convenience, assume that 0 < a < < b and d < -1,
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< c. Then, for any sufficiently large n > 0, we can binary search for a dyadic rational
e 6 Dn (3 [0, 1] such that Me’(n + 1) 0 and Me"(n + 1) 1, where e’ e + 2-(’’+i).
Then, either M is correct on both oracles (b,, b0) and (be’, bo) and hence e < a _< e’, or e or
e’ is in E,z+l (M) and hence it is within distance 2 ("+) of a. In either case, [e al _< 2-n.
Therefore, the number a is P-computable. The other three numbers b, c, d can be proved to
be P-computable in a similar way. ]

Although we defined P-recognizable sets by a different error control mechanism, the
exact relation between P-approximable sets and P-recognizable sets is not a simple matter.
For instance, the above example does not appear to hold for P-approximable sets (see Example
3.10 at the end of this section). In the following we consider their relations.

We first consider the question of whether P-recognizable sets must be P-approximable.
Intuitively, if S is a simply connected region with the boundary curve Fs, and if Fs is a

rectifiable curve (i.e., Fs has a finite length), then the error area of a P-recognizer M for S is
small, so S is P-approximable. On the other hand, if Fs is not rectifiable, then the error area
of M could be very large. We summarize these observations in the following theorem.

THEOREM 3.7. (a) Let S be a simply connected region in [0, ]2, whose boundary Fs is a

simple, closed, rectifiable curve. If S is P-recognizable, then it is also P-approximable.
(b) There exists a simply connected region S that is P-recognizable butnotP-approximable.
Proof. (a) Assume that the oracle machine M P-recognizes S as defined in Definition 3.5.

Then, for each n, the error set E,, is in the neighborhood of Fs of distance 2-. Since Fs has
a finite length L, the set E, has measure < L 2-".

(b) Ko 10] has constructed a P-computable, simple, closed curve F that has the following
properties: (i) the boundary F is not rectifiable; (ii) the measure of the interior S of the curve
F is not recursive; (iii) the interior S of the curve F is P-recognizable. In Theorem 9.1, we
will see that the measure of a. P-approximable set is P-computable relative to an oracle in #P,
and hence is recursive. Thus, the set S is P-recognizable but not P-approximable.

Next, we consider the question ofwhether P-approximable sets are always P-recognizable
To do this, we need to introduce the notion of probabilistic computation.

DEFINITION 3.8. A relation R c_ {0, }* {0, }* is polynomial-length related if there
exists a polynomial p such that R(s, t) implies (t) p(g(s)). Two sets A, B c_ {0, }*
are called a BP-pair if there exists a polynomial-time predicate R that is polynomial-length
related with respect to polynomial p such that

A {s {0, 1}* there exist > (3/4)2p(e(’)) strings such that R(s, t)},
B {s {0, 1}*" there exist > (3/4)2p(ec)) strings such that--,R(s, t)}.

The above definition ofBP-pairs is the generalization ofthe complexity class BPP; namely,
a set A is in BPP iff (A, AC) is a BP-pair. Let A and B be two disjoint subsets of {0, }*o We
say A and B are P-separable if there exists a set C 6 P such that A

_
C and B c_ CC. In the

following we are going to show that if all BP-pairs are P-separable then all P-approximable
sets are also P-recognizable. Conversely, if BPP P, then P-approximable sets are not

necessarily P-recognizable. It is easy to see that the condition that all BP-pairs are P-separable
implies that BPP P. It is not clear whether the converse holds. The best we know is that if
FP #P, then all BP-pairs are P-separable.

THEOREM 3.9. In the following, (a) =:> (b) =:> (c).
(a) All BP-pairs (A, B) are P-separable.
(b) All P-approximable sets are P-recognizable.
(c) BPP P.
Proof (a) = (b). Let S be P-approximable and M be an oracle machine that P-

approximates 8 with run time p. For each d (d dz) with d, d2 6 D,, [0, 1] define
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Na {e (e, ez) e, ez 6 Dp(2,,) C) [0, 1], Id el < 2-n}. Then, the size s(Na) is

greater than 22p(2n)-zn+2. We define two sets Cl and Co as follows (in the following, we let
d (dl, d2) and e (el, e2)):

C1 {d d, d2 Dn A [0, 1], for (3/4)s(Na) many e 6 Na, Me’e’ (2n) 1},
Co {d dl, d2 Dn f’) [0, ], for (3/4)s(Na) many e 6 Na, Me’’e (2n) 0}.

Then, (C, Co) are a BP-pair, and from assumption (a), the pair (C, Co) are P-separable. Let
M. be a polynomial-time Turing machine that separates C1 from Co.

Now we describe an oracle machine M that P-recognizes S as follows.

ALGORITHM M. With oracles (4, tp) and on input n, first pick dl q(n +2)
and d2 (n + 2), and then simulate M2 on input (d, d2),

It is clear that M runs in polynomial time. To see that M indeed recognizes S, we need to
show that errors only occur close to the boundary of S or, assuming that the distance of z to Fs
is greater than 2-n, we need to show that z ’ En(M). Without loss of generality, assume that
z 6 S. For any oracles (4, gt) that represent z, let d 4(n + 2) and d2 p(n + 2); then the
distance between d (dl, d2) and 1-’s is greater than 2-(’’+. We claim that M2 recognizes
that (dr, d2) C1, and hence the algorithm M P-recognizes S.

To prove the claim, consider the set N, of dyadic rational points e (e, e2) such that
el, e2 l)p(2n+4) and Id el _< 2-(n+2). First, the distance between each e 6 N, and Fs is
greater than 2-p(2n+4). So, z G S implies e 6 S and N(e; 2-p(2n+4)) C S. Second, if for some
e 6 Na we have M’e" (2n + 4) 0, then by Lemma 3.4 the neighborhood N (e; 2-p(zn+4)) is
contained in S tO EZn+4(MI), and hence contained in EZn+4(MI).

Now observe that the neighborhoods N(e; 2-p(2n+4)-I are pairwise disjoint, each having
the measure 2-2p(zn+4). Therefore, by the assumption that M P-approximates S, at most
r 22p(zn+4)-(zn+4) many e 6 Nd could have M’’e" (2n + 4) 0o Note that r _< 1/4. Thus,
the machine M2 would correctly output on input d.

(b) =::> (c). Assume that BPP :/: P. We are going to construct a set S [0, 112 that is
P-approximable but not P-recognizable. For each string w of length n, let io0 be the integer
less than 2 whose n-bit binary expansion (including leading zeros) is w. Then, let an

2-(n-t) and x, an + iu, 2-2n. We note that the interval [0, 1) is partitioned into

{[Xw, xw -+- 2-2e(w)) "(w) >_ 1}. We let Sw [xw, xo + 2-2"] x [0, 1].
Let A _c {0, }* be a set in BPP- P. Then, define S [..Jvoea,e(u,)>__l Sw. We claim

that S satisfies our needs. First, to see that S is not P-recognizable, we note that zw
(xw -+- 2-(2n+l), 1/2} has a distance 2-(2’+.1) away from Fs. Thus, if S were P-recognizable,
then we could correctly determine whether z, 6 S in time p(n) for some polynomial p (by
simulating the machine that P-recognizes S with the standard oracles of z and the input
2n / 2). This in turn would allow us to determine whether w 6 A in time p(n), contradicting
the assumption that A ’ P.

Next, we show that S is P-approximable. Since A 6 BPP, there exist a polynomial time

predicate R and a polynomial p such that for all w 6 {0, }* with e(w) n,

Pr [w 6 A ==> R(w,u)] >_ 3/4.
e(u)=p(n)

That is, a random R-test for w A has error probability at most 1/4. We can reduce this error
probability to 2-k by repeating the R-test c-k times and taking the majority answer, where c is
a constant (see, for instance, ]). More precisely, for each string u of length rn c. k. p(n),
write u u... Uck with each ui having length Iblil p(n), and define Qk(w, u) as the
predicate which states that the size of {i <_ < ck, R(w, ui)} is > ck/2. Then, we have

Pr [w A ::=, Qk(w,u)] > 1-2-.
e.(u)=m



COMPLEXITY OF TWO-DIMENSIONAL REGIONS 93

Note that Qk is uniformly P-computable in the sense that there is a polynomial-time Turing
machine MQ that, on input (k, w, v), determines whether Q(w, v) holds.

For each integer k, divide each S, with g(w) n into 2’" rectangles Tk,,,,,i, <_ <_ 2’""
that is, Tk,w,i [Xw,Xw -+-2-2’’] [(i 1)2-m, i. 2-m]. For each i, _< _< 2m, let 1) be
the m-bit binary representation for integer i. We define Tk,w [._J{T,,,i Q(w, vi)} and

Tk [._Je(,,,>>_ Tk,,. We observe, from the estimation of the error probability for Q-tests, that

for each w, #((S 71S,,)zXT,w) < 2- #(S,,,). This implies that #(SATe) < 2-k.
Since Q(w, v) is uniformly P-computable, we can see that T is uniformly P-approximable

in the following sense" there is a polynomial-time Turing machine M such that #* {z there

exist (05, ) representing z such that Ml4")(k) 7 Xrk(z)} < 2-k. From the above relation
between T and S and the machine M, we obtain the following machine M for set S.

ALGORITHM M. With oracles (q, ) and input k, simulate Mt’ (k + 1)o

It is easy to verify that machine M indeed P-approximates S: the error set E (M)

_
Ek+ (M) tO (SAT+I) has measure

#(E(M)) <_ #(E+I(M1)) +/z(SAT+I) _< 2-(k+ + 2-+ 2’-.

The following is a specific examp’..e showing the difference between P-approximable sets

and P-recognizable sets. It further demonstrates that P-recognizability is the more natural

approach for simply connected regions. Recall that a tally set is a set over a singleton alpha-
bet {0}.

EXAMPLE 3.10. If there exists a tally set in BPP- P, then there exists a nondegenerate
rectangle [a, b] x [c, d] that is P-approximable but not P-recognizable.

Sketch ofProof. In Lemma 3.14 of [9], it is shown that for any tally set T, there is a real
number x 6 [0, such that its standard left cut Lx is P-computable relative to the oracle T,
and T is P-computable relative to any left cut L of x. Thus, for a tally set T BPP P,
we obtain a real number x 6 [0, 1] whose standard left cut L, is in BPP, but x is not P-
computable. Consider the rectangle A [0, x] x [0, ]. We see from Example 3.6 that A is

not P-recognizable. We verify that A is P-approximable.
Let M be a polynomial-time deterministic Turing machine and p be a polynomial such

that for all d 6 D

Pr [M(d, w) == d < x] > 2’(n+l)
.(w)=p(n)

Let 0.w denote the dyadic rational whose binary expansion is 0.w. For each d 6 D, [0, 1],
define

Id, [d + (0.w). 2-, d + (0.w)o 2 + 2-(P(")+n)],

i.e., if d 0.s, then Id, w [O.sw, O.sw + 2-(P(n)+n)]. Let

U{I,u) x [0, 11" d 6 D [0, 11, M(d, w) 1}.

Then, it is not hard to verify that S,, satisfies the condition of Definition 3.2 and #* (S,, A S) _<
2

4. Strongly P-recognizable sets. The notions ofP-approximability and P-recognizability
introduced in the last section allow two-sided errors to occur in the computation. We can also
extend them to have only one-sided errors; that is, machine M must recognize x correctly if

x 6 S. The one-sided error requirement is useful when we are concerned with simple sets
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such as sets of measure 0. (It is clear that a set S of measure 0 is trivially P-approximableo
It is also trivially P-recognizable, since a set of measure 0 does not contain a rectangle and
hence every point in the sel is also a boundary point.)

DEI=INrrION 4.1. A set S

_
R2 is strongly P-approximable (strongly P-recognizable)

if S is P-approximable (P-recognizable, respectively) by an oracle machine M such that
Me’O (n) whenever (b, gr) represents a point x in S.

Strongly P-recognizable sets are interesting because they can be used to characterize the
sets of zeros of P-computable real functions with polynomial inverse moduli at zeros. We will
prove this result later.

It is clear that strongly P-approximable sets are a proper subclass of P-approximable sets.

THEOREM 4.2. There exists a P-approximable set that is not strongly P-approximable.

Proof. Consider the set S (D C [0, 1]) x [0, 1]. This set has measure 0 and so is P-
approximable. On the other hand, for the sake of contradiction, let us suppose that M strongly
P-approximates S. Then, for any oracles (4, ) representing a point z in R2 and any input n,
M must halt in p(n)moves for some polynomial p. Let d c(p(n)) and d2 7t(p(n)). We
observe that the machine M cannot distinguish the oracles (4, ) from the standard oracles
(bd, ba,) for (d, d2) E S. Since M strongly p-approximates S, it must accept with the
oracles (b,, b:), and hence it must accept with the oracles (b, gr). Thus, M must output
for all oracles representing any point in [0, 1]2, and hence #(E,,) 1, leading to a contra-

diction.
For the relation between P-recognizable sets and strongly P-recognizable sets, we first

note that a nondegenerate rectangle is strongly P-recognizable iff it is P-recognizable.
EXAMPLE 4.3. If a, b, c, d are P-computable real numbers such that a < b and c < d,

then the rectangle R [a, b] [c, d] is strongly P-recognizableo Therefore, a nondegenerate
rectangle is P-recognizable iff it is strongly P-recognizableo

Proof For any integer n > 0, consider the rectangle Rn [a 2-’, b + 2-’] x [c
2-", d + 2-"]. Then, by Example 3.6, Rn is P-recognizable. Thus, we have a machine M,, to

recognize Rn such that the only errors of M, occur within the distance 2-" of the boundary
of R,,. Treating Mn as a recognizer for R, it recognizes all points in R correctly and the
errors only occur within the distance 2-(’’-1) of the boundary of R. Now we observe that
the machines M are uniformly polynomial-time bounded and hence can be combined into a
single polynomial-time machine M for R.

The above result does not hold if the rectangle is a degenerate one, since a degenerate
rectangle is of measure 0. Also, the strategy ofbinary search cannot apply since it is of measure
0. We first consider the complexity of a strongly P-recognizable singleton set.

DEFINITION 4.4. (a) A real number x is NP-computable if there exist a nondeterministic
Turing machine M and a polynomial p such thatfor each input n,

(i) at least one computation path of M(n) halts in time p(n), and
(ii) if a computation path of M(n) halts with output d D, then Id xl <_ 2-".
(b) A point z (x, y) R2 is NP-computable if both x and y are NP-computable real

numbers.
In the study of the maximization problems on continuous functions, the following notions

of left NP real numbers and right NP real numbers have been defined [6], [9]. A real number x
is a left NP real number if there exists a left cut Le of x such that L is in NP, and it is a right
NP real number if there exists a left cut LO of x such that L is in coNP. We can characterize
the class of NP-computable real numbers in terms of these notions.

PROPOSITION 4.5. A real number x is NP-computable iff it is both left NP and right NP.
Sketch ofProof If x is NP-computable by the nondeterministic Turing machine M, for

each n > 0, let d,, be the greatest dyadic rational in Dn such that a computation of M(n)
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outputs d,,. Then, it is clear that q (n) d,, is a Cauchy function for x and the left cut L4, is
in NP. Similarly, if we let (n) be the least dyadic rational in D,, such that a computation of
M(n) outputs it, then the left cut L is in coNP.

Conversely, if x has a left cut L in NP and a left cut L2 in coNP, then for each
n > 0, we can nondeterministically guess a dyadic rational d in D,, such that d 6 L and
d + 2-’- ) L (from the definition of left cuts, such a point must exist). Then, we must
have [d x[ < 2-(’-). [3

Remark. It is not clear whether an NP-computable real number x must have a left cut in
NP coNP. Although x must have a left cut in NP and a left cut in coNP, the two left cuts
are necessarily identical. The general question of whether an NP-computable real number is
always P-computable also remains open. We discuss this question and other related problems
in 5 (see also 8).

In the following, we show that if a singleton set {z} is strongly P-recognizable, then z is
NP-computable. Whether the converse holds or not is an open question.

THEOREM 4.6. If {z} is strongly P-recognizable, then z is NP-computable.
Proof Let M1 be an oracle machine that strongly P-recognizes {z}. Then, for any input

n, if M’7’ (n) 1, then we know that (b, ) represents a point y within a distance 2
of z. In particular, d (b(n), b(n)) is within distance 2--(’- of z. So, the following
nondeterministic machine M computes z in polynomial time" on input n, guess a dyadic point
d (dl d2) with d, d2 6 D,,/., and then simulate M’’2 (n + 1). It outputs d if the above
simulation accepts, and it does not halt if the simulation rejects. [3

COROLLARY 4.7. There exists a P-recognizable set that is not strongly P-recognizable.

Proof It is clear that any singleton set {z} is P-recognizable but only those of NP-
computable z are strongly P-recognizable. (Apparently, not every real number is NP-comput-
able.) [3

Finally, we consider the relation between strongly P-approximable sets and strongly P-
recognizable sets.

THEOREM 4.8. Strongly P-recognizable sets and strongly P-approximable sets are incom-

parable.
Proof. First recall the proofofTheorem 4.2. We proved that the set S (D[0, ]) [0,

is not strongly P-approximable. However, it is strongly P-recognizable: we can just accept
every point in [0, 1] x [0, ], since all of these points are in 1-’s.

Next, we construct a set S that is strongly P-approximable but not strongly P-recognizable.
Let A

_
N be a nonrecursive set and S (2-n, 0) n 6 A }. It is easy to see that S is strongly

P-approximable: we only need to accept a point z (x, y) iff x 6 [0, 1] and lyl < 2-(k+.
This machine has errors Ek

_
{(x, y) x 6 [0, 1], lY[ _< 2-(k/l)} and so #(E) < 2-k.

On the other hand, if S were strongly P-recognizable, then we could decide whether
n A. More precisely, assume that oracle machine M strongly P-recognizes S. Then, we can
see that for any integer n, n 6 A iff M"" (n / 2) 1, where Zn (2-", 0). This is true because
for any n ’ A, the distance between z,, and 1-’s is at least 2-(’+ , and so the machine M cannot

lie. Also, if n 6 A, then by the requirement of strong P-recognizability of M, M must output
correctly. Thus, the existence of such an oracle machine contradicts the assumption that A

is nonrecursive. [3

5. Zeros of polynomial-time computable functions. It is known that the class of recur-
sively closed sets precisely characterizes the sets of the zeros of P-computable real functions
from [0, 1] to R 14], [9]. In this section, we show an analogous result for P-computable real
functions which have polynomial inverse moduli of continuity at zeros; that is the sets of zeros
of such functions from [0, ]z to R can be characterized precisely as strongly P-recognizable,
closed sets. First, let us define the notion of the inverse modulus of continuity.
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DEFINITION 5.1. A function f [0, l]2 R has a polynomial inverse modulus at zeros

if there exist a polynomial p and a constant no such that for all n >_ no, if ]z z0] > 2-" fgr
all zeros z0 of f, then If(z)l > 2-p(n). The function p is called an inverse modulus function
at zeros.

The condition that f has a polynomial inverse modulus at zeros means that if we know
that f (z) is close to 0, then z must actually close to some zero z0. Thus, the conventional
zero-testing of f(z)l < e works for the function f. Note that if f is not known to have a
polynomial inverse modulus at zeros, then it may have zeros of arbitrarily high complexity
(see [11 ]). Therefore, this condition is necessary if we are interested at zeros of reasonably
low complexity.

THEOREM 5.2. A closed set S c__ [0, 12 is strongly P-recognizable iff there exists a P-
computable function f [0, 1] 2 -- R that has a polynomial inverse modulus at zeros such
that S is exactly the set ofzeros of f

Proof First let f [0, ]2 R be P-computable and have a polynomial inverse modulus
q at zeros. Assume that M is an oracle machine computing f. Let S {z f(z) 0}.
Consider the following oracle machine M for S.

ORACLE MACHINE M. With oracles (q, ) and input n > n0, M simulates

M’O(q(n + 1)). If M outputs a number d such that ]dl _< 2-q(n+l) then
M outputs 1, else M outputs 0.

Let z be the point in R- represented by (qS, 7t). Assume that z is a zero of f" then the value
d computed by M’’(q(n + 1)) must satisfy Idl < 2--q(n+l), and hence M must output 1.

On the other hand, if z has a distance greater than 2 from any zero of f, then f (z) >
2-q(n), and hence ]d] > 2-q(n) 2-q(n+|) >_ 2-q(n+l) and M must output 0. Thus, the errors
of M can occur only within distance 2 of a zero z0. Since S is a closed set, this implies that
the errors only occur within distance 2 of the boundary Fs.

Conversely, assume that S c_ [0, 112 is a closed, strongly P-recognizable set. Assume
that M is an oracle machine that strongly P-recognizes set S with a polynomial running time
p. We are going to construct a function f [0, 112 R that satisfies the conditions of the
theorem such that S {z" f(z)= 0}. We assume that p(n + 1) >_ p(n)+ 2.

We define function f via a sequence ofdiscrete functions {4n }, where each q,, maps a point
d in An (I)p(n) 71 [0, 1]) 2 to a point e 6 D. The sequence {qSn} will be defined recursively.
First, qS0(d) 0 for all d 6 A0. Next, we assume that 4’, has been defined on all d 6 An,
and we extend it to a function , on [0, |2 so that gin (z) is linearly defined from qS. In other
words, assume that z (x, y) satisfies a < x < a +2-p(n) a2, b < y < b +2-p(n) b2
for some a, bl Dp(n) 71 [0, 1]. That is, (a, b), (a, b2), (a2, bl), <a2, b2) form a square of
size 2-p(n) 2-p(n) that contains z. Then,

0n(Z)= (1-r).(1-s).qn((a,bl))+(1-r).s.qS,,((al,b2))
+ r (1 s) bn((a2, bl)) -t’- r s 4,,((a2., b2)),

where r (x al) 2p(n) and s (y hi) 2p(n).

Now, wedefine4,n+ (d)foralld 6 An+l in termsoffunction On. For each point d 6 A+l,
exactly one of the following cases may occur:

(i) d 6 A,,;
(ii) there exist two points e, e2 An that lie in a horizontal or a vertical line with

]e e2.] 2-p(n), and d lies strictly between el and e2;

(iii) there exist e, e2, e3, e4 in A,, that are the four corners ofa square of size 2-p(n) 2-p(n)

such that d is an interior point of this square
In each case, we call these points in An the parent points of d. The value n+l (d) is defined
from the values of 0n on its parents as follows:
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(1) If all parents e of d have 4,, (e) > 0, then 4,, (d) ,, (d).
(2) Otherwise, evaluate Md(n), and let

if Md(n) 1,bn+l (d) 2’,!d) if .Md (n) 0.

We observe the following properties of {q" }.
(a) If d 6 A,, and 6(d, S) < 2-p("), then 4" (d) 0.

Proof We prove this by induction on n. First, 40(d) 0 for all d 6 A0, so the claim holds
for n 0. Next, for n > 0, observe that if 6(d, S) < 2-p(’’), then all parent points e of d have
(e, S) _< 2-(p(n-l)). So, bythe inductive hypothesis, we must have 05,,_ (e) 0, and the value
of 4n (d) is determined by case (2). Note that 3(d, S) _< 2-p(n), SO there exists a point z 6 S
that is also in N(d; 2-P(’)). From Lemma 3.4 (we noted that it also holds for P-recognizable
sets), we know that if Md(n) 0, then N(d; 2-p(n)) C_ S 0 E,,(M), and hence z 6 E’(M).
However, from the assumption that M strongly recognizes S, z cannot be in E" (M). Therefore,
we conclude that Md(n) must be equal to 1, and hence 4" (d) p’_ (d) 0. [2

(b) If d 6 An and 3 (d, S) > 2-’, then 4,, (d) > 0.

Proof If all the parent points e of d have values 4,,-1 (e) > 0, then qS,, (d) > 0. Otherwise,
4’(d) is determined by case (2). Since (d, S) > 2-", Ma(n) must output 0, and hence
q,, (d) 2-’. U

(c) If d, d2 A" and Idl d21 2-p(n), then 14,,(dl.) qSn(d2)l _< 2-n.
Proof We consider the following cases.
Case 1. 4n(di) P’-l (d/) for both 1, 2. Note that the parents of dl and d2 must

be the corners of a square of size 2-p(n-l) 2-p(n-l). Then, by the inductive hypothesis,
the values of these comers do not differ more than 2-(n-l). By the linearity of P,,-l, we
see that the values b,,(d) and 4’(d2) do not differ more than 1/2.2--(’-1) 2-, since
p(n) > p(n 1)+ 2.

Case 2. q,(dl) 4’(dz) 2-". Then, it is evident that (c) holds.
Case 3. 4)(dl) 7t’-l(dl) and ,,(d2) 2 n-l(d2). This can happen only

when one of the parent points e of d2 has 4n_ (e) 0. By the inductive hypothesis, all the
parents e’ of both d and d2 have values 4’-1 (e’) _< 2-(n-l}, since le’ el _< 2-p(’’-I). Thus

bn (all) _< 2-(n-l), so Ibn(dl) -bn (d2)l < 2-n.
(d) For any d 6 A’, Igt,,- (d) 4,(d)l _< 2-.
Proof As we proved above in Case 3 of (c), if 05" (d) P,,-1 (d), then it must be the case

that 0 < gt_l (d) < 2-(’-1) and qS(d) 2-’. [3
Now, we define f (z) lim,,__,c " (z). By properties (c) and (d) above, we can see that

f is well defined, continuous, and has a polynomial modulus function p. By properties (a)
and (b), we see that f (z) 0 iff z 6 S.

Finally, we observe the following lower bound for 4, (d).
(e) If d 6 A" and b’(d) > 0, then 4,, (d) > 2-(n+q(’’)), where q(n) -i=1 2p(i).
Proof If b,, (d) is defined as 2-n, then (e) holds. Otherwise, d must be equal to O’-i (d),

which is linearly defined from the values 4,,-(e) of the ancestor points e of d. Therefore,
at least one of the parent points e has OS,,-i (e) > 0 and, by the inductive hypothesis, it is at
least 2-(n-l+q(n-1)). Since qn (d) is defined linearly from the parent values, its value is at least
2-2p(n) times the value of 4,,_1 (e). The bound 2-(n+q(’’)) follows.

Now we can see that f has a polynomial inverse modulus at zeros. If 6 (z, S) > 2-, then
for all points d 6 A,,+ such that Id zl _< 2-p(n+ !1, we have 6(d, S) > 2-(’+), and hence
Md(n + 1) 0. This implies that b,,+l (d) > 0. By property (e), qS,+l (d) > 2-(’’+q(’’)) for all
these points d and, by the definition of {4}, 4’+k(d) 4,,+1 (d) > 2-(’’+q(’’)) for all k > 1. It
follows that 7),,+(z) > 2-(’+q(n)) for all k > l, so f(z) > 2-(’’+q(n).
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The above characterization, together with Theorem 4.6, also gives an upper bound to the
complexity of isolated zeros of functions having polynomial inverse moduli at zeros; namely,
such isolated zeros must be NP-computable. To get a better understanding of the complexity
of such isolated zeros, we summarize the known results on the relationship between NP-
computable real numbers and P-computable real numbers in the following.

Recall that a tally set is a set over a singleton alphabet {0}. Also, recall that UP is the
class of sets accepted by unambiguous nondeterministic machines in polynomial time; that is,
for any input w, there is at most one accepting computation for w. The relation between the
class UP and the class P is related to the existence of one-way functions. We say a function
q {0, }* --+ {0, }* is a one-wayfunction if b is one-to-one, P-computable, polynomially-
honest, and there is no P-computable function 6 satisfying (4(w)) w for all w 6 {0, }*.
It is known that P UP is equivalent to the the condition that one-way functions do not exist.
In the following, we will use the condition that all tally sets in the complexity class UPNcoUP
are actually in P. This condition is equivalent to the condition that there do not exist stronger
one-way functions 4 {0, }* --+ {0, }* having the following property: {0}* _c Range(b)
and 4- is not P-computable on {0}*.

COROLLARY 5.3. In the following, (a) 3. (b) == (c) => (d).
(a) All tally sets in A are in P.
(b) All NP-computable real numbers are P-computable.
(c) If f [0, ]2 _.+ R is P-computable and has a polynomial inverse modulus at zeros,

then all isolated zeros of f are P-computable.
(d) All tally sets in UP N coUP are in P.
In the above, the direction (a) => (b) is quite easy to see. The direction (c) => (d) requires

a more involved construction, and was proved in [8] and [9]. Whether the above complexity
e and UP coUP can be narrowed is an open question.gap between A2

6. Winding numbers. In the previous sections, we introduced some notions of polyno-
mial time computable subsets of R2. For bounded, simply connected regions S in R2, there is
another natural representation for it, that is, the boundary Fs of the region. In the next section,
we are going to study the membership problem corresponding to the boundary representation.
That is, if the boundary Fs of a region S is given as a polynomial-time computable curve,
what is the complexity of the membership problem for S? We approach this problem by first
studying a more general problem of counting the winding numbers. The winding number
problem is, informally, the problem of computing the winding number of a polynomial-time
computable closed curve with respect to a given point that is not on the curve. For a simple,
closed curve, the winding number determines whether a point is in the interior or the exterior
of the curve. Thus, the upper bound for the winding number problem is also an upper bound
for the membership problem with respect to the boundary representation.

The notion of the winding number can be formally defined as follows: Let arg(z) denote
the arguments of z R2 if z -J= (0, 0); that is, arg is a multivalued function from R2 (0, 0)
to Rsuch that ifz (x, y) thenx ]z[ cos(arg(z)) and y Izl sin(arg(z)). Let F be aclosed
curve with a representation f; that is, f is a continuous function from [0, 1] to R2 such that

f (0) f (1), and F is the range of f. For any point z0 ’ F, a continuous argumentfunction
hz0 is a continuous function such that hz0 (t) is a value of arg(f(t) zo). It is easy to see that
any two continuous argument functions differ by a multiple of 27r. The winding number of F
with respect to z0 is defined as

windv(zo) (hzo(1) hzo(O))

3That is, there is a polynomial q such that q(g(b(w))) >_ g(w) for all w 6 {0, 1}*.
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for any continuous argument function hzo. Equivalently, we may also define the winding
number in the form of integrals over the curve F"

windr-(z0)
z- z0

dz.

Each of these definitions provides a natural method for computing the winding number. Our
algorithm in Theorem 6.4 is based on the first method presented in Henrici [5].

Note that the winding number windy(z) of a curve F with respect to a point z E R2

regarded as a function of z has discontinuities on the curve F. Thus, as in polynomial-time
computable subsets of R2, any notion of computability for winding numbers must allow
errors to occur. Our computational model for winding numbers is similar to the model for
P-recognizable sets" it allows the errors but only when the input point is close to the curve,
because the discontinuity of the winding number function occurs exactly around the curve F.
More formally, let f [0, --+ R2 be a polynomial-time computable function that represents
a closed curve F; that is, F’ is the image of function f on [0, 1]. We say an oracle Turing
machine M computes the winding number of 17 if, for all oracles (p, p) that represent some
z in R2, and for all inputs n, M4’’ (n) outputs the winding number of z with respect to F’
whenever 6(z, F) > 2-". We say the winding number of a closed curve F is polynomial-time
computable if there exists such an oracle machine that operates in polynomial time.

Note that, if 6(z, F) > 2 and [Z2 Zll < 2-(n+), then the winding numbers of z
and z2 are equal. Thus, as far as the polynomial-time computability of the winding number is
concerned, we only need to make sure that the machine M works for all dyadic points.

PROPOSITION 6.1o The winding numberofa closed curve is polynomial-time computable
iff there exists a Turing machine such that M(d, n) windy(d) for all d D D and all
n N satisfying 6(d, 17) > 2-’.

The complexity of the winding number problem will be characterized by the counting
class #P. The following properties of the class #P are well known (see, for instance, [9]).

PROPOSITION 6.2. (a) For any P-computable function F {0, }* x {0, }* N, the
function G {0, }* x N --+ N, defined by G(w n) -lw21=n F(w tO2), is in #Po

(b) For anyfunction G {0, }* N that is in #P, there exist a set A c_ {0, }* in P and
a polynomial p such thatfor each w {0, 1}*, G(w) is equal to the number ofstrings u of
length p(e(w)) such that (u, w) A.

Let F be a closed curve represented by a continuous function f [0, 1] R2, Recall
that the winding number windy (z0) of 17 with respect to a point Zo ’ 17 is equal to (hzo (1)
hz (0))/2zr, where h,. is any continuous argument function with respect to Zo. We first show
that the local argument increase of the function h,. is computable in polynomial time if f is
P-computable. Let g(z0, t, t2) denote the value h (t2) h,. (tl). Note that the function g is
independent of the choice of the particular continuous argument function hz,,.

LEMMA 6.3 Let f [or,/3] --+ R2 be a P-computable function that represents an arc
17, and d be a dyadic point of R not in 17. Assume that there exists an > 0 such that
3(d, 1-’) > , andfor all t, t2 [o,/], If(t) f(tz))l _< . Then, the argument increase

function g(d, c,/3) is P-computable.
Proof. Since 3(d, 1-’) > , 17 lies outside the square N(d; ). Furthermore, If(t)

f(t2)l < for all tl, t. E [c,/]. This implies that a continuous argument function ha
must have difference Ih(c) h(/)l < 7r/2. Thus, we only need to obtain any values
a 6 arg(f(ot) d) and b 6 arg(f(/3) d). Then, let their difference be V, and ?" be the
number in [-7r/4, re/4] such that ?" V (mod 2zr). Output Vt. [-]

4More precisely, we should take care of the rounding errors when we evaluate a and b and compute V from
These are routine works, and we leave them to the reader.
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THEOREM 6.4. For any continuous closed curve F‘ that has a polynomial-time represen-
tation f, there exists an oracle machine that computes the winding number ofF’ in polynomial
time using afunction G in #P as the oracle. Therefore, the winding number ofa P-computable
curve F" is always P-computable if FP #P.

Proof. By Proposition 6.1, we only need to construct an oracle machine that, on inputs
(d, n) with d 6 D x D and n an integer and an oracle G 6 #P, computes windr-(d) whenever
a(d,F) > 2-n.

Assume that f has a polynomial modulus function p. Then, for any two numbers tl, t2 G

[0, 1] such that [t t21 < 2-p(n), we must have If(tl) f(t2)l < 2-n. From Lemma 6.3,
there exists a polynomial-time machine M that computes the argument increase g(d, oe,/3)
whenever 0 < / c < 2-p("), since a(d, P) > 2-". We define a P-computable function
F (D [0, 1]) x {0, 1}* -+ N as follows.

ALGORITHM FOR FtJyc’roy F. On input d and w, g(w) p(n), let i,
be the integer whose n-bit binary representation is w. Let t i,,, 2-p’y

and t2 tl -+- 2-P(n)o Simulate M on input (d, t, t2) with the error bound
2-2p(n) to get a dyadic rational e such that le- g(d, tl, t2)] < 2-2p(n). (Note
that -7r/2 < e < 7r/2.) Next, compute a dyadic rational e’ of length 22p(n)

such that [e’ (e/2zr + 1)[ < 2-2p(n), and let F(d, w) e’o 22p(n).

It is clear that

a=( Z F(d’ w)) 2-2p(n) 2p(n)
g,(w)=p(n)

is close to windr-(d) within an error 2-(p(n)-l). Therefore, by Proposition 6.2(a) we can ask
the oracle for the value G(d, p(n)) Y.e(u,)=p(n) F(d, w) and find the closest integer to a,
which is the winding number of d. C]

Conversely, we can show that the #P-complete oracle G is necessary for computing the
winding number in polynomial time.

THEOREM 6.5. Foranyfunction G #P, there exist a P-computablefunction f [0, --->
R2 that computes a closed curve F’, a P-computable (discrete) finction dp {0, }* --+ D x D,
and a polynomial p such that

(i) (q(w), F’) > 2-p(e(w) for all w {0, }*, and
(ii) the winding number of the curve F" with respect to the point (w) is equal to G(w).
Proof We first describe a basic construction that will be used later. For any integer n and

any set B g {0, 1}", we define an arc F’8 that is represented by a function g8 [0, 1] --+ R2.
For each integer k, 0 _< k _< 2" 1, we let u denote the n-bit binary representation of k, and

t 1/4 + k. 2-(’+l).
(1) gg is linear on [0, 1/4]" gg(0) 2, 0) and gg(1/4) 2.2-", 0).
(2) For each k such that 0 < k < 2" 1, if u ’ B, then g is linear on [t, t+]’

gH(&) (- +(k-2).2-n,0) andgg(t+)= (- + (k 1).2-n,0).
(3) For each k such that 0 < k < 2 1, if uk 6 B, then g is piecewise linear on

[&, tg+]: it divides [tk, t+] into five subintervals of equal length and maps them to the five
consecutive line segments defined by the following points:

(-1+(k-2).2-",0), (-1+(k-2).2-n,l-(k-2).2-’’),
(1 (k 2). 2-", (k 2). 2-"), (1 (k 2). 2-n, -1 + (k 2). 2-"),
(-l+(k- 1).2-",-1+(k-2).2-"), (-l+(k-1).2-",0).

(4) gt is linear on [3/4, 1]" gg(3/4) 2o 2-, 0) and gH(1) {2, 0).

5For simplicity, we only define F on w of length p(n) for some n.
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(2, 0)

FIG. 1. The arc [’t.?r set B {00, 10, 11}.

In Fig. l, we show the arc g for the set B {00, 10, 11 }, where n 2.
It is easy to see that if we connect the two endpoints of the arc g from below to form a

closed curve (called the extended curve g), then the winding number of the extended curve
with respect to the point (0, 2-") is equal to the size of B.

Now we describe the function f. For convenience, we will define f on [0, 2] instead of
[0, ]. It is clear we can easily transform it to a function on [0, if necessary. Since G E #P
there exist by Proposition 6.2(b) a set A E P and a polynomial q such that for all w 6 {09 }*
with (w) n, and G(w) is equal to the size of set Bw {u (u) q(g(w)), (u, w) A}.
Recall that in the proof of Theorem 3.9 we defined for each w 6 {0, }* a real number xw with
the property that x,, / 2-2n Xu, where n g (w) and u is the lexicographic successor of w.

For each w 6 {0, 1}* of length n, the function f on the subinterval [x, xw + 2-2n] is
a linear transformation of g,,, on [0, 1]. Let g g2 [0, 1] R be such that g,,(t)
(gl (t), gz(t)). Then, f on [xw, xw / 2-2n] can be defined as follows:

(22,, (22"f(t) (2-(2n+2) g (t xw)) / xw / 2-(2n+l) 2-(2n+2) g2 (t --Xw))).

f is now defined on [0, 1]. Now, we define f on [1, 2] as piecewise linear mapping the
interval [1, 2] to three line segments defined by the following four points: (1, 0), (1- 1)
(0, 1), and (0, 0).

It is clear that f is continuous on [0, 1] and defines a closed curve . It is also easy
to see that if we define 4(w) (x + 2-(2’’+1), 2-(2"+q(")+2)), where n (w), then 4 is
P-computable and 3(q(w), 1-’) 2 (2n+q(n)+2), Furthermore, the winding number of 1-" with
respect to 4(w) is equal to that of the extended curve defined by gt,,, with respect to the point
(09 2-q(n)), which is equal to G(w).

Finally, we show that f is P-computable. First, it is clear that f is P-computable on
[1, 2], since it maps [1, 2] to three line segments piecewise linearly. Next, we show that f
on D N [0, is P-computable as a discrete function. To see this we check that the functions
g,,, are uniformly computable in the sense that for any w E {0, 1}* and D N [0, 1], we
can compute g,,, (t) in polynomial time: We first decide whether 6 [09 1/4], 6 [3/4 1]
or 6 [t, t+] for some k, 0 __< k < 2" 1. In the first two cases, the computation is then
straightforward and, for the last case, the computation is also easy as long as we know whether
u E B. Since f is a simple linear transformation of g.... the uniform P-computability of
ge,,., on D [0, 1] implies that f is also P-computable on D 7 [0, ].
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By Proposition 2.2, we are left to show that f has a polynomial modulus of continuity.
First, we note that for any set B _c {0, }", the function g has the property that, for all
k > 0, if t, t2 E [0, 1] and It t21 _< 2-k, then Ige(t) ge(t2)l < 2-(k-’’-6) since g is
piecewise linear and maps subintervals of length >_ 2-n+)/5 to line segments of length _< 4.
Following this observation, we claim that if t, t2 E [0, 1] and 0 < t2 t _< 2-(3k+qk)), then
If(tl) f(t2)l < 2-k-5. (Recall that ak

Case 1. t, t2 [a 1]. Then we must have ]f(ti) (1 0)] < 2-k-l) for both 1,2.
Thus If(tl) f(t2)l < 2-k-2).

(k+q(k))Case 2. tl, t2 [xw, xw + 2-2n] for some to of length n _< k. Then It t21 _< 2-
where 22n(ti xw) for 1, 2, and so from the above observation on g,,,, we know that
Ig,,.(t I) g,,,(t.)l < 2--6). It follows that If(t) f(t2)] _< 2-2’’+k-4).

Case 3. t < x,,, < t2 for some w of length n < k. Then tl must be in [x,,, x + 2-2eu)],
where u is the lexicographic predecessor of to and x + 2-2e x. Then, applying Case 2
to tl and x,, and xw and t2, we get

If(tl) f(t2)l < If(t) f(xw)l + l/(t2) f(x)l <

This completes the proof of the claim and hence the proof of the theorem
COROLLARY 6.6. Thefollowing are equivalent:
(a) FP #P.

(b) For every P-computable closed curve F, the winding numberproblem off is solvable
in polynomial time.

7. The membership problem. Now we go back to the membership problem for a simply
connected region S represented by a P-computable boundary 1-’s. It is well known that the
winding number of the simple closed curve l-’s with respect to a point z ’ F’s is or -1 if
z is inside the set S and 0 if z is not in S U F’s. Thus, the upper bound #P for the winding
number problem is also an upper bound for this membership problem. In fact, we can apply
the proof of Theorem 6.4 to give a slightly tighter upper bound. That is, we need only one bit
from a function in #P to help us determine the membership of a given point. This observation
is closely related to the recently studied complexity class MidBitP 17], [4]

COROLLARY 7.1. Let f’[0, 1] -+ [0, 1]2 be a P-computable function defining a simple
closed curve F. Then, the interior S of the curve is P-recognizable with respect to an oracle
G #P. In addition, the oracle machine M that P-recognizes S needs only to ask the oracle

for one bit ofa value of G.
Proof. In the proof of Theorem 6.4, modify the function F to F’ (d, w) F(d, w) + 4.

Note that

F(d, to) 2-2p(n) 2p(n) + windr(d) +
g,(w)=p(n)

for some e of size ]1 < 2(P(n)-l). So

Z F’(d, to) 2-2p(n) 2p(n) + windy(d) + e’
e(w)=p(n)

for some e’ such that 0 < e’ < 2-(p(n)--3). That is, the integral part of F’(d, w) 2-2p(n) is
2p(n) + or 2p(n)- if d 6 S, and 2p(’’) if d ’ S. Or, equivalently, the (2p(n)+ 1)st (least

F’significant) bit of G’(d, p(n)) --.g(w)=p(n) (d, w) is iff d E S.
For the lower bound of the membership problem, we can only prove a weaker bound of

UP. The following is a simple characterization of the complexity class UP. (Also see the
discussion on the relation between P and UP at the end of 5.)
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FG. 2. Thearc [’)brset B {01}.

PROPOSITION 7.2. A set A c_ {0, }* is in UP iffthere exist a set B P and a polynomial
p such thatforall w {0, 1}* oflengthn,

to A (u,g(u)-- p((w))) (wu) B
=:= (3 unique u, g(u) p((to))) (w, u) 6 B.

R2THEOREM 7.3. For any set A UP, there exist a P-computablefunction f [0 --+
that defines a simple closed curve , a P-computable function c {0, }* -+ D, and some
polynomial p such thatfor all w {0, }*,

(i) 6(qb(w), ) > 2-p(e(w)) for somefixed polynomial p, and
(ii) w A iffdp(w) S.
Proof The general idea of the construction is similar to that of Theorem 6.5. First, we

describe a basic function g/ [0, 1] --+ R2 for each B __. {0, 1}" that is either a singleton or

empty. Again, for each k < 2" 1, we let u be the n-bit binary representation for k and
tk 1/4 + k 2-(n+l).

(1) g linearly maps [0, 1/4] to the line segment from (0, 0) to (1/4,
(2) For each k such that0 < k _< 2" l, ifuk ( B, then gn linearly maps [t., tk+l] to the

line segment from (t, 0) to (tg+l, 0).
(3) If uk 6 B, then g is piecewise linear on [t, tk+]" it divides [tk, t+] into seven

subintervals of equal length and maps them to seven consecutive line segments determined by
the following breakpoints"

(t, 0), (tk, 1/4) (1/4 1/4), (1/4, 3/4),
(3/4, 3/4), (3/4, 1/4), (t.+, 1/4), (tg+t,

(4) ge linearly maps [3/4, 1] to the line segment from (3/4, 0) to (1
Figure 2 shows the function g/ with respect to set B {01 }, n 2.
As in the functions g defined in Theorem 6.5 if we connect the points from (1,0) to

(0, 0) by an arc below these two points, then the point (1/2, 1/2) is in the interior of the curve
if B is a singleton and is not in the interior if B is empty.

Now we define the function f. First, for any set B c_ {0, }* and any string to 6 {0, }*,
let Bw {u" g,(u)= p(g(w)), (w,u) 6 B}. Then, from Proposition 7.2, for set A 6 UP
there exists set B 6 P such that for each w 6 {0, }*, if w . A then B, is a singleton set,
and if w A then B,, is empty.

We define, for each w, the numberx as in the proof ofTheorem 3.9 such that x,,; 4- 2-2"

x, where u is the lexicographic successor of w. We define the function f on each interval
[xw, xw + 2-2’’] as a linear transformation of g,,," for each 6 [x x, + 2-"],
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f (t) (2-2n g(22n(t Xu,)) + Xw, 2--2’’ g2(22n(t Xw))),

where (g(t), g2(t)) gB,,(t).
Then, we extend f and define it to map the interval [1,2] piecewise linearly to the three

line segments with the following breakpoints" (1,0), (1,- 1), (0, -1), and (0, 0).
It is clear that f is continuous and defines a simple closed curve F. Also, f can be proved

to be computable in polynomial time since gB is uniformly polynomial-time computable. We
omit the details, which are similar to those in the proof of Theorem 6.5.

Finally, for each w, let (w) (xw + 2-(2"+1), 2-(2n+1)). Then, (w) is the image of
1/2, 1/2) under the linear transformation used to define f. It is clear from the transformation

that (4(w), F) >_ 2-(2n+2). In addition, w A iff 4(w) is in the interior of the curve r’. This
completes the proof.

COROLLARY 7.4. In the following, (a) := (b) == (c).
(a) FP #P.
(b) Every simply connected region S with a polynomial-time computable simple curve

boundary is P-recognizable.
(c) P UP.

8. The distance between a point and a curve. Computing the distance between a point
z and a curve 1-" is a basic problem in computational complex analysis. In addition, many
computational tasks work only when a point z is bounded away from the curve 1-’, e.g., the
testing of the aforementioned membership problem and zero problem. What is the complexity
of this problem? Or, if r’ is P-computable, does it follow that the function distr(z) 3(z, I-’)
is also P-computable? We observe that this problem is close to the minimization problem, so
the complexity bounds for minimization are applicable to the distance problem. The following
result on the complexity of the maximization function is from [3].

PROPOSITION 8.1. Thefollowing are equivalent:
(a) P NP.
(b) For any P-computablefunction f’[0, l]-- R thefunction maxf(x) -max{f(y)

0 <_ y < x} is P-computable.
We borrow the ideas of the proof of the above result to characterize the complexity of the

distance function.
THEOREM 8.2. Thefollowing are equivalent:
(a) P NP.
(b) For any P-computable curve I’, the function distv is also P-computable.
Proof For the direction (a) = (b), we actually prove a stronger statement: for any P-

computable curve 1-’, there is an oracle machine that computes the function distr relative to
a discrete set A in NP. Assume that 1-’ is represented by function f [0, 1] -+ R2, which is
computed by an oracle machine M1 in time p, where p is a polynomial function. Define a set

A {(d, d2, e) "dl, d2, e 6 D,,, e > 0, (Sd.3 6 Dp(n) ]M (n) (d, d2)l _< e}.

Then, obviously, A NP. To compute distr(z), we first get an approximation d (d, d2) to
z such that d, d2 6 Dn+2 and Id zl < 2-(n+2). Next, binary search for a number e 6 Dn+2
such that (dl, d2, e) G A and (dl, d2, e 2-(’+2)) ( A. (In the case of (d, d2, 0) G A, let
e 0.) Then, we can see that Idistr(z) el < 2-. First, from (all, d2, e) A, we know
that there is a d 6 Dp(n+2) (’l [0, 1] such that [f(d) -dl _< e + 2-(n+2). It follows that
6(z, F) < e + 2-(n+2) -+- Id zl _< e .+ 2-(+1. Conversely, from (dl, d2, e 2-(n+2)) ’ A,
we know that ]f(d) d] _> e 2-(+ for all d 6 Dp(n+2) (’) [0, 1]. Therefore, 6(d, 1-’) _>.
e 2-(+l 2-(n+2) and it follows that 3(z, 1-’) > e 2-.
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(x O)

(X,, + 2-(2"+2) 0)

(xu, + 2’2’’, 0)

(x,,, + 3.2-(2’’+2), O)

FIG. 3. Function f on [xu,, xu, + 2--z’] with Ru, having exactly 2 strings.

For the direction (b) :=> (a), let A E NP. We construct a P-computable function f
[0, 1] + R2 that represents a curve F such that, if distv is P-computable, then A E P. First,
let R 6 P and p be a polynomial function such that for each w 6 {0, }* of length n, w 6 A
iff (3u, lul p(n)) (w, u) R.

As in Theorem 3.9, we let an 2-(n-) and x,,, a,, + i, 2 -2n. We now define
function f on interval [x,, x, + 2-2’’] depending upon set R.

(1) On [xvo, xw q- 2-(2n+2)], f maps the interval linearly to the line segments connecting
(Xw, 0) to (xu, + 2--(2n+2), 0).

(2) We divide the interval [x,,, + 2--(2n+2) xw -+- 3.2 (2n+2) into 2p(n) many subintervals of
equal size, each corresponding to a string u of length p(n). We let Iu [y,, y, +2-(2"+ i+p(n))

be the interval corresponding to string u. On each I,, f maps I,, to the horizontal line segment
from (y,, 0) to (y,, + 2’-(2n+l+p(n)), O) if (w, u) ( R. If (w, u) E R, then f is piecewise
linear on I with the following breakpoints" f(y,) (Yu, 0), f(Yu + 2-(2n+Z+P(n)))
(Yu q- 2--(2n+2+p(n)), 2--(2n+p(n))), and f(yu + 2(2n+l+p(n))) (Yu -+- 2-(2n+l+P(n)), 0) That is,

f is of the shape/x on I, with height 2--(2"+p(’)).

(3) On interval [x, + 3.2-(2n+2) xw -}- 2--2n], .f maps the interval linearly to the horizontal
line segment from (x,, + 3.2-(2n+2), 0) to (xw -+- 2 -2n, 0).

We show f on [xvo, xw -+- 2-2’’] in Fig. 3 for a set R such that R {u (w, u) 6 R} has
two strings. The above definition apparently defines a continuous, P-computable function f.

Now, for each w, let z (x + 2-(2n+ 1), 2-(2n+1)). Note that the distance between z
and f(t) for all <, x,,, and all > x, + 2-2n is at least 2-2n. So the distance between
zo) and the curve F is the same as the distance between z, and the curve f([x, x + 2-2"]).
This distance is equal to 2-(2’’+1) if w ’ A (and hence the curve is flat on this interval), and
is 2--(2’+!) 2-(2n+p(n)) if w 6 A. Thus, if distr is P-computable, then we can determine
whether w 6 A by computing the distr(z,,) correctly within error 2-{2n+2+p(n)), and. hence
AP.

Next, we extend the above characterization to the problem of determining the distance
value between a fixed point and a P-computable curve. That is, if F is a P-computable curve
and z0 is a fixed point, is the value 8(z0 F) always a P-computable real number?

6Note that we are using the L-metric on R2, so the distance is easy to calculate. The function f, nevertheless,
could be modified to make the construction work for other metrics, like the Lz-metric on R2.
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For the maximization problem, it is known that the set of maximum values for P-
computable functions from [0, 1] to R is exactly the set of left NP real numbers [6]. As
a corollary, the complexity of maximum values can be characterized as follows. Recall that
a tally set is a set A over a single alphabet {0}, and zX’ is the class of sets computable in
deterministic polynomial time relative to an oracle in NP.

PROPOSITION 8.3 [9]. In the following, (a) = (b) =:, (c).
(a) All tally sets in A are in P.
(b) For every P-computablefunction f [0, ---> R, the maximum value x max{f (y)

0 < y < 1} is P-computable.
(c) All tally sets in NP are in P.
It is interesting to note that condition (c) above is equivalent to the condition that the class

NEXP of nondeterministic exponential time (2"r’}) computable sets collapses to the class EXP
of deterministic exponential time computable sets.

The above result on the maximum values can be applied to characterize the complexity
of distance values.

THEOREM 8.4. A real number x is right NP iff there exists a P-computable curve F such
that x 3((0, 0), F).

Proof To see that distr must be a right NP real number, we simply observe that the set

B {e e 6 Dn, (0, 0, e) 6 A} is a right cut of distr, where A is the set defined in the proof
of direction (a) := (b) of Theorem 8.2.

Conversely, we define a simple reduction from the maximum values to distance values.
For any P-computable function f [0, 1] --+ [0, ], let g [0, 1] R2 be defined by
g(x) (x 1/2, f(x) 2)" i.e., the curve defined by g is the graph of f moved left by
1/2 and downward by 2. We can see that the distance between the origin (0, 0) and the curve
defined by g is exactly 2 max{f(y) 0 < y _< }. Thus, any right NP real number x could
be made equal to the distance between a P-computable curve and the origin (0, 0). [3

The above immediately implies the following complexity characterization of distance
values.

COROLLARY 8.5. In thefollowing, (a) == (b) = (c).
(a) All tally sets in A are in P.
(b) For every P-computablefunction f [0, --> R2 that represents a curve F and every

P-computable point z R2, the distance 6(z, F) is a P-computable real number.
(c) All tally sets in NP are in P.

9. The area of a region. In this section, we consider the problem of computing the area
of a region, given either a P-approximation machine M or a boundary F as the representation.
Assume that a simply connected region S is P-approximable; then, intuitively, the area can
be computed by the straightforward sampling method, which can be done in polynomial time
relative to an oracle in #P. Indeed, Ko [7] has shown that the computation of the measure of a

P-approximable one-dimensional set S __. [0, 1] can be done in polynomial time if FP #P.
This proofcan be transformed to two-dimensional P-approximable sets. Conversely, Friedman
[3] has shown that if FP #P then there exists a P-computable function f [0, 1] R
such that its integration function g(x) f .f(t)dt is not P-computable. This result can be
easily extended to two-dimensional regions. In the following, FP (and #P) denotes the
class of functions b in FP (and #P, respectively), whose inputs are strings over a singleton
alphabet {0}.

THEOREM 9.1. Thefollowing are equivalent:
(a) FPI #PI.
(b) For any P-approximable set S c_ [0, 112, the measure of set S is polynomial-time

computable.
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(c) For any simply connected region S that is P-recognizable and has a P-computable,
rectifiable boundary, the measure of S is P-computable.

Proof. (a) =: (b). Assume that S _c [0, 1] 2 is P-approximable. By Theorem 3.3, there
is a uniformly polynomial-time computable sequence {S,,} of finite union of rectangles such
that/J*(S,, A S) < 2-". Let p be a polynomial such that the corners of the rectangles in Sn
are in Dp(n) x Dp(n). Then, for each point d (dl, d2) E Dp(n)+l Dp(n)+l, d is an interior
point of Sniff the square N(d" 2-(p(n)+l)) is contained in S,,o The measure of Sn thus is equal
tO 2-(2pCn)+2) times the size of the following set:

An {d (d, d2) dl, d2 E Dp(n)+l A (0, 1), d is an interior point of Sn }.

Since Sn is uniformly polynomial-time computable, we can determine in polynomial time
whether a point d 6 Dp(,)+l Dp(n)+l is an interior point of Sn. Therefore, the function that
maps the input 0" to the size of An is in #P. This implies that we can compute the size of
A,,, and hence the measure of Sn, in polynomial time relative to an oracle in #Pt. The proof
is completed by observing the fact that #*(Sn A S) < 2-".

(b) = (c). The proof is immediate from Theorem 3.7(a)o
(c) := (a). Let G {0}* --+ N be a function in #P that is not in FP. Then, there exists a

polynomial p such that G(0n) _< 2p(n). We may assume that p(n + 1) > p(n) for all n > 0.
We first claim that the real number

a Z G(0"). 2--2(p(n)z+n)

n=l

is not polynomial-time computable.
Proof Because p(n + 1) > p(n), we have 2p(n + 1)2 p(n + 1) > p(n)2. This implies

that

G(0n+l) 2-2(p(n+l)2+n+ 1)

_
2-(2p(n+I)2--P(n+l)+zn+2) < 2-(2P(n)2+2n+2)

or, equivalently, in the binary expansion ofnumber a, the bits from the (2p(n- )2+2n/ )st bit
to the right of the binary point to the (2p(n)2 / 2n)th bit precisely encode the binary expansion
of the integer G(0"). In addition, the (2p(n)2 + 2n + 1)st and (2p(n)2 + 2n + 2)nd bits of
the binary expansion of a must be 0. These properties then imply that a is not polynomial-
time computable. To be more precise, we note that if d is a dyadic rational in D2p(n)+2,+2
such that [d al < 2-(2p(n)2+2n+2), then the first 2p(n)2 + 2n of the binary expansion of d
must agree with those of a, since the error in the approximation of a by d cannot propagate
through the (2p(n)2 / 2n + 1)st bits. Therefore, any polynomial-time algorithm for a could
be used to extract the first 2p(n)2 / 2n bits of a and obtain the value G(0n). That would be a
contradiction.

Next, by Proposition 6.2(b) we know that there exists a set A _c {0, 1}* in P such that
G(0n) is equal to the size of the set An {u 6 {0, }* g(u) p(n), u 6 A}. In the following
algorithm, we define from set A a function f [0, 2] --+ R2 that defines a rectifiable, simple,
closed curve F such that the measure of the interior of F is equal to / a.

ALGORITHM FOR f. (1) The function f maps [1, 2] piecewise linearly to
three line segments defined by the following four points: (1, 0), (1,-1),
(0, ), (0, 0).
(2) For each n > 0, let an 2-(’’--1). Divide the interval [an, a,,+]
into 2p(n) many subintervals [t, &+], 0 < k < 2p(n) 1, where tk
an + k 2-(p(n)+n) For each k, 0 < k < 2p(n) 1, let u. be the kth string in
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{0, 1} p(n). Ifuk ’ An, thenlet f(t) (t, 0)forall 6 [tk, tk+]. Ifuk 6 An,
then f maps the interval Its, tk+] linearly to four consecutive line segments
defined by the following five breakpoints" (t, 0), (t, 2-P")+’)), (t +
2-(p(n)2+n), 2--(Pn)2+n)), (tk + 2-(p(n)2+n), 0), (tk+l, 0). In other words, the
curve defined by f on [t, t+l] forms an open square n, of size 2-fpfn)2+n)

2-(p(n)2+n), above the line y 0.

it is easy to verify that f is P-computable. Furthermore, the interior S of F is P-
recognizable, since for any point (di, d2) D D with a,, < d < an+ and 0 < d2 <
2-(p(n)z+n), (dl, d2) S iff uk E An and t: < d < tk + 2-Cp(’)2+n), where k is the unique
integer such that d E [tk, tk+).

Next we show that the curve F defined by f on [0, is of finite length. We note that
for each n and each k, 0 < k < 2pCn) 1, the function f maps [tk, t+] to a line segment of
length 2-(p(n)+n), or to four line segments of length 2-(p(n)+n) + 2.2-(p(n)z+n). In either case,
the total length is at most 2-(p(n)+n-l). Thus, the total length of the curve defined by f on
[an, a,+] is at most 2-0’-). Thus, the total length of F is at most 3 + Y-,,= 2-’-3 5.

Finally, we observe that the measure of the interior S of the curve 1-’ is equal to that of
the square [0, 1] [-1, 1] plus the small squares above the line y 0. On each interval
[an, an+], we have defined exactly G(0) small squares above the line y 0 each of size
2-(p(n)z+n) 2-(p(n)+n), Therefore, the total measure of all these squares for all n > 0 is
equal to a Y,= G(0) 2-2(p(n)2+n) This implies that the measure of the interior of F is
a + 1, which is not a polynomial-time computable real number.

Remark. The above rectifiability condition on the boundary of S in part (c) of Theorem
9.1 is necessary, since Ko [10] has constructed a P-computable function f [0, 1] R2

that represents a simple, closed, nonrectifiable curve F whose interior S is P-recognizable
but has a nonrecursive measure. This result suggests that when simply connected regions
are represented by their boundary representation, the rectifiability of the boundary curve,
in addition to the P-computability of the curve, is an important factor that might affect the
complexity of the region.
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Abstract. A Las-Vegas-type probabilistic algorithm is presented for finding the Frobenius canonical form of an
n x n matrix T over any field K. The algorithm requires O~(MM(n)) MM(n). (log n)() operations in K, where
O(MM(n)) operations in K are sufficient to multiply two n x n matrices over K. This nearly matches the lower bound
of f2(MM(n)) operations in K for this problem and improves on the O(n4) operations in K required by the previous
best-known algorithms. A fast parallel implementation of the algorithm is also demonstrated for the Frobenius form,
which is processor-efficient on a PRAM. As an application we give an algorithm to evaluate a polynomial g 6 K[x]
at T which requires only O-(MM(n)) operations in K when degg < n2. Other applications include sequential and
parallel algorithms for computing the minimal and characteristic polynomials of a matrix, the rational Jordan form
of a matrix (for testing whether two matrices are similar), and matrix powering, which are substantially faster than
those previously known.

Key words. Frobenius form, Jordan form, evaluating polynomials at matrices, matrix powering, matrix, multi-
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1, Introduction. Computing a canonical or normal form of an n n matrix T over any
field K is a classical mathematical problem with many practical applications. A fundamental
theorem of linear algebra states that any T Knn is similar to a unique matrix S 6 K"’z of
the block diagonal form

(1.1) S-- diag(C/,, CU2 CA)

0
where each Cf is the companion matrix of some monic j 6 K[x] for < _< k, and fi fi-
for 2 < < k (we write T S to denote similarity). Recall that the companion matrix Cg of
a monic g Yo.<_.j.<_r bix K[x] has the form

0 0
0

6,

-bo

-br-I
A matrix S with these properties, called the Frobenius form of T, always exists and is
unique and rational; i.e., it remains the same even if the entries of T are allowed to lie in
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an algebraic closure of K. The polynomials fl fk 6 K[x] are the invariant factors
of T, and the first of these ft is the minimal polynomial of T; that is, fl is the polyno-
mial of smallest degree in K[xl \ {0} such that f (T) 0. The product f... f is the
characteristic polynomial of T. Since T is similar to S, by definition there exists an in-
vertible U K’’’’ such that U-TU S. Our approach to finding the Frobenius form
is to find such a matrix U, from which we find S. Two excellent references for the back-
ground information are Gantmacher (1990), Chapter 7, and Hoffman and Kunze (1971),
Chapter 7.

In 2-5 we link the cost of computing the Frobenius form to the cost of multiplying two
matrices. Specifically, if MM(n) operations in K are sufficient to multiply two n x n matrices
over a field K, we show that O~(MM(n)) MM(n) (logn)() operations in K suffice to

compute the Frobenius form of an n x n matrix over K. This algorithm is of the Las Vegas
type" it is allowed to choose elements randomly and uniformly from a finite subset of K at unit
cost, and with probability at least 1/4 it returns the correct answer, otherwise it reports failure.
An incorrect answer is never returned. Our algorithm only works as stated when #K > n2.
When K has q < n2 elements, we embed K in a field F of degree O (log n) over K which does
possess n2 elements. The Frobenius form of T lies in Kn" since it is rational, but U F
may have entries in F \ K. In this case the running time of our algorithms is multiplied by
a small power of logq n. Details are presented in 5. In 6 we show how to implement our
algorithm for the Frobenius form in a processor-efficient manner on a PRAM. As a by-product
we obtain the first processor-efficient parallel algorithm for the characteristic polynomial of a
matrix.

The best previously known algorithms for finding the Frobenius form of a matrix in
by Ozello (1987) and Liineburg (1987), require O (n4) operations in K (see also Kannan and
Bachem (1979), Kannan (1985), and Augot and Camion (1993)). Kaltofen, Krishnamoorthy,
and Saunders (1987), (1990) present probabilistic algorithms for finding the Frobenius form
of a matrix in the parallel complexity class RNC2. They achieve their result through the use
of a more general algorithm to compute the Smith normal form of a polynomial matrix. From
the Smith normal form of the matrix )I T K[k]"" (where ,k is an indeterminate) the
Frobenius form S of T can be derived easily. A (deterministic) NC2 algorithm for computing
the Frobenius form is demonstrated by Villard (1994).

Our algorithm for computing the Frobenius form is nearly optimal in that there is a lower
bound for the problem of f2 (MM(n)) operations in K. If we can compute the Frobenius form,
then we can find the characteristic polynomial f K[x] of T with O(n2) additional operations
in K. The determinant of T is f (0), and it is shown in Baur and Strassen (1982) that computing
the determinant requires f2 (MM(n)) operations in K, whence computing the Frobenius form
of T requires f2 (MM(n)) operations in K (one must be careful of the model of computation
here as Baur and Strassen’s result is for the arithmetic circuit model; see Giesbrecht (1993),
1.1 for details).
We obtain fast algorithms for a number of interesting problems as applications of our

algorithm for computing the Frobenius form. One of the most striking results is for the
problem of evaluating a polynomial at a matrix. In 7 we show that a polynomial g K[x]
of degree r can be evaluated at any matrix T K" with O-(MM(n) + r) operations in K.
We also demonstrate a lower bound for evaluating a fixed nonlinear polynomial at a matrix
of (MM(n)) operations in K, so our algorithm is, in fact, nearly optimal. The algorithm
we present here improves upon the previously fastest algorithm of Paterson and Stockmeyer
(1973), which requires O(MM(n)x/) operations in K. More generally we show that an

arithmetic circuit or straight-line program can be evaluated at a matrix in nearly optimal
time sequentially and processor-efficiently in parallel In brief, the Frobenius form provides
a mechanism to transform the problem of evaluating a polynomial in K[x] at a matrix in
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K"" from the multiplicative semigroup of K’’’’ to the multiplicative semigroup of a modular
polynomial ring, where computation can be performed much more quickly.

As noted above, the companion matrix of the minimal polynomial forms the first block
in the Frobenius form. Also, any two similar matrices have the same Frobenius form. Thus,
our algorithm for computing the Frobenius form yields Las Vegas algorithms to determine the
similarity of any two matrices in K"’’ and find the minimal polynomial of a matrix, which
require O ~(MM(n)) operations in K. Our algorithm for computing the minimal polynomial
is also nearly optimal: it is shown by Wiedemann (see also Kaltofen (1992)) that if we can

compute the minimal polynomial of an n n matrix over a field K with (n) operations in K,
then there is a Las Vegas algorithm to compute the determinant of any matrix in K"" for which
O(t (n)) operations in K are sufficient (see Giesbrecht (1993) for details). The best previously
known algorithm for computing the minimal polynomial of an n n matrix is the Monte Carlo
algorithm of Wiedemann (1986), and this algorithm requires an expected O(n3) operations
(a Monte-Carlo-type algorithm has the ability to select random elements uniformly from a
finite subset of K, and with constant probability it returns the correct answer, but with some
controllably small probability it may return an incorrect answer). To determine similarity, the
best previously known sequential algorithms are the Frobenius form algorithms of Ltineburg
(1987) and Ozello (1987), which require O(n4) field operations. An algorithm by Zalcstein
and Garzon (1987), based on a very different method, runs in the parallel complexity class
NC2.

The Jordan normal form is probably the most commonly encountered of all canonical
matrix forms, and also one of the most difficult to compute. In particular, it requires that
we determine both the geometric structure of the matrix (as captured in the Frobenius form)
and the factorization of the minimal polynomial of the matrix into linear factors. In 8 we
introduce the rational Jordan form as a slight generalization of the usual Jordan form. The
rational Jordan form always exists and coincides with the usual Jordan form whenever that
form exists. We show that computing the rational Jordan form of an n n matrix over
any field I< can be accomplished by a Las-Vegas-type algorithm with an expected number of
O ~(MM(n)) operations in K, given the complete factorization (into irreducible factors in K[x])
of the minimal polynomial of that matrix. A simple lower bound of f2 (MM(n)) operations
in I< is shown for this problem. The requirement of a complete factorization of the minimal
polynomial is also necessary, given that the complete factorization of any polynomial can be
read off the rational Jordan form of the companion matrix of that polynomial.

Computational model and complexity assumptions, The algorithms presented in this
paper are generally given for both sequential and parallel models of computation. For the
sequential algorithms we employ the arithmetic RAM, described more formally in von zur
Gathen (1993). Informally, this is just a standard (Boolean) RAM (see Aho, Hopcroft, and
Ullman (1974), 1.2) with an additional memory for holding elements of some field K. The
instructions of the usual RAM are supplemented with instructions for basic field operations
in K (+, -, /), as well as a test for the zero element in K and appropriate input and
output instructions for elements in K. We report the cost of our algorithms as the number of
operations in K required as a function of the number of elements of K in the input.

For parallel algorithms we employ the arithmetic PRAM model over a field K (see Karp
and Ramachandran (1990)). This is a collection of arithmetic RAMs (over K) communicating
by means of a set of shared memory cells. All accesses to global (and local) memory require
unit time. The time (n) required by an arithmetic PRAM algorithm is the maximum of the
number of field operations required by each of the component arithmetic RAMs in the PRAM
on input size n. Also of interest is p(n), the largest number of processors involved in the
computation on any input of size n, as is the work w(n) (n) p(n). It is useful to compare
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the work required by an algorithm running on a PRAM with the time required by an optimal
sequential algorithm. Assume that any sequential algorithm for some problem requires time
f2(t(n)) on input size n. A PRAM algorithm for this problem is called processor-efficient if it
requires time (log n) when run on t(n). (log n)) processors. That is, it is a fast parallel
algorithm for which the work is within a polylogarithmic factor of the optimal.

It is occasionally convenient, especially in summarizing results, to ignore logarithmic
factors using the "soft O" notation: for any g, h" I>0 -- I0, g O~(h) if and only if there
exists a constant k > 0 such that g O(h(log h)k).

We isolate the cost of algorithms for polynomial arithmetic and linear algebra as named
functions (M and MM, respectively) of their input sizes when their costs appear in the cost.
of some algorithm using these operations. Over a ring z, we assume O(MF(n)) operations
in F: are sufficient to multiply two polynomials in F[x] of degree at most n. The fast integer
multiplication algorithms of Sch6nhage and Strassen 1971) can be recast as polynomial mul-
tiplication algorithms (see Sch6nhage (1977) and Nussbaumer (1980)) and allow us to choose
My(n) n log n log log n when F is a field. More generally, for any ring F, the algorithm
of Cantor and Kaltofen 1991) allows us to choose My(n) n log n log log n. If K is a field
and f, g E K[x] have degree at most n, we can compute the division with a remainder of f
by g; that is, we can find Q, R E K[x] such that f Qg + R with R 0 or deg R < degg
in O(Mv(n)) operations in K. We can compute gcd(f, g) with O(M(n) log n) operations in
K (see Aho, Hopcroft, and Ullman (1974), 89). Generally, we will simply write M(n) for
My(n) when F is clear from the context.

For any field K, let K"" be the ring of n x n matrices with entries in K. We assume
that O(MM(n)) operations in K are sufficient to multiply two matrices in K’’n. Currently,
the asymptotically best algorithm for matrix multiplication is by Coppersmith and Wino-
grad (1990) with MM(n) n2"376. For convenience we assume throughout this paper that
MM(n) f2 (n2+) for some e > 0. O(MM(n)) operations in K are also sufficient to compute
the rank and determinant, of an n x n matrix over a field K, as well as invert a nonsingular matrix
in K" ". Also, we can solve a system of n linear equations in n unknowns over K (which may
be singular) with O(MM(n)) operations in K (Bunch and Hopcroft (1974)). Corresponding
parallel algorithms for the polynomial and matrix operations above are discussed in 6.

2. Finding a modular cyclic decomposition. The Frobenius normal form of the matrix
T 6 K n corresponds to a decomposition of the vector space Kn , called the cyclic decom-
position of K" with respect to T. It is convenient to simply consider the linear map T as a
K-endomorphism of a finite dimensional vector space V over K (i.e., T 6 EndK V), ignoring
for now its representation as a matrix (in the case of T 6 K’" we have V K"). V is
a K[x]-module as follows: any g Y0<i<r bixi [[X] acts on V as the endomorphism

Z0<i<r bi Ti End< V. We write f o v f(T)v . V. An important role is played in
this theory by polynomials which annihilate (i.eo, map to 0 6 V) vectors and subspaces of
V. For any v 6 V, define the annihilator Ann(T" v)

_
K[x] of V as the ideal in K[x] of

all f 6 K[x] such that f o v 0 Since K[x] is a principal ideal domain, Ann(T" v) is
generated by a unique monic polynomial in K[x], the minimal polynomial min(T; v) E K[x]
of the vector v 6 V, The subspace Orb(T" v) _c V spanned by v Tv, T:v V is the
cyclic subspace of V generated by v. Orb(T; v) is T-invariant that is, Tw Orb(T" v) for all
w Orb(T; v), and dimOrb(T" w) deg(min(T; v)). For any subspace W __. V, the set of
polynomials Ann(T" W)

___
K[x] which annihilate every vector in W is also an ideal in K[x],

called the annihilator of W. As an ideal, it too is generated by a unique monic polynomial,
the minimal polynomial min(T" W) E K[x] of T on W.

The following very important theorem is shown in Hoffman and Kunze (1971), 7.2,
Theorem 3, and Gantmacher (1990), 7.5,
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FACT 2.1 (cyclic decomposition theorem). Let V be a finite dimensional vector space
over a field K and T EndK V. There exist vectors vi, v2 vk V such that

V V @ V2@oo.(R) V,

where V/= Orb(T; Ui), and

min(T; ui) min(T; Vi (R)... @ Vk) K[xl

forl <i <k.
Given acyclic decomposition of V under T as V V @.. o@ Vk, where Vi Orb(T;

for some vi V for _< < k, j min(T; vi) K[x] is the ith invariantfactor of T for
_< < k. Recall that the companion matrices of the invariant factors are found, in order,

along the diagonal of the Frobenius form of T.
We once again consider T as a matrix in K"", and the relationship between the cyclic

decomposition of K" under T and T’s Frobenius form. Suppose deg f/ di for < <_ k.
The matrix

has the property that S U-ITU is in Frobenius normal form (see, for example, Hoffman
and Kunze (1971), 7.5).

Our algorithm for finding the Frobenius normal form S of a matrix T 6 Knn proceeds
by constructing the matrix U as in (2.1), and then computing S U-TU. To do this
we must somehow find the invariant factors f fk 6 K[x] and an associated set of
vectors vi vk 6 V generating the cyclic components. Unfortunately, such vectors are
very rare, and the approach of choosing them randomly will fail miserably. Ozello (1987)
and Ltineburg (1987) construct them deterministically, but using more time than we allow
ourselves. Our approach will be to choose randomly first a list of vectors w w V.
With high probability these generate a "modular cyclic decomposition" of V (which we define
later), from which the invariant factors and the Frobenius form S of T can be determined. The
vectors w wk are then "purified" to obtain vectors vl v generating the components
of the cyclic decomposition. Our construction follows approximately the geometric proof of
the cyclic decomposition theorem by Gantmacher (1990), Chapter 7 (see also Hoffman and
Kunze 1971), 7.2).

A weaker form of the cyclic decomposition theorem can be stated in terms of modular
T-invariant vector spaces, if W is a T-invariant subspace of V then the space V W, or V
modulo W, is a K-vector space of dimension dim V dim W. For w, w2 6 V we denote by
w + W and w2 + W the images ofw and w2 in V W, respectively, and say wl w2 rood W
when Wl w2 6 W. Since W is T-invariant, V/W has a K[x]-module structure induced
by the action of K[x] on V. Let Tw" V/W --+ V W be T reduced modulo W, carrying
v + W to Tv + W for any v V. Then V/W is a K[x]-module, where f 6 K[x] acts as

f (Tw)" V/ W -- V/ W, and we write f o (v + W) f(Tw)(v + W) f(T)v + W. Thus,
min(Tw" v + W) 6 K[x] is the minimal polynomial of v + W V W in K[x], that is, the
monic f 6 K[x] \ {0} of minimal degree such that f o (v + W) 0 rood W.

An important role is played in the decomposition theory of a vector space by maximal
vectors v 6 V, those satisfying rain(T" v) min(T" V). A proof of the following lemma can
be found in Gantmacher (1990), 7.4.

FACT 2.2. Let V be any vector space over K and T" V .-+ V be a linear map with invariant

factors f f K[x ], where f fi- .for 2 <_ k. There exists a maximal v V such
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that min(T; v) min(T; V) f, andfor all such Vl there exists a T-invariant subspace
V’ c_ V such that V Orb(T; v V’. Furthermore, the invariant factors ofT on V’ are

f2 fe.
The utility of this fact comes in the realization that, for vl and V’ as above, V’ is isomorphic

as a K[x]-module to V/Orb(T" vl). This follows since every element w E V can be written
uniquely as w tb + w’ for some tb E Orb(T; vl) and w’ 6 V’, whence w w’ mod
Orb(T" v). Applying Fact 2.2 recursively to V’ yields a decomposition of V as follows (see
Gantmacher (1990), 7.4).

FACT 2.3 (modular cyclic decomposition). For >_ let wi V and define Vi
Orb(T" wl)+...+Orb(T; wi)and Ti" V Vi --+ V/Vi as T reducedmodulo Vi (with V0 {0}
and To T). Assume that k is the smallest integer such that Ve V, andfor < < k we

have min(Ti_; W + Vi_l) min(T/__; V/Vi_I). Then min(Ti_l; LUg + W/_l) j, the ith
inwtriantfactor ofT on V, for < < k.

If LUl, w, are as in the above theorem, then we say that they generate a modular cyclic
basis

1131, TLUI Ta-w, LU2, TLU2 T& ILU2 LUk, Twe T&-ILUk

for V. Ofcourse the summation V Orb(T; wl)+ .+Orb(T; we) in Fact 2.3 is not direct,
and once we have found w wk, we must somehow "purify" them to get a direct sum.
This is accomplished in 4.

Our approach to finding w w, 6 V is to choose them randomly. This will only
work when #K > n2. When #K < n2, we choose a small extension field " of K such that
#lz: >_ n2. This will be discussed in 5. For the remainder of this section, assume that #K > n2.

LEMMA 2.4. Let W be any vector space of dimension at most n over K, spanned by
u Un W, and let T" W --+ W be a K-linear map. Let L be a subset of K containing at

least n2 elements. Then

Prob min 7"" aiui min(T; W) >_
(a an )L l.<..i <_n

t2

Proof Let y y E W be such that

W Orb(T; Yl) D Orb(T; Y2) @’’ @ Orb(T" y)

is the cyclic decomposition of W with respect to T, where T has invariant factors. For
.< < 1, let gi min(T; Yi) K[x] be the th invariant factor of T, so gilgi-I for

2<i<l.
We choose random elements a an 6 L and assign v <i<n aiui W. In what.

follows we only consider the component of v in Orb(T; y). Let hi I[x] be such that the
component ofui inOrb(T; y) ishi oy, with deghi < degg, for < < 1. The component
of v in Orb(T; y) is then v -’l<i<n aihi o Yl. Let T" Orb(T; y) -+ Orb(T; y) be the
restriction of T to Orb(T; y). Certainly min(T; v) g when min(T" Vl) gl; min(T" v)
must annihilate all of v’s components. When is min(Tt’ v) g ? Let h )--<i< aihi,
so that v h y. Clearly g . v (gh) y 0 so g min(T; vl) divides g. Also,
(gh) yl 0, which is true only when gh 0 mod g. If gcd(h gl) then g -=- 0 mod g,
whence g g. Conversely, if gcd(h, gl) - then g is a proper divisor of g. In summary,
rain(T; v) g if and only if gcd(h, g) 1.

To determine the probability that, for randomly chosen a a,, E L, we have
gcd(l<i< aihi, gl) 1, consider/9 l<i<nxihi I[Xl Xn][X], in the indeter-
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minates x x,,, x. To prove the theorem it is sufficient to show that

Prob
(a an)EL"

cd(p(al an)(X), gl (x)) >_

This is accomplished with the aid of resultants (see van der Waerden (1970), 5.8). The
resultant of p and g, considered as polynomials in x with coefficients in the integral do-
main K[x xn] is a polynomial R 6 K[x xn] of degree at most n. Moreover,
gcd(p(al an)(x), gl (x)) if and only if R(al an) O.

The polynomial R is nonzero as follows. The component of y in Orb(T; y) is y itself,
and hence has minimal polynomial g. Assume Yl Y’j<_n bjuj for some b bn 6 K.
Then Y<_j<_n bjhj rood g, and since each hj has degree less than gl by definition,

Zl<j<n bjhj 1. Thus R(bl bn) :/: O.
We now apply Corollary of Schwartz (1980) to obtain

Prob R(a an) O > > 1--.
(a an)EL #L n

A modular cyclic decomposition is now constructed by simply choosing the generating
vectors "randomly" from V. Actually, since we do not know the number k of invariant factors
beforehand, we choose w Wn 6 V and consider the probability that the first k of these
vectors generate V in the desired manner.

THEOREM 2.5. Let L be a subset of K containing at least n2 elements. For < < n,

randomly choose wi Ln cc_ V and define Vi Orb(T; w) +... + Orb(T" wi) and
Ti" V Vi -- V Vi as T reduced modulo Vi (with V0 {0} and To T). With probability at

least 1/4, for all < < k (where k is the number ofinvariantfactors of T) the th invariant

factor 3 ofT satisfies fi min(Ti_; tO + Vi-.l) min(Ti_; V/Vi-I).
Proof First we note, for < < n, that Vi is a T-invariant subspace, so V/Vi is

well defined as a K[T]-module. We show that for each < < n the probability that
min(T/_; wi + Vi-) min(T/_; V/Vi_) is at least 1/n. To see this, consider the
standard basis e en 6 Knl for V, i.eo, ei is the vector with a one in the ith row and
zeros in all other rows. We have chosen wi Zl<_i<n aiei for some randomly selected
a a,, 6 L. The vectors e + Vi_ en "3

t- Vi.-I span V V/._ and

ll)i-}-Vi-’ Z aiei+ Vi Z ai(ei+ V/__.,) V/Vi_,.
l.<_,i.<_n <i<n

Thus, by Lemma 2.4,

ProbJmin(T/ ,; w, + Vi...,)= min(T/_,; V/Vi._,)} >_ 1-1/n.

The number of components k in the cyclic decomposition is certainly at most n, whence

H Pro, min(T/ ; tO q- V/__l) min(Ti_; V/Vi_) > >
l<i<k wiEL n 4

If all the//)i are chosen correctly then we also know, from Fact 2.3, that j min(Ti_ wi +
V/_) for <i<k.

3. Computing the invariant factors of T on V. Assume now that we are given vectors

w Wn 6 V for V such that w w generate a modular cyclic basis for V, and let
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V/, T/be as in Fact 2.3 for 0 < < k. How do we find k and the invariant factors ft f, ?
We adapt an algorithm of Keller-Gehrig (1985) to accomplish this with O(MM(n)logn)
operations in K.

FACT 3.1 (Keller-Gehrig (1985)). Let T K"X" and u u,, V. Matrices Hi
K’di for < < n with the following properties can be computed with O(MM(n)logn)
operations in K:

(i) YI<i <n di n, where di Il may equal 0for notational convenience;

(ii) for < < n, Hi [uilTui[... [zdi-lui] if di > 0;
(iii) the columns of HI Hi form a basis of the K[x]-module generated by

Ul ui,for < < n (that is, forOrb(T; ul) +... + Orb(T; ui)).
Keller-Gehrig’s (1985) algorithm is essentially an asymptotically fast version of the al-

gorithm of Danilevsky (1937) for computing the characteristic polynomial of a matrix (see
Faddeev and Faddeeva (1963)). Applying Fact 3.1 to the vectors w w,, yields k, bases
for V V, and the degrees of the invariant factors f f. That is, the columns
of .H Hi form a basis for V/ Orb(T; w) + + Orb(T; l/.)i) and deg j di for
< < k. We know di 0 for k < _< n since w w, are assumed to generate V as a

K[x]-module.
Let H [nln2l n] K’ ’, which we call a modular cyclic transition matrix for

T. Combining Fact 3.1 with Theorem 2.5 gives a probabilistic algorithm to find a modular
cyclic transition matrix, which is correct with probability at least 1/4. We summarize this
algorithm below.

Algorithm: FindModCyc

Input: T Knxn, where #K >_ n2 and L is a subset of K with #L > n2;
Output: a modular cyclic transition matrix H [Hll..-IH] 6 K"x" for T,

where Hi [wil ITa-lwi] Ka; for some wi V (1 _< < k);

(1) Choose Wl w,, randomly from Lnl.
(2) Find H [Hll... IH] such that Hi [wil... ITai-lwi] K"a;, where

l<i<k di n

for < < k, the columns of H /4. form a basis of the

K[x]-module generated by Wl wi,

using Keller-Gehrig’s algorithm.

End.

THEOREM 3.2. Let #K > n2. Given T Knxn, the algorithm F+/-ndModCc returns

Wl w V and matrices Hi Knxa for < < k defined as follows:
(i) , <_i <_ di n with di > 0for < < k;

(ii) Hi [wil’" ITa’-lwi]for < < k;
(iii) the columns of H1 Hi form a basisfor V/ Orb(T; wl) +.-. + Orb(T; wi);
(iv) f/ min(T mod Vi.-; wi + V/ ) min(T mod Vi--; V/Vi_)for <_ < k;

i.e., H is a modular cyclic transition matrixfor T. The algorithm is probabilistic, and returns
the correct answer with probability at least 1/4 (it may produce an incorrect answer). It
requires O(MM(n) log n) operations in K.

When H is a modular cyclic transition matrix it determines a change of basis on V under
which T has the form
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(3.1) G H-1TH

92

where C E Kd’ d’ is the companion matrix of fi, the th invariant factor of T for < < k
(see Keller-Gehrig (1985), 5). Each matrix Bi Kti, where ti _<_j <i dj, is zero except
for its last column; suppose this last column is

ltbi (bi, l,0 bi, l,d,-l, bi,2,o bi,z,.- bi,i-l,O bi,i l,di...,

where bijl K for 2 _< < k, < j < i, and 0 < < dj. Under the change of basis
induced by H, the vector eti+j+l G In (the column vector of all zeros except for one in the
(ti + j -+- l)st row) in the basis given by the columns of H is the image of TJ wi in the standard
basis for V.

The column 3 in Bi and the last column (--ai,o --ai,di_l) Kil of Cfi give the
dependency of T wi on Tltvj for _< j _< and 0 < < di by

Get+d H-Tdiwi H--1 (--ail)Tlwi + H-
_

cijlTlwj,
O<l <di <j <i O<_l <dj

whence

Tdi toi -t- Z al Tt ti Z Z Cijl Tl u)J
O<_l <di ..<_j <i O<_l <dj

or more simply

f llOi Z giJ o lloJ’
I.<_j <i

where j -0<l<,i ailxl and gij ’-0_<l<dj Cijlxl with ail, Cijl
, for _< j < and

< < k. Thus fi o wi Vi-, and since it has minimal degree, it is the ith invariant factor
of T on V. Note that by construction, .<_j <.i deg gij < n for all < _< k, a fact which will
be required in the next section.

THEOREM 3.3. Let wl Wn V be a basis for V such that wl wk generate a
modular cyclic basisfor V with f/ min(T/_l wi + Vi-l) being the ith invariantfactor ofT
for < < k and Vi, Ti as in Fact 2.3. Suppose also that we have computed a modular cyclic
transition matrixfor T. Then we can determine k 1%I, f f K[x], and gij I[x]
for < j < < k such that fi o wi Zl<j<i gij (C) Wj with O(MM(n)) operations in K.
Furthermore, Z l<j<i deg gij <_ n for all < < k.

Combining this theorem with Theorem 32 gives a Monte-Carlo-type probabilistic al-
gorithm for computing the Frobenius form of T. Simply use the algorithm Fi.rdEczdCc
to find a modular cyclic transition matrix H 6 I<" for T. With probability at least 1/4
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the companion blocks ofthe the invariant factors f fk 6 K[x of T are along the diagonal
of H-1T H, from which we can construct the Frobenius form S of T. Of course, with positive
probability we will get an erroneous Frobenius form, and since we do not get an invertible
matrix U 6 Knn such that S U-1TU from this procedure, we have no way of verifying
that S is correct. This problem is addressed in the next section.

4. Purifying the modular decomposition. Once again, let w wk 6 V generate
a modular cyclic basis for V, where Vi and T/ are as in Fact 2.3 for 0 < _< n, and f/
min(Ti_; wi + Vi--)isthe ith invariant factor of T on V for < < ko Furthermore, assume
that j c wi Zl<_j<i gij <) toj for some gij ][x] for all < j < _< k. This information
can all be computed with the algorithm of the previous section (see Theorem 3.3), along with
the matrix H defined there, whose columns give a modular decomposition basis for V. In this
section vectors vl vk 6 V are constructed such that

V Orb(T; v) @ Orb(T; v2) @... @ Orb(T; vk),

and f/ min(T" vi) for < _< k. The key fact required is from Hoffman and Kunze (1971),
7.2, Theorem 3, Step 2.

FACT 4.1. lf wi V, and fi, gi) K[x] are as above, then gij for <_ j < < k.
Applying Fact 4.1, assume that gij fihij for some hij K[x] for all < j < < k.

We claim that the vectors vi wi -l.<_j <i hij c) toj V for < < k are the ones desired.
THEOREM 4.2. Let w wk V and Vi Orb(T; w) +... + Orb(T; wi) such that

Vk V and Vg_ V. Also, let j min(T/_; wi + Vi- such that j OWl .<_j <i gij<)wj
and gij fihij for gij, hij K[x] with <_ j < < k. If vi wi -,o_<_j<i hij o wj, then

forl <_i <k,
(i)) min(T; vi),
(ii) V/ Orb(T; v) Orb(T; v2) @-.. @ Orb(T; vi).
Proof. To show (i), note that for any with .<_ < k we have

1.<_j<i

f Wi gij C Wj O.
l<_.j<i

Furthermore, since j is the polynomial of least degree such that fi o wi Vi._, it follows
that j min(T; vi ).

To show (ii), we must show that V/_. ( Orb(T" vi) {0}, or equivalently that if g vi
V/__ then g o vi 0 for any g 6 K[x]o Suppose g o vi V,._ for some polynomial g 6 K[x].
This is true only if g o wi Vi_, since vi =- wi mod Vi-. But fi min(Ti_ ; wi + Vi-),
so j ]g, and g o vi 0. Then Vi_ A Orb(T; l)i) {0} and Vi Vi-l @ Orb(T; l)i). [-]

Note that this theorem does not assume that wt wk generate a modular cyclic basis
for V, only that they generate V as a K[x]-module.

To compute Vl vk, first compute hij gij/fi ][x] for all < j < < k. For
each < _< k we note that Z l<j<i deg gij <_ n, SO we can compute all gij for < j <
with O(M(n)) operations in K. The number k of invariant factors is at most n, so all the gij’S
can be found with O (n M(n)) operations in K.

Computing the hij’s gives a representation of the vi’s in the modular decomposition basis
for V given by the columns of H, not in the original (standard) basis for V. To find vi in the
standard basis, recall

l_<_j <i <... <i O<l <dj
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We compute vi by the matrix-vector product 1) H1] E V, where

1] (--Ci, I, --Ci, l,d2_ --Ci,i_.l, --Ci,i_l,di_. 1, 0 0) E Knl.

All of v vk can now be computed by a single matrix product

with O(MM(n)) operations in K.
THEOREM 4.3. Given wi V and , gij K[x] for <_ <_ k and < j < as above,

we can compute v vk V such that

V Orb(T; v) (9.-. (9 Orb(T; v)

and ] min(T; vi) with O(MM(n) + nM(n)) operations in K.

5. Computing the Frobenius form. The complete algorithm for computing the Frobe-
nius normal form of any T 6 K"n, where #K > n2, can now be stated. A modification which
works over smaller fields is presented in what follows.

Algorithm: FrobeniusForm

Input: T Knxn where #K > n2"

Output: The Frobenius form S 6 Kn of T,
an invertible U 6 K" such that S U-ITU;

(1) Using FindModCyc, compute a modular cyclic transition matrix
H [H]... IH] K’, where

Hi [wilTtoil"" [Tdi-lwi] (nd, for <i < k,
the columns of HI Hi span the K[x]-module generated by the vectors

wl wi for <i <k;
An erroneous computation of H will be detected in step (2) or (4).

(2) If H is not invertible then quit, returning "failure";

(3) Compute ]], gi) K[x] from G H-ITH such that fl o wl 0 and j] owi

Y <_j <i gij o wj for 2 < < k and < j < i;

(4) If f/{ J--1 for some 2 < _< k, or,L. { gij for some _< j < and _< _< k then
return "failure" and quit;

(5) Compute hij gij/fi for < j < and _< _< k;

(6) Compute vi wi Y<_j<i hij o tvj for < _< k;

(7) Compute the matrix U 6 K"n as in 2.1;

(8) Output the Frobenius form S diag(Cf Cti) and the transition matrix U (where
Ct is the companion matrix of }} for _< _< k).

End.

THEOREM 5.1. Let T K over anyfield K with at least n2 elements. With probabili.
at least 1/4, FrobeniusForm returns the Frobenius form S of T and an invertible U
K" such that S U- TU. Otherwise the algorithm reports "failure" In either case

O(MM(n) log n + nM(n)) operations in K are sufficient.
Proof First we prove the correctness of the output. We employ the algorithm

FindModCyc, analyzed in Theorem 3.2, to compute a modular cyclic transition matrix
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H, which will be correct with probability at least 1/4. Assume for now that H is computed
correctly. By Fact 4.1 we know filgij for < j < and < < k, and certainly f/[ fi-I for
2 < < k. Theorem 4.2 guarantees that v vk generate the cyclic composition factors of
V, and Gantmacher (1990), 7.5.2, shows that S U-TU is in Frobenius normal form.

If H is incorrectly computed, the algorithm reports failure in step (2) or (4). Certainly
if H is singular then it is incorrect, and this is detected in step (2). Otherwise, assume that
the tests in step (4) are passed, but w w, do not generate a modular cyclic basis. By
Theorem 4.2, V Orb(T; v) @...@Orb(T; v,). Let/> be the smallest integer such that

ft ft, where ft is the the actual/th invariant factor of T on V. In the vector space

Orb(T; vt) @... @ Orb(T; vk) V Vt_

there exists a vector w e I? with min(7)_; w + V/_I) fz (where Tt_l" V V_ V Vt_
is T reduced modulo Vl-). Since fj J for < j _< k, we know j min(T_; Vl) f, a
contradiction.

By Theorem 3.2, step (1) requires O(MM(n) log n) operations in K. Using Theorem 3.3,
steps (2)-(4) require O(MM(n)) operations in K (H is singular exactly when its last column
is zero). By Theorem 4.3 steps (5) and (6) require O(MM(n)) operations in K to complete.
The matrix U in step (7) can be found using Fact 3.1, with O(MM(n)logn) operations
in K. 0

The algorithm Froben+/-usForm requires that the field K contain at least n2 elements.
If this is not the case, and q #K < n2, the chances of choosing Wl wk correctly may
be very low. To remedy this we construct a field extension F of K containing n2 elements.
We then run the algorithm FrobeniusForm on T e F". By Theorem 5.1 this correctly
returns the Frobenius form S 6 Fn and an invertible U 6 F: such that S U-ITU with
probability at least 1/4. However, the Frobenius form of T is a unique rational invariant of
T, regardless of the field in which the elements of T are embedded. Thus S 6 K x,, and this
is precisely what we are looking for. The only drawback to this technique, aside from the
slightly increased cost of operations in F, is that U is not necessarily.a matrix over K.

To construct the field F
_

K, we use the deterministic algorithm of Shoup (1993) to find a
polynomial K[x] of degree [2 logq n]. Shoup’s algorithm requires O~(n) operations in K.
Let F K[x]/(Tt), a finite field with at least n2 elements, where each element is represented by
a polynomial of degree less than V2 logq n1 Elements of K are simply represented as constant

polynomials, giving a trivial embedding of K into F. Additions and subtractions in F require
O(logq n) operations in K, while multiplications in F require O(M(logq n)) operations in K
and divisions in F require O(M(logq n) log logq n) operations in K.

THEOREM 5.2. Let T Knn, where q #K < n2, The modification of
F"oben+/-usForm described above computes the Frobenius form S Kn’’ of T, and an
invertible matrix U Fn" such that S U-TU. The field F K[x]/(Tt) is an ex-
tension of K, given by an irreducible monic K[x] of degree i21Ogq n]. The algo-
rithm succeeds with probability at least 1/4, and otherwise reports "failure" It requires
O((MM(n) logn + nM(n)) M(logq n)log logq n) or O~(MM(n)) operations in K.

6. A processor-efficient parallel algorithm. In this section we exhibit a processor-
efficient parallel algorithm for finding the Frobenius form of a matrix. Recall that computing
the Frobenius form of a T 6 K"" is at least as hard as matrix multiplication, since from the
Frobenius form we can quickly compute the determinant of T, which is known to be as hard
as multiplying matrices (see Baur and Strassen (1982)). We demonstrate that our algorithm
for computing the Frobenius form of any T e K"’’ can be implemented in a processor-
efficient manner and can be executed in (Las Vegas) time (logn) (1) using O(MM(n)) pro-
cessors.
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Actually, the only part of the algorithm FrobeniusForm which requires modification,
other than specifying an implementation technique for each step from the ’toolkit" of known
parallel algorithms, is the subroutine FindModCyc used in step (1). The routine of Keller-
Gehrig’s (1985), used in step (2) of FindModCyc in 3, is the heart of his asymptotically fast
version of Danilevsky’s (1937) algorithm for finding the characteristic polynomial of a matrix.
It is not immediately clear that Keller-Gehrig’s algorithm can be implemented in a processor-
efficient manner. In this section we exhibit fast parallel versions of Keller-Gehrig’s algorithm
for computing the characteristic polynomial of a matrix and of our routine FindModCyc,
both of which are processor-efficient. We then give the implementation details of a processor-
efficient version of FrobeniusForm.

We begin by collecting a number of useful parallel algorithms which we require as sub-
routines.

FACT 6.1. Suppose K is a field with characteristic p.
(i) Suppose that there is a bilinear algorithm which, given A, B K ", computes AB

with O(MM(n)) operations in K sequentially (for a definition ofbilinear algorithm
see Borodin and Munro (1975)); then there exists a processor-efficient parallel algo-
rithm to compute AB on O(MM(n)n) processors in time O(log n)for any > O.

(ii) Suppose #K > n and A Kx" is invertible. If p > n or p O then we can
compute A- with O(MM(n)) processors in time O(log2 n). tf 2 < p < n, there is
a Las-Vegas-type probabilistic algorithm to compute A- with time O(log n log p)
on O(MM(n)) processors.

(iii) If #K > n, then given vectors v Vm Kn, where m _< 2n, we can find the
lexicographically first subset ofv Vm, whichform a basis for the vector space
spanned by v Vm. Ifp > n or p O, this can be accomplished with O(log4 n)
time on O(MM(n)/ logn) processors. If2 < p < n, this can be done with a Las
Vegas algorithm requiring time O(log n log p) on O(MM(n)/ log n) processors.

(iv) Given two polynomials f, g e K[x] ofdegree at most n, we can compute fg in time
O(logn) with O(n loglogn) processors.

(v) Given two polynomials f, g K[x] ofdegree at most n, we can compute the unique
Q,R K[x] such that deg R < degg and f Qg + R in time O(logn) on
O(n log n) processors.

Proof Part (i) is shown by Pan and Reif (1985) Theorem A.1. A processor-efficient
algorithm for matrix inversion is given by Kaltofen and Pan (1991) and Kaltofen and Pan
(1992). Eberly (1991) shows (iii). The fast polynomial multiplication algorithms of Cantor
and Kaltofen (1991) also have parallel time and processor bounds as stated in part (iv). Part
(v) is shown by Bini and Pan (1992).

We make the assumption, based on Fact 6.1 (i), that there exists an algorithm which requires
time O(logn) on O(MM(n)) processors to multiply two n x n matrices over a field K.

Assume that we are given vectors u Un V. As in Fact 3.1, we want to find matrices

Hi 6 K"a for _< _< n with the following properties"

(i) .<i<,, di n, where di 6 N may equal 0 for notational convenience;

(ii) for < < n, Hi [ui Tui Ta-ui] ifdi > 0;

(iii) the columns of H Hi form a basis of the K[x]-module generated by Ul ui
forl <i <n.

We compute H [H H,,] by computing matrices H(, H
in sequence, wherer log2n], H( T, and H(r) H. At step 0 we have H()
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[H) H,})], where Hi
() is the th column of T for < < n. The idea is that at the

end of stage j we will have computed H(j) [Hj) H,}J)], where

=[ Td) ] K,,d)Hi
(j)

Ui Tui -lui E for .<_ < n.

Here d,(j) ()

lies,is the smallest integer less than 2 such that T, u in the vector space spanned by
(j)

Ui, Tui T, -1
Ui along with all the columns of H(J), Hi(J_)1. If Ui, Tui T bl

and the columns of H(j) Hi(J) are linearly independent then dj) 2j. This can be
expressed more concisely in the language of modular vector spaces. Let Vi(j] be the vec-

tor space spanned by the columns of Hj) Hi(J). Then dj) is the smaller of 2 and
dim Orb(T mod V];u mod Vi)). Recall that we allow dj) to be zero, meaning that ui is

linearly dependent on the columns of Hj), Hi) Since 2 _> n, it is clear that H(r) will
have the desired properties.

To find H(j) after computing H(j-) (for _< j _< r), we first compute matrices

J(J), J}J) as follows:

ji(: { U::-)
[Hi(J-I) T2: Hi(j-l)]

if Hi
(j-l) has fewer than 2J columns

otherwise.

This doubles the number of iterates of ui under T if this is required. Note that if Ttui is
T-I Tt+linearly dependent upon Vi together with u i, Tui ui then so is U io Thus, to find

dlj) d(nj) we identify and mark the lexicographically first set of n linearly independent
columns of

The last column marked in Ji
(j) is indexed by d{j). If none of the identified columns are in

Ji
(j) for some then d{j) 0. Now let Hi

(j)
E K" d,. consist of those columns of Ji

(j) marked
in this process.

This can be implemented in a processor-efficient manner using Fact 6.1. At stage j we

compute T2 T2i- T2/-; then we compute J(J) as described above from the product
T2 H(j-l). The lexicographically first subset of the columns of J(J) are identified with the
algorithm of Eberly (1991) (Fact 6.1(iii) in this paper), and H(j) Kn is constructed as
above. This is repeated r logz n] times.

THEOREM 6.2. If p > n or p 0 we can compute H K"" and d d, 6 N as in
Fact 3.1 in time O(log4 n) on O(MM(n)) processors. If2 <_ p <_ n, this algorithm requires
time O(log5 n log p) on O(MM(n)) processors.

Combining Theorem 6.2 with Theorem. 2.5 allows us to implement the algorithm
Fi.ndModCyc in 3 in a processor-efficient manner.

THEOREM 6.3. Let#K > n2, Given T K, the algorithm F:i.ndModCyc, implemented
in a processor-efficient manner as described above, returns w wk V and matrices

Hi K"xa; for < < k defined asfollows:
(i) l<i<k di n with di > 0for < <_ k.

(ii) Hi [wil ITa‘-I wi]for < <_ k.
(iii) The columns of Hi Hi form a basisfor Vi Orb(T" wl) +,o. + Orb(T; wi),

(iv) f/ min(T mod Vi-,.; wi + Vi_) min(T mod V/._" V/Vi_l)for <_ <_ k.
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The algorithm is probabilistic and returns the correct answer with probability at least l/4
(it may produce an incorrect answer). If p > n or p O, it requires time O(log4 n) on

O(MM(n)) processors. If 2 <_ p < n, it requires time O(log5 n/log p) on O(MM(n))
processors.

We now examine the parallel cost of the algorithm Fr obeni:tsForm.
THEOREM 6.4. The Las Vegas algorithm FrobeniusForrn can be implemented in

parallel in a processor-efficient manner. Let T Kn’, where K is a field with #K >_ n 2.
(i) If p > n or p 0 then the algorithm Frobeni.usForrn requires time O(log4 n)

on O(MM(n)) processors.
(ii) If2 < p < n then the algorithm FrobeniusF.’orm requires time O(log5 n log p)

on O(MM(n)) processors.
Proof. The statement of the parallel algorithm does not vary from the description in

5. Only the manner in which each step is executed changes, and we address these changes
now. Step (1) is accomplished using the processor-efficient implementation of FindModCyc
described in Theorem 6.3. The matrix H is singular exactly when its last column is zero,
and this can be tested with constant time and work to perform step (2). As in the sequential
algorithm, the coefficients of ft andgij for2 _< _< k and _< j < are read from
G H-TH as in Theorem 3.3, and G can be computed within the desired parallel time
and processor bounds by Fact 6.1. Steps (4) and (5) can be done using processor-efficient
polynomial division algorithms, as specified in Fact 6.1 parts (iv) and (v). Step (6) can be
performed by a single matrix product as in Theorem 4.3, and so can be done in a processor-
efficient manner. Applying Theorem 6.3 gives us U in step (7). [3

When #K < n2, similar theorems hold with running times and processor requirements
multiplied by a small power of logo n.

THEOREM 6.5. Let K be a field with q < n2 and T K"x’. We can implement the
algorithm FrobeniusForm, as modified in Theorem 5.2, in a processor-efficient manner.

(i) Ifp > n or p O, it requires time O(log4(n) log logo n) on O(MM(n) M(logq n))
processors.

(ii) If2 <_ p < n, itrequirestime O(logS(n) loglogq(n)/log p)on O(MM(n).M(logqn))
processors.

Proof. The proof is the same as that of Theorem 6.4 except that we work in an exten-
sion F of K of algebraic degree [logo n] over K, which does contain O(n2) elements (see
Theorem 5.2). Each operation in F requires O(loglogq n) operations in K on O(M(logq n))
processors. 71

Theorem 6.3 also has the following important corollary, essentially a processor-efficient
version of the algorithms of Danilevsky (1937) and Keller-Gehrig (1985) for computing the
characteristic polynomial of a matrix.

COROLLARY 6.6. There is a processor-efficient Las Vegas algorithm for computing the
characteristic polynomial f K[x] of any matrix T Knxn over anyfieldK. If p >_ n or
p O, we can compute f in time O(log4 n) on O(MM(n)) processors. If2 < p < n, this
algorithm requires time O(log n log p) on O(MM(n)) processors.

Proof We first find a matrix H 6 K" x,, as in Theorem 6.2 such that G H-1TH is as
in (3.1). The inverse of H and product f f can be computed within the desired time and
processor bounds using the methods described in Fact 6.1. 71

Note that the characteristic polynomial of T 6 K"n can also be computed as the product
of the invariant factors of T, which can be read from the Frobenius form of T. The above
corollary is a slight improvement on this for small fields. It relies on the fact. that we do not
need H--TH to be in Frobenius form; the product of the polynomials whose companion
matrices are on the diagonal of H-TH always equals the characteristic polynomial of T.
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7. Fast evaluation of matrix functions. We now consider applications of our algorithm
for finding the Frobenius form to evaluating polynomials at matrices, determining matrix
similarity, and finding the minimal polynomial of matrices. New algorithms requiring almost
optimal time are presented. We also give lower bounds for the problems of evaluating a
polynomial at matrix, and finding the minimal polynomial of a matrix, which matches our
upper bounds within polylogarithmic factors.

Evaluating polynomials at matrices. Computing the Frobenius form S 6 K of a
matrix T 6 K’’n allows quick evaluation of g(T) Kn for any polynomial g 6 K[x]. The
problem of evaluating polynomials at matrices is certainly not new. Paterson and Stockmeyer
(1973) give an algorithm to evaluate a polynomial g 6 K[x] at any point in a ring extension
.t of K, which requires O (x/7) nonscalar multiplications in .l, where r deg g. They apply
their algorithm to evaluate g(T) at any T 6 K" with O(MM(n)V/) operations in K (see
also Brent and Kung (1978)).

Theorem 7.2 gives a substantial improvement over this, especially when r is large, allow-
ing evaluation of g(T) with O~(MM(n) + r) operations in K. The well-known observation
required is that if S U-TU for some invertible U 6 Knx", and S diag(Cf, Cfk as
in 1.1, then

g(T) U g(S) U-1 U diag(g(Cf,) g(Cf)) U-.
Furthermore, each g(Cfi) can be evaluated quickly once g mod j has been computed, and
g(S) can be computed with O (n2) operations in K when deg g < n.

LEMMA 7.1. Let C K’’ be the companion matrix ofh K[x], where deg h s. Also,
let g K[x] have degree less than s. Then we can compute g(C) with O(s2) operations in K
or in parallel time O(logs)on O(sM(s)) processors.

Proof The vector space K’ has a K[x]-module structure, where any f 6 K[x] acts
on K" as f(C) Ks’’. As a K[x]-module, K’’ is isomorphic to K[x]/(h)--simply
map v (b0 b.,._.) G Ksxl to 99(V) }-O<_i<s bixi mod h. It is easy to show that
xp(v) =- p(Cv) mod h, and therefore that f 0(v) p(f(C)v) for any f 6 K[x]. In
particular, qg(ei) xi-l, where ei G Knx is zero except for a one in the ith row, and hence
p(g(C)ei) =- g xi- mod h for < < s. Since g(C)ei is the ith column of g(C), we can
find g(C) by computing g x mod h for 0 _< < s. This can be accomplished with O(s)
operations in K by realizing that computing C. v for any v 6 K’ , and hence multiplying by
x modulo h, requires only O(s) operations in K (C has only 2s nonzero entries). It can be
done in time O(log s) on O(sM(s)) processors using the polynomial multiplication algorithm.
of Cantor and Kaltofen 1991).

THEOREM 7.2. Given g K[x] ofdegree r and T K’’, we can compute g(T)
with a Las-Vegas-type probabilistic algorithm requiring O(MM(n)logn + nM(n) + M(r))
operations in K. Here K is anyfield with at least n2 elements.

Proof. First compute the Frobenius form S 6 K’’’’ of T and an invertible U 6 F"’’
such that U-TU S. This requires O(MM(n)logn + nM(n)) operations in K using
Theorem 5.1. For each invariant factor f/ 6 K[x] of T, determine gi g mod fi, where
deggi < degj for _< < k. This can be done with O(M(r) + nM(n)) operations
in K by first reducing g modulo f, since all the other invariant factors divide f. Next
compute the matrices gi (C,i) g(C,) for < < k. Using Lemma 7.1 above, this can
be accomplished with O(n) operations in K. Now g(S) diag(g(Cf,) g(Cf)) and
g(T) Ug(S)U-.

A more general theorem can be obtained using arithmetic circuits or straight-line programs
(see Aho, Hopcroft, and Ullman (1974), 1.5 or von zur Gathen (1986) for a formal definition).
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This model gives a very natural computational representation of rational functions, nicely
formalizing and generalizing such notions as sparseness and ease of computation. Briefly, an
algebraic circuit or straight-line program over a field K consists of a finite list s l, s2 Sm
of statements, each of the form ai bi op/ci, where ai is a variable (assigned only at step i),

oPi E {+, --, x,/}, and each of bi, Ci is either equal to aj for some 1._< j < i, a constant
in K, or the input x. The output is the value of am upon evaluation of each of the steps in
sequence (this semantics glosses over a number of subtleties--see von zur Gathen (1986)).
The sequential cost of is m. To define the parallel cost, note that defines a directed acyclic
graph on the nodes x, sl sk, where there is an edge from si to sj (or x to sj) if sj references
ai (resp., x). The parallel cost is the depth or maximum path length from the node x to the
node Sm.

Now let v be an algebraic circuit over K. Let F be an extension ring of K, so can be
thought of as computing a function from F -+ F. If fe has length m and depth d, then we can
evaluate O at a point a E F on a sequential arithmetic RAM over ]z with O (m) operations
in I::, or on an arithmetic PRAM over F in time O(d) on O(m) processors. For straight-line
programs we obtain a theorem similar to Theorem 7.2.

THEOREM 7.3. Let be a straight-line program over K as described above with length
rn and depth d. Assume that K has characteristic p and #K >_ n2. For any T K xn, we can
evaluate at T in time asfollows:

(i) with O(MM(n) logn + (n + m)M(n)) operations in 1( sequentially;

(ii) in parallel time O(log4 n + dlogn) when p > n or p O, or O(log5 n/logp +
d logn) when 2 <_ p < n, on O(MM(n) logn + (n + m)M(n)) processors.

The algorithm is of the Las Vegas type, returns the correct answer with probability at least
1/4, and otherwise reports "failure."

Proof First compute the Frobenius form S 6 Kn" of T, and an invertible U 6 ]z,
such that U- TU S. Assume that S diag(Cf Cf), where fl fk 6 K[x] are
the invariant factors of T, and CU, Cfk are their respective companion matrices. Then
evaluate at x mod fl in the ring K[x]/(f). If this evaluation fails, then we report that the
circuit is undefined at T. Otherwise, assume the result of this evaluation yields h mod f
for some h E K[x]. Next compute hi =-- h mod j for _< < k. The final result is then
U-diag(h(Cf,) hk(Cfk))U 6 K"’. Correctness is clear from the ring-isomorphism
between K[T] and K[x] mod fo

The cost of the algorithm is measured as follows. Computing the Frobenius form requires
O(MM(n) log n+nM(n)) operations in K using Theorem 5.1. In parallel, we can use Theorem
6.4, which requires O(log4 n) time on O(MM(n)) processors when p > n or p 0, or time
O(log n log p) on O(MM(n)) processors when 2 _< p < n. We can evaluate at x in
([x]/(f) with O(m. M(n)) operations in K sequentially, or time O(d log n) on O(mo M(n))
processors in parallel. The time required by the remaining steps is dominated by the time
required by these first two.

As an application of this straight-line program evaluation technique we consider com-
puting high powers of matrices, an operation performed in some cryptographic systems
(see, for example, Chuang and Dunham (1990)). Using linear recurrences and companion
matrices to compute powers of matrices is certainly not new; it dates at least to Ranum
(1911).

COROLLARY 7.4. Given s > 0 and T K’’’’, we can compute T [(nxn with a
Las-Vegas-type probabilistic algorithm requiring O(MM(n)logn + (n + logs)M(n)) or

O~(MM(n) + n log s) operations in K, where K is anyfield with at least n2 elements.
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Proof. The repeated squaring method of computing high powers of elements in any group
yields a straight-line program of depth and length O(log s). Apply Theorem 7.3 to obtain the
result.

We now summarize the above results for fields with fewer than rt2 elements. These follow
immediately from the use of Theorems 5.2 (sequential) and 6.5 (parallel) instead of Theorems
5.1 and 6.4, respectively.

THEOREM 7.5. Let K be anyfield with q < n2 elements and characteristic p, T K’’x’,
and g be the smallest extensionfield ofK containing n2 elements. Las-Vegas-type probabilistic
algorithms exist asfollows:

(i) Given g K[x] ofdegree r, we can evaluate g(T) Knx" with O((MM(n) log n +
nM(n)) M(logq n) log logq n + M(r)) or O ~(MM(n) + r) operations in l< sequen-
tially. In parallel we can do this in time O(log4 n log logq n + log r) when p 0

or p > n, or in time O(logSnloglogqn/logp / logr) when 2 < p < n, on

O(MM(n)M(logq n) + M(r)) processors.
(ii) Given a straight-line program fa with length m and depth d, we can evaluate ga at

T with O((MM(n)logn + nM(n)).M(logqn)loglogq n + mM(n))operations in

K. In parallel we can do this in time O(log4 nloglogqn + dlogn) when p 0

or p > n, orin time O(logSnloglogqn/logp + dlogn) when 2 < p < n, on

O(MM(n)M(logq n) + rn M(n)) processors.

A lower bound on evaluating polynomials at rnatriees. In this subsection we show
that evaluating a nonlinear polynomial at a matrix is at least as hard as matrix multiplication.
Specifically, if g 6 K[x] has degree r > 2 and we can evaluate g(T) at any T 6 Knn with
at most t(n) operations in K, then we can multiply two n x n matrices over K with O(t(n))
operations in K. We make a technical assumption about the cost function t" IR>0 --+ IR>0:

Va lR>0 Vb ]Re1 b2t(a) <_ t(ab) <_ b3"St(a).

The problem of evaluating a polynomial at a matrix has a trivial lower bound of (n2) oper-
ations in K and, as discussed above, a deterministic upper bound of O (n3s) operations in K,
making this assumption reasonable.

We will assume here that #K > r 1. A similar argument is presented in Giesbrecht
(1993) for smaller fields. Let A, B 6 Kn". We show how to use an algorithm for evaluating
g at a matrix to multiply A and B. Consider the matrix

In A On ) K3nX3nT On C/n B
0,, 0,, L,

where c 6 K and 0n, I,, 6 K"n are the zero and identity matrices, respectively.
LEMMA 7.6. For j > 1,

TJ=

In ( i<_j ci) ,A ( < (j-i-1)ci) .AB
0_< \0_<i_.j--2

O 0 I,,

G 3n x3n.
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Proof. We proceed by induction on j. Clearly the lemma is true for j 1. Assume the
lemma holds for j- (we assume j >_ 2). Then

L, A 0n
T T. Tj-l- On Cln B

On On In

(In ( < ci)’A (<< (j-i--2) ci) ABo.<.i_j-2 \o_i_j-3

o<_i .<..j-2

\ On On I,,

Let. C Inxn be the top right n x n block of g(T). If g Yo<isr bixi, then

O<_i _<_r O<j_<.i- 2

zi(Ei+2<j<_r(j 1)bj) 6 K[z] and z is an indeterminate. Sincewhere h Z0<i<r-2
the coefficient of zr-2 in h is br :/: 0, we know deg h r 2. Now, we have assumed that
#K > r 2, so there exists a c 6 K such that h(c) :/: 0 because h has at most r 2 roots.
Such a c can be found by evaluating h at r distinct points in K, and using fast multipoint
evaluation (see Aho, Hopcroft, and Ullman (1974), 8.5), it can be found with O(M(r) log r)
operations in K. Now AB h(c)-C, which can be computed with an additional O(t(n))
operations in K.

THEOREM 7.7. Let g K[x] have degree r >_ 2. Suppose we can evaluate g(T) for any
matrix T K x,, with (n operations in K. lf#K >_ r we can multiply two n x n matrices
with O(t (n) + M(r) log r) operations in K.

In fact, for any given n, we need only compute a single c 6 K such that h(c) O. After
such a c has been found, evaluating g at any matrix in K"xn requires only O(t(n)) operations
in K.

8. Computing the rational Jordan form. The rational Jordan form of a matrix T
K " is a generalization of the usual Jordan form. Whereas a Jordan form of T exists only
if K contains all eigenvalues of T, the rational Jordan form is a matrix in Kn’. The eigen-
values of T, which may generate an algebraic extension of K of exponential degree over K,
are replaced by the companion matrices of their minimal polynomials in K[x ]. For any monic
irreducible g K[x] of degree r and any m > 0, define the rational Jordan block j(gm)
Kmrmr as
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(8.1) jgm)
0

0
Kmrxmr,

where lr is the r x r identity matrix and Cg Krxr is the companion matrix of g. It is easily
shown that both the minimal and characteristic polynomials of j(m) are equal to gm 6 K[x]
(see Lemma 8.1 below). Any T Kn" is similar to its rational Jordan form, a matrix
Q diag(Q, Q2 QI) Knxn, where QI, Ql are rational Jordan blocks. Note that
when all eigenvalues of T lie in K, then Q is in fact the usual Jordan form of T. The rational
Jordan form is unique up to the order of the (rational) Jordan blocks, as is the usual Jordan
form. Rational forms akin to the rational Jordan form were investigated at least as early as
Frobenius (1911). Kaltofen, Krishnamoorthy, and Saunders (1990) exhibit fast probabilistic
parallel algorithms for a somewhat different rational Jordan form, as well as a "symbolic
Jordan form" of a matrix. Roch and Villard (1994) demonstrate fast deterministic parallel
algorithms, in the complexity class NC3, for the symbolic Jordan form of a matrix.

Let K be any field with at least n2 elements. The problem of finding the rational Jordan
form Q Knxn of T e Knxn is reducible, with O(MM(n) logn + nM(n)) operations in K, to
factoring a single polynomial in K[x] of degree at most n, namely, the minimal polynomial of
T which is found from the Frobenius form of T. The necessary observation is that once we
know the Frobenius form of T and the complete factorization of its minimal polynomial f,
we can immediately determine the rational Jordan form of T.

LEMMA 8.1. Let g K[x] be monic and irreducible ofdegree r, and m .>_ 1. The rational
Jordan block .l (m) Kmrxmr has minimal polynomial g,n.-g

Proof If Cg Krxr is the companion matrix of g, then K[Cg] is a field isomorphic to L
K[z]/(g) for an indeterminate z (see Lidl and Niederreiter (1983), 2.5). This isomorphism
is realized by mapping Cg - z mod g and can be extended to an isomorphism of matrices in
K[Cg]mx’n with Lmxm. Observe that j;,n) e K[Cg]’nxm and its image j(gm) e Lmxm is a Jordan
block with its eigenvalue ?, z mod g on the diagonal and ones on the superdiagonal. The
minimal polynomial of fig(m) is (x y)m 6 L[x], so the minimal polynomial of j(g,n) in K[x]
is the multiple of (x ,)m in K[x] \ {0} of lowest degree. This is precisely g,n.

LEMMA 8.2. Let f K[x] be monic ofdegree n and CT K " be the companion matrix

off. lff g’ g],n.fordistinctmonic irreducible g g,. K[x] andm m > O,
then Cf has rational Jordanform B diag(Jg )

Proof. It is well known that the minimal polynomial of a block diagonal matrix is the
least common multiple of the minimal polynomials of its blocks. Thus, min(B; Kn)

el _milcm(g g,ed) g ...gs f sincetheminimalpolynomialof.l(ei)isgi forl < < s
by Lemma 8.1. Since deg f n and f is the minimal polynomial of B, B is similar to the
companion matrix Cf of f.
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THEOREM 8.3. Suppose T K’’x" has invariantfactors fl fk K[x], where 3’) has
companion matrix Cj;. K4 x4, with deg fi di for <_ < k. If Bi K44 is the rational
Jordan form of Cfi for <_ <_ k, then Q diag(B1 Bk) e K"" is the rational Jordan
form ofT.

Proof By Lemma 8.2 there exists a nonsingular Pi K44 such that Bi Pi-Cf Pi
for < < k. The matrix P diag(P P) K’’n satisfies Q P-TP, and Q is in
rational Jordan form. [3

THEOREM 8.4. Let K be anyfield with at least n2 elements. Given T K n, there is a Las
Vegas reduction from the problem offinding the rational Jordanform Q K"xn of T and an
invertible P K " such that Q P-l TP to the problem offactoring a single polynomial
in K[x] ofdegree at most n (namely, the minimal polynomial f K[x] ofT). This reduction
requires O(MM(n) log n + nM(n)) or O~(MM(n)) operations in K.

Proof We find the Frobenius form S 6 Kn" of T and an invertible U0 6 Knx,, such
that U TUo S using the algorithm Froben+/-usFoacm. We factor the first invariant factor
f 6 K[x] (determined by the Frobenius form and identical to the minimal polynomial of T)
and construct the rational Jordan form Q 6 Kn of T, using Theorem 8.3. An invertible
UI G K"x’ such that U QUt S is constructed using FrobeniusForm (we know Q
is similar to S by its construction). Then Q UUTUoU{- and P UoUI satisfies
Q p-1Tp. [3

To find the rational Jordan form of T 6 Kn when K has fewer than n- elements, we
embed K into a slightly larger field F to find the Frobenius form of T, using Theorem 5.2. As in
Theorem 5.2, F K[x]/(O), where 6 K[xl is monic and irreducible of degree 2 logq hi.

THEOREM 8.5. Let K be afield with q #K < n2. Given T K"x, there is a Las
Vegas reduction from the problem offinding the rational Jordan form Q K" of r and
an invertible P Fn, such that Q p-1T p, to factoring a single polynomial in K[x] of
degree at most n (namely, the minimal polynomial f K[x] of T). This reduction requires
O((MM(n) logn + nM(n)) M(logq n) loglogq n) or O ~(MM(n)) operations in K.

Using the Las Vegas algorithm of Berlekamp (1970) for factoring polynomials over finite
fields, we obtain an algorithm for computing the rational Jordan form of a matrix, given only
that matrix.

COROLLARY 8.6. Let K be afinitefield ofsize q and T K"n. The rational Jordanform
ofT can be computed by a Las Vegas algorithm with O(MM(n) logn + nM(n) + n logq)
or O~(MM(n) + n logq) operations in K if#K > n2, and O((MM(n) logn + nM(n))
M(logq n) log logq n + n log q) or O~(MM(n) + n log q) operations in K if#K < n.

Acknowledgment. The author thanks Joachim von zur Gathen and Erich Kaltofen for
their enthusiasm and help while writing this paper.
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DYNAMIC GRAPH DRAWINGS: TREES, SERIES-PARALLEL DIGRAPHS, AND
PLANAR ST-DIGRAPHS*

ROBERT F. COHENt, GIUSEPPE DI BATTISTA:I:, ROBERTO TAMASSIA, AND IOANNIS G. TOLLIS

Abstract. Drawing graphs is an important problem that combines elements of computational geometry and
graph theory. Applications can be found in a variety of areas including circuit layout, network management, software
engineering, and graphics.

The main contributions of this paper can be summarized as follows:
We devise a model for dynamic graph algorithms, based on performing queries and updates on an implicit

representation of the drawing, and we show its applications.
We present efficient dynamic drawing algorithms for trees and series-parallel digraphs.

As further applications of the model, we give dynamic drawing algorithms for planar st-digraphs and planar
graphs. Our algorithms adopt a variety of representations (e.g., straight line, polyline, visibility) and update the
drawing in a smooth way.

Key words, graph drawing, dynamic algorithms, data structures, layout, trees, series-parallel digraphs, planar
graphs

AMS subject classifications. 68Q20, 68P05, 05C85, 65Y25

1. Introduction. Drawing graphs is an important problem that combines elements of
computational geometry and graph theory. Applications can be found in a variety of areas
including circuit layout, network management, software engineering, and graphics. For a
survey on graph drawing, see [7]. While this area has recently received increasing attention
(see, e.g., [3], [11], [17], [18], [24], [27], [35]), the study of drawing graphs in a dynamic
setting has been an open problem. Previous work [28] only considers trees and presents a
technique that restructures the drawing of a tree in time proportional to its height, which is
linear in the worst case.

The motivation for investigating dynamic graph drawing algorithms arises when very
large graphs need to be visualized in a dynamic environment, where vertices and edges are
inserted and deleted and subgraphs are displayed. Several graph manipulation systems allow
the user to interactively modify a graph; hence, techniques that support fast restructuring of
the drawing would be very useful. Also, it is important that the dynamic drawing algorithm
not alter drastically the structure of the drawing after a local modification of the graph. In fact,
human interaction requires a "smooth" evolution of the drawing.
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In this paper we present dynamic algorithms for drawing planar graphs under a variety of
drawing standards. We consider straight-line, polyline, grid, upward, and visibility drawings
together with aesthetic criteria that are important for readability, such as the display of pla-
narity, symmetry, and reachability. Also, we provide techniques that are especially tailored for
important subclasses of planar graphs such as trees and series-parallel digraphs. Our dynamic
drawing algorithms have the important property of performing "smooth updates" of the draw-
ing. In what follows we use n andm to denote the number ofvertices and edges ofa given graph.

1.1. Definitions. A drawing 1-’ of a graph G maps each vertex of G to a distinct point
of the plane and each edge (u, v) of G to a simple Jordan curve with endpoints u and v. We
say that 1-" is a straight-line drawing if each edge is a straight-line segment; I" is a polyline
drawing if each edge is a polygonal chain; F is an orthogonal drawing if each edge is a
chain of alternating horizontal and vertical segments. A grid drawing is such that the vertices
and bends along the edges have integer coordinates. Planar drawings, where edges do not
intersect, are especially important because they improve the readability of the drawing. A
planar embedding specifies the circular order of the edges around a vertex in a planar drawing.
Hence, different drawings may have the same planar embedding. Note that a planar graph
may have an exponential number of planar embeddings (see, e.g., [29]). An upward drawing
of an acyclic digraph has all the edges flowing from bottom to top. Planar upward drawings
are attracting increasing theoretical and practical interest [3], [8], [9], [11], [15], [24], [38],
[48]. A visibility representation maps vertices to horizontal segments and edges to vertical

segments that intersect only the two corresponding vertex segments.
We assume the existence of a resolution rule that implies a finite minimum area for the

drawing of a graph. Two typical resolution rules are integer coordinates for the vertices, or a
minimum distance 3 between any two vertices. When a resolution rule is given, it is useful to
consider the problem of finding drawings with minimum area. Planar drawings require (n2)
area in the worst case 12]. Further results on the area of planar drawings appear in [2], 11 ],
[8], [35].

1.2. Model. Here we describe a framework for dynamic graph drawing algorithms. At
a first glance, it appears that updating a drawing may require f2 (n + m) time in the worst case,
since we may have to change the coordinates of all vertices and edges. Our approach is to
consider graph drawing problems in a "query/update" setting. Namely, we aim for maintaining
an implicit representation of the drawing of a graph G such that the following operations can
be efficiently performed:

Drawing queries that return the drawing of a subgraph S of G consistent with the
overall drawing of G. We aim for an output-sensitive time complexity for this operation, i.e.,
a polynomial in log n and k, where k is the size of S. Ideally, the time complexity should be
O(k+log n). A special case of this query (S v}) returns the coordinates of a single vertex v.

Window queries that return the portion of the drawing inside a query rectangle.
Point-location queries in the subdivision of the plane induced by the drawing of G.

Such queries are defined when the drawing of G is planar.
Update operations, e.g., insertion and deletion of vertices and edges or replacement of

an edge by a graph, which modify the (implicit) representation of the drawing accordingly.
There are two types of quality measures in dynamic graph drawing: the "aesthetic"

properties of the drawing being maintained and the space-time complexity of queries and
updates. There is an inherent trade-off between the two. For example, it is very easy to
maintain the drawing of a graph where the vertices are randomly placed on the plane and the
edges are drawn as straight-line segments. However, the aesthetic quality of the drawings
produced by this simple strategy is typically not satisfactory. On the other hand, if we want to
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guarantee optimal drawings with respect to some aesthetic criteria, e.g., planarity, symmetry,
etc., the update/query operations may require high time complexity. In what follows we
present techniques with polylogarithmic query/update time that maintain drawings that are
optimal with respect to a set of aesthetic criteria.

More formally, a dynamic graph drawing problem consists of
A class of graphs {7 to be drawn.
A repertory (_9 of operations to be performed, subdivided into
A set Q of query operations (such as drawing, window, and point location queries)
that ask questions on the drawing of the current graph.
A set ofupdate operations that modify the current graph and restructure its drawing,
such as insertion and deletion of vertices and edges.

The drawing is modified only by update operations and is not changed by queries.
A static drawing predicate 79s that expresses "aesthetic" properties to be satisfied by

the drawing of the current graph. An example of a static drawing predicate for planar graphs
is "the drawing is planar, polyline, grid, with O (n2) area, and at most 2n / 4 bends along the
edges."

A dynamic drawing predicate 79z) that expresses "similarity" properties to be satisfied
by the drawings before and after an update operation. An example of a dynamic drawing
predicate for trees is "the drawing of a subtree not affected by the update stays the same up to
a translation." Such predicates can be used to guarantee a "smooth" evolution of the drawing.

A solution to a dynamic graph drawing problem is an algorithm that dynamically maintains
a drawing of a graph of class {7 satisfying predicates 79s and "Pz), under a sequence ofoperations
of repertory (_9. Performance measures for the algorithm are the memory space used by the
data structures and the time complexity of the various operations. Typically, there is a trade-off
between the efficiency of the algorithm and the tightness of the requirements expressed by the
drawing predicates 79s and 79z).

1.3. Overview. The rest of this paper is organized as follows. Our main results are
presented in 2 and 3. In 2 we describe a dynamic technique for upward drawings of
rooted trees. The data structure uses O(n) memory space and supports updates and point-
location queries in O(log n) time. Drawing queries take time O(k / log n) for a subtree and
O(k log n) for an arbitrary subgraph. Window queries take time O(k log n). The drawings
follow the usual convention of horizontally aligning vertices of the same level. Symmetries
and isomorphisms of subtrees are displayed and the area is O(n2).

In 3 we present an algorithm for dynamically drawing series-parallel digraphs. It uses
O(n) memory space and supports updates in O(log n) time. Drawing queries take time
O(k / log n) for a series-parallel subgraph and O(k log n) for an arbitrary subgraph. Point
location queries take O(log n) time. Window queries take O(k log2 n) time. The algorithm
constructs upward straight-line drawings with O (n2) area, which is optimal in the worst case.

Further developments are presented in 4, where we give a family of algorithms that
maintain various types ofdrawings for planar st-digraphs, including polyline upward drawings,
and visibility representations. The drawings occupy O(n2) area, which is optimal in the
worst case. All of the algorithms use O(n) memory space and support updates in O(log n)
time. Also, we consider (undirected) biconnected planar graphs. We present semidynamic
algorithms for maintaining polyline drawings and visibility representations. The data structure
uses O(n) memory space and supports insertion in O(log n) amortized time (worst case for
insertions that preserve the embedding). Drawing queries take O(k log n) time.

2. Dynalnie tree drawing. In this section, we investigate the dynamic drawing of a
rooted ordered tree T. We assume that edges are directed from the child to the parent, and
we use Tu to denote the subtree rooted at #. To simplify formulas, in this section we assume
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X

FIG. 1. Geometric constructions in the []-algorithm.

that the x-axis is directed from left to right and the y-axis is directed from top to bottom (see
Fig. 1). The coordinates of a node be in the drawing will be denoted by x(be) and y(be).

2.1. [:l-drawings. We consider the following static drawing predicate T’s"
Upward: The drawing is upward.
Planar: The drawing is planar.
Grid: Vertices are placed at integer coordinates.
Straight-line: Edges are drawn as straight line segments.
Layered: Nodes of the same depth (distance from the root) are drawn on the same hori-

zontal line.
Order-preserving: The left-to-fight ordering of the children of a node is preserved in the

drawing.
Centered: A node be is "centered" over its children be1 bek. Examples of variations

of this rule are
x() x();
x() 1/2. (x() + x()).

Isomorphic: Isomorphic subtrees have drawings that are congruent up to a translation.
Symmetric: Symmetric subtrees have drawings that are congruent up to a translation and

a reflection.
Quadratic-area: The drawing has O(n2) area.
Reingold and Tilford [32] argue that drawings satisfying T’s are aesthetically pleasing and

show how to construct them in O(n) time. We give a fully dynamic algorithm for constructing
such drawings. However, in general the drawings produced by the algorithm of [32] are less
wide than those produced by our algorithm. Note that finding drawings of minimum width
that satisfy the above properties is NP-hard [39].

The [3-drawing of T and the bounding box [3(be) of a node be of T are recursively defined
as follows (see Fig. 1):

be is leaf: (be) is a 2 x rectangle.
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# has children # #k" The width of [](#) is the sum of the widths of [](#i), _<
_< k. The height of vl(#) is one plus the maximum of the heights of [](#i), _< _< k. The

bounding boxes of the children of # are placed inside [] (#) such that they do not overlap, their
top sides are placed one unit below the top side of v1 (/), and their left-to-right order preserves
the ordering of the tree.

If # is a leaf, it is drawn in the middle of the top side of [](#). Otherwise # is drawn
along the top side of v(#) according to the centering rule of predicate 7s. We call the top left
corner of [] (#) the reference point.

To fully specify the []-drawing, we assume that the reference point of the bounding box
of the root of T is placed at (0, 0).

LEMMA 2.1. Given an n-node tree T, the []-drawing of T satisfies the static drawing
predicate Ts and can be constructed in O(n) time.

Proof It is immediate to verify that []-drawings satisfy JPs. Concerning the area, let
g be the number of leaves of T and let h be the height of T. The area of the drawing is
g. (h + 1), which is O(n2). To construct the []-drawing of T we use two traversals. The first
traversal computes in post-order the sizes of the bounding boxes of the subtrees of To The
second traversal computes in pre-order the positions of the nodes of T. Each traversal can be
performed in linear time.

2.2. Dynamic environment. We consider a fully dynamic environment for the main-
tenance of []-drawings on a collection of trees. Namely, we introduce the following set
(.9 Q u b/of operations:

Query operations (Q)"
Draw(node v)--Return the (x, y) position of node v.

Offset(node v)--Retum the (x, y) position of the reference point of
DrawSubtree(node v)mReturn the subdrawing of the subtree rooted at node v.
Window(node v, point p, q)mDraw the portion of subtree T contained in the query
window defined by lower-left corner p and upper-right comer q.

Update operations (b/):
MakeGraph(node X)mCreate a new elementary tree T consisting of a single node.
DeleteGraph(node ,k)--Remove the elementary tree consisting of the single node
Link(node p, v,/z, #2)--Let p be the root of a tree and let v be a node of another
tree. Also, let/ and #2 be consecutive children of v. Add an edge from p to v
and insert p between #l and #2. If parameters # and #2 are not provided, then p
becomes the only child of v. If/zl (/2) is not provided then p is inserted as the first
(last) child of v.

Cut(node #)--This operation assumes that # is not the root of a tree. Remove the
edge from/z to its parent, thus separating the subtree rooted at #.
Evert(node #)--Change the parent/child relationship for all nodes on the path from
# to the root of its tree, making # the root. This operation maintains the clockwise
order of neighbors of every node of T.
Reflect(node #)--Reflect the subtree Tu, i.e., reverse the order of the children of all
the nodes of Tu.
Expand(node v, #’, #")--Let # #k be the children of node v, and let #’ #i
and #" /j(1 _< < j _< k). Replace nodes #i #j in the ordering of the
children of v with a new node #. Node # has children #i #j.
Contract(node #)--This is the inverse operation of Expand. It merges node/ with
its parent.

In the rest of this section, we show how to dynamically maintain []-drawings, and we
prove the following theorem.
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THEOREM 2.2. Consider thefollowing dynamic graph drawing problem:
Class ofgraphs : forest of rooted ordered trees.
Static drawing predicate 79s: upward, planar, grid, straight-line, layered, order-

preserving, centered, isomorphic, symmetric, quadratic-area drawing.
Repertory ofoperations (.9: Draw, Offset, DrawSubtree, Window, MakeGraph, Delete-

Graph, Link, Cut, Evert, Reflect, Expand, and Contract.
Dynamic drawing predicate 790: the drawing of a subtree not affected by an update

operation changes only by a translation.
There exists a fully dynamic algorithmfor the above problem with the following perfor-

mance:
A tree with n nodes uses O(n) memory space;
Operations MakeGraph and DeleteGraph each take 0(1) time;
Operation DrawSubtree takes O(logn + k) time to return the position ofk nodes and

edges;
Operation Window takes O(k. log n) time to return the position ofk nodes and edges;
Operations Draw, Offset, Link, Cut, Evert, Reflect, Expand, and Contract each take

O(log n) time.
In 2.3 we present a data structure for maintaining an implicit representation of a []-

drawing. By Lemma 2.1, static predicate Ps is satisfied, In 2.4 we show how to perform
query operations. In 2.5 we show how to perform update operations and discuss the dynamic
drawing predicate 790.

2.3. Data structure. We recall that the y-axis is directed downward. Note that edges
are still directed upward from each child to its parent. We use the following centering rule:

X(I) 1/2(X(e) "[- X(lr)),
where xe and Xr are the leftmost and rightmost descendants of p, respectively.

2.3.1. Values to be maintained. In order to maintain the 3-drawing of a tree T we keep
the following values for a node p:

width(l)--The width of 3(/).
level(lz)The level (distance from the root) of p.
reference(Iz)The x-coordinate of the reference point of 3(p). (The y-coordinate of

the reference point of 3(/z) is level(l).)
Figure 2 shows the equations to calculate these values. Note that if # is the root of T,

then reference(l) 0. From these values we can easily compute the coordinates of a node
/. Namely, the x-coordinate of/ is reference(/)+ width(lz)/2 and the y-coordinate of z is
level(Iz).

LEMMA 2.3. Consider a node cr and an ancestor r of cr in tree T. Then the dependence
ofvalues width(r), level(a), and reference(a) on values width(a), level(r), and reference(r)
can be expressed as

width(r) width(a) + a,

level(a) level(r) + b,
reference(a) reference(r) + c,

where a, b, and c are independentfrom width(a), level(r), and reference(r).
Proof The proof is by induction on the length of the path from node r to node r.

If r = r then the lemma is trivially true. The inductive step follows from the equations of
Fig, 2. 3

Consider a directed path 1-I from node cr to an ancestor r of r in tree T. We refer to
nodes cr and r as the head and tail of path I-I, respectively. Given such a r, r, and I’I, the
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d

width(/z) E width(/zi),
i=1

level(#i) level(#) + 1,
i-1

reference(/zi) reference(#) + Z width(#j).

FIG. 2. The equations to calculate the values ofwidthfor a node lZ and the values ofreference and levelfor the
children # Izcl of tz.

(a) (b)

FIG. 3. The edge-paths for a node v with respect to a solid path. (a) Node v and its children. (b) The left and
right edge-paths.

transfer vector h(Fl) is the 3-tuple (a, b, c) of values for the calculation of width(r), level(a),
and reference(r) (see Lemma 2.3).

2.3.2. A tree representation technique. Our data structure consists of representing an
n-node tree T as a collection of disjoint directed paths, where edges are directed from child
to parent. We partition the edges of T into solid or dashed such that at most one solid edge is
incoming into a node. Therefore, every nodes is in exactly one maximal path of solid edges
(of length 0 or more), called a solid path of T.

The partition of edges into solid and dashed is obtained by means of the following size
invariant: let size(/z) denote the number of nodes in the subtree of T rooted at node #. An
edge (/Z, v) of T is solid if size(/z) > size(v) If the partition satisfies the size invariant,
then every path of T has O(log n) dashed edges.

Consider a tree T containing a node v with children/Zl /zd in left-to-right order.
Suppose I-I is a path T containing both v and a child/zi. We associate with v two paths, Fie(v)
and Fir(v), called the left edge-path and right edge-path of v with respect to FI (see Fig. 3).
Left edge-path Fie(v) consists of a node v(/zj) for each child/zj of v, < j < i, and edges
directed from v(/zj) to v(/zj+). Similarly, right edge-path Fir(v) is formed from children
ofv, <j <d.

In our data structure, we represent as balanced search trees the following paths:
the solid paths of T; and
for each node v of T, the left and right edge-paths of v with respect to the solid path

through v.
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For each such path I-I, the associated balanced binary tree is denoted Bn and is called the
path-tree of H. Also, we identify H with the root " of Bn. Each leaf . of Bn represents a
node of H, and the left-to-right order of the leaves of Br corresponds to the head-to-tail order
of the nodes of 1-I.

Suppose 1-I is a solid path. Each leaf . of Bn represents a node of 1-I. Each internal
node 0 of Bn represents the subpath l-I(0) of rI associated with the leaves in the subtree
of 0. Note that we identify path I-I(0) with 0. We store at node 0 four versions of the
transfer vector: h(0), h(0), h*(0), h*(0), corresponding to no restructuring of T, reversing
the parent-child relationship for nodes of H, reflecting the subtrees rooted at nodes of H, and
both reversing the parent-child relationship and reflecting the subtrees rooted at nodes of I-I.
If H is an edge-path we keep the value width(I-I) corresponding to the sum of the widths of
the bounding boxes of the tree nodes associated with the nodes of I-I (0). We also keep the
value invariant that corresponds to the tail r of every solid path stores the actual value of
width(r).

In order to achieve the logarithmic time per dynamic operation, we use biased search trees
to represent the path-trees. Each leaf of a biased search tree is assigned a positive weight.

Biased search trees use linear space and have the property that, if w is the weight of leaf and
W is the sum of the weights of all the leaves, the depth of) is O(log(W/w)).

For a node v of a solid path H, we define weight(v) as one plus the sum of the sizes
of the subtrees connected to v by dashed edges. Similarly, for a node v(#) of edge-path
Hx(v)(X or X r), weight(v(#)) is defined to be one plus the total weight of the solid
path containing node #. For each leaf of a path-tree we define its weight equal to the weight
of the corresponding path node. Each path-tree is then implemented as a biased search tree.
Note that this is consistent with the definition of biased search trees ], since the weights of
the leaves are positive.

Consider a node/x of T on solid path rI. We keep a boolean value reversed(l) indicating
which of the neighbors of # on H is its parent. We also keep a boolean value reflected(#)
which indicates the path reflection status, which is the left-to-right direction of the children of
/z, ignoring any reflection done by ancestors of tail(H). At each path-tree node 0, we keep the
associated offset values reversed(o) and reflected(o). These offset values are kept such that
for any node/x, the true value of reflected(#) or reversed(l) is the exclusive-or of the values
stored at the path-tree nodes on the path from # to the root of the path-tree containing/x.

At each node/x of a path H, we store pointers left(l) and right(Ix) to the left and fight
neighbors of/z on H. At each path-tree node 0 we store pointers to head(H (0)) and tail(H (O)).
If reversed(l) 1, then left(l) points to the right neighbor of/x and right(It) points to the
left neighbor of/x. If reversed(o) 1, then head(o) points to tail(1-I (0)) and tail(o) points
to head(I-I(o)). Also, reversed(o) swaps the meaning of the left and right edge-path
pointers in the subtree of 0. The values of the reversed and reflected bits determine the actual
meaning of the four values kept for transfer vector h at 0.

Since the path-trees have a total of O(n) nodes and each node of the tree and of the
path-trees uses O(1) memory space, we conclude that the data structure uses O(n) memory
space.

2.3.3. Operation push. The following auxiliary operation (to be used in the next sec-

tions) moves the values of reflected and reversed toward the leaves of a path-tree in O(1)
time:

push(node 0)--For internal path-tree node 0 with children 0’ and 0", combine the
values reversed and reflected at nodes 0’ and 0" with those at 0, and set reversed(o)
reflected(o) O.
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Operation push(o) on internal path-tree node 0 is implemented as follows"
(1) If 0 is an internal node, we set

reflected(o’) = reflected(o’) @ reflected(o);
reflected(o") reflected(o") @ reflected(o);
reversed(o’) reversed(o’) @ reversed(o);
reversed(o") reversed(o") @ reversed(o),

where operation 3 is the bit-or operation. Also, if reversed(o) 1, we exchange pointers
head(o) and tail(o), values h(0) and (0), and values h*(o) and )--;(0). If reflected(o) 1,
we exchange values h(o) and h*(o), and values h(0) and h*(0).

(2) Otherwise, 0 is a leaf of some path-tree associated with some (edge or solid) path
i-I. Therefore, 0 is a node of I’I. Operation push maintains the effect of the values reversed
and reflected for 0 and its descendants in the following manner. If reversed(o) 1, then we
exchange pointers left(o) and right(o). If I’I is a solid path, we also exchange pointers to the
left and fight edge-paths. If reflected(o) 1, then we flip the reflected bits at the root of any
path-tree pointed to by node 0. If i’I is a solid path, we also flip the reversed bits at the root
of the path-trees representing the left and right edge-paths of 0.

(3) We set reversed(o) reflected(o) O.

2.4. Query operations. The query operations Locate, Offset, DrawSubtree, and Window
are implemented using the following suboperations derived from dynamic trees [36], each of
which takes O(log n) time to perform:

splice(path U)---This operation assumes that 1-I is a solid path ending at/z # p. Convert
the dashed edge leaving/x to solid and convert the solid edge (if it exists) entering the parent
v of/z to dashed.

Suppose node/z is a sibling of p. such that there is a solid edge from/x’ to v. Let I-I’ be
the solid path containing nodes/z and v. Let Fie(v) and Fir(v) be the left and fight edge-paths
of v with respect to FI’. We convert solid edge (/z’, v) to dashed as follows. We begin by
splitting path I’I at v. We then create a path-tree node v(/z’) for the new dashed edge and set
the left edge-path of v to be the concatenation lie(v), v(lz), and lqr (v). The right edge-path
becomes the empty path.

Converting the dashed edge from/z to v to solid is performed similarly, reversing the roles
of the solid and edge-paths. Let I-I" be the path with v head(FI"). Split Fie(v) at v(/z). The
resulting paths to the left and right of v(/z) become the left and right edge-paths of v. We then
concatenate 1"I and I-I tt to create the solid edge.

expose(l)---Convert to dashed the solid edge entering/z, if such an edge exists. Create
a solid path from/z to the root by converting to solid all the dashed edges (v’, v") of such
a path, and converting to dashed the edges (sib(vt), v"). Operation expose(.) consists of a
sequence of splice operations on the solid paths containing the nodes on the path from . to
p. This operation is always followed by .a conceal operation, (see below) which undoes its
effect.

conceal(lz)--Restore the original type (solid or dashed) of the edges entering the nodes
on the path I’I from node/z to the root p. This operation is the inverse of expose and also
consists of a sequence of splice operations [36].

Additionally, we implement operation Window using the following auxiliary operations"
locatepoint(node v; point p)--Return the node/z of Tv such that p is contained in

t3(/z), but p is not contained in the bounding rectangle of any of the children of/z. If p is
outside rq(v), then locatepoint(v, p) returns nil.
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drawproper(node v; point p, q)--Draw node v and the edges from v to its children,
clipping to window W defined by lower-left corner p and upper-right comer q.

findrightint(node v" point p, q) (findleftint(node v; point p, q))--Let 1-I be the path
following right (left) children from v. Return the closest descendant # of v on I-I such that
drawproper(#, p, q) draws (at least) a portion of an edge.

drawtree(node v, point p, q)--Draw the portion of subtree G contained in the query
window W defined by lower-left corner p and upper-right corner qo (Note that this operation
is mutually recursive with operation Window.)

Operations locatepoint, drawproper, findrightint, andfindleftint take O (log n) time each
to perform.

Operation Draw(v) is performed by first issuing expose(v) to get path 1-I. By the value
invariant, node v will store the value of width(v). The transfer vector for I-I contains the
value of level(v) and reference(v). Therefore, the y-coordinate returned is level(v) and the
x-coordinate is reference(v)+(width(v)/2). Operation Offset(v) is realized similarly: we first
call expose(v). The x-coordinate of the reference point of [](v) is reference(v) and the y value
is level(v). Operation DrawSubtree(v) is performed by calling Offset(v) in order to determine
the position of [](v). We then use the sequential algorithm to draw T.

We implement operation Window(v, p, q) by performing the following steps"
(1) If W does not intersect [](v) then stop.
(2) Clip W to [](v), update points p and q accordingly.
(3) Initialize scan point s (Xs, ply) to be point p. Let node v locatepoint(v, s). We

call drawtree(#, s, q ).
(4) Move scan point s by resetting x,,. to be 0.25 plus the x-coordinate of the right edge of

(#). Repeat steps 3 and 4 until s is no longer contained in [](v) or W.
Operation drawtree(v, p, q) is implemented by performing the following steps:

(1) Perform drawproper(v, p, q).
(2) If node v is a leaf, or if yq < depth(v) + then stop.
(3) If step did not draw any edges, then suppose Draw(v) is to the left (right) of W.

Let # -findrightint(v, p, q)(# -findleftint(v, p, q)). If # nil then stop. Otherwise call

drawtree(#, p, q ).
(4) If step 3 did draw edges then let yp depth(v) + and call Window(#, p, q).
Each step is implemented in O (log n) time for each edge and node drawn. After drawing

an edge, we take O (log n) time to determine if we stop. Therefore, to draw k nodes and edges
takes O(k. log n) time.

2.4.1. Extensions to dynamic trees. In this and the next section, we describe the aux-

iliary operations used in the implementation of the query operations. We first describe the
extensions to dynamic trees required for operations splice, expose, and concectl. As described
above, operations expose and conceal are implemented as repeated calls to operation splice.
Operation splice concatenates and splits balanced binary trees representing solid paths. We
use the following elementary tree operations, each taking O(1) time:

join(node ’, ’")Given the roots ’ and" oftwo binary trees representing solid paths
FI’ and FI", combine the trees into a new tree by creating a new root " with left child ’ and
right child ’". Let a’ and :’ be the head and tail of FI’ and or" and " be the head and tail of
FI". If paths FI’ and Fl" are edge-paths, then we have weight(U) weight(FI’)+weight(Fl").

Now, suppose FI’ and FI" are solid paths. We show how to calculate transfer vector h (FI)
in O(1) time. The calculations for transfer vectors h(I-l), h*(I-I), and h*(Fl) are performed
similarly.

Suppose h(VI) (a, b, c), h(I-I’) (a’, b’, c’), and h (1-I") (a", b", c") are the transfer
vectors for paths l-I, rI’ and gI". Suppose we and wr are the total width of the left and right



980 R. COHEN, G. DI BATTISTA, R. TAMASSIA, AND I. TOLLIS

edge-paths of node o-". We calculate h(I-I) in the following manner:

width(r") width(a") + a",
width(r") (width(r’) + we + mr) + a",
width(r") ((width(a’) + a’) + we + wr) + a",

level(a’) level(r’) + b’,
level(a’) (level(a") + 1) + b’,
level(cr’) ((level(r") + b") + 1) + b’,

reference(a’) reference(r’) +
reference(a’) (reference(a") + we) +
reference(or’) ((reference(r") + c") + we)

Therefore, we have

a a’ + a" + we + LOr,

b b’ +b"+ 1,
C C "if- C -]- We.

separate(node )--Given the root of a binary tree, divide the tree into two trees with
roots ’ and ", where ’ is the root of the left subtree and " is the root of the right subtree.
The transfer vectors of ’ and " do not change. To do this, we call push(C) to preserve the
effects of reversed(C) and reflected(C).

rotateleft(node v) (rotateright(node v))--Perform a left (right) rotation at node 0. This
operation can be performed with O(1) separate andjoin operations.

Since path-trees are biased by the weights, the sum of the number of elementary tree

operations at each splice operation telescopes, so that operations expose and conceal can be
performed with O (log n) elementary tree operations.

2.4.2. Operations using selection functions. In order to implement auxiliary operations
locatepoint, drawproper,findrightint, andfindleftint, we introduce selection functions, which
are used to find distinguished nodes of a path or tree. We will also use this structure in the
implementation of operations in 3.

A path-selection function S maps a path FI and a query argument q into a node/z
S(H, q) of I-I, such that if H is the concatenation of I-I’ and I-I", then one can determine in
O(1) time whether/ is in 1-I’ or 1-I" from q and the transfer values stored for 17.

A tree-selectionfunction S maps a tree T and a query argument q into a node # S(T, q)
of T. Function S is a path-selection function. If node/z is a descendant of the tail of path
17 of tree T, thenfind(17, S, q) returns the deepest node/z’ on 17 such that # is a descendant
of #’.

We then use the following operations to find the distinguished nodes:
PathFind(node lZ’, tz"; selectionfunction S)Let Fl be the path of a tree from node

to node/z". Find the node of 17 returned by the path-selection function S.
TreeFind(node v; selectionfunction S)--Find the node of the subtree rooted at/z re-

turned by the tree-selection function S.
Operations PathFind and TreeFind use the following function which returns the distin-

guished node of a path:
find(path 17, selectionfunction S, value q)--Find node # of I7 returned by path-selection

function S with query argument q.
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FIG. 4. The rotations performed in operation splaystep(o).

We need the following operation from [37] in our implementation offind(rI, S, q):
splaystep(node 0)--For binary tree B with root and node r a grandchild of , re-

structure B such that the relative order of the leaves of B remain fixed and every node in the
subtree rooted at r/has its depth reduced by one or two. We accomplish this as follows. Let
r/t be the child of that is the parent of . If r’ and rt are both left children, then perform
rotateright() twice. If 0’ is a left child and 0 is a right child, then perform rotatelefl(O’)
followed by rotateright(). The other two cases are symmetric (see Fig. 4).

Operation splaystep is implemented with a constant number of rotatelefi and rotateright
operations. Hence, splaystep takes O (1) time.

LEMMA 2.4. Suppose S is apath-selectionfunction and is the root ofapathtree FI. Then
given query argument q, we can determine in 0(1) time if S(I-I, q) is a child or grandchild of, or which grandchild of is the root ofthe subtree containing S(I-I, ).

Proof Suppose r/ and r/2 are the children of . By definition, in O(1) time we can
determine which subtree rooted at 0 or r2 contains S(FI, q). If the subtree found is a single
node, then it is S(FI, q). Without loss of generality, suppose we know that S(I-I, q) is in the
subtree rooted at 0 and 01 is not a leaf. Then let 01 and 02 be the children of 0. We then
perform O(1) rotations on Bn such that r/t becomes the left child of the root. Then, in O(1)
time we can determine if S(I-I, q) is in the subtree rooted at 0. Otherwise, S(1-I, q) is in the
subtree rooted at 2. [3

Operationfind() is implemented as follows, starting at node " and repeating until a value
is returned: if/x is a child or grandchild of then return/z. Otherwise, determine the subtree
rooted at the grandchild r/of which contains/z. Do splaystep at r/and recur. After/x is
found, we undo all the splaysteps to restore the balance of the path-tree. This takes O(du)
time where du is the depth of the returned node/z.

Operation PathFind(Ix’, lz", S, q) makes two calls to expose to get the path FI from/z
to/z", then calls find(U, S, q). We then restore the weight invariant by calling expose(v’)
followed by conceal(v’).

Consider tree selection function S. We implement operation TreeFind(v, S, q) as follows.
If v is not the root of its tree, we first call expose at Parent(v). Node v then becomes the tail
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of its solid path I-I. Let/z be the node we are searching for. We repeat the following until
node/z is found. Let node/z’ find(H, Sp, q). Create path I-I’ with head/z’ and tail v. This
is done with single split and concatenate operations.

Assume node/z’ is a tree node. Let path FI" be the result of joining the left edge-path
1-Ie (#’) and I7’. This is well defined by the expansion invariant. By the definition of tree and
path selection functions, we can determine in O(1) time if node/ is in I-Ie (#’). If not, repeat
using the right edge-path Fir (/z’).

If neither edge-path has/ as a descendant, then/z’ /. Otherwise, we reset path 1-I
to be H" and continue, if/z’ is an edge-path node, we proceed similarly, except we join the
solid-path associated with/z’ to FI t. After/z is found, we undo the restructuring to restore the
path-trees.

At each iteration, the time to find/z’ and create H" is O(dr,,), where du, is the depth of
/z’ in Bn, the path-tree for path 1-I. Operation join increases the depth of a path-tree node by
1. Therefore, du, is at most one more than the depth of/z’ in its original path-tree. Therefore,
the time to find/ is O(log n) plus the time to perform expose(lz). The time to restore the
path-trees is equivalent. Therefore operation TreeFind is implemented in O (log n) time.

Suppose p (Xp, yp) and q (Xq, yq) are points with Xp < Xq and yp < yq, and let W
be the window defined by p and q. Recall that the y-coordinate of the drawing of a node/z of
tree T corresponds to the depth of/z in T.

We use the following fact in our algorithm. If xe is the x-coordinate of the reference point
of the bounding box of some node/z, then the line x xe / 0.25 does not interest any edge
or node in the drawing of Tu.

We keep the following additional value for each solid path HUH in T:
rightmost(i-I)--true if and only if each node of H other than tail(H) has no right sibling.
leftmost(H)--true if and only if each node of H other than tail(H) has no left sibling.

Clearly we can maintain the value rightmost during join operations.
Operation locatepoint(v, p) first calls expose(v) in order to find the location and width

of [](v). If point p is outside [](v), then return nil. Otherwise, we use the following tree
selection function, which takes query point p as an argument.

Selection function $1. Suppose rl is the root of a path-tree with children O’ and 0". If
point p is contained in (tail(o’)), then return 0’, otherwise return 0’t.

Operation TreeFind(v, S, p) returns a node/z such that p is contained in 2(/z), but p
is not contained in the bounding box for any of the children of/z. We perform operation
locatepoint by setting node/x TreeFind(v, S, p). If p is on the right boundary of l(/z),
then let Xp Xp + 0.25 and repeat. We then return node/z.

We perform operation drawproper(lz, p, q) by first calling expose(lz). The following
path selection function on edge-path I-Ie (/z) takes as an argument the pair of points (p, q) that
define window W.

Selection function S2. Suppose 0 is the root ofa path-tree with children O’ and 0". Let
lz’ be the child oflz associated with tail(ri’). Ifthe edgefrom node lz’ to node lz intersects W,
then return rl, otherwise return

We find the leftmost edge of the proper region of/z intersecting W by letting node #e
PathFind(1-Ie(lz), $2, (p, q)). We find the rightmost intersecting edge connected to node
similarly. We then draw/z, and the edges between/ze and/z, clipping to W.

Operation findrightint is performed using the following tree selection function which
takes an argument xe, the x-coordinate of the left side of the query window.

Selection function $3. Suppose rl is the root of a path-tree with children O’ and
Construct node " representing the pathfrom tail(o’) to tail(o"), lf rightmost(o’") false of
if the x-coordinate of tail(o’) is greater than xe, then return rl". Otherwise return
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When used with operation TreeFind, selection function $3 returns the first descendant
/x’ of/Z reached through only rightmost children such that there is an edge from/z’ which
intersects the line x xe. Operationfindrightint(v, p, q) is then implemented as follows. Let
node/z TreeFind(v, $3, Xp). If/z is a leaf then return nil. Otherwise, let node/z’ be the
rightmost child of/z. If the edge from node/Z’ to node # intersects W, return/z. Otherwise
return nil. Operationfindleftint(v, p, q) is implemented in a similar manner, substituting the
value leftmost for rightmost.

2.5. Update operations. Operations MakeGraph and DeleteGraph can be trivially im-
plemented in O(1) time. Operations Link and Cut can each be implemented as variations of
the dynamic tree operations Link and Cut.

Operation Evert(/z) consists of issuing expose(/z), flipping the reverse bit of the resulting
solid path, then restoring the size-invariant by calling conceal(/z). This is implemented in
O(log n) time.

Operation Reflect(/z) is performed as follows. First, we call expose(/z). The left edge-
path of/z then contains nodes for all the children of #, We reverse the order of the children of
# by flipping the reflected and reversed bits at the root of the path-tree representing 1-Ie(/Z).
We flip the reflected bit to reflect all subtrees rooted at children of/z and the reversed bit to
reverse the order of the children of/z. Finally, we perform conceal(/z) to restore the original
solid and dashed edges. Hence, operation Reflect is implemented in O (log n) time.

Operation Expand(/z,/Z’,/Z") begins by calling expose(/z) which results in the left edge-
path of/z, I’ie(/z) containing all the edges from children to/z. Then we perform a constant
number of split and join operations to form three subpaths FI’, I-I", and I-I’" of I-Ie (/z), with FI’
containing the edges preceding edge (/z’,/z), 1-I" containing the edges between edges (/z’,
and (/z",/z), and I’I"’ containing the edges following edge (/z",/z). Paths 1-I’ and I-I"’ become
the left and right edge-paths of/z. We create a new node v with left edge-path FI" and fight
edge-path the empty path. We extend the solid path containing/z by concatenating a new node
v. Finally, we call conceal(v) to restore the size invariant. Hence, operation Expand takes
O (log n) time.

Operation Contract(/z) begins by calling expose(/z) which results in the left edge-path of
/z, I’Ie(/z), containing all the edges from children to/z. Let node v be the parent of/z. Next,
we remove node/z. We set He(v) to the concatenation of Fie(v), 1-Ie(/z), and Fir(v). We set
Fir(v) to the empty path. Finally, we call conceal(v) to restore the size invariant. Hence,
operation Contract takes O(log n) time.

In a []-drawing, the drawing of a subtree is independent, up to a translation, from the
structure of the rest of the tree. Hence, dynamic predicate 790 is satisfied.

3. Series parallel digraphs. A source of a digraph is a vertex without incoming edges.
A sink is a vertex without outgoing edges. A pole is either a source or a sink. A series-parallel
digraph is a simple digraph with exactly one source s and one sink t, recursively defined as
follows:

A digraph consisting of a single edge from s to is a series-parallel digraph.
Given series-parallel digraphs G Gk with sources s sk and sinks t tk,

the digraph obtained by identifying sink ti with source Si+l for < < k is a series-parallel
digraph, with source s and sink tk. Vertices vi ti si+, <_. < k are called the
join-vertices of such a composition. This is called series composition.

Given series-parallel digraphs G G,, with sources s sk and sinks t tk,
the digraph obtained by identifying st sk into a single vertex s and identifying t tk
into a single vertex is a series-parallel digraph. This is called parallel composition. Since

’Smultiple edges are not allowed, at most one of the G consists of a single edge.
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It is well known that an n-vertex series-parallel digraph is planar and has O(n) edges.
A series-parallel digraph G is associated with a rooted tree T, called the SPQ-tree. A node
/z 6 T represents a subgraph of G, called the pertinent digraph of/z, and denoted by Gu. If
/z is a leaf, then Gu is a single edge. Otherwise, G, is obtained by the composition (series
or parallel) of the pertinent digraphs of the children of/z. The nodes of T are of four types:
S-nodes, P-nodes, PQ-nodes, and Q-nodes. Tree T is defined recursively as follows"

If G is a single edge, then T consists of a single Q-node.
If G is the parallel composition of series-parallel digraphs G Gk with SPQ-trees

TI Tk with roots Pt pk, and none of the Gi, < < k is a single edge, then T
consists of a P-node root with children p pk.

If G is the parallel composition of series-parallel digraphs G and G2 with SPQ-trees
T and T2 with roots p and/92, and G2 is a single edge, then T consists of a PQ-node root
with children p and/92.

If G is the series composition of series-parallel digraphs G Gk with SPQ-trees
T T with roots p, pk, then T consists of an S-node root with children p pk.

We keep two types of nodes representing parallel composition since transitive edges are han-
dled differently from general parallel composition.

The type of a node v is either Q, P, PQ, or S. We keep the type invariant that each node of
an SPQ-tree T does not have a child of the same type, and that a P-node cannot have PQ-node
as a child. If G has n vertices, then T has O(n) nodes. Tree T can be constructed in O(n)
time using the recognition algorithm of [49].

We can represent an embedding of a series-parallel digraph by the ordering of the children
ofthe P- and PQ-nodes ofthe SPQ-tree. A right-pushed embedding is such that all the transitive
edges are embedded on one side, say, the right side. Right-pushed embeddings are used in the
drawing algorithm of 3.1.

Let v be an S-node with children/z /z. The skeleton of v, denoted skeleton(v), is
the series-parallel digraph consisting of k edges ei (Vi-l, vi), < < k, where v0 and vk
are the source and sink of the pertinent digraph of v, and for < < k, vi is the sink of the
pertinent digraph of #i. The proper node of vertices v vk_l is node v. Note that vi is a
join-vertex used in the series composition at its proper node. Hence, if G is a series-parallel
digraph with associated SPQ-tree T then each vertex of G, with the exception of its poles, has
a proper node.

Given a digraph G, the reverse digraph ( of G is formed by reversing the orientation of all
edges of G. It is easy to see that if G is a series-parallel digraph, then 0 is also a series-parallel
digraph. If s and are the source and sink of G, respectively, then and s are the source and sink
of (, respectively. If G is the parallel composition of series-parallel digraphs G Gk,

then G is the parallel composition of series-parallel digraphs G Gk. Similarly, if G is the
series composition of series-parallel digraphs G Gk, then 0 is the series composition
of series-parallel digraphs Gk --]-.

Suppose G is a series-parallel digraph and T is its associated SPQ-tree. Let # be a node
of T and/z /z be the children of/z. A closed component of G is either G or the union of
the pertinent digraphs of a subsequence #i /zj, where < < j < k and/ is an S-node.
An open component of G is the union of the pertinent digraphs of a subsequence
minus its poles, where < < j < k. A component is either an open or a closed component.

3.1. A-drawings. In this section, to simplify formulas we assume that the x-axis is
directed from right to left and the y-axis is directed from bottom to top (see Fig. 5).

We consider the following static drawing predicate 79s
Upward." The drawing is upward.
Planar: The drawing is planar.
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(a) ’s’
(c>

(d) ..............
Y

FIG. 5. Geometric construction ofa A-drawing: (a) base case; (b) series composition; (c) parallel composition
(general case); (d) parallel composition with the "right-pushed" transitive edge.

Grid: Vertices are placed at integer coordinates.
Straight-line: Edges are drawing as straight line segments.
Quasi-embedding-preserving: The drawing preserves the embedding, except, possibly,

for the transitive edges.
isomorphic: Isomorphic components have drawings that are congruent up to a translation.
Vertically symmetric: The drawings of a series-parallel digraph and its reverse have

drawings that are congruent up to a translation and a reflection.
Quadratic-area: The drawing has O(n2) area.
It is important to note that in order to get polynomial area the embedding cannot be

completely preserved. Namely, it is shown in [2] that there exists a class of embedded series-
parallel digraphs for which any upward straight-line drawing that preserves the embedding
requires exponential area under any resolution rule.

A-drawings of series-parallel digraphs are introduced in [2] and satisfy the above static
drawing predicate. In A-drawings the embedding is modified into a right-pushed embedding
(i.e., with all the transitive edges embedded on the right side). The A-drawing 1-" of a series-
parallel digraph G is inductively defined inside a bounding triangle A(F) that is isosceles and
fight angled. The hypotenuse of A (17), from now on called the right side of A (F), is a vertical
segment, and the other two sides are on its left. The height of A (1-’) is the length of the right
side; the width of A (F) one half of the height. In a series composition, the subdrawings are
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placed one above the other. In a parallel composition, the subdrawings are placed one to the
right of the other and are deformed in order to identify the poles, guaranteeing that their edges
do not cross. The algorithm is outlined below. More details can be found in [2].

Modify the embedding of G into a right-pushed embedding.
If G consists of a single edge, it is drawn as a vertical segment ofheight 2, with bounding

triangle having width (see Fig. 5(a)).
If G is the series composition of G’ and G", the drawings 1-" and 1-’" of G’ and G" are

recursively constructed and combined by translating F" so that its source is identified with the
sink of G’ (see Fig. 5(b)). The bounding triangle A(1-’) is obtained by extending the bottom
side of A(F’) and the top side of A (1-").

If G is the parallel composition of G’ and G’, the drawings 1-" and F" of G’ and G" are
recursively constructed. We consider the rightmost outgoing edge (s’, u) of the source s’ and
G’ and the rightmost incoming edge (v, t’) of the sink t’ of G’ (see Fig. 5(c)-(d)). Let ), be
the line through u that is parallel to the bottom side of A (1-") and )v be the line through v that
is parallel to the top side of A (F’). Also, let tc be the vertical line extending the right side of
A(F’). We call the (infinite) region to the right of to, )u, and ,kv the prescribed region of 1-".
First, we translate 1-’" anywhere inside its prescribed region. Then we identify the sources and
sinks of G’ and G" by moving them to the intersections s and of the right side of F" with
the lines extending the bottom and top sides of 1-".

If the series or the parallel compositions involve more than two graphs (say e graphs), the
above steps are applied e times.

In a A-drawing 1-’ the source (resp., sink) of G is placed at the bottom (resp., top) vertex
of A (1-’), and the other vertex of A(F) is not occupied by any vertex of G. Also, the rightmost
outgoing edge of the source and the rightmost incoming edge of the sink lie on the fight side
of A (r).

We obtain an O(n2)-area A-drawing by specializing the placement of F" in a parallel
composition so that A (F’) touches A(1-"). Let p be the point on the right side of A (1-") and
halfway between u and v. We translate 1-’" so that the left vertex of A (1-") coincides with p.
In this way, I’" is in its prescribed region.

Notice that in both series and parallel compositions the height of A (1-’) is equal to the sum
of the heights of A (F’) and A (F’). Hence, the height of A (1-’) is exactly twice the number of
edges, and the area of the drawing F is O(n2).

LEMMA 3.1 [2]. Given an n-vertex series-parallel digraph G, the A-drawing ofG satisfies
the static drawing predicate 7"9s, and can be constructed in 0 (n) time.

3.2. Dynamic environment. For a node # of SPQ-tree T, we define A (#) as the bound-
ing triangle to be the triangle enclosing the drawing of G, without considering the translation
of the poles of G, performed at ancestors of/z in T. The reference point of A (/z) is the inter-
section ofthe right and bottom sides. The reference point of the drawing of G is conventionally
positioned at (0, 0).

We consider a fully dynamic environment for the maintenance of A-drawings on a col-
lection of series-parallel digraphs. Each series-parallel digraph of is represented by an
SPQ-tree. We introduce the following set (.9 Q t2 H of operations:

Query operations (Q):
Draw(vertex v)mReturn the (x, y) position of the drawing of vertex v of series-
parallel digraph G.
Offset(node v)--Return the (x, y) position of the reference point of A(v), where v
is a node in the SPQ-tree representing series-parallel digraph G.
DrawSubgraph(node v)--Draw the subgraph Gv as it appears in the drawing of G.
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Window(node v, point p, q)--Draw the portion of subgraph G contained in the
query window defined by lower-left corner p and upper-right comer q.
Locate(node v, point p)mRetum the vertex, edge, or face of the digraph G con-
taining point p.

Update operations (b/):
MakeDigraph--Create a new elementary series-parallel digraph G, represented by
a single Q-node, and add G to .
DeleteDigraph(node k)mRemove from {7 the elementary series-parallel digraph rep-
resented by the single Q-node ).

Compose(type X; node p’, p")mPerform a composition on the series-parallel di-
graphs Gp, and Gp,,. The composition is series or parallel according to whether
X S or X P. The resulting series-parallel digraph is added to while G;, and

Go, are removed from {7.
Attach(node p, .)--Replace the edge represented by Q-node . with the series-
parallel digraph G;. The resulting series-parallel digraph is added to while G, is
removed from .
Detach(node/x)--Remove the pertinent digraph Gu of node/z from G and replace
it with a single edge. The series-parallel digraph Gu is added to {7.
InsertEdge(vertex v’, v"; edge e)mInsert a new edge e from v’ to v". The operation
is performed only if the resulting digraph is a series-parallel digraph.
DeleteEdge(edge e)Delete edge e. The operation is performed only if the resulting
digraph is a series-parallel digraph.
InsertVertex(vertex v; edge e, e’, e")Replace edge e with two edges e’ and e" by
inserting vertex v.

DeleteVertex(vertex v; edge e, e’, e")mReplace vertex v and its incident edges e’
(incoming) and e" (outgoing) with a single edge e. The operation is performed only
if e’ and e" are the only incident edges of v.

In the rest of this section we show how to dynamically maintain a A-drawing and prove
the following theorem.

THEOREM 3.2. Consider thefollowing dynamic graph drawing problem:
Class ofgraphs : embedded series-parallel digraphs.
Static drawing predicate 7as: upward, planar, grid, straight-line, quasi-embedding-

preserving, isomorphic, vertically symmetric, quadratic-area drawing.
Repertory of operations (.9: Draw, Offset, DrawSubgraph, Window, Locate, MakeDi-

graph, DeleteDigraph, Compose, Attach, Detach, InsertEdge, DeleteEdge, InsertVertex, and
DeleteVertex.

Dynamic drawing predicate 79z): the drawing ofa component not affected by an update
operation changes only by a translation.

There exists a fully dynamic algorithmfor the above problem with the following perfor-
mance:

A series-parallel digraph uses O(n) memory space;
Operations MakeDigraph and DeleteDigraph take each 0(1) time;
Operation DrawSubgraph takes O(log n + k) time to return the position of k vertices

and edges;
Operation Window takes 0 (k. loge n) time to return the position ofk vertices and edges;
Operations Draw, Offset, Compose, Attach, Detach, InsertEdge, DeleteEdge, lnsertVer-

tex, DeleteVertex, and Locate each take O(log n) time.
In 3.3 we present a data structure for maintaining an implicit representation of a A-

drawing. By Lemma 3.1, static predicate 79s is satisfied. In 3.4, we show how to perform



988 R. COHEN, G. DI BATTISTA, R. TAMASSIA, AND I. TOLLIS

query operations. In 3.5, we show how to perform update operations and discuss the dynamic
drawing predicate 79D.

3.3. Data structure. If Z is a (x, y)-pair, then x (Z) returns the x-value and y(Z) returns
the y-value. In order to maintain the A-drawing of a series-parallel digraph G represented by
SPQ-tree T, we keep the following values for a node

width(lz)--The width of A(/z). Note that the height of A(#) will be 2.width(lz).
position(#)--The offset of the position of the reference point of A (#) from the position

of the reference point of A(F).
The following values are relative positions in A(/z) considering the reference point of

A(/z) to be at (0, 0):
sourceright(lz)mThe location of the drawing of the vertex connected to the rightmost

outgoing edge from the source of Gu.
sourceleft(#)The location of the drawing of the vertex connected to the leftmost

outgoing edge from the source of Gu.
sinkright(lz)The location of the drawing of the vertex connected to the rightmost

incoming edge to the sink of Gu.
sinkleft(lz)The location of the drawing of the vertex connected to the leftmost in-

coming edge to the sink of Gu.
The equations to calculate these values are linear expressions and are shown in Figs.

6-9. As an example, Fig. 10 shows pictorially how to calculate the value of position for the
bounding triangle of a graph involved in a parallel composition. Note that if # is the root of
T, then position(#) (0, 0).

LEMMA 3.3. Consider a node lZ and an ancestor v in SPQ-tree T. Then width(v) can
be expressed as width(lz) + d for some constant d. The value y(sourceright(v)) can be
expressed as

a width(lz) + b y(sourceright(lz)) + c

for some a, b, c. The other values y(sourceleft(v)), y(sinkright(v)), and y(sinkleft(v)) can be
expressed similarly. Additionally, the value of y(position(lz)) can be expressed as

y(position(v)) + d’

for some constant d’. Similar equations holdfor x-values.

Proof By induction on the length of the path from node # to node v. If/z v then the
lemma is trivially true. The inductive step follows from the equations of Figs. 6, 7, 8, 9 and
10.

For a solid or edge-path I-I of T with head r and tail r, the transfer vector of 1-I is a
vector of length 20 containing the constants in the equations of Lemma 3.3 associated with
the calculations of the values width, position, sourceright, sourceleft, sinkright, and sinkleft.

We structure SPQ-tree T in the same manner as in 2, decomposing T into solid and
edge paths. Suppose 0 is a path-tree node. If 0 is in the representation of a solid-path, we
store at 0 the transfer vector of its associated subpath. We do not evert or reflect SPQ-trees,
so we do not keep multiple versions of the transfer vector. If 0 is part of the representation of
an edge-path, we store at 0 the value width(o) corresponding to the sum of the widths of the
bounding triangles of the tree nodes associated with the nodes of 1-I (0). We can maintain the
transfer vectors under operation join in O(1) time. This is immediate from the equations in
Figs. 6-9.
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k

width(l) width(Izi),
i=1

k

x(position(#j)) x(position(#))+ width(#i),
i=j+l

k j-I

y(position(#j)) y(position(lz)) + Z width(#i) + y(sourceright(lZi)),
i=j+l i=1

x(sourceright(lZ)) O,
k

y(sourceright(#)) Z y(sourceright(#i)),
i=1

k

x(sourceleft(lz)) Z width(lzi) + x(sourceleft(#l)),
i=2

k

y(sourceleft(lZ)) Z width(#i) + y(sourceleft(#l)),
i=2

x (sinkright(l)) O,
k-I

y(sinkright(l)) Z y(sourceright(#i)) + y(sinkright(lx)),
i=1

k

x(sinkleft(Ix)) Z width(#i) + x(sinkleft(xl)),
i=2

k

y(sinklefi(Ix)) Z width(#) + y(sinklefi(#)).
i=2

FIG. 6. The equations to calculate the values of width, sourceright, sourceleft, sinkright, and sinkleft for a

P-node lz and the values ofpositionfor the children txj, < j < k of lz.

sourceright(lz) (0, 2- width(lz)),
sinkright(lz) (0, 0).

FIG. 7. The equations to calculate the values ofsourceright and sinkrightfor a PQ-node lz. All other values are

calculated asfor a P-node (see Fig. 6).

We keep the following additional values for each solid path I-i from node cr to node r.

samesource(I-l)mtrue if and only if the source of G is the same vertex as the source
of Gr.

samesink(1-I)utrue if and only if the sink of G is the same vertex as the sink of Gr.
noleftp(1-I)--true if and only if path l-I does not contain both a P-node and its leftmost

child.
Since the path-trees have a total of O(n) nodes, and each node of the tree and of the

path-trees uses O(1) memory space, we conclude that the data structure uses O (n) memory
space.
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k

width() Z width(lzi),
i=1

x(position(lzj)) x(position(#)),
j-I

y(position(lj)) y(position(l)) + 2. Z width(#i),
i=1

sourceright(l) sourceright(#

sourceleft(#) sourceleft(lz ),
x(sinkright()) O,

k-I

y(sinkright(lZ)) 2. width(#i) + y(sinkright(lZk)),
i=1

x(sinkleft(#)) x(sinkleft(#k)),
k-I

y(sinkleft(#)) 2. Z width(#i) + y(sinkleft(#)).
i--I

FIG. 8. The equations to calculate the value of width, sourceright, sourceleft, sinkright, and sinkleft for an
S-node It and the value ofpositionfor children tzj, <_ j < k of tx.

width(#)-- 1,

sourceright(lz) (0, 2),

sourceleft(#) (0, 2),

sinkright(IZ) (0, 0),

sinkleft(lZ) (0, 0).

FIG. 9. The values of width, sourceright, sourceleft, sinkright, and sinkleftfor a Q-node lz.

We use the following auxiliary operation to find proper nodes:
Proper(vertex v)mReturns the node triple (#, #’,/z"), where/z is the proper node of

v, node/z’ is the child of v such that v is the sink of Gu, and/z" is the child of v such that v
I!

is the source of Gu. If v is a pole of G, then Proper(v) returns (p,-,-), where p is the root
ofT.

We use the following path selection function to find Proper(v). Selection function $4
takes as an argument integer x which has value either or 2 indicating if v is the source or
sink of the pertinent digraph of the head of I-I (0).

Selection function $4o Suppose O is the root ofa path-tree with children O’ and O". Let
VI’ be the concatenation of the subpath represented by O’ with the node head(o"). Ifx
and samesource(l-I’) true or ifx 2 and samesink(I-I’) true then return 0". Otherwise
return Ot.

When used with operation PathFind, path selection function $4 returns the tail of the
longest subpath beginning at head(o) such that the pole of head(o) indicated by x is also a
pole of the returned node. Therefore, the parent of the returned node will be the proper node
ofv.
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FIG. 10. A pictorial representation ofthe calculations ofposition(Izj), where Ij is a child ofa P-node lz. Graph
i

width(tzi ).Gj is the pertinent graph oflzj. Notice lengths a i._y(sourceright(lzi) and b i=j+l

If v is the source or sink of G, then return (p,-,-), where p is the root of T. Otherwise,
let e be any edge such that v is the source of e and let node L be the associated Q-node. We
find node IX" by calling PathFind(L, $4). Nodes IX and IX’ are the parent and left sibling of IX".
This takes O(log n) time.

3.4, Query operations. Operation Offset(v) is implemented as for trees..We call ex-
pose(v), return the value ofposition(v), then restore the size invariant by calling conceal(v).

Operation Draw(v) is performed as follows. Find Proper(v). If v is the source of G,
then return (0, 0). If v is the sink of G then return (0, 2 width(p)), where p is the root of
T. Otherwise, suppose Proper(v) (IX, IX’, IX"). Return Offset(Ix"). This can all be done in
O(log n) time.

Operation DrawSubgraph(v) is performed by calling Draw on the poles of Gv and then
calling Offset(v) in order to determine the position of A(v). We then visit Gv and compute
the positions in O(1) amortized time per vertex and edge using the sequential A-algorithm
(see Lemma 3.1).

Each internal face in a drawing F of series-parallel digraph G can be associated with the
parallel composition oftwo subgraphs. Therefore, we identify each internal face f of F by the
node triplet (v, Ixe, Ixr), where v is a P-node or a PQ-node and Ixe and Ixr are the consecutive
children of v such that f is associated with the parallel composition of G and Gr, and
Gz, embedded to the left of G,. Operation Locate(v, p) consists of the following steps for
a digraph G represented by SPQ-tree T:
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FIG. 11. Finding the face containing a query point p. If p is in a shaded region then its face is found at a

descendant P-node.

(1) If point p is not contained in A(v), then return the external face.
(2) Find the deepest descendant # of v such that p is contained in A(#), but not the

bounding triangle of any of the children of/z.
(3) Let s and be the source and sink of Gu.. If p is at Draw(s) or Draw(t) then return

the found vertex. If p is on the rightmost edge from s or the rightmost edge entering t, then
return the edge.

(4) If node/z is an S- or Q-node, then p is to the left of the drawing of any of the edges
of Gu. Let node v’ be the closest ancestor of/z such that node/z is not a descendant of the
leftmost child of v’, let node tt" be the child of v’ on the path from/z to v’, and let node/z’ be
the left sibling of #". Therefore, the face containing p will be (v’, tt’,/z").

(5) The final case is if node tt is a P-node or a PQ-node. Let Rs(lZ) be the region bounded by
the triangle formed by the drawing of vertices s, sourceleft(lZ), and sourceright(#). Similarly,
let Rt (/z) be the region formed by the drawing of vertices t, sinkleft(#), and sinkright(lz).

(a) If p is not contained in Rs(#) or Rt(lZ), then, as above, p is to the left of the
drawing of any of the edges of G, and we continue as in step 2.

(b) Otherwise, suppose p is in Rs(#) (the case where p is in Rt(#) is handled
similarly). Let node v’, be the deepest descendant of # such that point p is
contained in R.(v’). Node v’ will be a P-node, since for S-node tc with left-
child to’, R.(tc) RL(tc’). If p is on an edge of R.(#), then return the edge.
Otherwise, the face containing p is (v’,/z’,/z’), where tt’ is the child of v such
that point p is to the right of Rs(#’) but to the left of R. (#") where node #" is
the immediate left sibling of it’ (see Fig. 11).
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Steps 2, 3, and 5b are implemented using selection functions. Consider the following tree
selection functions, which take query point p as an argument.

Selection function Ss. Suppose r is the root of a path-tree with children tl’ and ". If
point p is contained in zX(tail(r’)) then return r’, otherwise return ".

We then perform step 2 by letting node tc TreeFind(v, $5, p). If tc is a node on an
edge-path of node to’, then return tc’. Otherwise, return node

Selection function $6. Suppose is the root of a path-tree with children ri’ and r". If
point p is contained in R.(tail(rl’)) then return ?’, else return

We then perform step 5b by letting node x TreeFind(l, $6, p). If tc is node v’ (/x") on an
edge-path of node v’, then point p is on the face (v’, #’,/z"), where node/x’ is the left-sibling
of #". Otherwise, node tc is on a solid path 1-I. Let node #’ be the child of tc on rI. If p is on
an edge of R.(x), then return the edge. If p is to the right of the edge from the source of GK
to sourceright(l’). Then p is contained in face (x, pJ, #"), where/x" is the right-sibling of

#’. Otherwise, point p is to the left of the edge from the source of GK to sourceleft(#’). Then
p is contained in face 0c,/x’",/x’), where/x’" is the left-sibling of

Consider the following path selection function.
Selection function $7. Suppose r is the root of a path-tree with children ri’ and r". If

noleftp(rl’) is true or ifhead(") is a P-node and tail(ri’) is not its leftmost child, then return

7f, else return r.
Step 4 is implemented by first calling operation expose to get path I-I from/z to v. Let

node to" PathFind(rI, $7). If to" v then return the external face. Otherwise, return the
node-triple (c, x’, to"), where nodes tc and to’ are the parent and left-sibling of node c".

Each of these steps can be implemented in O (log n) time. Therefore, operation Locate is
performed in O (log n) time.

To implement operation Window we keep the data structure of [41 to maintain the planar
embedding of G. In particular given a face f of G in an upward embedding of series-parallel
digraph G, we can find two lists of edges and vertices that comprise the left and right boundary
of f.

Suppose pandq are points with x(p) < x(q) and y(p) < y(q), and let W be the window
defined by p and q. Operation Window(v, p, q) is realized as follows. If W does not intersect
A(v) then return an empty drawing. Otherwise, let s be a scan point. Initialize s to p, and do
the following, clipping to W:

Perform Locate(v, s). Let f be the returned face. Find the edge e that is to the right of
s on the boundary of f. Draw and mark all unmarked edges and vertices that are in W and
are reachable by forward and reverse edges from edge e.

Repeat step 1, continuing around the boundary of W, finding unmarked edges of G that
intersect the boundary of W.

We implement the search of the list for face f in step by performing a binary search on
the location of the vertices on the boundary. Each Draw call takes O (log n) time, so finding an
edge that intersects the boundary of W takes O(log2 n) time. We traverse the edges reachable
from e by using a modified breadth-first search that cuts at a marked vertex, or at the boundary
of W. Hence, the internal j edges and vertices found by step can be drawn in O (j. log n)
time.

Therefore, operation Window can be implemented in O (k. log2 n) time to draw k vertices
and edges.

3.5. Update operations. Operations MakeDigraph and DeleteDigraph can be trivially
implemented in O (1) time. Operations Compose, Attach, and Detach can each be implemented
with a constant number of calls to MakeDigraph, DeleteDigraph, and variations of the tree

operations Link and Cut.
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(a) (b)

FIG. 12. Modification of T in operation InsertEdge and DeleteEdge: splitting/merging an S-chain. (a) Inser-
tion ofan edge between nonconsecutive vertices of the skeleton ofan S-chain. (b) Transformation of the
SPQ-tree.

Consider now operation InsertVertex(v, e, e’, e") and let . be the Q-node of e, and v be
the parent of L, if it exists. We replace with an S-node/x having Q-node children for e’ and
e". This can be done with two MakeDiagraph operations, followed by a Compose operation
and one each Cut and Link operation. Then, if/z is an S-node, we contract/x into v. All this
takes O (log n) time.

The inverse operation DeleteVertex(e, v, e’, e") is implemented similarly with a constant
number of MakeDigraph, DeleteDigraph, Link, Cut, and Expand operations.

The restructuring of the SPQ-tree caused by InsertEdge and DeleteEdge is more complex.
It is known [6] that if G is a series-parallel digraph with SPQ-tree T and v’ and v" are two
vertices of G, then the digraph obtained by inserting an edge from v’ to v" is a series-parallel
digraph if and only if either v’ s and v" = t, or v’ and v’t are vertices of the skeleton of the
same S-node of T, with v’ preceding v". If e is an edge of G represented by Q-node X, then
the digraph obtained by removing edge e is a series-parallel digraph if and only if one of the
following conditions is true: the parent of Z in T is a PQ-node, e is the only outgoing edge
of s, or e is the only incoming edge of t. These conditions can each be tested in O(log n)
time. The restructuring to T required for lnsertEdge and DeleteEdge also can be performed
in O(log n) time.

The transformations to T that result from InsertEdge and DeleteEdge are demonstrated in
Figs. 12 and 13. Notice that transitive edges are always added as the right child of a PQ-node.

In a A-drawing, the drawing of a component is independent, up to a translation, from the
structure of the rest of the digraph [2]. Hence, dynamic predicate PD is satisfied.

4. Planar graphs. In this section we present dynamic techniques for drawing planar
graphs. First we discuss upward drawings of planar st-digraphs, and next we extend the
results to (undirected) biconnected planar graphs. Planar st-digraphs, which include series-
parallel digraphs, as a special case, were first introduced by Lempel, Even, and Cederbaum
[26] in connection with a planarity testing algorithm, and they have subsequently been used



DYNAMIC GRAPH DRAWING 995

(a) (b)

FIG. 13. Modification of T in operation lnsertEdge and DeleteEdge: extending/shortening a P-chain. (a)
Insertion ofan edge between consecutive vertices ofthe skeleton ofan S-chain (the vertices are the source
and sink ofa parallel composition). (b) Transformation ofthe SPQ-tree.

in several applications, including planar graph embedding [5], 10], [41 ], graph drawing [9],
[11 ], and planar point location 16], [20], [31 ], [47].

A planar st-digraph is a planar acyclic directed graph with exactly one source vertex s
and exactly one sink vertex t, which is embedded in the plane such that s and are on the
boundary of the external face.

The following generalizes our definition of components of series-parallel digraphs. A
digraph is weakly connected if its underlying undirected graph is connected. Let G by a
planar st-digraph. An open component of G is a maximal weakly connected subgraph G’
of the digraph obtained from G by removing a separation pair {p, q}, such that G’ does not
contains s or t. A closed component of G is an induced subgraph G’ of G such that

G’ is a planar pq-digraph;
G’ contains every vertex of G that is on some path from p to q;
G’ contains every outgoing edge of p, every incoming edge of q, and every incident

edge of the remaining vertices of G’.
A component of G is either a closed or an open component.

4.1. Upward drawings. We consider the following static drawing predicate T’s:
Upward: The drawing is upward.
Planar: The drawing is planar.
Embedding-preserving: The drawing preserves the embedding.
Grid: Vertices are placed at integer coordinates.
Polyline: Edges are drawn as polygonal lines.
Transitive-bends: Transitive edges have at most one bend. The other edges are straight

lines. Hence the total number of bends is at most 2n 5.
Isomorphic: Isomorphic components have drawings that are congruent up to a translation.
Symmetric: Symmetric components have drawings that are congruent up to a translation

and a reflection.
Quadratic-area: The drawing has O(n2) area.



996 R. COHEN, G. DI BATTISTA, R. TAMASSIA, AND I. TOLLIS

We dynamize the polyline drawing method of [11], which has the important property
of displaying symmetries and isomorphisms of subgraphs. Note that we do not consider
straight-line drawings because they may require exponential area 11 ].

4.1.1. Dymamic environment. We consider a fully dynamic environment for the main-
tenance of upward drawings on a collection of embedded a planar st-digraphs. Namely, we
introduce the following set (.9 Q tA H of operations:

Query operations (Q):
Draw(vertex v)--Return the (x, y) position of vertex v. The source is considered to
be at (0, 0).
Draw(edge e)mReturn the (x, y) position of the endpoints of edge e. If e is a
transitive edge, then also return the position of the bend of e.

Update operations (H):
MakeDigraph--Create a new elementary planar st-digraph G, consisting of a single
edge.
DeleteDigraph(edge e)mRemove the elementary planar st-digraph consisting of sin-
gle edge e.
InsertEdge(vertex v’, v"; edge e; face f, f’, f")--Add edge e (v’, v") inside face
f, which is decomposed into faces f’ and f", with f’ to the left of e and f" to the
right.
DeleteEdge(edge e; face f)--Delete edge e and merge the two faces formerly on
the two sides of e into a new face f.
Expand(vertex v, v’, v"; edge e; face f’, f")Expand vertex v into vertices v’ and
v", which are connected by a new edge e with face f’ to its left and face f" to its
right.
Contract(vertex v; edge e)Contract edge e and merge its endpoints into a new
vertex v. Parallel edges resulting from the contraction are merged into a single edge.

Each update operation is allowed if the resulting digraph is itself a planar st-digraph.
Consider a vertex v ofplanar st-digraph G. Let R+ (v) be the set of vertices of G reachable

from v and let R-(v) be the set of vertices u of G such that v is reachable from u. For a pair
of vertices (v’, v") the subgraph ofstable reachability of (v’, v") is the subgraph induced by
R- (v’) t2 R+ (v").

In the rest of this section we prove the following theorem.
THEOREM 4.1. Consider thefollowing dynamic graph drawing problem:
Class ofgraphs : embedded planar st-digraphs.
Static drawing predicate 79s: upward, planar, embedding-preserving, grid, polyline,

transitive-bends, isomorphic, symmetric, quadratic-area drawing.
Repertory of operations (.9: Draw, MakeDigraph, DeleteDigraph, lnsertEdge, Delete-

Edge, Expand, and Contract.
Dynamic drawing predicate 79z:

The drawing ofa component not affected by an update operation changes only be a
translation;

After inserting or deleting an edge between v’ and v’, the drawing of the subgraph
ofstable reachability of (v’, v") changes only by a translation.

There exists a fully dynamic algorithmfor the above problem with the following perfor-
mance:

A planar st-digraph uses O(n) memory space;
Operations MakeDigraph and DeleteDigraph each take 0(1) time;
Operations Draw, lnsertEdge, DeleteEdge, Expand, and Contract each take O(log n)

time.
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Data structure. Let V be the set of vertices E, be the set of edges, and F be the set
of faces of planar st-digraph G. As shown in 11], [42], there are two orderings on the set
V t2 E t2 F, denoted L and R, such that if G has no transitive edges, a planar upward grid
drawing of G is obtained by assigning to each vertex v x- and y-coordinates equal to the
ranks of v in the restriction to V of L and R, respectively. This drawing method is extended
to general planar st-digraphs by inserting a dummy vertex (a bend) along each transitive
edge.

We represent sequences L and R by means of balanced binary trees TL and TR (e.g.,
using red-black trees [21]). Each leaf represents a vertex, edge, or face. At each leaf, we
keep the following binary value: if the node is associated with a vertex or a transitive edge
and 0 otherwise. At each internal node 0, we store the sum of the values at the leaves in the
subtree of 0. In a drawing query, we compute x(v) (resp., y(v)) by splitting tree TL (resp.,
TR) at the node associated with v, and finding the value stored at the root of the resulting left
tree.

After an update operation at most two edges of G become or cease to be transitive, and
each such edge can be identified in O (log n) time. The corresponding modifications of node
values can be done in O(log n) time. Also, sequences L and R are updated by means of
O(1) split/concatenate operations [42], so that the corresponding updates on T and Tn take
O(log n) time. We conclude that our dynamic data structure uses O(n) memory space and
supports each operation in O (log n) time.

The dynamic drawing predicate 79D is satisfied because of the results in [11 ].

4.2. Visibility drawings. The concept of visibility plays a fundamental role in a variety
of geometric problems and applications, such as art gallery problems [30], very large-scale
integration layout [23], [34], [50], motion planning [22], and graph drawing [9], [44]. A
visibility representation (R) for a directed graph G maps each vertex v of G to a horizontal
segment (R)(v) and each edge (u, v) to a vertical segment (R)(u, v) that has its lower endpoint
on (R)(u), its upper endpoint on (R)(v), and does not intersect any other horizontal segment.
Besides having many applications, visibility representations are also of intrinsic theoretical
interest, and their combinatorial properties have been extensively investigated 13], [43], [45],
[51], [52].

We consider the following static drawing predicate 79s:
Visibility: The drawing is a visibility representation.
Grid: The endpoints of vertex- and edge-segments are placed at integer coordinates.
Isomorphic: Isomorphic components have drawings that are congruent up to a translation.
Quadratic-area: The drawing has O(n2) area.
In the rest of this section we prove the following theorem:
THEOREM 4.2. Consider thefollowing dynamic graph drawing problem:
Class ofgraphs : embedded planar st-digraphs.
Static drawing predicate Ps: visibility, grid, isomorphic, quadratic-area drawing.
Repertory ofoperations O: Draw, MakeDigraph, DeleteDigraph, lnsertEdge, Delete-

Edge, Expand, and Contract.
Dynamic drawing predicate 79: the drawing ofan open component not affected by an

update operation changes only by a translation.
There exists a fully dynamic algorithm for the above problem with the following perfor-

mance:
A planar st-digraph uses O(n) memory space;
Operations MakeDigraph and DeleteDigraph each take 0(1) time;
Operations Draw, InsertEdge, DeleteEdge, Expand, and Contract each take O(logn)

time.
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Data structure. We recall that in a planar st-digraph the incoming edges of each vertex
appear consecutively around the vertex, and so do the outgoing edges [43]. The faces separating
the incoming and outgoing edges of vertex v to the left and right of v are called left(v) and
right(v), respectively. Also, the boundary of each face f consists of two directed paths
enclosing f, each starting from the unique lowest vertex low(f) and ending at the unique
highest vertex high(f). A visibility representation for G can be constructed by the following
variation of previous sequential algorithms [9], [33], [43].

(1) Construct the directed dual of planar st-digraph G as follows. (a) Construct the dual
graph G* of G. (b) Orient the dual of each edge e of G from the face to the left of e to the
face to the right of e. (c) Expand the vertex of G* associated with the external face of G into
two vertices, denoted s* and t*, between faces s and of G*. (d) Remove edge (t*, s*) of G*
and let D be the resulting planar s*t*-digraph.

(2) Compute a topological ordering Y(v) of the vertices of G.
(3) Compute a topological ordering X(f) of the vertices of D.
(4) Draw each vertex-segment (R)(v) at y-coordinate Y(v) and between x-coordinates

X(left(v)) and X(right(v)) 1.
(5) Draw each edge-segment (R)(e) at x-coordinate X(left(e)) and between y-coordinates

Y(low(e)) and Y(high(e)).

Consider the orderings L and R defined in 4.2. The restriction of sequence L (or R)
to V is a topological ordering [42]. Hence, we can use balanced binary trees to dynamically
maintain topological ordering X and Y, such that the position of a vertex- or edge-segment
can be computed in O (log n) time.

The dynamic drawing predicate 79z is satisfied because of the results in 11 ].

4.3. Biconnected planar graphs. Finally, we extend our results to (undirected) bicon-
nected planar graphs. We consider the following static drawing predicate 79s:

Planar: The drawing is planar.
Embedding-preserving: The drawing preserves the embedding.
Grid: Vertices are placed at integer coordinates.
Polyline: Edges are drawn as polygonal lines.
One-bend: Each edge has at most one bend and the total number of bends is at most

2n 5.
Quadratic-area: The drawing has O(n2) area.
We consider a semidynamic environment for the maintenance of polyline drawings on a

collection of biconnected planar graphs. Namely, we introduce the following set (.9 Q tO b/
of operations:

Query operations (Q):
Draw(vertex v)mReturn the (x, y) position of vertex v.
Draw(edge e)--Return the (x, y) position of the endpoints of edge e. If e has a bend,
then also return the position of the bend.

Update operations (b/):
MakeGraph--Create a new elementary biconnected planar graph G, consisting of a
cycle with three vertices.
InsertEdge(vertex v’, v"; edge e; face f, f’, f")Add edge e (v’, v") inside face
f, which is decomposed into faces f’ and f’.
lnsertVertex(vertex v; edge e, e’, e")mlnsert vertex v on edge e, which is decomposed
into edges e’ and e".
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As shown in 10], this repertory of operation is complete; i.e., any n-vertex biconnected
planar graph can be assembled by means of O (n) operations of the repertory. In the rest of
this section we prove the following theorem:

THEOREM 4.3. Consider thefollowing dynamic graph drawing problem:
Class ofgraphs : biconnected planar graphs.
Static drawing predicate 79s: planar, embedding-preserving, grid, polyline, one-bend,

quadratic-area drawing.
Repertory of operations (.9: Draw, MakeGraph, lnsertEdge, and lnsertVertex. There

exists a semidynamic algorithmfor the above problem with the following performance:
A biconnected planar graph uses O(n) memory space;
Operation MakeDigraph takes 0(1) time;
Operations Draw, lnsertEdge, and lnsertVertex each take O(log n) time.

Note that we do not maintain a dynamic drawing predicate.
Data structure. We maintain an on-line orientation of G into a planar st-digraph. This

can be done using the techniques of [41 ].
We can extend Theorem 4.3 to support the insertion of an edge between two vertices that

are not on the same face of the current embedding, using the techniques of 10]. In this case
the embedding has to be modified in order to preserve planarity, and the time complexity of
operation InsertEdge is amortized.

With a similar approach, we can derive from the data structure of Theorem 4.2 a semidy-
namic data structure for maintaining on-line visibility representations of biconnected planar
graphs. The memory space and time complexity is the same as in Theorem 4.3.

5. Open problems. Open problems include the following:
Decrease the complexity of window queries in trees and series-parallel digraphs to

O(k + log n).
Extend the techniques for planar st-digraphs and general planar graphs to support point-

location and window queries.
Develop dynamic algorithms for planar straight-line drawings of general planar graphs.

The techniques of 18], [35] appear difficult to dynamize.
Dynamically maintain planar orthogonal drawings with the minimum number of bends.

The static algorithm of [40] is based on network flow techniques for which no dynamic methods
are known.

Devise dynamic algorithms to test whether a digraph admits an upward planar drawing.
Static algorithms that perform this test are known only for triconnected [3], bipartite [8], and
single-source digraphs [4], [24]. Semidynamic planarity testing can be done with O(log n)
query and insertion time [10]. Recently, a fully dynamic planarity testing technique with
O(n2/3) query and update time has been discovered [19].

Dynamize drawing methods for general graphs that are based on physical models of the
layout process, such as the "spring" algorithm 14], [25].

Acknowledgment. We are grateful to Paola Bertolazzi for helpful discussions and in-
sights.
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FLOW IN PLANAR GRAPHS WITH MULTIPLE SOURCES AND SINKS*
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Abstract. The problem of maximum flow in planar graphs has always been investigated under the assumption
that there is only one source and one sink. Here we consider the case where there are many sources and sinks (single
commodity) in a directed planar graph, An algorithm for the case when the demands of the sources and sinks are
fixed and given in advance is presented. The algorithm can be implemented efficiently sequentially and in parallel,
and its complexity is dominated by the complexity of computing all shortest paths from a single source in a planar
graph. If the demands are not known, an algorithm for computing the maximum flow is presented for the case where
the number of faces that contain sources and sinks is bounded by a slowly growing function, Our result places the
problem ofcomputing a perfect matching in a planar bipartite graph in NC and improves a previous parallel algorithm
for the case of a single source, single sink in a planar directed (and undirected) graph, both in terms of processor
bounds and its simple presentation.

Key words, planar graphs, flow, circulation
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1. Introduction. In the common formulation of the maximum flow problem, the maxi-
mum flow from a distinguished vertex in the graph, called the source, to another distinguished
vertex in the graph, called the sink, is computed. Here we assume that the underlying network
is planar; this case was extensively studied and more efficient algorithms were developed for
it (see 2), yet the assumption was always that there is only one source and one sink.

In this paper we investigate the following problem: given a planar network with many
sources and sinks, compute the maximum flow from the sources to the sinks. Ford and
Fulkerson [3] reduced the multiple source, multiple sink problem to the single source, single
sink problem by connecting the sources to a supersource and the sinks to a supersink, and
then computing the maximum flow from the supersource to the supersink. In planar graphs,
this reduction may destroy the planarity of the graph if the sources or sinks belong to different
faces. Nevertheless, we would like to take advantage of the planarity of the graph to design
more efficient algorithms, sequential as well as parallel, in the case of multiple sources and
sinks.

We feel that the reformulation of the problem is more natural within the context of planar
graphs and has motivation in both sequential and parallel computation. The only other attempt
known to us that copes with multiple sources and sinks is by Megiddo [22], [23], whose
algorithm computes (in a general graph) optimal flows, i.e., flows that are "fairly" distributed
among the sources and sinks.

Maximum flow in a general network was shown to be P-complete [10], and hence it is
widely believed not to have an efficient parallel algorithm. On the other hand, maximum flow
can be reduced to maximum matching and this reduction implies an RNC algorithm when the
edge capacities are represented in unary 16], [24]. This emphasizes the importance of solving
the problem in the case of a planar network with arbitrary capacities. In the restricted case
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of a single source, single sink, there do exist NC algorithms in both directed and undirected
graphs [6], 14].

The first problem we consider is the case where the amount of flow (demand) at each
source and sink is given as input, and the objective is to compute a feasible flow function. We
present an efficient algorithm for this problem. The sequential complexity of our algorithm is
O(n 1’5) time; the parallel complexity is 0(I (n) log2 n) time using O(n 1"5) processors where
I (n) is the time ofcomputing the sum ofn values. I (n) can be implemented in O (1) time in the
concurrent read concurrent write parallel random access machine (CRCW PRAM) model and
O(log n) time in the exclusive read exclusive write parallel random access machine (EREW
PRAM) model. The main idea in computing the flow function in this case is redirecting the
flow through a spanning tree from the sinks back to the sources. The problem then reduces to
that of computing a circulation in a network with both lower and upper bounds on the capacity
of the edges. Similar ideas for redirecting the flow back from the sink to the source have
appeared in [5], [6], and [14] for computing the flow in the case of a single source and sink.

Note that planar graphs are different from general graphs, where it was observed that
knowing the value of the maximum flow does not improve the complexity of computing the
flow function [29]. In contrast to that, all the known algorithms for planar flow do take
advantage of the value of the maximum flow.

We consider the special case where the sources and sinks are all on one face and the
demands unknown. We present an efficient algorithm that computes the maximum flow in
this case by employing a nontrivial divide-and-conquer. The sequential running time of the
algorithm is O (n log5 n) time. In parallel, it can be computed using O (n .5) processors, where
the time complexity is O(l(n) log n). (I (n) is the same function as previously defined.) We
then show how to extend this algorithm to the case where the number of faces that contain
sources and sinks is bounded by a slowly growing function.

Unfortunately, the most general problem, where the sources and sinks belong to an aro
bitrary number of faces and the demands are unknown, is still open; i.e., the best sequential
algorithm for this problem is obtained by connecting the sources and sinks to a supersource
and supersink; in parallel, there is no NC algorithm known for this problem.

An example where multiple sources and sinks are useful is the case of computing a perfect
matching of a planar bipartite graph. In the standard reduction from matching to flow (see, e.g.,
[2]), one part of the graph is connected to a source and the other part to a sink. In general, this
reduction will result in a nonplanar graph but can be utilized within our context (the demand
of each source and sink is exactly one unit). This places the problem of computing a perfect
matching in a planar bipartite graph in NC.

The situation in computing a perfect matching in planar graphs is very intriguing. Kaste-
leyn [17] had already shown how to count the number of perfect matchings in a planar graph,
a problem that is # P-complete in general graphs, and his methods can be implemented in NC
(see, e.g., [32]) as well. Yet computing a perfect matching in NC in a planar graph remains an
open problem. This situation is interesting as it contradicts the current view of the computa-
tional difficulty of counting the number of solutions versus finding a solution in combinatorial
problems.

Johnson [14] showed how to compute in parallel the maximum flow for the case of a
single source, single sink in a directed graph. We present an algorithm for this case which
improves on the number of processors and is also very simple in comparison with the fairly
complicated algorithm of 14]. Johnson’s approach 14] was the first to find the minimum cut,
and then compute the flow function. Our approach is different; using parametric methods, we
can find the value of the maximum flow; then the computation of the flow function follows
easily.
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Subsequent to this work, Khuller and Naor 18] considered the problem of computing a
flow function in a planar graph where there are capacity constraints on both edges and vertices.
Efficient algorithms for this problem are presented in 18].

The paper is organized as follows: In 2, we describe previous results in planar flow and
in 3 we provide certain preliminaries. In 4, we show how to compute a circulation when
edge capacities may have nonzero lower bounds. In 5, we present three applications: (i)
computing the flow function when there are many sources and sinks and their demands are
known; (ii) computing a perfect matching in a bipartite planar graph; (iii) improving previous
algorithms for the case of a single source and sink. In 6, we show how to find the maximum
flow in the case where all the sources and sinks are on the same face but the demands are not
known. In 7 we extend these results to the case where the number of faces containing sources
and sinks is bounded.

2. Previous results in planar flow. All the results referred to in this section deal exclu-
sively with the single source, single sink maximum flow problem. Ford and Fulkerson [3] had
already observed that a minimum cut in a planar graph is equivalent to a minimum weight
cycle that separates the source from the sink in the dual graph. They gave an O(n log n)
time algorithm to compute the minimum cut when the source and sink belong to the same
face. Berge and Ghouila-Houri [1] suggested an O(n2) algorithm for computing the flow
function, which is called the "uppermost path algorithm." This algorithm was implemented in
O(n log n) time by Itai and Shiloach 12]. Hassin [5] gave an elegant algorithm for computing
the flow function and his algorithm can be implemented in O (nv/log n) time using the method
of [4] for computing shortest paths in planar graphs.

Itai and Shiloach 12] also gave an algorithm to compute the maximum flow in an undi-
rected graph when the source and sink do not necessarily belong to the same face. Its running
time was O(n2 logn). This was improved by Reif [30] who gave an O(n log2 n) time al-
gorithm for computing the minimum cut in an undirected planar graph. Only Hassin and
Johnson [6] completed the picture by giving an O(n log2 n) time algorithm for computing
the maximum flow in an undirected graph by generalizing the ideas of [5] and [30]. (The
running time of their algorithm can be improved to O(n log n) through the methods of [4] for
computing shortest paths in a planar graph.)

Computing the maximum flow in planar directed graphs is more difficult as it is not clear
how to reduce the problem of computing a minimum weight cycle to that of computing a
minimum weight path. Johnson and Venkatesan [15] gave an O(n5 log n) time algorithm to

compute both a minimum cut and a maximal flow.
In the course of the evolution of efficient algorithms for planar flow, an interesting phe-

nomenon occurred. The computational difficulty alternated between searching for the mini-
mum cut on the one hand, and computing the flow function when the minimum cut is known
on the other hand.

It is easy to implement the algorithm of [6] for undirected graphs in parallel, and its

complexity is O(log2 n) time using O(n3) processors. (The details are given in [14].) It
should be mentioned that an alternative algorithm for computing the minimum cut in parallel
in an undirected graph was given in 13].

As for directed planar graphs, an algorithm that first computes the minimum cut, and then
the flow function, was given by Johnson [14]. Its complexity is O(log n) time using O(n4)
processors or O (log2 n) time using O(n6) processors. The processor bounds of the algorithms
of [6], [14] can be improved through the methods of [26]-[28].

3. Terminology and preliminaries. Throughout the paper let G (V, E) be an em-
bedded planar graph where V is the vertex set and E is the arc" set. An edge consists of two
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arcs, an arc and its reflection. Let R (e) be the permutation which takes an arc e to its reflection.
The graphs considered may have multiple edges but every arc will have a distinct reflection.

A graph is said to be embedded in the plane if it is intuitively "drawn" in the plane with
no crossing edges, where an edge and its reflection are drawn on top of each other. This
definition is not very algorithmic, hence we assume that the graph is given by one of the many
combinatorial definitions of planar embedding; see [25], for example. An embedding of a
planar graph can be computed sequentially in linear time [11] and in parallel in O(log2 n)
time using a linear number of processors 19]. An embedding is needed to compute the dual
graph. In all of our algorithms, computing an embedding will never dominate the cost of the
algorithm.

An embedded graph G partitions the plane into connected regions called faces. Let
G* (F, E*) be the dual graph of G, where F is the set of faces of G, and E* is the set of
dual arcs. There is a one-to-one correspondence between E and E* as follows: for each arc
e 6 E, let e* be the corresponding dual arc connecting the right face bordering e with the left
face bordering on e.

We use a left-hand rule" if the thumb points in the direction of e, then the index finger
points in the direction of e*. The dual G* is also known as the clockwise dual of G. For a
vertex v, in(v) (out(v)) denotes the incoming (outgoing) set of arcs into (from) v. For an arc
e, tail(e) (head(e)) denotes the vertex at the tail (head) of e.

The dual graph is planar too, but may contain self loops and multiple edges. We sometimes
refer to the graph G as the primal graph.

A cycle C is an ordered set of arcs e0, e ek such that for every 0 < < k, head(e/)
tail(ei+) (mod k + 1). The cycle C is simple if the vertices between the arcs are distinct.
Thus all cycles are directed.

3.1. Flow in planar graphs. In this section we formally define the planar flow problem.
We generalize the problem in two ways. First, we allow multiple sources and sinks. Second,
we introduce vertices with fixed flow demands. This is the definition we shall use throughout
the rest of this paper.

DEFINITION 3.1. Aflow graph with sources, sinks, capacities, anddemands is thefollowing
five-tuple (G, S, T, c, d) such that

G (V, E) is a graph, where V is a set of vertices and E is a set ofarcs;
the sources and sinks with variable demands are S c_ V and T c_ V, respectively,
where the sets S and T are disjoint;
the map c E --+ is the edge capacity or all e E" c(e) -c(R (e)));
the map d V {S, T is the demand at nonsource and nonsink vertices, i.e.,
verticesfor which the demand is fixed.

Observe, that c(e) and d(v) may be negative. Vertices for which d(v) > 0 are called
sources with fixed demands, and vertices for which d(v) < 0 are called sinks with fixed
demands.

DEFINITION 3.2. Afunction f E -- is a flowfunction if
(i) ’v’e E’f(e)- -f(R(e));
(ii) Vv 6 V {S, T} ’tail(e)=v f(e) d(v).
DEFINITION 3.3. The function f is a legal (or feasible)flow function if in addition,

Ve E, f (e) < c(e), where c(e) denotes the capacity ofedge e.
Given a flow function f, we define for all v 6 V, f(v) Ytail(e)=v f (e).
In the maximum flow problem, we are looking for a legal flow that maximizes the total

amount of flow entering T (or leaving S). The amount of flow entering the sinks is also
called the value of the flow. A circulation graph is a flow graph with no sinks or sources,
i.e., S T 0 and d(v) 0 for all vertices. A circulation function is a flow function with
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respect to a circulation graph. A flow graph withfixed demands is a flow graph with no sinks
or sources that have variable demand, i.e., S T 0.

Flow graphs and flow functions can be added and subtracted as follows" given a flow
graph G, flow functions fl and f2, and a real number or, the sum f otf / f2 is the flow
where, for every edge e, f (e) oefl (e) +/- fz(e). We define the addition of a flow graph and
a flow function to obtain a new flow graph. Let (G, c, d) be a flow graph with capacity c and
demands d, and let f be a flow function defined on G. The flow graph G / f will be the
triple (G, c + f, d + f). The demand function d + f is only defined for vertices v for which
d is defined and (d + f)(v) d(v) + f(v). The residual graph with respect to a given flow

f is formally defined as G f. Observe that the residual graph with respect to a legal flow
function cannot have negative capacities.

An augmenting path in a flow graph G is a path that starts at a source, ends at a sink, and
uses only arcs with strictly positive capacity. We do not distinguish between an augmenting
path as a set of arcs or, alternatively, as a flow of one unit on the arcs in the augmenting path.
We say this more formally. A path P is edge disjoint if the arcs in P are distinct and no arc
and its reflection both belong to P. Let P be an edge disjoint path from a source to a sink.
The unitflow on P is defined as follows:

ifeP,
P(e)= -1 if e6 R(P),

0 otherwise.

A potential graph is a graph where each arc is assigned a weight w 6 t. A potential

function on a potential graph G (V, E) is any real valued function p defined on the vertices.
The function p is called consistent if the potential difference over each edge is not larger than
the edge weight, i.e., Ve E, w(e) >_ p(head(e)) p(tail(e)).

If G (V, E) is an embedded planar flow graph then its potential dual graph is G*
(F, E*) such that w(e.) c(e). Given a consistent potential function p defined on G*, we
obtain a flow function f by setting f(e) p(head(e*)) p(tail(e*)). Clearly, f satisfies
condition (i) of Definition 3.2. To see that it also satisfies condition (ii) in the case where all
the demands are zero, we use the following easy yet fundamental proposition proved in [5]
and [14].

be a cycle in the dual graph. Then the flow fPROPOSITION 3.1 Let C el,.. ek
satisfies thefollowing property: f (eL) /... / f(ek) O.

Let the cycle C in the dual graph correspond to the set of primal edges adjacent to a primal
vertex. Then it follows that f satisfies condition (ii) of Definition 3.2. Hence, any potential
function induces a circulation in a planar flow graph. Furthermore, if the potential function is
consistent then the flow function is legal.

The use of a potential function as a mean of computing a flow (and circulation) was first
suggested by Hassin [5] and was later elaborated by [6] and [14], but not stated in terms of
circulations.

An important procedure that will be used in all of our algorithms is computing all shortest
paths from a given vertex in a planar graph which may contain negative edge weights. The
sequential complexity of this procedure is O(n 5) using the generalized nested dissection
method of [20]. To compute in parallel shortest distances, the parallel nested dissection im-
plementation of [26]-[28] requires O(n 5) processors; the time complexity is 0(I (n)log2 n),
where I (n) is the parallel time of computing the sum of n values. I (n) can be implemented
in O(1) time in the CRCW PRAM model and O(log n) time in the EREW PRAM model.

To implement the method of nested dissection we need to compute small separators in
planar graphs. A small separator can be computed sequentially in linear time; see [25]. In
parallel, Gazit and Miller [7], [8] provided a procedure for computing small separators, where



FLOW IN PLANAR GRAPHS 1007

the complexity is O (n 1+) processors and the running time is dominated by the running time
of a procedure for computing a maximal independent set in a graph (not necessarily planar).
The current best bound is O(log n) time using a linear number of processors [9].

4. Computing circulations. In this section we show how to compute a circulation in a
planar graph. It is clear that the difficult case occurs when some of the edges have negative
capacity. Otherwise, we can set the flow on each edge to be zero and obtain a legal circulation.
An edge which has negative capacity may be viewed as having a lower bound on the flow
through it; for example, an edge which has a lower bound of a and an upper bound of b on
the capacity can be replaced by two edges of opposite direction, which have capacities b and
-a. We provide a precise characterization of planar circulation problems that have feasible
solutions.

As stated in the previous section, the key idea is to compute a consistent potential function
on the faces of the planar graph and define the flow in each edge as the potential difference
of the two faces that border the edge. We show that finding such a potential function reduces
to computing the shortest paths from a single source. Throughout this section, let G denote a
planar circulation graph with capacities c(e) and a dual G* which has weights w(e).

A shortest path numbering for a graph (from some source vertex x) is an assignment of
real values to the vertices such that the value of a vertex y equals the minimum weight path
from x to y. We shall simply call it an SP numbering. It is well known that every strongly
connected graph has an SP numbering if and only if it has no negative weight cycles.

LEMMA 4.1. Let G be a connected, embedded circulation graph. Then, the following
conditions are equivalent:

1. G* has no negative weight cycles.
2. G* has an SP numberingfrom every vertex Qace in G).
3. G has a legal circulation.

Proof. By the comment above, if G* does not contain negative weight cycles, then G*
has an SP numbering from every vertex. To see that the existence of an SP numbering also
implies the existence of a circulation, let the potentials assigned to the faces be equal to their
SP numbering from some arbitrary vertex. Let p denote the potential function and e* be a
dual edge directed from face F to face F’. Since p is an SP numbering, it follows that

p(F’) p(F) <_ w(e*).

Therefore, p is a consistent potential function and G has a legal circulation by Propo-
sition 3.1.

To see that if G has a legal circulation, then G* has no negative weight cycles, assume
*, yet G has a legal circulationthe contrary G* contains a negative weight cycle el e

f. Note that a cycle in the dual graph G* separates the plane into two regions. Hence the
incoming flow into it has to be equal to the outgoing flow, i.e., f(et) + + f(e) 0, but
f(e) +... + f(ek) <_ c(et) +’.. + C(ek) < 0, resulting in a contradiction. [3

This lemma gives a precise characterization for the existence of a feasible circulation in
a planar graph: the dual graph cannot contain negative weight cycles.

To summarize, the potential function is computed as follows: Choose an arbitrary vertex

in the dual graph and compute the shortest path from it to all other vertices. The length of the
shortest path is defined as the potential of the vertex. The flow on each edge is defined as the
potential difference of the two faces bordering it.

The cost of computing a legal circulation is dominated by the cost of computing one SP
numbering. The sequential and parallel complexity of computing an SP numbering are given
in 3.1. Thus, we have the following theorem.
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THEOREM 4.1. A legal circulation can be computed in a planar graph in O(n .5) time
sequentially. In parallel it can be computed using O(n LS) processors; the time complexity is

0(I (n) log2 n), where I (n) is the parallel time ofcomputing the sum ofn values. I (n) can be
implemented in 0 (1) time in the CRCWPRAM model and 0 (log n) time in the EREWPRAM
model.

5. Applications of the circulation algorithm. In this section we present three applica-
tions of the circulation algorithm. In 5.1 we show how to compute a feasible flow function in
a flow graph without variable sources and sinks, i.e., when all demands are fixed and known in
advance. In 5.2 we show that a perfect matching in a planar bipartite graph can be computed
in NC. In 5.3 we present a simple algorithm for computing the maximum flow for the case
of a single source and sink with variable demand.

5.1. Computing the flow function for fixed demands. In this section we assume that
our input is a planar graph with many sources and sinks, where the demand at each source and
sink is known in advance. We present an efficient algorithm that determines whether a feasible
solution, i.e., a solution that satisfies the demands, exists, and if so computes it. Suppose that a
demand function d is defined on the vertices (see 3.1) such that sources have positive demands
and sinks have negative demands. The rest of the vertices have zero demand. We may assume
that the sum of the demands is zero since there is no feasible solution otherwise.

The main idea of the algorithm is that computing a flow function with fixed demands can
be reduced to computing a circulation. This reduction is achieved via a tree T that spans the
sources and sinks. We add new edges to the graph parallel to the edges of T, resulting in a
new graph G’.

Recall that in the algorithms of [6] and 14], a similar reduction is achieved by returning
the flow from the sink to the source via a simple path. This idea is generalized here and the
spanning tree T is used to redirect the flow from the sinks back to the sources. Any circulation
computed in G’ will induce a flow satisfying the demands in G.

SKETCH OF ALGORITHM (I).
Input: a planar flow graph (G, c, d) where the demand function is defined for all vertices
of G.
Output: a legal flow function f that satisfies the demands.

1. Find any flow function f’ for G.
2. Construct the residual flow graph G’ G f’ where G’ is a circulation graph.
3. Compute a circulation f" in G’.
4. Return the flow f f’ + f".
We now elaborate on the implementation of each step. To do step 1, we first compute a

spanning tree T in G, where an edge in T consists of both an arc and its reflection. We now
describe how the spanning tree is used to redirect the flow from the sinks back to the sources.

For all arcs that are not in T, we set f’ to zero. An arc e 6 T separates the tree into
two subtrees, called tail and head. Ttail is the subtree adjacent to the tail of e and Tnea is
adjacent to the head of e. Let f’(e) be defined as Y-vE,, d(v). The last term is also equal to

-,vEThe,d d(v) since T is a spanning tree and the sum of the demands on all vertices in the
graph is zero. To see that f’(v) d(v), let E’ be the set of arcs whose head is v. Note that if
an arc e 6 E’ is not in T, then f’(e) 0.

f’(v) Z f’(e)-- Z -d(w)= d(v).
e6E’ w6V-{v}
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We need only show that f’ + f" is a legal flow which meets the demands, given that f"
is a circulation. The flow f’ 4- f" meets the demand since

(f’ + f")(v) f’(v) + f"(v) f’(v) + 0 d(v).

To see that it is legal,

(f’ + f")(e) f’(e) + f"(e) <_ f’(e) + (c- f’)(e) c(e).

The most expensive part of the algorithm is step 3, where all shortest paths from a vertex
in the dual graph are computed. The sequential and parallel complexity of computing all
shortest paths from a given vertex in a graph with negative edge weights is discussed in 3.1.
Thus, we have the following theorem.

THEOREM 5.1. A flow function with fixed demands can be computed in a planar graph
in O(n ’5) time sequentially. In parallel, it can be computed using O(n) processors; the
time complexity is O(I (n) log2 n), where I (n) is the parallel time of computing the sum ofn
values. 1(n) can be implemented in O(1) time in the CRCW PRAM model and in O(logn)
time in the EREWPRAM model.

$.2. Finding a perfect matching. In this section we show how to compute a perfect
matching in a planar bipartite graph G (A, B, E), where A and B are the two parts of the
vertex set. In the standard reduction from matching to flow (see, e.g., [2]), E is directed from
A to B, a source s is connected to all the vertices of A, and a sink is connected to all the
vertices of B. All the edges in the reduced graph have unit capacity; the saturated edges in
a maximum flow constitute a maximum matching in G. Obviously, this reduction may, in
general, destroy the planarity of the graph.

To compute the perfect matching efficiently, each vertex in A becomes a source and each
vertex in B becomes a sink. The demand at each source and sink is exactly one unit. The
edges are oriented as before from A to B with unit capacity.

The sequential complexity of our algorithm is O(n ’) time and it matches the best se-

quential bound for computing a maximum matching in a planar graph [21 ]. In parallel, our
result places in NC the problem of computing a perfect matching in a planar bipartite graph.

5.3. Planar maximum flow with a single source and sink. In this section we show how
to improve the algorithm of 14] in the case of a single source, single sink in a directed planar
graph. We present a simple algorithm for this problem and improve the processor bound
with respect to 14]. We also handle the case where the capacities are possibly negative and
the case where some of the vertices may have fixed demands by returning flow as in 5.1,
Algorithm (I).

The approach taken in [14] is first to find the minimum cut and then compute the flow
function. We proceed differently; to apply Algorithm (I), we need to compute the value of
the minimum cut, denoted by o. This will be done by a parametric search method. Once the
value of the minimum cut is known, the flow function can be computed by Algorithm (I).

Recall that in Algorithm (I) the flow is returned from the sinks to the sources via a spanning
tree. Note that in the case of a single source and sink, the spanning tree is a simple path, denoted
by P, from to s. The difficulty is that we do not know how much flow to return from to s.

We first guess an initial value c, which is greater than or equal to the value of the maximum
flow from s to t; e.g., initially, we set c equal to the sum of the capacities of the edges leaving
the source. Throughout the rest of this section, we let f denote the flow, which is c for arcs
in P, -c for arcs in R(P), and zero otherwise. Let G’ G f.

The characterization offeasible circulations in Lemma 4.1 implies that we should compute
the maximum c (if it exists at all) such that the dual graph of G’ does not contain negative
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weight cycles. If our initial guess was too large, then in the dual graph of G’, where the
shortest paths are computed, there must be a negative weight cycle. (Otherwise, a circulation
that would correspond to a flow whose value is ot can be computed.) It should be noted that
there may be negative cycles in the dual graph that exist independently of the value we set for
or. This can only happen if there is no feasible flow in G even if c is set to zero. If this case
this is detected we halt, returning with no flow. We can henceforth assume that there exists a
legal flow function for G for some positive value of c.

Let C be a simple cycle in the dual graph G*. The net crossings of the path P by the cycle
C is defined as being equal to the number of times C crosses P from right to left minus the
number of crossings from left to right. (Right and left are defined with respect to the partition
of the plane by the path P.)

We observe the following straightforward fact.
LEMMA 5.1. The net crossings of P by C is either 0 or 4-1.

Proof Assume the cycle C crosses the path P more than once. We prove that two
consecutive crossings on P alternate between left-right crossings and right-left ones. Suppose,
to the contrary, that edges e, e 6 C are two consecutive crossings that are oriented in the same
direction, where e is to the right of e with respect to their orientation. The cycle C partitions
the plane into two regions, interior and exterior, and without loss of generality let the interior
be the region left of the cycle C with respect to its orientation. Now, however, there are two

points in the plane, one point to the fight of e (in the exterior) and the other to the left of e (in
the interior), that can be connected without crossing the cycle C. Hence, there can be at most
one crossing that is not "canceled" and the correctness of the lemma follows.

The following definitions hold for both sequential and parallel algorithms. An algorithm
that computes shortest paths in a graph is called oblivious if any decision on which paths
in the graph to compare is independent of the weights of the edges. In particular, for a
fixed (unweighted) graph, an oblivious algorithm will always compare the same paths for any
assignment of weights to the edges. An algorithm that computes shortest paths in a graph is
called additive if, for any nonsimple cycle C, its weight is computed in a time step subsequent
to the time steps in which the weight of each of its componenets that form simple cycles is
computed.

We first describe a generic algorithm for finding the maximum feasible c under the
assumption that an (sequential or parallel) algorithm 4 for computing shortest paths in a
graph that is both oblivious and additive is available.

GENERIC ALGORITHM.
Input: a planar flow graph (G, c, d) where the demand function is a variable for precisely one
source and one sink; an oblivious and additive algorithm Jt for computing shortest paths in G.
Output: the maximum legal flow.

1. Find any flow f’ for G; Set G +-- G ft. (Flow f’ satisfies the fixed demands in
the graph.)

2. Find a simple path P from s to and construct flow f for some large constant

3. Set Ga +-- G- fa.
4. Test whether G has negative cycles. Run Algorithm 4 on G*"

(a) Let r be the first step in which a negative cycle is detected (in Algorithm
and let be the weight of the most negative cycle detected at Step r.

(b) Set a +-- c + l; restart Algorithm .A, i.e., goto Step 3.

THEOREM 5.2. Assume that the running time ofAlgorithm A is 0 (T). Then, the generic
algorithm terminates after at most O(T2) steps and computes the maximum feasible value

ofcr.



FLOW IN PLANAR GRAPHS 1011

Proof. Let r denote the first step of Algorithm 4 in which a negative cycle is detected.
We will prove that after updating the value of o/and restarting Algorithm , a negative cycle
can be detected only in time steps subsequent to r. Hence, the generic algorithm terminates
after at most rr= r steps, which is at most O(T2) steps.

Let C denote the set of cycles in which Algorithm A has computed their weight up to

Step r. We claim that after updating the value of o/, the weight of all cycles in the set C must
be nonnegative. Since Algorithm l is oblivious, it follows that in any subsequent iteration, a

negative cycle cannot be detected before Step r + 1.
To prove the claim, suppose to the contrary that in time step r’ < r, a negative weight

cycle C 6 C is discovered in Go+t. (Assume that r’ is the first step in which a negative cycle
is detected.) We first prove that C must be a simple cycle. If C is not a simple cycle, then it
can be decomposed into a set of simple cycles. By the additivity property of Algorithm
this set of simple cycles must belong to C. Since the weight of C is the sum of the weights of
the simple cycles in its decomposition, some of the simple cycles must have negative weight.
Again, by the additivity property, the weight of these simple cycles will be computed in a time
step r’, where r" < r’. Therefore, we can assume that C is a simple cycle.

Recall that for every negative weight simple cycle in C, the net number of crossings of P
must be 0 or 4-1. Therefore, the weight of cycle C in G* cannot be less than l, implying that
all the simple cycles in G+t belonging to C cannot be of negative weight. In step 4(b) the
value of o/can only decrease, and hence the weight of the cycles in C will remain nonnegative.

It remains to prove that the algorithm computes the maximum o/. Let o/max denote the
final value of o/computed by the algorithm and let C be the most negative cycle detected by
the algorithm in the last step in which a negative cycle was detected. It is easy to see that in
any graph G, (where o/’ > O/max) the weight of cycle C must be negative.

5.3.1. Implementing the generic algorithm. The most efficient way of implementing
the generic algorithm would be by using the nested dissection method of [20] and its im-
plementation in parallel by Pan and Reif [26]-[28]. We provide a high level description
of it.

The basic idea underlying the method of nested dissection is partitioning the graph by
a family of separators, where each separator partitions the graph into equal size components
(up to constant factors). Each separator is a cycle, and and we refer to the two components of
the graph generated by the cycle as being "inside" and "outside" the separator. Hence we can
think of the separators as forming a binary tree as follows: the root of the tree is the graph G;
the descendants of each vertex in the tree are the two components generated by the separator.
The shortest distances in the graph are computed bottom up in the tree.

Pan and Reif obtained their best time bounds [28] by streamlining the computation.
Intuitively, this can be thought of as if vertices in a certain level in the tree of separators begin
computing their transitive closure before the vertices in the levels below them have finished
computing their transitive closure.

For us, the important feature of shortest path algorithms based on nested dissection is that
they are oblivious and additive.

THEOREM 5.3. The maximumflow in a directedplanar graph with a single source, single
sink can be computed in O(log4 n) time using O(n ’5) processors in the CRCW model.

Proof The proof follows from the discussion.
The sequential running time was shown in [15] to be O (n 1.5 log n).
Another oblivious and additive algorithm for computing shortest paths is via matrix mul-

tiplication and doubling-up. The computation of the shortest paths proceeds in this case by
successive squaring of the adjacency matrix A of G* until we get A". Let k be the first iteration
in which a negative entry appears in the diagonal of A2k and let be the most negative entry
of the diagonal in that iteration. We update O/by l, i.e., setting G’ +- G f+l, and start the
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computation of the shortest paths from the beginning. It follows from the proof of Theorem
5.2 that A2 will not have negative entries any more in its diagonal. Hence, at most log n
computations of the shortest paths algorithm suffice to compute the value of the minimum cut.

6. Maximum flow on the disk. In this section we describe an algorithm for computing
a maximum flow for the case where all the sources and sinks with variable demands lie on the
same face. Without loss of generality, one can assume that the sources and sinks are on the
outer face and that they alternate, i.e., there are no two consecutive sources or sinks. These
two properties will be maintained during the recursive calls to the algorithm. We discuss two
cases. In the first case we will assume that G has no negative capacities and no vertices with
nonzero demands, i.e., the zero flow is a legal flow. In the second case, we allow negative
capacities and nonzero demands and we show how to reduce this case to the first case.

6.1. Maximum flow on the disk with positive capacities and zero demands. Let G
be a flow graph and f be a maximum flow on G. Among all minimum cuts separating the
sources from the sinks, we are interested in the "first" minimum cut, defined as follows: Let
W be the set of vertices that are reachable from the sources in G f. The Ford-Fulkerson
cut with respect to f is the set of edges between W and V W. Suppose the sources and
sinks of the outer face are separated into two consecutive sets L and R; the maximum flow f
from L to R is defined as the flow that maximizes the flow from the sources in L to the sinks
in R. In particular, we can set the demand of each sink in L and each source in R to zero.

The main idea of the algorithm is the following: Divide the vertices of the outer face into
two (aforementioned) sets and compute the maximum flow from L to R. The Ford-Fulkerson
cut associated with this flow decomposes the disk into regions and in each region the maximum
flow is computed recursively. In the last step of the algorithm, the maximum flow is computed
from R to L. We prove that when the algorithm terminates, the flow cannot be augmented.

Assume that after the flow is computed from L to R, the edges of the Ford-Fulkerson cut
are removed from the graph in the recursive calls.

Let Vs denote the sources and sinks belonging to a set of vertices V. Let C denote the set
of connected components of G f after the edges of the Ford-Fulkerson cut are deleted.

We are now ready to present an outline of the algorithm for computing the maximum
flow.

SKETCH OF ALGORITHM (II).
Input: a planar flow graph (G, S, T, c, d) where the demand function is zero for all vertices
of G, the capacities are all positive, and the sources and sinks are on the outer face.
Output: the maximum flow function f in G.
If G has at most one source or one sink then return the zero flow.
Else:

1. Divide the sources and sinks into two consecutive sets, L and R, such that [Ls[
and L contains at least as many sources as R.

2. Compute a maximum flow fI.,R from L to R. Compute the residual graph G’
G-ftt.

3. Delete the edges of the Ford-Fulkerson cut from G’ and compute C, the connected
components of G’; recursively, compute the maximum flow for each component
c 6 C. The bottom of the recursion is when a component c contains a unique source
and no sinks, or vice versa. Let fLe/ be the sum of the flows computed for each
component.

4. Compute the residual graph G" G fLR fL&R. Compute the maximum flow

filL from R to L in G".
5. Return the flow fLR / fLeR + f,L.
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We now elaborate on the steps of the algorithm. In step 2 connect all the sources in L to
a new vertex, a supersource, and all the sinks in R to a new vertex, a supersink. This can be
done without destroying the invariant that all the sources and sinks of G lie on the outer face,
since we have set the demand of the sinks in L and the sources in R to zero. The problem
then reduces to computing a maximum flow in an {s, planar graph, a graph in which both
the source and the sink are on the same face [3], [12], [5]. Observe that all recursive calls are
for graphs with nonnegative capacities and zero demands.

In step 3 the maximum flow in each c 6 C is recursively computed. The capacities of the
edges in c are the residual capacities with respect to the flow computed in step 2. We now
recursively compute the maximum flow inside c. If a connected component contains vertices
from both L.,. and RL, then there can be only two cases: (i) sinks from L with sources and
sinks from R" (ii) sources from R with sinks and sources from L. In the recursive call, in
the first case we connect all the sinks that belong to L to a supersink, and in the second case
we connect all the sources that belong to R to a supersource. This is done to ensure that the
number of sources and sinks decreases by a constant factor in each recursive call. Observe
that the flows computed in each component are disjoint and hence the sum is a legal flow.

In step 4 we compute the maximum flow from R to L similar to step 2.
We now prove the correctness of the algorithm.
We first need a technical fact about writing a flow as a sum of augmenting paths which

are viewed as flows. Let G be a flow graph with sources and sinks, nonnegative capacities,
and zero demands. Furthermore, let f be a legal flow for G. A sum of augmenting paths
olf +... + cf f is a positive decomposition of f if

(i) O/i > 0 for < < k;
(ii) the arcs e and R(e) cannot both belong to any of the paths f f;
(iii) each path starts at a source and ends at a sink.
LEMMA 6.1. Let G and f be as above. Then there exists another legal flow f’ on G

which has a positive decomposition into augmenting paths and agrees with f on the sinks and
sources of G.

Proof We pick a source s in G such that f(s) > 0. Starting from s and ending at some
sink, we pick a path P of arcs such that the flow in f on each arc is positive. Let o be the
minimum flow on any arc in P. Set f f -ot f and observe that f is still a legal flow. We
continue in this greedy fashion until all sinks have zero flow. Let f f be the constructed
augmenting paths. At this point we set f’ ot f + 4- of and discard the remaining
flow in f.

THEOREM 6.1. Algorithm (II) correctly computes a maximumflow.
Proof The proof is by induction on the number of sinks and sources in G. If G has only

one source or sink, then its flow must be zero since the demand at all other vertices is assumed
to be zero. Since Algorithm (II) returns zero in this case, we may assume inductively that at
the end of step 4, a maximum flow was computed in each connected component c 6 C. That
is, there is no augmenting path contained in c for the flow graph G fLR fL&R. In the time
analysis we shall bound more closely the number of sinks and sources in each recursive call,
but it is clear that each call has strictly fewer sources and sinks.

To prove the theorem, we have to show that there are no augmenting paths from any source
s to any sinkt in G--fLR--fLaR--fRL. ByLemma 6.1 we can replace the flow fRL with another
legal flow f’RL such that it can be written as the positive sum c f +... 4-Ck fk. It will suffice to
show that there are no augmenting paths with respect to the flow G fLR fLaR f’Rt" Note
that all the paths 36 (1 < < k) are augmenting paths with respect to the flow G fLR fLaR.
Furthermore, for any edge e belonging to the Ford-Fulkerson cut, only R(e) may belong to
an augmenting path f. Hence an augmenting path fi can only leave a connected component
but not enter a connected component.
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Now suppose that A is an augmenting path from a source s to a sink in G fLR
fCR fc" There are four cases, depending on whether s is in L or R and is in L and
R, which we denote by LL, LR, RR, and RL. We show that the existence of A results in a
contradiction in each case.

We know that A cannot be a type RL since step 4 computed a maximum flow from right
to left.

Suppose that A is of type LL. We claim that one of the arcs of A must have zero residual
capacity in G for fcg. If A contains an arc of the Ford-Fulkerson cut, the claim is
clearly true. If not, then A is contained in one of the connected components c from step 3.
Since step 3 returns a maximum flow for c (by the induction hypothesis), the path A cannot
be augmenting for G fog fc and, therefore, the arc must exist. Let e be the first such
arc on A. Since e has residual capacity in G fc fc&R fc, it must be the case that
one of the augmenting paths j from the positive decomposition of fc contains the arc R (e).
Consider the following path A’ that consists of the arcs of A up to but not including e plus the
arcs in fi following but not including R(e). By the observation above, the arcs in fi following
R(e) must belong to c. Thus, the path A’ is an augmenting path for G fog fcg, resulting
in a contradiction. Therefore, type LL augmenting paths do not exist.

We handle the last two cases, LR and RR, together. As in case LL, some arc on A must
have zero capacity in G fog fceg. In this case let e be the last arc on A with zero capacity.
Furthermore, let f/be an augmenting path containing R (e). We construct an augmenting path
A’ from arcs on j before R(e) and arcs on A that follow e. It follows that A’ is an augmenting
path for G fLR fL&R, again a contradiction. [3

THEOREM 6.2. The running time ofAlgorithm (II) is O(n log’5 n) sequentially. In par-
allel, it can be computed using O(n 1"5) processors; the time complexity is O(I(n) log n),
where I (n) is the parallel time ofcomputing the sum ofn values. I (n) can be implemented in
O(1) time in the CRCWPRAM model and in O(log n) time in the EREWPRAM model.

Proof In steps 2 and 5 we compute the maximum flow in an {s, }-planar graph. This
can be done by Hassin’s algorithm [5], and its time complexity is O(nlxn) sequentially
[5]. In parallel, Hassin’s algorithm can be implemented in 0(I (n) log2 n) time and O(n ’5)
processors by using the shortest path procedure outlined in 3.1. Since all the recursive calls
at a given level of the recursion are on vertex disjoint subgraphs, we will only need O(n 5)
processors for the full algorithm.

Observe that if G has 2k sinks and sources, then each connected component will have at
most k 4- sinks and sources for k odd and k sinks and sources for n even. It follows that the
number of alternations of sources and sinks in each connected component of C is reduced by
a constant fraction. Note that in step 3, at most one source or one sink is added instead of the
edges of the Ford-Fulkerson cut.

Let Tn (a) and Pn (a) denote the time and number of processors, respectively, and let n
and a denote the number of vertices and alternations, respectively. For the parallel running
time we get the following recursive formula:

Tn(a) < Tn(a/2 + 1) + O(l(n) log2 n),

and hence the running time of the algorithm is 0(I (n) log n). As already mentioned, the
number of processors then needed is O(n’5).

For the sequential running time we get the following recursive formula:

T,,(a) < 2Tn(a/2 + 1) + O(nv/logn),

and hence the sequential running time of the algorithm is O(n log1"5 n). 3
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6.2. Maximum flow on disk with negative capacities. In this section we show how to
reduce the maximum flow problem on a disk to the special case needed in 6.1. There are two
conditions that must be met in order to apply Algorithm (II):

Vertices must have zero demand.
Edges must have nonnegative capacities.

The reduction is quite straightforward and consists of the following steps: First, choose
any flow f that meets the demands. Then, find a maximum legal flow f’ in G f and return
the flow f + f’.

The first step is implemented very similarly to algorithm (I): the flow is returned from the
sinks to the sources via a spanning tree. Now, all vertices which are not variable sources or
sinks have demand equal to zero. However, we may still have negative capacities. To reduce
the case of negative capacities to the case of nonnegative capacities we need only find any
flow. We introduce a supersource-sink vertex s and connect every source and sink to s. We
also set the demand at s and at every source and sink to zero. This gives a planar flow graph
G, which is in fact a circulation graph. Thus, the second step above will actually consist of
two substeps: first, find any flow f" in G + f using the reduction to the circulation problem;
then, find a maximum flow f’ in G + f f" using Algorithm (II).

7. Maximum flow for a bounded number of faces containing sources and sinks.
There are several extensions of our work. As previously mentioned, efficiently computing
(sequentially and in parallel) a maximum flow in a planar graph with many sources and
sinks with variable demands is still open. However, we observe that we can provide efficient
sequential and parallel algorithms for the case where the sources and sinks belong to a fixed
or slowly growing number of faces. As in 6, we discuss the special case when all capacities
are nonnegative and all demands are zero.

First observe that the following greedy algorithm computes a maximum flow with many
sources and sinks. Suppose that G is any flow graph with sources s sk and sinks t tl.
We claim that the following algorithm finds a maximum flow.

SKETCH OF ALGORITHM (III).
Input: a planar flow graph (G, S, T, c, d) where the demand function is 0 for all vertices and
all capacities are positive.
Output: a maximum flow function f.

I. Set f 0
2. Forl <i <kandl <j<Ido

(a) Set the demand at all s, and all tv for u and v 7 j to zero and find a
maximum flow fij from Si to tj in G f.

(b) Set f f + f/j.
Return f

LEMMA 7.1. Algorithm (III) computes a maximumflow.
We next observe that the proof of correctness of Algorithm (II) is actually independent of

the following: (i) the fact that the sources and sinks are all on one face; (ii) the planarity of the
underlying graph. This implies that the following generic algorithm computes a maximum
flow in a graph G (not necessarily planar) with many sources and sinks:

1. Partition the sources and sinks into two disjoint sets L and R.
2. Compute the maximum flow from L to R, i.e., from the sources in L to the sinks

in R. Let C denote the Ford-Fulkerson minimum cut with respect to the maximum
flow.

3. Remove the edges of C from the graph G. Recursively compute a maximum flow in
each connected component (in the residual graph).

4. Compute a maximum flow from R to L (in the residual graph).
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Let G be a planar graph with variable sources and sinks that lie on at most k faces of
G, denoted by F F. We now show how to combine Algorithm (III) with the generic
algorithm to efficiently compute a maximum flow in G.

Step in the generic algorithm is implemented as follows: the sources and sinks on face
Fi (1 < < k) are partitioned into two sets, Li and Ri, in the same way that the sources and
sinks on the disk are partitioned in Algorithm (ii). The set L is defined as the union of the sets

Li (1 < < k) and the set R is defined as the union of the sets Ri (1 < < k).
To implement step 2, first connect the sources in each set Li to a supersource si, and the

sinks in each set Ri to supersink ti. This operation does not violate the planarity of the graph.
The maximum flow from L to R is computed by Algorithm (III). Computing the flow from
source si to sink tj in Algorithm (III) is an instance of the problem of computing the maximum
flow in a directed planar graph with one source and one sink. Step 4 is implemented similarly.

Note that in step 3, the number of alternations of sources and sinks is reduced by a constant
factor for each face Fi (1 < < k).

Hence we get recursive formulas for the running time which are similar to those obtained
in the proof of Theorem 6.2. For the parallel running time we get

Tn(a) < Tn(a/2 / 1) / O(k212(n) log4 n),

and hence the running time of the algorithm is O(k21ogSn) in the CRCW model. The number
of processors needed is O(n’5).

For the sequential running time we get

Tn(a) < 2Tn(a/2 + 1) + O(k2n ’5 logn),

and hence the sequential running time of the algorithm is O (k2n .5 log2 n).
We conclude with the following theorem.
THEOREM 7.1. IfG is a planarflow graph with variable sources and sinks that lie on at

most kfaces ofG, then a maximumflowfor G can be computed sequentially in 0 (k2n 2.5 log2 n)
time. In parallel, the running time is O(k2 log n) using O(n t’5) processors in the CRCW
model.
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A SUBEXPONENTIAL ALGORITHM FOR ABSTRACT
OPTIMIZATION PROBLEMS*

BERND GA,RTNER

Abstract. An abstract optimization problem (AOP) is a triple (H, <, ) where H is a finite set, < is a total
order on 2t4, and , is an oracle that, for given F _q G _c H, either reports that F min< F’ F’

_
G} or returns

a set F’
_
G with F’ < F. Solving the problem means finding the minimum set in H. We present a randomized

algorithm that solves any AOP with an expected number of at most

e2Vff+O(

oracle calls, n HI. In contrast, any deterministic algorithm needs to make 2 oracle calls in the worst case.
The algorithm is applied to the problem offinding the distance between two n-vertex (or n-facet) convex polyhedra

in d-space, and the computation of the smallest ball containing n points in d-space; for both problems we give the
first subexponential bounds in the arithmetic model of computation.

Key words, computational geometry, smallest enclosing ball, distance between convex polyhedra, local opti-
mization, randomized algorithm

AMS subject classifications. 68Q20, 68Q25, 68U05, 90C25, 90C27

1. Introduction.
Three geometric optimization problems. Recently, Sharir and Welzl [22] described an

abstract class of problems, so-called LP-typeproblems, that are efficiently solvable by a simple
randomized algorithm. The typical LP-type problems are geometric optimization problems,
related in spirit to the "master" problem of linear programming:

(LP) Given a convex polyhedron 79, specified by n halfspaces in d-space, and a d-vector
v, find a point p 6 79 extreme in direction v.
The geometric formulation is chosen to keep notation consistent with another important

LP-type problem, namely, finding the distance between convex polyhedra:
(POLYDIST) Given two convex polyhedra 79 and Q, specified by n points (or n halfspaces)
in d-space, find points p 6 79, q 6 Q with lip qll dist(79, Q) := min{llp’ q’ll
p’679,q’6 Q}.
The minimum spanning ball problem looks somewhat different, but nevertheless fits into

the LP-type framework:
(MINIBALL) Given n points in d-space; determine the center and radius of the smallest
ball containing all the points.
POLYDIST and MINIBALL can easily be cast in the form of a convex program with only

one constraint being nonlinear, and the general method of Gr6tschel, Lov.sz, and Schrijver
10] can be applied to give polynomial algorithms for all three problems in the Turing machine

model. This means that they can be solved in time polynomial in n, d, and the encoding length
of the input numbers.

The arithmetic model (or random access machine (RAM) model)--widely used in com-
putational geometrymexpresses the run time in terms of the overall number of elementary
(arithmetic) operations that are performed during the algorithm, where an arithmetic operation

*Received by the editors May 25, 1993; accepted for publication (in revised form) April 20, 1994. A preliminary
version of this paper appeared in the Proceedings of the 33rd Symposium on Foundations of Computer Science, IEEE
Computer Society Press, Los Alamitos, California, 1992, pp. 464-472.
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mische Diskrete Mathematik," supported by Deutsche Forschungsgemeinschaft grant We 1265/2-1; this work has
also been supported by the ESPRIT Basic Research Action Program 7141 of the EU (ALCOM II).
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is charged unit cost, regardless of the sizes of the numbers involved. Thus the run time in
the arithmetic model is a function only of the number of input numbers and does not depend
on their encoding lengths. Usually the arithmetic model is enhanced with the "fairness as-
sumption" that unit cost applies only to operations involving numbers which are not much
larger than the input numbers (which here means that the encoding length does not exceed the
maximum encoding length over all input numbers by more than a constant multiple). Bounds
obtained in this model are called combinatorial bounds, and in contrast to the Turing machine
model, there are no polynomial combinatorial bounds (also called stronglypolynomial bounds)
known for any of the three problems listed above (for details concerning the computational
models see [10, pp. 32-33]).

In this paper we will be concerned with the arithmetic model of computation, and the
bounds we develop are combinatorial. Although we do not succeed in proving polynomial
bounds, we achieve substantial progress by showing that POLYDIST and MINIBALL have
subexponential combinatorial complexity (for LP this had already been established; see 18]);
all previous bounds were exponential.

The generic LP-type problem can be solved in a local optimization fashion, i.e., if a
proposed solution is not yet optimal, one can locally improve on it by solving a "small"
subproblem. This basic property underlies the algorithm in [22] that solves the aforementioned
problems in time linear in n but exponential in d. This bound is asymptotically optimal if
d is constant and still reasonable if d is small compared to n. However, as soon as d gets
only moderately large with respect to n, the bound becomes unsatisfactory, and until recently
no algorithms were known to have combinatorial complexity less than exponential in d and
n for any of the three problems. Then Kalai [11] and Matouek, Sharir, and Welzl [18]
independently came up with subexponential bounds for LP. The bound in [18] was obtained
by tuning the analysis of the algorithm in [22], and although this algorithm can solve any
LP-type problem, the subexponential analysis is valid only for LP. This is a result of the fact
that, at least under certain standard assumptions, the "small" instances of LP (n d + 1)
can easily be solved in polynomial time, while for POLYDIST and MINIBALL the small
problems are not substantially easier than the general ones.

In this paper we will show that the subexponential bound for LP is actually induced only
by the local optimization property and does not rely on additional convenient features of the
small instances. Consequently, POLYDIST and MINIBALL can be solved as efficiently as
LP by our method. The tool is the framework of the abstract optimization problems (AOPs)
that captures the spirit of local optimization in a generic setting.

Basically, an AOP consists of a finite set H with a total order on 2t-/and an oracle that
answers the following query" for given F c_ G c_ H, does there exist a set F’ c_ G with
F’ < F? If the answer is yes, such a set is returned as a witness. Solving the problem means
finding the minimum set in the total order, and we want to bound the number of oracle queries
needed to do this for any given AOP.

The algorithm we develop is randomized, i.e., we count the number of oracle queries
averaged over internal coin flips performed by the algorithm. We do not average over an input
distribution; the expectation we get is valid for any input (in particular, there is no input that
forces the algorithm to perform poorly). Moreover, randomization is crucial" if information
about the linear order < can be obtained from the oracle only, no deterministic algorithm can
beat the trivial bound of 2IHI oracle queries in the worst case. Although this does not mean
much for a specific instance of an AOP, it gives evidence that randomized algorithms may be
potentially more powerful than deterministic ones in this situation.

Such assumptions are frequently made in computational geometry, and some bounds cited here make full sense
only if d is substantially smaller than n.
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The paper is organized as follows: In the rest of the introduction we give a brief survey
on results concerning the combinatorial complexity of the LP, POLYDIST, and MINIBALL
problems; in 2 we discuss Sharir and Welzl’s LP-type problems and point out why the
subexponential bound for LP established in 18] does not hold for POLYDIST andMINIBALL.
In 3 we formally introduce our abstract framework and state the main result of the paper that
implies the subexponential bounds for POLYDIST and MINIBALL. Section 4 contributes
the more technical part; it proves the deterministic lower bound and the randomized upper
bound by presenting an algorithm in the abstract framework. Section 5 provides a concluding
discussion.

Linear programming. LP problems are probably the best-understood optimization prob-
lems. There exists a vast amount of literature; the reader is referred to [20] for an introduction.
There are several methods for solving LP-problems that are efficient in practice, the most
popular one being the simplex algorithm that was introduced by Dantzig [6] in 1951. Its good
performance on practical problems is in contrast to a result by Klee and Minty [15], who
showed that a frequently used pivot rule leads to exponential behavior in d in the worst case
(modifying the Klee-Minty construction, this was extended to other pivot rules; see Klee and
Kleinschmidt 14]). The simplex algorithm is a "combinatorial" algorithm in the sense that
its behavior depends on the ordering of the vertices of the polyhedron along the optimization
direction but not on their specific coordinates.

In contrast to this, the algorithms of Khachiyan (ellipsoid method 13]) and Karmarkar
(interior point method 12]) are approximation algorithms which arrive at the desired optimum
in time depending on the input precision. Both algorithms give weakly polynomial time bounds
(i.e., polynomial in the Turing machine model), thus showing that linear programming belongs
to the complexity class P. This caused considerable excitement in 1979 when Khachiyan’s
result became known. The quest for a strongly polynomial algorithm continues, but it is not
generally believed that polynomial combinatorial bounds can be achieved.

Nevertheless, there has been substantial progress on the combinatorial complexity oflinear
programming over the last decade, mainly coming from computational geometry. Megiddo
17] was the first to show that LP can be solved in time linear in the number n of constraints
(with a doubly exponential dependence on d). Subsequently, the dependence on d has been
improved step-by-step while keeping the bound linear in n; see Dyer [7], Clarkson ], Seidel
[21], and Sharir and Welzl [22]. Currently, the best (randomized) algorithm combines the
recent subexponential results in [11] and 18] with an algorithm by Clarkson [2]. This gives
a bound of

O(d2n + e(/dlgd)).

The best deterministic algorithm is by Chazelle and Matouek [4] and is obtained by
"derandomizing" Clarkson’s algorithm. Its run time is O(d)n).

Distance between convex polyhedra. This problemmand the important special case that
one polyhedron is a single point--is an instance of a quadratic optimization problem, and it
has applications, e.g., in motion planning (collision testing); there are heuristics for it without
time analysis (see, e.g., Wolfe [25] for the special case and Sekitani and Yamamoto [23] for the
general case). A first nontrivial randomized time bound of O(n Ld/21) was given by Clarkson
[3] (provided the polyhedra are specified by n points). Applying the algorithm in [22], this
can be improved to give the best bound so far of O(d32n), which is linear in n but still
exponential in d. Our algorithm will establish the same subexponential bound as stated above
for linear programming.

Minimum spanning ball. It was observed early that MINIBALL (which is a prototype
problem in facility location) has a structure similar to LP and thus can also be solved in time
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linear in the number of points by the techniques in 17] and [7] (with the same dependence on
d as in the case of LP). As observed by Welzl [24], the LP algorithm of Seidel [21 also applies
to MINIBALL and the same holds for the algorithms of Clarkson and Sharir and Welzl. As in
the case ofPOLYDIST, subexponential run time could not yet be shown but will be established
in this paper.

2. Basics and terminology.
LP-typeproblems. To begin with, let us briefly review the concept ofthe LP-typeproblems

introduced in [22], where the reader can also find how LP itself fits into the framework.
Consider the MINIBALL problem first and let H be a set of n points in d-space. For G

___
H

denote by w(G) the radius of the smallest ball containing the points in G. It is well known
that this ball is unique and that for e H, w(G) < w(G U {e}) if and only if e lies outside the
ball determined by G. From this it is easily seen that the following two properties hold for all
FC_GH:

(i) w(F) < w(G);
(ii) if w(F) w(G), then w(F) < w(F U {e}) :> w(G) < w(G U {e}) for all e 6 H.
In general, any pair (H, w) satisfying (i) and (ii) is called an LP-type problem. A basis

is a set B

_
H with w(B’) < w(B) for all B’ C B. A basis of G

_
H is a basis B _c G such

that w(B) w(G). The combinatorial dimension of (H, w) is the maximum cardinality of
any basis. In this framework, MINIBALL has combinatorial dimension at most d + 1, because
any minimum ball spanned by a set G

_
H is already determined by at most d 4- points of

G on the boundary.
POLYDIST gives rise to an LP-type problem as follows. (We assume for the rest of the

paper that polyhedra 79 and Q are given by point sets P and Q, P fq Q 0, P t2 Q n. So
79 and Q are actually polytopes with 79 cony(P), Q conv(Q); the case where 79 and Q
are specified by halfspaces is similar but requires more technicalities.)

For P’ Q’ _c P u Q, let

w(P’t2 Q’) := dist(conv(P’), conv(Q’)).

For P’ or Q’ empty, w is set to cxz. Now properties (i) and (ii) (for w(F) w(G) < o) hold
for the pair (P t2 Q, w), but with < and < replaced by > and >, respectively. Property (i) is
obviously satisfied, so let us prove property (ii). Assume w(P’ Q’) p, 0 < p < cxz. Then
there exists a unique pair h ,,, h Q, of parallel supporting hyperplanes of distance p which are
perpendicular to any vector p q with p 6 conv(P’), q 6 conv(Q’), and lip q ll P.

Denote by h+, and h, the closed halfspaces containing P’ and Q’, respectively. For a
point e 6 P P’ (Q Q’) we have w(P’ t2 Q’ t2 {e }) < w (P’ t2 Q’) if and only if e does not lie
in h, (h,)(Fig. 1). This implies (ii).

It is a straightforward exercise to show that the following lemma holds.
LEMMA 2.1. In the LP-type framework, the combinatorial dimension of POLYDIST

defined by polytopes 7-9 and Q in d-space satisfies 6 < d + 2 (if 79 and Q are disjoint,
<_d+).

The following theorem is the main result of 18].
THEOREM 2.2. Let (H, w) with IHI n be an LP-type problem ofcombinatorial dimen-

sion , and denote by tsma the time necessary to compute a basis ofG and its value w(G) for
IGI 3 + 1. Then a basis of H and w(H) can be computed in time

O (tsmall ne2 v/-g In ).

2The bounds are actually slightly better (and more complicated) than what we cite here.
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FIG. 1. The POLYDIST problem.

As the theorem shows, the time bound for an LP-type problem crucially depends on
the complexity of the "small" instances, and it is not clear that solving them is a substan-
tially easier task than solving the whole problem. For d-dimensional LP, the small problem
basically consists of solving a linear program with d + constraints. Assuming that the
program is bounded and in general position, its solution is determined as the intersection of
exactly d of the constraint hyperplanes, which implies a polynomial procedure (for details
see 18]).

In case of POLYDIST and MINIBALL, the small problems are as follows:
(SMALL_POLYDIST) Given two convex polyhedra 79 and Q, specified by at most d + 3
points P t_l Q in d-space, determine their distance and a basis, i.e., a minimal subset
P’ t.) Q’ determining the same distance.
(SMALL_MINIBALL) Given a set H of at most d + 2 points in d-space, determine the
radius of the smallest ball containing H and a basis, i.e., a minimal subset B determining
the same ball.
In contrast to LP, it is no longer true that the cardinality of a basis is known a priori, even

under nondegeneracy assumptions. In case of POLYDIST, a basis of P t.) Q may consist of
any number of points between 2 and d + 2. Consequently, straightforward checking of every
candidate basis as in the case of LP may require the examination of (R)(2d) subsets just to
solve SMALL_POLYDIST, which gives nothing better than an exponential algorithm for the
whole problem. The same difficulty arises in the MINIBALL problem: a minimum spanning
ball may be determined by any number of points between 2 and d / on its boundary, so
again SMALL_MINIBALL is not efficiently solvable by the trivial method. By embedding
SMALL_POLYDIST into the AOP framework we will be able to solve it in time e (vd, and the
same complexity will be achieved for SMALL_MINIBALL, which will turn out to be a special
case of SMALL_POLYDIST. Plugging this into Theorem 2.2 will also give subexponential
bounds for the corresponding "large" problems.

3. Abstract optimization problems. Let us repeat the definition of an AOP in a formal
way to have the accurate terminology available.
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DEFINITION 3.1. An AOP is a triple (H, <, do), where H is afinite set, < is a total order
on 2I, and do is a mapping

do --+ H, 7-[ := F, G) F C_ G H

with thefollowing property:

do(F, G) F ifand only if F min{F’ F’ c__ G},

G D_ do (F, G) < F otherwise.

For G c_ H let opt(G) denote min<{F F c_ G}. Solving the AOP meansfinding opt(H).
We achieve the following results (proofs are postponed to the technical section).
THEOREM 3.2 (deterministic lower bound). For any deterministic algorithm t that solves

all AOPs on a set H, Inl n, there exists an AOP (H, <, do) that cannot be solved by 4 with
less than 2 oracle queries.

THEOREM 3.3 (randomized upper bound). There exists a randomized algorithm that
solves any AOP on a set H, IHI n, with an expected number of at most e2qcff+O(/-lnn)

oracle queries.
Using the terminology from the previous section, we will now demonstrate how POLY-

DIST, defined by point sets P and Q, fits into the AOP framework. The ground set H is
P tA Q and the total order < on 2tt is defined as follows" the bases (in the LP-type sense)
are ordered by their w-values with ties broken arbitrarily and any nonbasis is larger than any
basis. This definition ensures that opt(H) is indeed a basis of P t2 Q and the nonbases are not
of interest.

It remains to describe the oracle do. do will only be called on pairs (F, G) where F is
a basis and will deliver only bases. We need more terminology: For a point p and P’

___
P

with p 6 conv(P’) (equivalently for q, Q’) let f(p, P’) c_ p’ be inclusion-minimal with
p 6 conv(f(p, P’)). For F’ P’ t2 Q’

_
P u Q let (PF, qF) be a pair of points realizing

the distance between the affine hulls of P’ and Q’, i.e., IIPF’ qF’ll dist(aff(P’), aff(Q’))
(Fig. 2 (a)). This point pair need not be unique in general; if P’ t2 Q’ is a basis, however,
it is.

Now we can implement the oracle do(F, G), F P’ Q’

_
P t2 Q G. Its idea

is to start with points p and q realizing w(F); provided that one can improve over F at
all (which is the case if and only if a point of P lies in the complement of h, or a point
of Q lies in the complement of h,----we say that F is violated by that point), a loop is
performed in which p and q move along straight lines, thereby decreasing lip q I, un-
til a stable position, i.e., a new basis, is obtained. In the generic step of the loop there
are points p, q and sets P’, Q’ such that p 6 conv(P’), q 6 c0nv(Q’). By definition
lip ql[ > [[PF’ qF’[[, where F’ P’ t3 Q’, so by moving .p and q simultaneously
along straight lines towards PF’ and qF,, respectively, their distance decreases in a monotone
fashion. The movement stops if either the destination points are reached (in which case F’
is a new basis) or one of p and q hits the boundary of conv(P’) or conv(Q’), respectively; in
this case, the loop continues after setting P’ to f (p, P’) and Q’ to f (q, Q’), which decreases
P’ U O’l by at least one (Fig. 2 (b)). The pseudocode for the procedure just described is as
follows.

3The variant we use here is adapted from the book Introduction to Algorithms by T. H. Cormen, C. E. Leiserson,
and R. L. Rivest, MIT Press, Cambridge, MA, 1990.
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FIG. 2. The POLYDIST oracle.

dp(F, G)

2
3
4
5
6
7
8
9
10
11
12
13
14

(p, q) := (PF, qF)
for all e 6 G- F

do if e violates F
then case e of

return F

basis, F= P’t_JQ’_ PUQ=G
t>pF, qF conv(P’), conv(Q’), unique

p:P’ +-- P’U{e}
6 Q: Q’ +-- Q’u {e}

loop F’ +-- P’U Q’
(px, qx) := (p, q) -4- .((pF,, qF,) (p, q))
/z max{,k px 6 conv(P’), qx 6 conv(Q’)}
if/z>

then return F’
(P, q) +- (p., q.)
(P’, Q’) +- (f (p, P’), f (q, Q’))

From the discussion above, termination of the procedure follows. To see the correctness,
observe that the pair (PF’, qF’) in line 8 is unique in any iteration of the loop, since aff(P’)
and aft(Q’) are neither parallel (unless P’I or Q’I 1, in which case uniqueness holds
anyway) nor have a nontrivial intersection. From this it follows that the set F’ finally returned
in line 11 is indeed a basis.

l] P q ll strictly decreases in every iteration of the loop, so the basis finally returned has
smaller w-value than F.

We are interested in the run time of this oracle when called on a "small" problem, i.e.,
]GI < d -4- 3. The following bound is certainly not best possible; the interesting fact is that it
is polynomial.

LEMMA 3.4. Let G be a set ofat most d + 3 points in d-space. The oracle dp(F, G) can
be implemented to run in time O(dS).

Proof The first phase (checking whether an improvement over F is possible) amounts
to the computation of one scalar product per point e 6 G F and, therefore, can be done
in time O(d2). The loop is executed O(d) times; in each iteration, points PF’, qF’ can be
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computed in time O(d3) by solving a system of linear equalities. In order to find/z, we have
to intersect two lines with the bounding hyperplanes of conv(P’) and conv(Q’), respectively.
From the fact that F was a basis it follows that these polytopes are simplices, so there are no
more than d / bounding hyperplanes per polytope and each intersection can be computed
in time O(d3) again. This process also gives f(p, P’) and f(q, Q’) as a by-product.

By arbitrarily choosing two vertices in the beginning, one from each polytope, we get an
initial basis for the oracle. By Theorem 3.3 a SMALL_POLYDIST problem can be solved in
time evd, and together with Theorem 2.2 this gives the following theorem.

THEOREM 3.5. The distance between two n-vertex polytopes in d-space can be computed
in time O(neZ+l(/-dnn).

We remark that the same result holds for two n-facet convex polyhedra. Note that the
contribution from the small problem is hidden in the o(1) term of the exponent.

We get the same bound for MINIBALL.
THEOREM 3.6. The smallest enclosing ball ofa set ofn points in d-space can be computed

in time O(neZ+l)(4-dln’O).
For this it suffices to show that a SMALL_MINIBALL problem can be solved as efficiently

as SMALL_POLYDIST and, as it turns out, both problems are strongly related; the following
correspondence can be found, e.g., in [19].

THEOREM 3.7. Let P be a set of d + affinely independent points in d-space with
circumcenter qo. The center ql ofthe smallest ball containing P is the point in conv(P) with
minimum distance to qo.

Thus, in order to solve SMALL_MINIBALL on d + 2 points, compute--by solving d + 2
SMALL_POLYDIST problems with one polytope as a single point--all the smallest balls
spanned by d + of the points, and compare their radii. In case the input consists of d points
or less, the problem restricts to a lower-dimensional one inside the affine hull of the points.
Note that the circumcenter of d / points can be computed in time O(d3).

4. Bounds for abstract optimization problems. This section contains the proofs of
Theorems 3.2 and 3.3. The deterministic lower bound follows from an adversary argument.
For the randomized upper bound we present an algorithm along with a careful analysis. Let
us start with the lower bound.

4.1. The deterministic lower bound. Let H be an n-element set and suppose we have
a deterministic algorithm for solving any AOP (H, <, ).

We start the algorithm on a problem (H, <0, 0) with <0 and 0 not yet determined, and
we argue that an adversary answering the oracle queries can construct <0 and 0 "online" in
such a way that the algorithm is forced to step through at least 2" queries. When supplied
with a query pair (F, G), the adversary will output an answer F’ 0(F, G) according to
two simple rules:

(i) the answer F’ is consistent with the previous ones, i.e., there exists an AOP such that
the current and all previous queries have been answered correctly with respect to this
AOP.
(ii) F’ F if and only if there is no other consistent answer.
It is easy to see that the adversary always has a consistent answer, so the algorithm steps

through a sequence of queries with pairs (F, G) and finally stops. Suppose that less than
2 queries have been performed. Then there are two sets Fl and F2 which have never
been the first component of a query pair. We will show that it is consistent with all answers to
assume that F opt(H). The same holds for F2, so whatever the algorithm outputs, there
is an AOP that is not correctly solved. Hence the adversary can force the algorithm to step
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through at least 2" queries, which means that it performs that many queries on the AOP
that has implicitly been constructed by the adversary.

We are left to prove that F opt(H) is consistent. Clearly, this choice can fail only if
some answer has revealed the existence of a smaller set. Since there was no query pair (F, G),
the only possibility remaining for this to happen is that some query (F, G) with F

___
G has

been answered by F, thus establishing F < F. But in the first query of this type FI was
not bounded from below yet, so it could have been returned instead of F, a contradiction of
rule (ii).

4.2. The randomized upper bound. We present a randomized algorithm that solves any
given AOP (H, <, ) on an n-element set H with an expected number of at most e2"f+(’Inn)

calls to the oracle . Up to an O (n) overhead caused by set operations, the actual run time
of the algorithm will be dominated asymptotically by the time spent on the oracle calls, so
this is a reasonable measure of complexity. The algorithm will eventually output opt(H),
but the generic step in the recursive procedure is the computation of opt(G) for G

___
H.

Together with G, a set F c_ G is maintained; throughout the section we will refer to F
as an estimate for the solution that will be improved over and over again until it coincides
with the desired minimum. Our algorithm combines ideas of both Kalai’s and Matouek,
Sharir, and Welzl’s subexponential LP algorithms, and substantially generalizes their applica-
bility.

The section proceeds in stages: in the first stage we introduce a trivial algorithm and
the basic terminology; the second stage presents an algorithm that, although it works only
modulo a hypothetic subroutine, features the heart ofthe final algorithm and its subexponential
analysis; stage three describes a "working" algorithm that will be obtained by "approximating"
the subroutine to a reasonable extent.

Getting started. To acquaint ourselves with the problem, we give the obvious deterministic
method for obtaining opt(G) in the presence of an estimate F.

AOP_DET(F, G)
repeat.F’ -- F2 F +-- (F, G)

3 until F F’
4 return F’

To solve the problem on G, AoP_DET has to call the oracle 2IGI times in the worst case,
and as we have seen in the previous section, it shares this exponential behavior with any algo-
rithm that is deterministic or calls the oracle only on pairs of the form (., G). Consequently,
the method we describe now is randomized and uses oracle queries of the form (., G’) for
certain subsets G’

_
G. It will have one very intuitive property in common with AoP_DET:

the better the estimate F, the faster the algorithm for G. A natural measure for the quality of
F in this context is the rank of F with respect to G, defined by

rank(F, G)"= #{F’ _c G F’ < F}.

A somewhat coarser but related measure is the dimension of a pair (F, G).
DEFINITION4.1. For F c_ G, anelemente G isenforcedin (F, G) ifF < opt(G-{e})

(and this implies e F). Otherwise it is free. The domain of F, G) is the set offree elements,
i.e.,

D(F, G) := {e 6 G I3F’C_G-{e},F’<F}.
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FIG. 3. Part ofan AOP on 5 elements.

For afree element e, an estimate F’ c_ G {e} with F’ < F is called a witnessfor e. Finally,
the dimension of F, G) is the size of its domain,

dim(F, G) "= ID(F, G)I.

The enforced elements in (F, G) are exactly the ones contained in every estimate F’
G with F’ _< F, while the free elements have at least one witness F’

__
G {e} with

F’<F.
As an example consider Fig. 3. Subsets of G are visualized by elements of {m, Vq}IGI.

(F, G) enforces element 2 while (F’, G) enforces 2 and 5. Consequently, D(F, G)
{1,3,4,5}, D(F’,G) {1,3,4}, and dim(F,G) 4, dim(F’,G) 3. Note that we

always have dim(F, G) > log2 (rank(F, G) + 1).
The following monotonicity lemma is an immediate consequence of the definitions and

(although quite obvious) forms the background of the analysis in the next stage.
LEMMA 4.2. (i) If F’ <_ F then 79(F’, G) c_ 79(F, G).
(ii) If F G c_ G’ then 79(F, G) c_ 79(F, G’).
The basic algorithm. Now we are able to describe a first basic version of our algorithm.

We feel that the main idea behind the subexponential analysis can be explained most clearly
by assuming that the following subroutine is available.

SAMPLE_DOMAIN(F, G)
if 79(F, G) 0

2 then error "empty"
3 choose a random e from 79(F, G)
4 choose a witness Fe <_ F with Fe C_ G {e}
5 return (e, Fe)

So SAMPLE_DOMAIN chooses an element which is free in (F, G) at random and outputs
it, along with a corresponding witness. Note that the elements in G F are free with witness
F; however, there may be other free elements which are not immediately accessible since they
are hidden in F, and it is not clear whether one can find them efficiently. Nevertheless, let us
assume for this stage that SAMPLE_DOMAIN comes free.

Using this subroutine, we can formulate a procedure AoP_SD(F, G) to find opt(G) in the
presence of estimate F.
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AoP_SD(F, G)
(e, Fe) := SAMPLE_DOMAIN F, G)

2 if error "empty"
3 then return F
4 F -- AOP_SD(Fe, G {e})
5 F’ +- (F, G)
6 ifF F’
7 then return F’
8 return AoP_SD(F’, G)

The analysis. Termination and correctness easily follow by observing that the first recur-
sive call solves a subproblem on a smaller set, and in the second one we have rank(F’, G) <
rank(F, G). For fixed H let T (k) be the worst-case expected number of oracle queries per-
formed in a call to AoP_SD(F, G) with dim(F, G) k and G c_ H. We get T (0) 0 and
for k > 0 we get the following bound.

THEOREM 4.3.

T(k 1) 4-... + T(0)
T(k) < T(k- 1)+ -t-

k

Proof. First of all, it is not hard to see that T is monotone in k. Now we can argue as
follows: if (F, G) has dimension k then dim(Fe, G {e}) < k 1, since

"D(Fe, G {e}) U {e}

___
79(Fe, G) c_ D(F, G).

This implies that the expected number of oracle queries necessary in the first recursive call
is bounded by T(k 1). Another query is done in line 5; the last term finally gives a bound
for the second recursive call. To see this, consider D(F, G) {el ek}, ordered in such a
way that

opt(G {e}) > opt(G {e2}) >_ >_ opt(G {ek}).

If e is chosen to be ei by SAMPLE_DOMAIN, we get

F’ < opt(G {ej }) for all j < i,

so by Definition 4.1, e ei will be enforced in (F’, G). This means

79(F’ G) C D(F, G) {e, ei}

so dim(F’, G) < k and an expected number of no more than T (k i) oracle queries is
performed by AoP_SD(F’, G). Since is equally likely to be any number between and k,
we obtain the desired average. [3

The heart of the argument is the fact that by choosing a random element for the recursion
in line 4 of AoP_SD, the dimension halves on the average, while choosing e deterministically
can only guarantee a progress of one in the worst case. This basic observation also underlies
the subexponential LP-algorithms of Kalai 11] and Matouek, Sharir, and Welzl [18].

To find an explicit bound for T (k), we majorize T (k) by (k) 1, where (k) satisfies

k-I

t(k) t(k- 1) + t(i)
i=0

with (0) 1.
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LEMMA 4.4.

F.

Proof. An easy way to see this is via a nice combinatorial interpretation of (k) (suggested
by P. Flajolet): Consider apermutationr e Sk. A subset R k} is calledan increasing
chain inr iffVx, y e R x < yimpliesr(x) < r(y). Denote bys(r) the number of
increasing chains in r. Then t(k) E{s] the expected number of increasing chains in a
random permutation e 8. The proof of this fact is b induction. For k 0 we have
one increasing chain, namel, the empty set. Assume k > 0 b the inductive hypothesis the
expected number of increasing chains not containing k is (k 1). The ones containing k
are in one-to-one coespondence with the increasing chains in {1 - (k) }, whose
expected number is t(-(k) 1). Since - (k) is equal to with probability l/k, for any
e k}, we recover the original recurrence for (k). On the other hand,

E[s] prob(R is an increasing chain)
R

prob(R is an increasing chain)= ’i=o IR[=i =
and the lemma follows.

COROLLARY 4.5.

(k) 5 e2.

Pro4 Using the inequality () ki/i[ we obtain

e2.

The bound is almost tight; we will come back to this later. For the performance ofAoP_SD
we get the following theorem.

THEOREM 4.6. AOP_SD solves any AOP (H, <, ) with an expected number ofat most
e2- oracle queries.

How to sample from the domain. To turn the procedure AOP_SD from the previous
paragraph into a working algorithm, we have to do something about the subroutine
SAMPLE_DOMAIN. As we have already indicated, the way to deal with it will be to find a
reasonably cheap way to "approximate" it. The idea is simple: rather than sampling from
the whole domain of a given pair (F, G), we will identify a subset D of the domain, along
with the coesponding witnesses, and sample from D only. After plugging in this version of
SAMPLE_DOMAIN, the expected perfoance of AoP_SD will drop off depending on the size
of D, which we assume to be a function r(k) of k dim(F, G); the recuence of Theorem
4.3 then becomes

r(k 1) +... + T(k r(k))
T(k) T(k- 1)+

r()

This bound is exponential for r(k) O(1) but becomes better the closer r(k) is to k. On the
other hand, the larger r(k) is, the hder the task of finding the set D is. A reasonable balance
is achieved by choosing r(k) proportional to k, say r(k) [ck], for some fixed 0 < c <
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(the exact value will be determined later and will depend on n HI). We will see that the
additional effort for finding D _c D(F, G) of this size is small, and the algorithm basically
preserves its expected performance as previously analyzed.

To construct D when called on a pair (F, G), the algorithm proceeds incrementally; since
we know that at least the elements in G F are free with witness F, we can start off by setting
D to G F. In case D is already large enough, we just sample from D and proceed as before.
Otherwise we will have to enlarge D by at least one more free element hidden in F; to this end
we will step through a sequence of improving oracle queries (in a way to be described later)
until a witness for a yet unknown free element is found (or we already end up in opt(G)).

Suppose that in the generic step certain elements in G have already been identified as free
in (F, G) and we need to find another free one. The way to do it is as follows" call the algorithm
recursively with (F’, G), where F’ is the current estimate, but supply an additional parameter
E that contains all the elements of G whose status is yet unknown (note that E F’). This
recursive call now has two ways to terminate: either it finds the desired solution opt(G) or,
while improving its estimate, discovers an F" c__ G which fails to contain E. This, however,
means that the elements in E F" have been uncovered as free elements with witness F", so
the call has accomplished its task. The key observation is that as long as D is small, the set
E of elements with unknown status will be large, and since the recursive call with parameter
E terminates as soon as the first estimate F" that is no longer wedged between E and G
appears, it actually operates only on G E instead of G, which makes it substantially cheaper
(this method is a generalization of the idea behind the pivoting strategy Kalai uses in his LP
algorithm).

A working algorithm. The generic call will have three parameters E c__ F c_C_ G, where
in the beginning E 0. Let us formulate the procedure Aor,(E, F, G) that will either return
opt(G) or deliver an estimate F’ < F with E F’ to a higher level in the recursion. The set
D is implicitly maintained and comments will refer to it.

AOP(E, F, G)
ifE G

2 then return (F, G)
3 E’+--F
4 for all e 6 G E’
5 doFe+--F
6 while IG E’I
7 do F +--AOP(E’, F, G)
8 ifE F
9 then return F
10 irE’ F
11 then for all e E’ F
12 do Fe <-- F
13 E E f3 F
14 else return F
15 choose a random e G E’
16 F +-AOP(E, Fe, G {e})
17 ifE F
18 then return F
19 F’ +- (F, G)
20 ifE F’orF=F’
21 then return F’
22 return AOP(E U {e}, F’, G)

returns opt(G)or F’ < F, E F’
> E= F=G?
(F, G) F or E (F, G)
elements of unknown status
D "= G E’, initial free elements
set witness
D still to small, try to enlarge it

return to higher level in recursion

new free element(s) found

> set witness
> update E’ (D "= D U (E’- F))
t> line 7 has already computed opt(G)
> sample from D

return to higher level in recursion

once we get here, F opt(G {e})
check both termination criteria

repeat with better estimate
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Termination of Aor, follows by observing that the recursive calls solve smaller problems
(measured in terms of IG El). The correctness of the procedure is not obvious at first sight,
but it suffices to inductively check the invariant that E is contained in every estimate up to the
terminating one. This is not a priori clear in the recursive call of line 22, where E is replaced
with E tJ {e}; to see that this is justified, observe that if the procedure gets through to line 22
at all, the call in line 16 must have actually computed F opt(G {e}); moreover, F’ < F.
This, however, means that e is enforced in (F’, G), so for every future estimate F" c_ G with
F" < F’ we will have e F" i.e.

E f F" EU{e} F",
and the invariant is guaranteed.

It should be mentioned that the estimate Fe plugged into the recursive call in line 16
may be worse than some estimates computed during the while loop. The important property,
however, is that Fe is at least as good as the original F we started with.

Toward the recurrence. The reader might wonder whether this algorithm really matches
the rough idea we described. For example, we promised to make D as large as [clD(F, G)I].
This holds if E 0, because in this case, after the while loop,

IDI >_ fclG-Ell fclGll _> fcI(F, G)II,

but if IEI > 0, we might end up with a much smaller D. In this case, however, there are
elements in D(F, G) (especially the ones in E) which are actually enforced in the sense that
every estimate containing E has to contain these elements as well, and we should no longer
consider such elements as free in a call with parameters E, F, and G. The following definition
for triples takes care of that; it mimics Definition 4.1 for pairs.

DEFINITION 4.7. For E c_ F c_ G, e G- E is enforced in (E,F,G) if F <
opt(E, G {e}) :-- min<{F’ E _c F’

___
G {e}} and e is free otherwise. Thefree elements

form the domain of (E, F, G), i.e.,

D(E,F,G):={eeG-E ]:qF’<F,E c_ F’.C_G-{e}}.

The dimension of E, F, G) is the size of its domain, i.e.,

dim(E, F, G) :--179(E, F, G)I.

This ensures that the domain contains exactly the elements which may potentially end up
in D and guarantees that [D] _> [c179(E, F, a)[1 after the while loop.

The main recurrence. To bound the expected performance of Aor,, we can set up a
recurrence which will look similar to the one that holds for Aor’_SD. However, it will include
an additional term for the effort that is necessary to find the set D; even worse, it will depend
on two parameters rather than one, which makes it somewhat harder to solve. Nevertheless,
it basically behaves like the one-parameter version and we will be able to establish a similar
bound.

For fixed H and rn > k, let T (m, k) be the worst-case expected number of oracle queries
performed in a call to Aor,(E, F, G) withsize ]G- El m and dimension dim(E, F, G) k,
G

_
H. For a statement A let )A be if A holds and 0 otherwise. We get T (0, 0) and

for m > 0 we have the following bound.
THEOREM 4.8.

[cm]-I

r(m, ) _< r(i, min(i, k))
i=0

T(m-l,k-i)+ r(m- 1,: ) + + icm]
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Proof. The arguments are basically the ones of Theorem 4.3, so we omit some details.
Again, T is monotone in k; in the worst case, the while loop may be executed once with every
value of := IG E’I between 0 and [crn] 1, which gives the first term. If k < [cm], the
algorithm will not be able to find the required number of free elements and thus cannot get
beyond the while loop. Otherwise, the triple processed in line 16 has size m and dimension
at most k (e is no longer free), which gives the T(m 1, k 1) term. One more query may
be necessary in line 19. Finally, the last term bounds the expected effort in line 22, averaged
over the random choice in line 15 (let G E’ el et, > [cmq, ordered in such a way
that

opt(E, G {el}) > > opt(E, G {el}),

and observe that el ei are no longer free in (E U {e}, F’, G) if e ei is chosen in line
15).

SoDing the recurrence. It turns out that the dependence of T(m, k) on m is quasi-
polynomial, while the major contribution comes from k. Let us define two auxiliary functions:

f(k) f(k 1) +-Z f(k -i),
i=1

fcm]-I

g(m) g(m -1) + E g(i)
i=0

with f(O) g(O) 1.
LEMMA 4.9.

T (m, k) < f(k)g(m).

Proof We proceed by induction on m. For rn 0 we have equality, so assume rn > O.

fcm1-1
T(m, ) <_ y f(min(i, k))g(i)

i=0

E f’ml] ]+ f(k- 1)g(m-1)+l+ im] f(k-i)g(m- 1) Xk>_[cmq
"__,

[cn]-I

< f(k) Z g(i)-xk>o
i=0

I fckl ]f(k- i) Xk>_[c,n] "+" Xk>[cm]+g(m 1) f(k 1) + - =
f(k)[g(m) g(m 1)] + g(m 1)f(k)x>_rcml + X>_rcml

f(k)g(m) g(m 1)[f(k) f(k)xk>_Cc,n]] + ;(>__rc,n] X>0

<_ f (k)g(m) g(0)[f(0)- f(O)x_rcml + X>_rcm3 X>0

<_ f(k)g(m).

It remains to bound f(k) and g(m).
LEMMA 4.10.

Then

g(m) < 3mlg’/cm+l

f (k) <_ e2/-.
-l form>O,
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Proof The function g(m) is monotone, so we can argue that g(m) <_ g(m 1) +
[cm]g([cm] 1), which by expanding g(m 1) yields

g(m) < Z[ciqg([ci] 1)-+-g(0) _< m[cm]g([cm] 1)-+- _< m2g([cm] 1)-t- 1.
i=1

Now we claim that form > 0, g(m) < 3mlg/‘m+l- 1, which holds form 1, and inductively
we obtain

g(m) < m2[3(cm)lg’/‘’cm+l 1] 3m2mlg’/’.m-I m2 <_ 3mlg’/Cm+l 1.

f (k) can be majorized by the function (k) satisfying (0) and

k

t(k) t(k 1) + - .= t(k i).

By applying the method of generating functions [8, 7] it is possible to compute (k) explicitly.
One obtains

k

()(1/c)ik io.=
a generalization of the bound in Lemma 4.4. The formula can also be verified easily by
induction, using standard binomial coefficient identities as can be found in [8, 5]. As in
Corollary 4.5 we obtain from this the desired estimate

(k) < e2’. Vq

It takes more effort to show that t(k) O(e2x//k3/4) (e.g., by using the saddle point
method [9, p. 74 ft.]), so our simple estimate is tight up to a k3/4 factor.

We have proved that the expected number of oracle queries performed by algorithm AoP,
when called on a triple (E, F, G) of size m and dimension k, is bounded by

T(m, k) < 3eZT-mlg’/"m+l

for any fixed 0 < c < 1. Setting z "= 1/c and rewriting the expression shows that

T(n, n) <_ 3he2 n/-ffn+ln2n/ln(l+z)

queries are sufficient on the average to solve an AOP on a set H with n elements. By easy
calculation, we see that the value z0 minimizing this bound satisfies

In t/

z0 4/
( + o()),

so a reasonable choice for z is z In n//-. Exploiting the fact that In(1 d- z) >_ z Z2/2 for
positive z gives

In2 n In2 n In2 n In2 n
< < lnn + In2n.

ln(1 + z) z z2/2 z 2- z
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This derivation holds for z __< 1; in case z > 1 the inequality follows directly. From the mean
value theorem we get

z/n + zn <_ / + -/ <_ + /-ln n.

This leads to an overall upper bound of

T (n, n) _< 3ne2’/;;+27 lnn+n2 n.
THEOREM 4.11. An AOP (H, <, ) with IHI n can be solved with an expected number

ofno more than

e2C+2ilnn+O(ln n)

oracle queries,

5. Discussion. We have given an e2+fl)/ expected time randomized algorithm for
AOPs on an n-element set H; the algorithm applies to the minimum spanning ball problem for
n points in d-space and to the problem ofcomputing the distance between two d-dimensional n-
vertex (or n-facet) convex polyhedra, and for both problems we obtain the first subexponential
combinatorial bounds in d. As in the case of linear programming one can obtain a bound

of O(d2n H- eO(w/lgd)) for both problems by combining our result with the ones of [18]
and [2].

Recently, Ludwig 16] has shown that the problem of finding optimal strategies for simple
stochastic games [5] allows a subexponential solution (where he implicitly proved that the
problem can be formulated as an AOP, which allows direct application of the procedure
AoP_SD from 4.2); unlike the AOPs we discussed here, the simple stochastic game problem
is of a more combinatorial rather than geometric flavor. In general, however, it. seems that
local optimization occurs most naturally in geometric settings.

To determine the randomized complexity of AOPs is itself a challenging problem. It
seems that to substantially improve on the bound given here, one would have to come up
with a method that does not rely on the concept of the dimension of an estimate as a measure
of progress during the algorithm. Any better upper bound would immediately imply better
algorithms for the "small" instances of the problems we have discussed, and we believe that
the ideas behind such progress would carry over to the "large" instances. On the other hand,
it is quite possible that there is a lower bound for AOPs that is in the range of the upper bound
given here; however, so far we have not been able to establish any nontrivial lower bound. A
natural time class to consider when thinking about upper or lower bounds seems to be nlgr

for constant r.
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to improve the presentation. Special thanks are extended to Emo Welzl for many discussions
and for reading several versions of the manuscript.
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RANDOMNESS-OPTIMAL UNIQUE ELEMENT ISOLATION WITH
APPLICATIONS TO PERFECT MATCHING AND RELATED PROBLEMS*

SURESH CHARIf, PANKAJ ROHATGIt, AND ARAVIND SRINIVASAN

Abstract. In this paper, we precisely characterize the randomness complexi, of the unique element isolation

problem, a crucial step in the RNC algorithm for perfect matching by Mulmuley, Vazirani, and Vazirani [Combina-
torica, 7 (1987), pp. 105--113] and in several other applications. Given a set S and an unknown family .T"

_
2s

with I,T’I < Z, we present a scheme for assigning polynomially bounded weights to the elements of S using only
O(log Z + log ISI) random bits, such that the minimum weight set in .Y" is unique with high probability. This gener-
alizes the solution of Mulmuley, Vazirani, and Vazirani, who use O (S log S) bits, independent of Z. We also provide
a matching lower bound for the randomness complexity of this problem. The new weight assignment scheme yields
a randomness-efficient RNC algorithm for perfect matching which uses O (log Z + log n) random bits, where Z is
any given upper bound on the number of perfect matchings in the input graph. This generalizes the result of Grig-
oriev and Karpinski [Proc. IEEE Symposium on Foundations ofComputer Science, 1987, pp. 166-172], who present
an NC algorithm when Z is polynomial and improves the running time in this case. The worst-case randomness
complexity of our algorithm is O(n log(m/n)) random bits improving on the previous bound of O(m logn)o Our
scheme also gives randomness-efficient solutions for several problems where unique element isolation is used, such
as RNC algorithms for variants of matching and basic problems on linear matroids. We obtain a randomness-efficient
random reduction from SAT to USAT, the language of uniquely satisfiable formulas, which can be derandomized in
the case of languages in FewP to yield new proofs of the results FewP c__ fgP and FewP

___
C= P.

Key words, parallel algorithms, probabilistic algorithms, matching, matroids, random reductions

AMS subject classifications. 68Q20, 68Q25, 68Q 15

1. Introduction. Given a graph G, a matching in G is a subset of the edges such that
no two edges in the subset are incident on the same vertex. A maximum matching in G is a
matching in G of maximum cardinality and a perfect matching is a special type of maximum
matching in which each vertex is covered by an edge, ioe., each vertex is matched. Finding
a perfect matching, if any, in a graph is one of the fundamental problems in combinatorial
optimization. While its sequential complexity has been well studied (Lovfisz and Plummer
[20]), a big open question in the theory of parallel algorithms is whether a perfect matching
can be found or even detected in NC. Because of its importance, considerable effort has
been devoted toward developing parallel algorithms for the perfect matching problem, For
instance, sublinear time parallel algorithms for general graphs (Goldberg, Plotkin, and Vaidya
[10], Vaidya [32], and Grover [13]) and bipartite graphs (Goldberg et al. [9]) are known. NC
algorithms have also been developed for special classes of graphs such as co-comparability
graphs (Kozen, Vazirani, and Vazirani 18]), strongly chordal graphs (Dahlhaus and Karpinski
[7]), graphs with polynomially many perfect matchings (Grigoriev and Karpinski [11] and
Grigoriev, Karpinski, and Singer [12], and planar bipartite graphs (Miller and Naor [21]).
A very successful approach for the general problem, has been the use of randomness; both

*Received by the editors June 15, 1993; accepted for publication (in revised form) April 21, 1994. A preliminary
version of this paper was presented at the 25th Annual ACM Symposium on the Theory of Computing.

fDepartment of Computer Science, Cornell University, Ithaca, New York 14853. The research of this author was
supported in part by National Science Foundation grant CCR-9123730.

Department of Computer Science, Cornell University, Ithaca, New York 14853. The research of this author was
supported in part by National Science Foundation grant CCR-9123730, an IBM Graduate Fellowship, the United States
Army Research Office through the Army Center of Excellence for Symbolic Methods in Algorithmic Mathematics
(ACSyAM), and Mathematical Sciences Institute of Cornell University contract DAAL03-91-C-0027.

Department of Computer Science, Cornell University, Ithaca, New York 14853. The research of this author
was supported in part by National Science Foundation Presidential Young Investigator award CCR-89-96272 with
matching support from United Parcel Service and Sun Microsystems, and by an IBM Graduate Fellowship.

1036



RANDOMNESS-EFFICIENT ALGORITHMS FOR PERFECT MATCHING 1037

Monte Carlo RNC algorithms (Karp, Upfal, and Wigderson 15] and Mulmuley, Vazirani, and
Vazirani [22]) and Las Vegas RNC algorithms (Karloff [14]) have been developed.

In this paper, we investigate the parallel randomness complexity of perfect matching
and related problems, i.e., the amount of randomness required to solve them in parallel. For
perfect matching we present an RNC- algorithm which uses O(log Z + log n) random bits,
where Z is any given upper bound on IMat(G)l, the number of perfect matchings in the
graph G. This improves and generalizes the result of Grigoriev and Karpinski 11 ], who give
an NC algorithm when Z is polynomially bounded. Since a graph on n vertices with m
edges can have at most (2m/n) perfect matchings, the worst-case randomness complexity
of our algorithm is O(n log(m/n)), which improves on the previous bound of O(m logn)
from Mulmuley, Vazirani, and Vazirani [22]. Thus, by linking the randomness complexity
of this problem to the number of perfect matchings, we unify and generalize previous results
while also improving on them. In special cases, e.g., K33-free graphs, the number of perfect
matchings in the graph can be computed in NC2 (see, for example, Vazirani [34] and also
the work of Kastelyn [16] and Little [19]); in general, if no good upper bound on IMat(G)l
is known, our results yield an RNC algorithm for finding a perfect matching which uses at
most O(log IMat(G)l) random bits with high probability if the input graph has at least one
matching. This is a significant reduction if 0 < IMat(G)l << (2m/n). All of these results
are obtained from a randomness-optimal generalization of the isolating lemma, a tool used
to isolate a perfect matching in the RNC algorithm of Mulmuley, Vazirani, and Vazirani [22].
Since this abstract and powerful tool has several applications, such as those to basic problems
on linearly representable matroids, variants of matching, and random reductions in structural
complexity theory, our generalization results in randomness-efficiency in these settings as
well.

Given a set S {x, x2 Xu} and an unknown family f"

___
2s, the isolating lemma

of [22] shows that if the xi’s are independently assigned weights, uniformly at random from
the range {1, 2 2N}, then with probability at least 1/2, the minimum weight set in U
is unique. This weight assignment scheme clearly requires (R)(N log N) random bits, and a
question left open in the original paper was whether the assumption that the weights be assigned
independently is necessary. Our scheme generalizes this as follows: given an upper bound
Z on Il, we assign polynomially bounded weights to the xi’s using only O (log Z + log N)
random bits and achieve the same result. In the worst case (Z 2N), our scheme needs
O(N) random bits as compared to (R)(N log N); more importantly, for smaller Z, we get
much better randomness complexity. Also, since even in the worst case we assign polynomial
weights to N different random variables using O(N) random bits, the weight assignments
are not independent, thus settling the open question of [22]. Our scheme provides an explicit
construction of a collection of (NZ)1) weight assignments such that, for every family U of
size at most Z, at least one (in fact, at least 50%) of these assignments makes the minimum
weight subset in .T" unique. Such a collection of size O(NZ) is guaranteed to exist by
applying Adleman’s technique to the original isolating lemma. Thus, this is one of the few
instances where Adleman’s result can be made constructive with only a polynomial blowup
in size. Furthermore, we also show that our weight assignment scheme is optimal by proving
a matching lower bound for this generalization, i.e., any scheme which assigns polynomial
weights to the xi’s must use f2 (log Z + log N) random bits even to achieve isolation with only
nonzero probability.

This randomness-efficient generalization of the isolation process can be plugged directly
into the settings where the original isolating lemma has been used to obtain randomness ef-
ficiency. In addition to the new algorithm for perfect matching we get randomness-efficient
algorithms for variants of perfect matching, such as exact matching and maximum match-
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ing. We get RNC2 algorithms for exact and maximum matching which use O(log Z / log n)
random bits, where Z is a given upper bound on the number of exact matchings and maxi-
mum matchings, respectively. Matroid intersection and matroid matching are generalizations
of bipartite and general graph matching, and the isolating lemma has been used to obtain
RNC2 algorithms for these basic problems on linearly representable matroids (Narayanan,
Saran, and Vazirani [23]). Here, by obtaining good bounds on the size of the family on
which the isolating lemma operates, we obtain significant savings in the number of random
bits required. The randomness complexities of our algorithms for matroids, when special-
ized to the case of matching, yield precisely our results on matching. In particular, we
give NC2 algorithms for these problems on matroids under certain restrictions, which, in
the case of graph matching, correspond exactly to a polynomial bound on the number of per-
fect matchings. This generalizes the results of[l 1] to matroids and also generalizes a result
of Tiwari [29].

Another important application of the isolating lemma is to obtain an alternative to the
Valiant and Vazirani random reduction [33] from SAT to USAT. Our generalization yields a
new random reduction whose randomness complexity is logarithmic in the number of satisfy-.
ing assignments. The worst-case complexity matches the best-known bound of O(n) (Tarui
[27]) and directly gives new proofs of the results that FewP, where the number of satisfying
assignments is polynomially bounded, is contained in P (Cai and Hemachandra [3]) and
C=P (K6bler et al. 17]).

This paper is organized as follows: In 2 we describe the weight assignment scheme and
show that it has optimal randomness complexity Section 3 lists the applications of the new
tool to perfect matching and its variants. Applications to problems on linearly representable
matroids and random reductions in structural complexity are listed in 4.

2. The generalized isolating lemma. In this section we present our randomness-efficient
generalization of the isolating lemma and show its optimality by proving a matching random-
ness complexity lower bound for this problem, We start, with a formal statement ofthe isolating
lemma.

DEFINITION. A set system (S, .U) consists ofafinite set S {xl XN} and afamily
ofsubsets of S. A weight assignment (wl Wu to the elements x XN, extends
naturally to sets in f" with (Sj) xsj wi,

The crux of the RNC2 algorithm of Mulmuley, Vazirani, and Vazirani is the following
probabilistic tool.

LEMMA 2.1 (isolating lemma [22]). Let (S f’) be any set system. If the elements xi of
S are assigned random weights uniformly and independentlyfrom {1, 2 2N} then, with
probability at least 1/2, there will be a unique minimum weight set in .U. Twofeatures make
the isolating lemma widely applicable. First, the isolation process works for arbitrary and
unknownfamilies f’, and second, isolation is achieved by assigning only polynomial weights.
For example, in the bipartite perfect matching problem where S is the set ofedges and f" is the
collection ofperfect matchings, the first feature allows isolation to be done in RNC without
any knowledge ofthe perfect matchings, and the second ensures that a matching can be.found
by inverting a matr& with polynomial-sized entries [22].

2.1. New isolation scheme. We prove a randomness-efficient generalization of the iso-
lating lemma which also assigns polynomial weights and depends only on any given upper
bound Z on the size of the unknown family f’. The motivation for this generalization is
that, in several settings where the isolating lemma has been used to obtain randomized algo-
rithms in the general case, we have deterministic solutions when the number of solutions is
small [11], [29], [3]. These deterministic solutions have been obtained by techniques that are
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specialized to each case, and our aim is to obtain them by carefully parametrizing the ran-
domness complexity of the algorithms for the general case. To do this we prove the following
generalization.

LEMMA 2.2 (Generalized Isolating Lemma). Let S, ) be any set system and let Z be a
given upper bound on the size ofthe unknownfamily f’. There is a simple scheme which uses
O(log Z + log N) random bits to assign integer weights to the xi ’s in the range [0, N7) such
that, with probability at least 1/4, there is a unique minimum weight set in

Proof We outline a four-step process for assigning weights to the xi’s and prove that this
scheme has the desired properties. At step j we assign an intermediate weight tj). Only
Steps 2 and 4 are randomized and together use O (log Z + log n) random bits.

Since .T" is unknown, we deterministically assign very large weights in Step so that
every set in .T" gets a distinct weight.

Step 1. For each i, set w) 2i.
Under t, sets in 9v have distinct weights in 1, 2 2N+l }. Clearly, if Z << 2

the same property should be obtainable with much lower weights. Since .T" is unknown, a
deterministic strategy for reducing weights may fail" instead, we use a randomized strategy.

Step 2. Choose m uniformly at random from {1, 2 (2NZ2)2}. For each i, define
U)2) W 1) mod m.

Step 2 requires O(log Z / log N) random bits. Under 2, the Z or fewer sets in U have
weights in the interval [0, min(N(2NZ2)2, 2N+I)], which is a big improvement for small
values of Z. We now claim that, with good probability, these weights are also distinct.

CLAIM 1. With probability at least 1/2, all sets in .T" have distinct weights under
Proof Suppose .T" {S1 S,}, where k _< Z. Consider the (unknown)integer

((1)(Si)- L(I)(sj)).

Clearly the properties of t ensure that 1 # 0 and Ill < 22NZz. The following number-
theoretic proposition together with the Chinese remainder theorem establishes that, when m is
chosen uniformly from 1, 2 (2NZ2)2}, the probability that m/t7 is at least 1/2. Several
versions of this proposition appear in the literature; this version is from [31 and the constant
89 has been improved to 3 by Thrash [28].

IL2"PROPOSITION 2.3. Let L > 89 and let S be any subset of{ L2} such that SI >_
Then, the least common multiple of the elements of S exceeds 2t.

We claim that if m I, then all sets in .T" have distinct weights under t2. If not, then
/(2)(Si) /(2)(Sj)forsomei < j. Yhenwehaveml(ff)(Si)-ff)(Sj)), which contradicts
the fact that m/17. [3

Remark. We say that Step 2 .succeeds if sets in 9v get distinct weights under /(2)o The
success probability of this step can be boosted to any constant less than 1, since it follows
from the results of de Bruijn [8] that for any fixed p < 1, there exist constants c and c2 such
that if m is picked uniformly at random from 1, 2 Nc’ Z’;. in Step 2, then Step 2 will
succeed with probability at least p.

Note that if Z _< N then w2 _< N4c+3, and with probability at least 1/2 all sets in have
distinct weights. Later, we use this strong condition to design an NC2 algorithm to find all
perfect matchings in graphs with at most N perfect matchings. For larger Z, the weights
are still too big and in Steps 3 and 4 we reduce them further. Step 2 assigns q-bit weights to
the xi’s, where q min(N, log m) _< rain(N, 4 log Z + 2 log(2N)). Let [q/log N].

Step 3. For each write w2) as q-bit number. Split these bits into blocks of size log N
bits each as shown. Let bij be the number in [0, N 1] formed by the bits in block j as
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follows:

q

log N

Let. w3) be the linearform
-,t-I
-.j=0 bi,j "yj over the variables Y0 yt-.

CLAIM 2. IfStep 2 succeeds then the linearforms t (3) (Sj), where Sj .U, are all distinct.

Proof Assume that Step 2 succeeds, i.e., that all the weights t(2) (Sj) are distinct, where

Sj 6 )c. Note that each w3 evaluated at y 2 og N, 0 < k _< 1, is exactly wl2. This
implies that each t (3) (Sj) evaluates to the distinct value t (2) (Sj) at y. 2 og N, 0 < k < t- 1,
which implies that the forms tf3 (Sj) must be distinct. 1

Note that each t3 (Sj) is a linear form with coefficients in the range [0, N(N 1)]. We
will use this property in a crucial way in the analysis of the next and final step.

Step 4. Choose r0 rt- uniformly and independently at random from 1, 2 N }.
4, 3)For eachi, setw as the evaluation ofw aty--r,0_<.k_<_t- 1.

We claim that t(4) achieves the requirements of the generalized isolating lemma. Clearly,
Step 4 requires 5 log N x O (log Z + log N) random bits and, since Step 2 has a similar
randomness complexity, the overall procedure requires O(log Z / log N) random bits. It is
easy to check that each w4) is in [0, NT), Since Step 2 succeeds with probability at least 1/2,
by using C {t(3)(Sj) Sj ( .} in the following proposition, we obtain that the weight
assignment t(4 achieves isolation with probability at least 1/4.

PROPOSITION 2.4. Let C be any collection ofdistinct linearforms over at most variables
Yo, Y Yt- withcoefficientsin {0, N2-1}. ChoosearandomF ro r_

by assigning each ri uniformly and independentlyfrom 1, 2 N }. Then, in the assignment
there will be a unique linearform with minimum value, with probability at least 1/2.

Proof of Proposition 2.4. Our proof parallels that of [22]; we define a variable Yi as
singular under an assignment ?" to the variables 37 if there exist two minimum-valued linear
forms in C under this assignment having different coefficients of Yi. Since all the linear forms
in C are initially distinct, if two linear forms attain the minimum weight then there must exist
some variable which is singular under this assignment.

For each Yi, we will upper bound the probability that it is singular. Fix an and assume
that the variables k’() ro ri-1, ri+l rl-i have been assigned the values ()
ao ai-1, ai+l aN-1. Under this partial assignment the weight of each linear form is
of the form a / byi, where a is the partial weight of the linear form and the coefficient b is
at most N2 1. The family C can be partitioned into at most N classes Co, C CN._,
based on the coefficient of Yi, i.e., forms in Cj have j as the coefficient of Yi. By definition, Yi
is singular under an assignment if and only if there are two linear forms from two different
classes in the partition which attain the minimum weight. Consider the probability that the
choice of ri makes yi singular, conditioned on the partial assignment to the other variables.
Let pj be the minimum partial weight among all the forms in Cj. Note that since all the
forms in a particular class have the same coefficient of yj in their weights, only the forms with
minimum partial weight in each class can possibly attain the minimum overall weight. Thus
the probability that ri makes yi singular is exactly the probability that the minimum-valued
element, in the list 79 [Po, P + ri, P2 + 2ri pN_.l / (N2 1)ri] is not unique. This is
clearly bounded by the probability that under a random ri the values of elements in D are not
all distinct. For each pair of elements in T), at most one choice of ri makes their values equal.
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Thus

Prob Yi is singular ’() c() _< Prob 31, m Pt + x ri Pm + rn x ri]

<
2 x Prob pt + x ri Pm + m x ri

(N22)< X
N5 2N"

Since ri is chosen independently of the other variables ?(i), the probability that the
assignment makes Yi singular is at most 1/2N. Since this holds for each variable and there
are at most < N variables, we have

Prob minimum valued form in C is unique > Prob [3j y) is singular]

>l-tx > [
2N 2

Since each of the four steps is elementary, the entire weight assignment scheme can
be implemented in NC. Finally, we note that the generalized isolating lemma provides
an explicit construction of (NZ) (1) weight assignment functions for the ground set S
{Xl,X2 iN} such that, for any set system (S, .Y’) with If’l _< Z, at least half of these
functions will produce a unique minimum weight set in . For a given ground set S, the
number of set systems (S, ) with lgc[ < Z is y/z=, (2iu); hence, the technique of Adleman

combined with the original isolating lemma shows nonconstructively that there exists a set

of O(log(Y/z=, (z/N))) O(NZ) weight assignment functions such that, for any set system
(S, f’) with Ill _< Z, at least, one of these functions will produce a unique minimum weight
set in ’o

2.2. A lower bound for the isolation problem. We establish a matching lower bound
of f2 (log Z / log N) random bits on the randomness complexity of the generalized isolation
process and, in fact, for the following weaker problem, thus showing that the randomness
complexity of our weight assignment scheme is optimal to within a constant factor.

Generalized Isolation. Let S {Xl iN} and let k be a constant. Assign weights to
the elements of S in the range 1, N’ such that for any family f c_. 2s of size at most Z, the
minimum weight set in f" is unique with nonzero probability.

First we prove a lower bound of f2 (log Z) random bits for any randomized scheme for
the above problem. Each path of such a randomized algorithm defines a weight assignment
f to the xi’s. The following theorem shows that at least + different weight assignments

zare needed to achieve isolation in all possible families of size at most Z, where min( v_ ,
[(2N 3)/N’+J). Hence any randomized scheme for generalized isolation must use
f2 (log t) f2 (log Z) random bits.

THEOREM 2.5. Let f, f2 f be any collection of weight assignments that assign
Zweights in the range [1, B] to the elements of S. If < min(5, (2N 3)/NB), then there

exists afamily f" ofsubsets of S with ]U[ <_ 2t <_ Z, such that the minimum weight .subset of
f" is not unique under any ofthese assignments.

Proof Given any weight assignments, we explicitly construct the family .T as follows.
First, for each fi we compute the histogram" of the weights of the subsets of S, i.e., for each
nonempty subset X we place a mark above the weight f/(X) in the histogram for fi" one
distinct mark is made for each such subset X.

The weight of any subset is in the range 1, NB]. For each initialize a pointer Pi tO in
the histogram for fi. The pointers p; advance according to the following rules:
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If there are no marks on weight pi in the histogram of jS, then advance Pi to pi / 1.
If there is exactly one mark on weight pi which corresponds to some subset X, remove
the marks corresponding to X from all the histograms and advance Pi to Pi + 1.

If more than one pointer can advance, we choose one among them arbitrarily. We continue
this process until the pointers cannot move any further. First we argue that not all marks can
be removed, since every time a mark is removed one of the pointers advances, and hence the
potential function q Zi (Pi 1) always increases. Since each Pi is bounded by NB + 1,

is bounded by NB. By assumption NB < 2N 3, and hence when the pointers come to
a halt, there are at least two marks corresponding to nonempty subsets Xi and Xi2 on weight
Pi in the histogram of j for each i. The family .T {Xit, Xi21 < < t} has size at
most 2t _< Z, and for each there are two nonempty minimum weight subsets Xi and X’i2 of
minimum weight Pi under the assignment jS. [3

Also, when B n) and o(N/log N), we can construct two sets which have the
same weight under all the assignments fl, f2 f as follows. Since f maps the nonempty
subsets of S to the range [1, NB], there exists a family A of nonempty subsets of S, all of
which get the same weight under fl and are such that IAI > (2N 1)/NB. Similarly, there
exists a family A2 __. A with IA2I > (2N 1)/(NB)2, such that fi(X) f/(X2) ’XI, X2 (

A2 for 1, 2. Repeating this, we end up with a set At of nonempty subsets of S with
]Atl >_ (2N 1)/(NB)t, such that the minimum weight element of At is not unique under any
f, f2 f; since (2N 1)/(NB) > 2 for o(N/logN), our claim holds. Thus, any
scheme for generalized isolation requires f2 (log Z / log N) random bits. Theorem 2.5 also
gives similar lower bounds when the elements are assigned superpolynomial weights. In fact,
we can prove the same lower bound when the assignments map subsets of S to an arbitrary
linearly ordered set of size B, since the aforementioned proofs use no property of the integers
other than their total ordering.

3. Applications to matching problems. The generalized isolating lemma immediately
yields randomness-efficient algorithms for several problems related to matching. In this sec-
tion, we consider only matchings in bipartite graphs; with more work, identical results can
be obtained for matchings in general graphs [20], [22]. The failure probabilities of all our
algorithms can be made inverse polynomial with only a constant blowup in the time and ran-
domness complexities and a polynomial blowup in the number of processors using two point
sampling techniques of Chor and Goldreich [5]. The new isolating lemma is a general tool
for bounding the randomness complexity of a problem in terms of the number of its solutions.
However, because of the large polynomial weights used by our lemma algorithms based
directly on the lemma usually suffer a processor penalty.

Notation. We denote a bipartite graph G by G (U, V, E), where U {u , U2 Un/2 },
V {v, v2 v,/2}, and IEI m. The determinant of a matrix A is denoted by det(A).
The number of perfect matchings in G is denoted by IMat(G)l.

3.1. Algorithms for matching. To apply unique element isolation to perfect matching,
we let the ground set be the set of edges and let the family of subsets be the set of perfect
matchings of G as in [22]. By the generalized isolating lemma, given an upper bound Z on
IMat(G)l, we can assign polynomially bounded weights to the edges of G using O(log Z +
log n) random bits, such that there is a unique perfect matching of minimum weight with good
probability. We construct a matrix M[ 1..n/2, l..n/2] with

2t’. if (ui, vj) E,
M[i, j]

0 otherwise,

where wij is the weight assigned to edge (Ui, 1)j). A perfect matching in G can now be found,
if one exists, by inverting M via the NC- algorithm of Csanky [6] as shown in [22]. Note
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further that the additive O(logn) factor in the randomness complexity can be absorbed by
a processor penalty. For any graph G (V, E), [Mat(G)[ < 1-Ivev degree(v), which is at
most (2m/n)", since the sum of the degrees of the vertices is 2m. In the worst case, by letting
Z (2m/n) we obtain a randomness complexity of O(n log(m/n)), which improves the
previous bound of O(m log n) [22]. Thus we get the following theorem.

THEOREM 3.1. There is an RNC2 algorithmforfinding a perfect matching in a graph G
(ifone exists) which uses O(log Z + log n) random bits given an upper bound Z on ]Mat(G) Io
In the worst case this algorithm uses 0 (n log(m/n)) random bits.

A careful analysis of the proof of our isolating scheme, when applied to the worst case
where Z (2re and m (n2), shows that the following algorithm also achieves the
same randomness complexity: the edges of each vertex u e U are assigned weights pairwise
independently in the range [1, mY].

Perfect matching is a special case of the exact matching problem: Given a graph G
with edges colored red and blue arbitrarily and an integer k, an exact matching is a perfect
matching of G with exactly k red edges (Papadimitriou and Yannakakis [26]). Even though
the problem of finding an exact matching is not known to be in P, the isolating lemma has
been used to solve it in RNC2 [22]! By observing that isolation is needed only among the
exact matchings, we can link the randomness complexity of this problem to a bound X on the
number of exact matchings and not on the number of perfect matchings. Suppose we assign
a nonnegative integral weight llOij to every edge (ui, vj) E. Let y be an indeterminate;
construct a symbolic matrix My[1..n/2, l..n/2] such that

y wi,j if (ui, vj) E and is colored red,

My[i, j[ wij if (ui, vj) E and is colored, blue,
0 otherwise

Then, it is easy to see that the contribution to the coefficient of y in det(M.) comes pre-
cisely from the exact matchings in G and that if there is a unique minimum weight exact
matching M*, then its weight equals the highest power of 2, say p*, which divides this co-
efficient of y. Furthermore, any edge can be tested for membership in M* by increasing
its weight by and testing if the new value of p* is higher than its old value. Hence, this
problem can be solved by using our generalized isolating lemma over the ground set E and
the (unknown) family of exact matchings of G. Since the determinant of a matrix in one
variable can be computed in NC2 (Borodin, Cook, and Pippenger [2]), we get the following
theorem.

THEOREM 3.2. Given an upper bound X on the number ofexact matchings in a graph G,
an exact matching (ifany) in G can befound in RNC2 using O(log X) random bits.

The isolating lemma has also been used to find the matching of largest cardinality in
bipartite graphs by a reduction to the perfect matching problem. However, the NC reductions
that have been used earlier [22], [20] do not suffice to get randomness-efficient solutions since
they cause a blowup in the number of solutions. Instead, we use the following reduction from
maximum matching to exact matching. Given a graph G (V, E), we first construct two

copies of G and color the edges in each of the copies red. Each vertex v in the first copy of G
is joined to vertex v in the second copy by a blue edge to yield the resulting graph G l. If m is
the size of the largest matching in G then it can easily be seen that there is an exact matching
with 2m red edges in G, but no exact matching with more than 2m red edges. Also, if Z is
an upper bound on the number of maximum matchings in the graph G, the new graph has at
most Z2 exact matchings with 2m red edges. Also note that if G is bipartite then so is G.
Thus, for maximum matching we first construct the new graph G’ and the new bound Z2, and
run the above algorithm for exact matching with each possible value of m simultaneously in
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parallel using the same random bits. We output the matching of largest cardinality that results
in any of the parallel runs.

THEOREM 3.3. There exists an RNC2 algorithmformaximum matching that uses 0 (log Z+
log n) random bits, where Z is a known bound on the number ofmaximum matchings in G.

3.2. Graphs with a polynomial number of perfect matehings. Grigoriev and Karpin-
ski consider the problem of finding all the perfect matchings in graphs with a polynomial
bound on the number of perfect matchings. Using techniques from algebra, they give an NC2

algorithm for this problem if the number of matchings is bounded by log’5-’ n, and an NC
algorithm when the bound is n for constant c. Since their algorithm for extracting a matching
is limited by their procedure for detecting if a matching exists, they suggest that log5- n
may be a limiting upper bound on the number of matchings for finding all (or even one) of
the perfect matchings in NC2 via parallel algebra. We present an NC2 algorithm for the de-
tection problem which provides enough information to find all matchings in NC2 even when
the number of matchings is polynomially bounded. In addition to the improvement in running
time, our algorithm is considerably simpler than the algorithm of Grigoriev and Karpinski.

As before, we let S and U be E and Mat(G), respectively. Running Steps and 2 of the
generalized isolating scheme, we use O(log n) random bits to assign each edge a polynomially
bounded weight such that all the perfect matchings ofG have distinct weights with probability
at least l/2. Let UOi be the weight assigned to edge (ui Uj). Construct a matrix A with

22wij if (Ui, 1)j) E E,
A [i, j

0 otherwise.

Since every matching has a distinct weight det(A) gives information about every perfect
matching as shown below.

Assume that Step 2 succeeds, i.e., all the perfect matchings indeed get distinct weights.
If we denote the matrix obtained from M by removing its th row and jth column by Mij,
then by definition,

(m-l)[j, i] (-1)i+Jdet(mij).
det(M)

Now, if there is a perfect matching of weight k containing the edge (ui, vj), then det(Mij) is
of the form

k-I

4-22(-wiJ) + Zae22e-wi)+ Z ae22x(e-wi)’
=0 g>__k+

where each ae is in {- 1,0, }. Since

k-I

Z ae22(e-w < 22(k-w)-l,
=0

this is of the form

4.22x(-wJ 4-no 22(k-w+l) 4, x 22--w’)-,

where no is a nonnegative integer and 0 < x < 1o Similarly, if there is no perfect matching of
weight k containing the edge (ui, vj), then det(Mij) is of the form

4"n0 22(k-wJ+l) 4, x 22(k-w;.i)-l,



RANDOMNESS-EFFICIENT ALGORITHMS FOR PERFECT MATCHING 1045

Hence, there is a perfect matching of weight k containing the edge (b/i, IJj) if and only if

I(M-)[j, i]. det(M). 22w;il (mod 22(k-)

is of the form 4nl -+- y, where n is an integer and y or 2. If there is no matching of weight
k then y 0 or 3. Since k is polynomially bounded, we can extract all matchings. Also,
since we use O(log Z + log n) O(log n) random bits, we can derandomize the reduction
by searching over all points in the sample space in parallel to get the following theorem.

THEOREM 3.4. There is an NC2 algorithm for detecting if a perfect matching exists and

for finding all perfect matchings in a graph G, when givren that [Mat(G)l <_ n for some
constant c.

We can obtain the same result for exact matching and maximum matching problems given
a polynomial bound on the number of exact matchings and maximum matchings, respectively.

Grigoriev and Karpinski also give a Las Vegas RNC algorithm for the problem of testing
if a graph has at most n perfect matchings, which uses expected O(n2c+85 log n) random
bits. Using the algorithm of Theorem 3.4 and extending ideas in [18] and [14], we can
improve on the running time and substantially on the number of random bits used. We will
use the following two results as subroutines in our algorithm. Karloff 14] presents an NC
algorithm which calls a perfect matching algorithm (oracle) on n + graphs (each with n
or n vertices and at most m edges) in parallel, and which, assuming that these calls worked
correctly, will announce correctly if G has a perfect matching; in any case, if it ever says
that [Mat(G)l 0, then the number of perfect matchings is indeed zero. Actually, Karloff’s
result is more general; it works for maximum matchings. Kozen, Vazirani, and Vazirani [18]
give a simple NC2 algorithm to test, given a perfect matching, whether there are other perfect
matchings in the graph. A direct extension of the technique yields an NC2 procedure for
checking, given a polynomial number of perfect matchings, whether there are other perfect
matchings.

In conjunction with any Monte Carlo RNC2 algorithm for finding a perfect matching (in
particular, ours), Karloff’s algorithm yields a Las Vegas RNC2 algorithm for deciding if G has
a perfect matching, and if so, for producing one. We first make the error probability of our

(as mentioned in 2, this can be done in RNC2) and,perfect matching algorithm at most 20i+1)
using only O(n log(m/n)) random bits, then invoke Karloff’s algorithm, which will make
calls in parallel to our algorithm using the same sequence of random bits for each call. The

"+ 1/2.probability that at least one of these calls produced a wrong result is at most 2(n+1
Hence, we can decide if [Mat(G)[ > 0 correctly, using an expected O(n log(m/n)) random
bits. The above probability can be made any inverse polynomial with a processor penalty using
the techniques of two-point sampling [5]. If we conclude that IMat(G)l > 0, then we run the
algorithm of 3.2 to generate all the perfect matchings of G, assuming that ]Mat(G)] < n + 1.
Finally, using the extension of the algorithm of Kozen, Vazirani, and Vazirani, we then check
if there are other perfect matchings in the graph other than the ones generated, and accept
if there are no other matchings; otherwise we report a failure. If G has at most n perfect
matchings, then at most n perfect matchings will be generated and we will pass the test for
other matchings, so the algorithm accepts correctly with high probability.

THEOREM 3.5. There exists a Las Vegas RNC2 algorithm for testing if a given graph G
has IMat(G)l <_ n ’, whose expected randomness complexity is O(n log(m/n)).

3.3. Randomness-efficient algorithms with no information on IMat (G)I. The algo-
rithms of Theorem 3.1 can be used to obtain randomness-efficient algorithms for perfect
matching, even when no upper bound on the number of perfect matchings is given, by using
the worst-case upper bound of Z (2m/n)". However, the following algorithm gives a much
better randomness complexity:
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for := 0 to [log2 log2((2m/n)n)] do
Let Z 22’ and run the algorithm of 3.1 to find a perfect matching;
exit if a perfect matching is found.

If there is at least one perfect matching, then this algorithm will find a perfect matching with
good probability when 22’ >_ IMat(G)l. If M is the number of perfect matchings then the
number of random bits used and the time taken will be O (log M) and O (log2 n log log M),
respectively, with good probability, and so we get the following theorem.

THEOREM 3.6. Let M=lMat(G)l. There is an RNC algorithmforfinding a perfect match-
ing in G with no given upper bound on M, which uses 0 (log M) random bits and runs in time
O(log2 n log log M) O(log n) with high probabili, if M > O; in the worst case, it uses
O(n log(m/n)) random bits and O(log n) time.

4. Other applications. The isolating lemma is a very abstract and powerful tool for
making one solution from a possibly exponential-sized collection stand out. Because of its
general nature, it has several applications. Thus, our generalized isolating lemma leads to
randomness-efficient solutions to various problems, which we describe in this section.

4.1. Randomized reductions from SAT to USAT. An important result in complexity
theory is the random reduction by Valiant and Vazirani from languages in NP to USAT, the
language of uniquely satisfiable Boolean formulae [33]. This reduction is at the core of several
fundamental results in complexity theory, most notably in the results ofToda on the unexpected
power of counting classes [30]. The isolating lemma has been used to derive an alternative
random reduction in [22]. We apply the isolating lemma to get a slightly different reduction
and here; our generalization yields better randomness complexity.

Given a formula F(x, X2 Xn) as input, to use the isolating lemma we let the ground
set S be the set of variables {x, x2 xn and let the family U be the satisfying assignments
of F, where a satisfying assignment is represented by the subset of variables that are true in
it. Assign weights wt w,, to the ground set elements as prescribed by the generalized
isolating lemma and choose a random element y in the range [1 ,n8]o Consider the following
reduction.

On input F(x x,,), w w,,, y we construct an NP machine M which works as
follows" Guess an assignment for the variables x Xn. If the assignment satisfies the
formula F and the weight of the assignment under the weight assignment w w,, is equal
to y then we accept. Note that since the weight assignment scheme succeeds with probability
1/2, if F is satisfiable then with probability 1/2 there is one minimum weight satisfying
assignment. Since all the assignments have a weight in the range [1, n 8] and y is chosen
uniformly at random from [1, n8], we have

F is satsfiable Prob[ M accepts on exactly one path >
-2xn8"

If F is not satisfiable then the machine M clearly accepts on no paths. Given this machine
M, using the Cook-Levin reduction we can construct a boolean formula F’ which has exactly
the same number of satisfying assignments as the number of accepting paths of M. So the
random reduction first assigns weights to the variables, chooses a random weight y, and
then constructs the formula F’ described above. By the description above it is easy to see
that

F is satisfiable = Prob[ F’ is uniquely satisfiable >
2n8,

F is not satisfiable == Prob[ F’ is not satisfiable 1o
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This reduction requires O (log Z + log n) random bits, where Z is an upper bound on the num-
ber of satisfying assignments of F. In the worst case this randomness complexity is O(n),
which improves on the O(n log n) bound of [22] and the O(n2) bound of [33] and matches
the result of Tarui [27]. Thus we obtain the following theorem.

THEOREM 4.1. There is a randomized reductionfrom SAT to USAT which uses 0 (log Z +
log n) random bits, where n and Z are the number of variables and an upper bound on the
number ofsatisfying assignments, respectively.

If the number of satisfying assignments of F is polynomially bounded as in case of lan-
guages in the class FewP, the reduction uses O (log n) random bits. This can be derandomized
to yield new proofs of the results FewP _c @p [3] and FewP

___
C_ P 17] as described below.

DEFINITION. A language L is in the class FewP ifthere is a nondeterministic polynomial
time machine M which accepts L and a polynomial q such thatfor all strings x, M(x) accepts
on at most q (Ix I) paths.

Note that for a language L in FewP, given a string x, the Cook-Levin reduction produces
a formula F with at most a polynomial number of satisfying assignments such that x is in L
iff F is satisfiable.

DEFINITION. A language L is in the class P if there is a nondeterministic polynomial
time machine M such that x is in L iffM on input x accepts on an odd number ofpaths.

The class was first defined by Papadimitriou and Zachos [25], who also show that the
class is closed under many operations; in fact, pet’ @p. When we derandomize the above
reduction for languages in FewP, we can get a polynomial number of formulas such that F is
satisfiable iff one of these formulas is uniquely satisfiable. Also, if F is unsatisfiable then none
of these formulas is satisfiable. Since the condition in the antecedents can easily be checked
in peP, we can get a new proof of the result that FewP

_
@P.

DEFINITION. A language L is in the class C= P iff there is a nondeterministic polynomial
time machine M and a polynomial time computable function f such that x is in L iff M on
input x accepts on exactly f (x) paths.

We can use C= P to test if one of a polynomial number of formulas has exactly one
satisfying assignment as follows" Let Fl Ft be formulas on n variables each with
s st satisfying assignments, respectively. If we could construct a formula F’
with (sl 1)... (st 1) satisfying assignments, then F’ would have exactly zero satisfy-
ing assignments iff one of the Fj’s has exactly one satisfying assignment. However, doing
this directly involves constructing formulas with one less satisfying assignment than the Fj ’s,
which is highly intractable [24]. We do this slightly indirectly as follows. Each term in
the product (sl 1)... (St 1) is of the form "4"Si,Si.oo .Si,. where r < t. We can easily
construct a formula which, has si, si2 sir satisfying assignments; so if the coefficient of this
term is + then we are done. However, if the coefficient is -1 then we construct a formula
with 2p(n)

Si,Si2...sir satisfying assignments, where p(n) n. A nondeterministic
polynomial time machine M which accomplishes this works as follows. First, M nondeter-
ministically chooses a term in the product (s 1)... (st 1). If the term is of the form
sisi_.., sir it guesses r assignments and accepts iff the assignments satisfy Fi Fir, re-
spectively. If the term is of the form si, si2 ir, it guesses assignments and accepts iff
the first r formulas do not satisfy Fi, Fi, or the last r assignments are all zeros. It can
be easily verified that if the term has coefficient then M accepts on si si..., sir paths, and if
the coefficient is -1 then M accepts on 2p(n)

sisi2 sir paths. Since the number of terms
with coefficient -1 is 2t-l, M accepts on (s 1)... (st 1) + 2p(’’) 2t-I paths, Using
the Cook-Levin reduction, one can construct a formula G with exactly the same number of
satisfying assignments. Now G has exactly 2p(n) 2t-1 satisfying assignment iff one of the
original formulas has exactly one satisfying assignment, Thus the reduction also gives a new
proof of FewP _c C= P.
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Here again we wish to emphasize that although there are many proofs of the above two
results, our proofs follow directly from bounding the randomness complexity of the general
randomized reduction.

4.2. Improved parallel randomness complexity for problems on matroids. The iso-
lating lemma has been used to obtain RNC algorithms for basic problems on linearly repre-
sentable matroids such as matroid intersection and matching (Narayanan, Saran, and Vazirani
[23]). These problems are generalizations of bipartite and general graph matching.

DEFINITION. A set system M S, ’) is a matroid if thefollowing hold:
o?,
) ifA BC_ SandB.T’,thenA .T’,and

ifA . and Az U with IA2I JAil q" 1, then there exists x A AI such
that A

Every element of f" is called an independent set. A basic consequence of the matroid
axioms is that every maximal independent set is also a maximum independent set, and the
cardinality ofany maximum independent set ofM is also called the rank ofM. A matroid M of
rank r over a ground set S of cardinality n is linearly representable over a field F if there exists
a matrix C 6 F whose columns are indexed by the elements of S, such that a subset of S is
independent in M iff the corresponding set of columns of C are linearly independent over F.
M is linearly represented if it is presented as the matrix B. Henceforth, the field F is assumed
to be the field of rationals, Q. All the results of [23] and this section hold only for linearly
represented matroids. For a good introduction to the theory of matroids see Welsh [35]. For
other work on randomized algorithms for the matroid problem see Camerini, Galbiati, and
Maffioli [4].

The matroid intersection problem is to find a maximum cardinality independent set in both
of two given matroids M and M2, each of rank r and over the same ground set S of cardinality
n. In this case, we observe that the size of the family on which the isolating lemma operates,
as presented in [23], is at most l ((r-h))2 (r h)!, where h is the size of the largest set
in Ml A M2 and I is the number of sets of size h in M fq M2. Since this can be bounded by
(nr2)h r! < (nr2) r <_ n4r, we can use generalized isolation to reduce the randomness
complexity from the previous bound of O((n + r2) logn) [23] to O(r log n), improving by a
factor of at least f2 (v/-) in all. cases and by more in general. If h >, r O (log n) and there is

a polynomial (in n) bound on I then, since I ((rrh)) 2
(r h) we get the first NCnO(I)

algorithms. In the case of bipartite matching, which is a special case of matroid intersection,
h r and a polynomial bound on I corresponds exactly to a polynomial bound on the number
of matchings in the input graph. Thus, this gives one way to generalize the results of 11 to
matroids.

THEOREM 4.2. Matroid intersectionr linearly represented matroids of rank r can be
solved in RNC2 using 0 (r log n) random bits. If the cardinality ofthe maximum intersection
is given to be at least r 0 (log n), and if the number ofmaximum cardinality intersections
is given to be bounded by a given polynomial of n, then it can be solved in NC2.

For linearly represented vectors, the matroid matching problem is as follows" Given rn
pairs of vectors over Qz, pick the largest number of pairs such that the vectors picked are
linearly independent. For this problem the RNC2 algorithm of [23, Thm. 4.3] uses the isolating
lemma on a set family over a ground set of rn + (2,) elements and at most

< (m -+- 2n2)n

subsets, and thus, by invoking the generalized isolating lemma, we improve the randomness
complexity from O((m + n2) log(m + n2)) [23] to O(n log(m + n2)), We can count the size
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of the family to which the isolating lemma is applied more carefully to bound the randomness
complexity of the algorithm to be O(log(I \2n-Zh!

)< (2n 2h) !)), where h is the maximum
number of pairs that can be picked so that the union is linearly independent and I is the
number of ways these h pairs can be picked. As in the case of matroid intersection we can
obtain deterministic algorithms if I is polynomial and if h > n log,, m. Tiwari, using
sparse interpolation techniques, gives NC algorithms for this problem when the number of full
dimensional solutions (i.e., when h n) is given as polynomially bounded in n and rn [29],
Thus, our result yields a generalization.

THEOREM 4.3. Matroid matching can be solved in RNC2 using 0 (n log(m + n2)) random
bits. If h > n log rn is the size of the largest number ofpairs whose union is linearly
independent, and there is a polynomial bound on the number ofways such a set ofh pairs can
be picked, matroid matching can be solved in NCz

5. Conclusions and open problems. The main contribution of this work is our gener-
alized isolating lemma. For various problems solvable via randomness in general [22], [23],
[33] and deterministically when the number of solutions is small [18], [11], [3], this lemma
bounds their randomness complexity in terms of the number of solutions. Our results span the
spectrum of the number of solutions, and imply and sometimes improve the previously known
results at the extremes. On the other hand, our lower bound for isolation implies that attempts
to solve these problems deterministically based on isolation must also exploit their structure,
rather than view them merely as abstract unknown collections of sets. An obvious interesting
question that arises here is as follows: Can we use some knowledge of the structure of the
solution space, from which we are trying to isolate one solution, to reduce the randomness
complexity of isolation or even perhaps obtain deterministic algorithms? In case of the perfect
matching problem it would be interesting to see if we can obtain deterministic algorithms for
special classes of graphs with this framework.

Another direct open problem falling out ofthe generalized isolating lemma is the reduction
of the magnitude of the weights assigned by it to the elements of the ground set; currently, they
can be as high as N7. In the context of matching, this will lead to more processor-efficient
RNC algorithms. For the random reduction a decrease in the magnitude of the weights of the
elements will increase the success probability of the reduction.
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Abstract. We consider graphs with d-dimensional integral vector weights and rational cost values associated with
the edges. We analyze the problem of finding a minimum cost path between two given vertices such that the vector

sum of all edges in the path equals a given target vector m. The present paper shows that there are polynomial time
algorithms for finding such a minimum cost m-path if the dimension of the vector weights is bounded by a constant
and the vector weights we represented unary, where the general version is NP-complete under various restrictions.

Key words, periodic graphs, shortest paths, NP-completeness, integer linear programming, scheduling
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1. Introduction and summary. A d-dimensional periodic graph G is an infinite graph
finitely described by a so-called static graph G. A static graph is a directed graph with d-
dimensional integral vector weights associated with the edges. The periodic graph G is
obtained by placing the static graph G in a d-dimensional orthogonal grid. That is, a copy of
the vertex set of G is placed at each point in the integral lattice Zd. Then, for each edge of G
from u to v with vector weight t, the copy of u at each lattice point z is connected with the copy
of v at lattice point z + t. The connection pattern between the vertices is the same everywhere
in the grid. A periodic graph can be regarded as undirected by ignoring the direction of its
edges. For our purposes, this is equivalent to the property of the static graph that, for each
edge from u to v with vector weight t, there is an edge from v to u with vector weight -t.

The static/periodic graph model has been considered by several authors with respect to
various applications. Karp, Miller, and Winograd [8] analyze systems of uniform recurrence
equations, where the variables are indexed by integral vectors. The dependencies of the
variables in the equations are modeled by a so-called infinite dependence graph, which corre-
sponds to a periodic graph. The complete dependence graph can be represented by a so-called
reduced dependence graph, which corresponds to a static graph.

There are several authors who also consider the static/periodic graph model. Rao [15]
considers regular iterative algorithms and their implementation on processor arrays. He
introduces projections that map certain finite parts of periodic graphs onto finite processor
arrays for possible systolic computations. Iwano and Steiglitz [6], Kosaraju and Sullivan 10],
and Cohen and Megiddo [3] cite applications of static/periodic graphs in modeling very large
scale integration (VLSI) circuits. They consider the problem of finding cycles in directed
periodic graphs or, equivalently, of finding so-called zero cycles in static graphs. Cohen and
Megiddo also show that the zero cycle problem can be solved in strongly polynomial time
if the dimension of the vector weights is bounded by a constant. They also show that the
general problem is equivalent to linear programming. In 13] Orlin provides some polynomial
time algorithms for graph problems on one-dimensional periodic graphs. In [9] Kodialam
and Orlin develop an efficient algorithm to determine the strongly connected components
of a periodic graph. Cohen and Megiddo [4] develop a linear time algorithm for testing
planarity of periodic graphs. They also develop algorithms for bipartiteness, connectivity,
and minimum cost spanning forests. Backes, Schwiegelshohn, and Thiele [1] analyze the
structure of longest paths in periodic graphs represented by strongly connected static graphs.
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They show that strongly connected static graphs represent periodic graphs in that almost all
longest paths follow some regular structure if the path lengths exceed a certain threshold.

In this paper, we consider the problem of finding a minimum cost path between two given
vertices in a static graph such that the vector sum of all edges in the path equals a given
target vector m. This problem is called the MINIMUM COST m-PATH problem. All of our
results also hold for maximum cost m-paths. When modeling dependencies of variables, as,
for example, in uniform recurrence equations, where edges represent data dependencies and
the cost values of the edges correspond to computation times, the values of certain maximum
cost paths correspond to lower bounds on an optimal schedule for the computation.

Our main results can be summarized as follows. In 3 we establish a close relationship
between the MINIMUM COST m-PATH problem and integer linear programming by giving
a formulation in terms of an integer linear program. From this formulation we derive the
containment of MINIMUM COST m-PATH in NP. It is also shown that even very restricted
versions ofthe problem remain NP-hard. The m-PATH problem for undirected periodic graphs
is shown to be in P.

In 4, in the case where the dimension of the vector weights of the edges is a constant
and the vector weights are given unary, it is shown how it is possible to decide in polynomial
time whether there is a minimum cost m-path, and if so, how to determine one. Note that m
is not required to be given unary,

In 5, we present a very general upper bound for the maximal number of edges in a
minimum cost m-path. This bound can be used to control shortest path algorithms to
find a minimum cost m-path, if one exists. Such algorithms are interesting from a practi-
cal point of view.

2. The problem. A static graph G (V, E) is a directed graph with a vertex set V and
some edge set

Ec_ V x V xZa xQ.

Each edge e (u, v, t, c) has a source vertex source(e) u, a target vertex target(e) v, a
transit vector tran(e) t, and a cost value cost(e) c. This definition allows multiple edges,
i.e., several edges with the same source and target vertex.

The periodic graph G (V, E) associated with a d-dimensional static graph
G (V, E) is the infinite directed graph defined by the vertex set

Vcx V x Zd

and the edge set

E {((u,x), (v, x + t), c)l(u, v, t, c) 6 E} C_ V x V x Q.

G is considered to be undirected if, for each edge ((u,x), (v, y), c), there is an edge
((v, y), (u, x), c); or, equivalently, for each edge (u, v, t, c) in G there is an edge (v, u, -t, c)
in G. Figures 2.1 and 2.2 show a static graph G and a certain part of the infinite periodic graph
G, respectively.

Let G be a d-dimensional static graph. A path p from a vertex u to a vertex v is an
alternating sequence

(b/l, el, b/2, b/n, en, b/n+l)

of vertices and edges such that u ul, v Un+l, source(e/) b/i, target(e/) b/i+l for
n. Path p is a cycle if u v and is called simple if all vertices (except the first and
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(-1,-1) 2

(-1,0)1

(0,0) 3

2

FIG. 2.1. A two-dimensional static graph G. Edges are marked with two-dimensional transit vectors and cost

values.

FG. 2.2. A part ofthe infinite periodic graph defined by the static graphfrom Fig. 1. For the sake ofreadability,
the cost values are omitted.

the last vertex) are pairwise distinct. The transit vector and cost value of p are defined by

tran(p) "= tran(ei)
i=1

and

cost(p) := cost(e/),
i=1

respectively. A path (cycle) p is also called a tran(p)-path (-cycle).
A path p from u to v is a minimum cost path if there is no other path q from u to v in

G such that cost(q) < cost(p). There are two cases in which, for some m, a minimum cost
m-path in a static graph does not need to exist. First, the target vertex need not be reachable
from the source vertex by a path with transit vector m, (see Example 2.1); second, for each
rational b there is an m-path from the source vertex to the target vertex, but with less cost than
b (see Example 2.1).

Example 2.1. Figure 2.3 shows a static graph G with the following properties:
G has a path from u to v but, for example, no (2, 6)-path from u to v.
For each rational b there is a (2, 5)-path from u to v with cost less than b.
G has no cycle.
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(1,0) (-1,0) 1

FIG. 2.3. A static graph G.

To state our problem properly, we define min_cost(G, u, v, m) as the cost of a minimum
cost m-path from u to v in a static graph G, where

min_cost(G, u, v, m) undef

if there is no m-path from u to v in G, and

min_cost(G, u, v, m) -oo

if, for each rational b, them is an m-path from u to v in G with cost less than b.
For an integer a, we denote by the integral vectorj with entry a at each coordinate. The

dimension of will either be unique or unimportant at the moment in which will be used.
It will also be unique from the context of whether is a row or column vector.

In this paper we investigate the following problem.

MINIMUM COST m-PATH
Instance: A d-dimensional static graph G (V, E), two vertices u and v of G, and a target
vector m 6 Za.
Problem: Compute min_cost(G, u, v, m).

Each path from (u, x) to (v, x + m) in G, for any x 6 Za, corresponds to an m-path
from u to v in G. Since G is infinite, the case in which min_cost(G, u, v, m) -o does
not necessarily imply that Gc has a negative cost cycle. G may also contain an infinite
number of negative cost paths from u to v with transit vector m, as shown in Example 2.1.

We refer to the above problem as the m-PATH problem if we neglect the cost values of
the edges and simply ask for existence of an m-path starting at u and ending at v.

3. The general solution. In this section, we will show that min_cost(G, u, v, m) can
be computed with methods from integer linear programming. Let G (V, E), V
{u un}, E {el ek}, m (m ma), and u, v 6 V.

We define
a row vector c (cost(el) cost(ek));
an (n + d) x k matrix A with

-1 if < < n and Ui source(ej),
if < _< n and b/i target(ej),

A(i, j)
tran(ej)i_n if n < < n + d,

0 otherwise;

a column vector b (b bn+d)T with

-1 if < < n and b/i 1),

bi
if < < n and

mi-n if n < < n + d,
0 otherwise.

For background information about integer linear programming see, for example, [l 2] and [16].
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el (0,1)4
U

e5 (-2,-2)8 )2

e3 (-1,0) 2

e2 (1,1)-3

FIG. 3.1. A two-dimensional static graph. Edges are marked by names, two-dimensional integral vectors, and
cost values.

Example 3.1. For the static graph G from Fig. 3.1, source vertex u, target vertex//3, and
m (-5, 5), we have

c=(4,-3, 2, 2, 8),

-1 0 0 0 -1
-1 0 0 0

0 0 -1 --1
A 0 0 0 and b 0

0 -1 -5 -2 -5
0 2 --2 5

where V {u, u2, u3,//4} and E = {et, e2, e3, e4, es}.
A graph G is called connected if, for each pair of vertices u, v of G, the edges in G can

be redirected such that there is a simple path from u to v in G. An edge set F

_
E of G is

called connected if the graph H (U, F) with vertex set

U {ulu is an end vertex of an edge from F}

is connected.
A careful investigation shows that the cost of a minimum cost m-path from u to v in G is

exactly

min { c. x A.x--b, ]x is a nonzero and nonnegative integral column vector, and
{ej Elxj > 0} is a connected edge set

Assume that A x b, where x is a nonnegative integral column vector. The positive
entries xj in x can be considered as the frequencies of the edges ej in a possible m-path from
u to v. Then, the -1 in the upper part of b ensures that vertex u is left once more than it is
reached, the in the upper part of b ensures that vertex v is reached once more than it is left,
and the zero entries in the upper part of b ensure that all other vertices are reached as often
as they are left. Because of Euler and one of his first results in graph theory, it follows that
the edges ej with xj > 0 represent a path if the graph defined by these edges and their end
vertices is connected. Finally, the target vector m in the lower part of b ensures that the path
is an m-path.

The formulation of the MINIMUM m-PATH problem above yields the proof of the fol-
lowing theorems.

2A connected directed graph is also called weakly connected.
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THEOREM 3.2. The MINIMUM COST m-PATHproblem belongs to NP.
Proof Choose a connected edge set F _c E and solve the system of integer linear

equations (integer linear programming belongs to NP [2])

min {c. x
A.x=b,
x is a positive integral column vector

where c, A, and b are defined as above, but now, for the connected graph, H (U, F) with
vertex set

U {ulu is an end vertex of an edge from F}.

THEOREM 3.3. m-PATH is NP-hard even if
1. the static graph G has exactly one vertex and

m and all entries in the transit vectors arefrom {0, }, or
m is one-dimensional and all transit integers are positive, or

2. G has at most two vertices and
m 0 and all entries in the transit vectors arefrom {- 1, O, }, or
m is one-dimensional and zero and all transit integers are positive.

Proof. The question of whether a system

has a non,negative integral solution is NP-hard even if all components in A are from {0, 1}
and m 1, or if A is a positive row vector (see [7]). The first problem is called ZERO-ONE
INTEGER PROGRAMMING, the second is called SUBSET SUM. This proves the first part
of the theorem.

For the second part, let G be the corresponding single-vertex static graph G defined by
an instance of ZERO-ONE INTEGER PROGRAMMING and SUBSET SUM, respectively.
Let u be the single vertex in G. Insert a new vertex v to G and an edge from u to v with transit
vector -m. Then there is an m-path in G from u to u if and only if there is a 0-path from u to
v in the extended graph G.

THEOREM 3.4. The m-PATH problem is solvable in polynomial time if the static graph
defines an undirected periodic graph.

Proof Without loss of generality, we can assume that G is connected, otherwise we con-
sider only the connected component containing u and v. It is easy to see that there is an m-path
from u to v in G if and only if A x b has an integral solution in which x is not restricted to
be nonnegative. Since G is considered to be undirected, we can assume that for each edge
e in G there is an edge e’ in G such that source(e) target(e’), target(e) source(e’), and
tran(e) -tran(e’). That is, if A. x b then A. (x + y xk + y) b for each integer y.
Thus A. x b also has a positive integral solution if it has an integral solution. Such systems
of linear diophantine equations are solvable in polynomial time; see, for example, 16].

THEOREM 3.5. The MINIMUM COST m-PATH problem for static graphs which define
undirected periodic graphs is NP-hard even if

1. the static graph G has exactly one vertex and
m , all entries in the transit vectors of the edges are from {0, }, and all entries
in the cost values are 1, or

m is one-dimensional and all entries in the transit vectors and cost values of the
edges are nonnegative integers, or

2. the static graph G has at most two vertices and
m O, all entries in the transit vectors of the edges are from {-1, O, }, and all
entries in the cost values are 1, or
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m is one-dimensional and all entries in the transit vectors are integers, and all entries
in the cost values are 1.

Proof. Finding minimal solutions for ZERO-ONE linear diophantine equations or one
general linear diophantine equation is NP-complete; see 16]. The second part can be shown
by an extension similar to the one in the proof of Theorem 3.3.

4. Pseudopolynomial time solutions. Now we present a pseudopolynomial time algo-
rithm for MINIMUM COST m-PATH. This algorithm takes polynomial time if the dimension
ofthe static graphs is constant and the integers in the transit vectors are given unary. If the static
graphs have only one vertex, then there is a pseudopolynomial time solution in accordance
with the results of Papadimitriou [14]. In [14] it is shown that there is a pseudopolynomial
time algorithm for integer linear programming if the number of constraints is fixed.

To illustrate the restrictions we impose on the instances of MINIMUM COST m-PATH,
we first carefully define the size of an instance. The size of an integer k, denoted by size(k),
is the size of its binary representation. The size of an integral vector (t tk), denoted
by size(t), is the sum of all size(t/) for k. The size of a static graph G, denoted by
size(G), is its number of vertices and edges plus the sum of all size(tran(e)) for all edges e in
G. The sizes of the rational cost values associated with the edges are not explicitly involved
in our complexity analysis and are assumed to be constant.

For a vector (t td) or a set {tl td} of integers, let Iltll be the maximal
absolute entry of all ti’s, i.e.,

max ti I.
i--1 d

The following fact is easy to verify and may be easy to improve.
FACT 4.1. Let G (V, E) be a static graph and

tmax := max{lltran(e)ll e E}.

1: Let p be a path in G with exactly n edges; then Iltran(p)II tmax n.
2. All paths in G with at most n edges have at most (2 tmax n + 1) different transit

vectors.

3. Given two vertices u and v and a transit vector m, the cost ofa minimum cost m-path
from u to v in G with at most n edges is computable in time

n. IVI" IEI. (2. tmax" n --I- 1)d.

This can be shown by a breadth-first-search processing with depth at most n and
breadth at most ]V[. (2. tmax n + 1)a at each level.

4. Given two vertices u and v, a target vector m, and a set U ofat most k vertices, the
cost ofa minimum cost m-path from u to v in G with at most n edges which passes
all verticesfrom U is computable in time

2k. n. IVI IEI (2- tmax" n + 1).

This can be shown by a breadth-first-search processing with depth at most n and
breadth at most 2 IV I- (2. tmax n -+- 1) at each level.

In the subsequent proofs, we frequently use the following path-decomposition technique:
Suppose

p (Ul, el,//2 bin-l, en-1, bin)
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el (0,1)4

e5 (-2,-2) 8 e2 (1,1) -3

e3 (-1,0) 2

FIG. 4.1. The two-dimensional static graph analyzed in Example 4.2.

is a path in a graph G. Let

q (b/i, ei, b/i+l b/i+l, ei+l, b/i+l+l)

be a simple cycle of length contained in p such that all inner vertices b/i+l ui_t_ of q are
contained at least once somewhere else in p. (Since q is a cycle, the vertices ui and ui+t+
are the same vertices.) Now cut out the simple cycle q from the path p. It remains a path

p’ (Ul, el, u2, b/i, ei+l+l, Ui+l+2, b/n-l, en-1, Un)

in G with vertices and edges less than before. Repeat this cycle elimination until such
cycles do not exist anywhere in the remaining path. Then each vertex from the initial path p
is contained at least once in the remaining path p’ (see Example 4.2).

Example 4.2. Consider the (-7, 5)-path

p (Ul, el, u2, e2, u4, e3, u3, e5, Ul, el,/,/2, e2, b/4, e3, u3, e4, u2, e2, u4, e3, u3)

with cost 15 in the graph from Fig. 4.1. This path p can be decomposed into a simple path

p’ (ut, et, u:z, e2,/./4, e3, u3)

with cost 3 and two simple cycles

(ut, et,/22, e2, u4, e3, u3, es, u) and (U2, e2,/,/4, e3, u3, e4, b/2), or
(Ul, el, u2, e2, u4, e3, u3, es, Ul) and (b/4, e3, u3, e4, b/2, e2, b/4), or
(Ul, el, u2, e2, u4, e3, u3, es, ul) and (u3, e4, u2, e2, b/4, e3, u3), or
(u2, e2, u4, e3, u3, e5, u l, el, u2) and (u2, e2, u4, e3, u3, e4, u2), or
(u2, e2, b/a, e3, u3, es, u, el, u2) and (u4, e3,//3, e4, u2, e2, b/4), or
(u2, e2, b/a, e3, u3, es, u, e, u2) and (u3, e4, u2, e2, b/4, e3, u3), or
(b/a, e3, u3, es, u l, el,/,/2, e2, u4) and (u2, e2, b/a, e3,/./3, e4, b/2), or
(b/a, e3, u3, es, u l, el, u2, e2,//4) and (u4, e3, u3, e4, u2, e2, b/a), or
(b/4, e3, u3, es, u l, el, u2, e2, b/a) and (u3, e4, u2, e2, u4, e3, u3), or
(u3, es, u l, el, u2, e2, u4, e3, u3) and (u2, e2, u4, e3, u3, e4, u2), or
(u3, es, Ul, el, b/2, e2, b/a, e3, u3) and (u4, e3, u3, e4, u2, e2, b/4), or
(u3, es, u l, el, u2, e2,//4, e3, u3) and (u3, e4, u2, e2,/,/4, e3, u3)

with cost 11 and 1, respectively.
It is easy to see that each path p’ which cannot be further decomposed has less than n2

vertices, where n is the number of different vertices that occur in p. If we mark in p’ one
occurrence of each vertex in p, then between two neighboring marked vertices there are at
most n unmarked vertices. Otherwise, another simple cycle in p’ could be eliminated.
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Suppose that a decomposition procedure has exactly removed Xi simple cycles starting at
vertex ui with transit vector ti and cost value ci from p. Then, the system

(p’, (Xl, Ul, tl, Cl),..., (xk, ut, tk, Ck))

is called a complete path decomposition of p. Each such path decomposition obeys

k

tran(p) tran(p’) + Xi" ti
i=1

and

k

cost(p) cost(p’) + Z Xi Ci.
i=1

Example 4.3. The path p from Example 4.2 has the following twelve complete path
decompositions"

(p’, (1, Ul, (-2, 0), 11), (1, u2, (-5, 3), 1)),
(p’, (1, ul, (-2, 0), 11), (1, u3, (-5, 3), 1)),
(p’, (1, u2, (-2, 0), 11), (1, u4, (--5, 3), 1)),
(p’, (1, U4, (--2, 0), 1), (1, U2, (--5, 3), l)),
(p’, (1, u4, (-2, 0), 11), (1, u3, (-5, 3), 1)),
(p’, (1, u3, (-2, 0), 11), (1, u4, (-5, 3), 1)),

(p’, (1, Ul, (-2, 0), 11), (1, u4, (-5, 3), 1)),
(p’, (1, U2, (-2, 0), 11), (1, U2, (--5, 3), 1)),
(p’, (1, u2, (-2, 0), 11), (1, u3, (-5, 3), 1)),
(p’, (1, u4, (-2, 0), 11), (1, b/4, (--5, 3), 1)),
(p’, (1, u3, (-2, 0), 11), (1, u2, (-5, 3), 1)),
(p’, (1, u3, (-2, 0), 11), (1, u3, (-5, 3), 1)).

LEMMA 4.4. Let G (V, E) be a d-dimensional static graph tmax defined as in Fact 4.1,
u, v 6 V, and m 6 Za.

For each minimum cost m-pathfrom u to v in G, there is a minimum cost m-pathfrom u
to v in G that has a complete path decomposition

(p’, (Xl, b/l, tl, Cl) (Xk, Uk, tk, C))

such that
1. k_< (2.tmax. IVI-at- 1)d,
2. at most d of the xi’s are polynomially bounded in the integers of t t, m, and

tran(p’), and all remaining xi’s are polynomially bounded only in the integers of
tl, tk.

Proof Consider any complete path decomposition

(p’, (Xl ul t Cl) (Xk, blk tk, Ck))

of a minimum cost m-path p from u to v in G.
1. Without loss of generality we can assume that ti tj implies C Cj. Otherwise, p

is not of minimal cost. If ti tj and ci < cj then we can build a path which passes xi + xj
cycles with transit ti and cost ci at vertex u and no cycle with transit tj and cost cj at vertex

uj. This new path has xj (cj ci) less cost than p. An equivalent argumentation shows that
we can assume that all transit vectors ti are pairwise distinct. By Fact 4.1 (2) there are at most
(2. tmax" V[ -+- 1)d pairwise different transit vectors for all simple cycles. It follows that there
is always a minimum cost m-path that has a complete path decomposition such that

k < (2. tmax" IVl-+- 1)d.
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2. To prove the second statement, consider the d k matrix A with columns t" t[,
the column vector x (xt xk) 7,, and the row vector c (ci ck). By the definition
of the path decomposition it follows that

tran(p’) 7" + A x mr

and

cost(p’) + c. x cost(p).

The vector x is an optimal solution of the integer linear program

min { c x
A. x mT, tran(p’)7,
x nonnegative integer

because we have decomposed a minimum cost m-path p.
If there is an optimal solution for the program above then there is also one in which all

integers are polynomially bounded in the integers of A and the integers of mT, tran(p’) r

(see [2]). This fact is usually used to show that integer linear programming belongs to NP.
Therefore, all integers in x can be assumed to be polynomially bounded in the integers of
t tk, m, and tran(p’).

The matrix A from above has column rank at mostd because the column vectors tlr tff
have d rows. If A has more than d columns, we can find linear dependences between some
of the columns. That is, there exists an integral column vector x’ with at most d + nonzero
entries such that A.x’ 0. Because of [2], the integers inx’ can be assumed to be polynomially
bounded in the integers of A. If x + x’ and x x’ are nonnegative then c. x’ 0. This follows
from the fact that a minimum cost path is decomposed (see the argumentation in the first part
of this proof).

At least k d of the nonnegative integers in x can be decreased by adding or subtracting
certain linear dependences to x. Since all integers in a linear dependence x’ are bounded by
the integers of A, at least k d integers in x can be decreased such that they are polynomially
bounded in the integers of A. [3

Lemma 4.4 also implies that for each fixed dimension d there is a minimum cost m-path in
G if and only if there is a minimum cost m-path whose total number of edges is polynomially
bounded in the size of G, the integers in the transit vectors, and the integers of m, because
the number of four-tuples in a complete path decomposition is exponential only in d. We will
not analyze the exact polynomial bound resulting from the path decomposition in Lemma 4.4,
because we will show a more general and tighter bound on the number of edges of a minimum
cost m-path in Lemma 4.7.

THEOREM 4.5. Let G (V, E) be a d-dimensional static graph, tmax be defined as in
Fact 4.1, u, v V, and m Zd for some constant d.

lf min_cost(G, u, v, m) -cxz, then rain_cost(G, u, v, m) is computable in polynomial
time with respect to size(G), tmax, and size(m).

Proof. Assume there exists a minimum cost m-path from u to v in G. Then by Lemma
4.4, we know that there is a minimum cost m-path p from u to v that has a complete path
decomposition

(p’, (xi, u, t, Cl), (x, uk, tk,

such that k _< (2. tmax VI + 1)d. Additionally, we know that at most d of the Xi’S are
polynomially bounded in size(G), tmax, and IIm II, and all other xi’s are polynomially bounded
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in size(G) and tmax. This follows from Fact 4.1(1) and because p’ has at most VI2 edges and
each cycle removed during a decomposition is simple. If such a decomposition does not exist,
there is no m-path from u to v in G. Note also that p’ and all removed simple cycles are of
minimal cost, because each subpath of a minimum cost path is a minimum cost path. We call
the systems (xi, ui, ti, ci), where the xi’s are polynomially bounded only in size(G) and tmax,
the small systems.

Each minimum cost m-path p can be decomposed into
1. a minimum cost path p" with a number of edges that is polynomially bounded in

size(G) and tmax, and
2. at most < d simple cycles with transit vectors tl tl such that there are some

positive integers yl yt with_
Yi ti rn tran(p")

i=1

and

Z Yl ci cost(p) cost(p").
i=1

The path p" is the path p’ together with all the simple cycles represented by the small systems.
Now determine

1. all sets U _c V of < d vertices,
2. all choices tl, cl tl, ct of transit vectors and cost values of simple minimum

cost cycles starting at vertices from U, and
3. all transit vectors t" and cost values c" of minimum cost paths p" from u to v with at

most fi edges containing all vertices from U, where fi IV 12 (the maximal number
of edges in p’) +J VI (the maximal number of edges of all cycles of the small
systems), where is a polynomial upper bound for the xi’s in the small systems,

such that there are nonnegative integers Yl yt such that

Yi ti rn tran(p").
i=1

The number of all these choices is polynomially bounded in size(G) and tmax, because for
each fixed d

1. the number of subsets U is polynomially bounded in VI because is fixed,
2. the number ofdifferent transit vectors and cost values for simple minimum cost cycles

is polynomially bounded in size(G) and tmax (see Fact 4.1(2)),
3. the number of different transit vectors and cost values for all minimum cost paths

p" with at most h edges that pass all vertices from U is polynomially bounded in
size(G) and tmax (see Fact 4.1(2)).

It is also possible to generate all these sets U, transit vectors tl tt and cost values Cl ct
for the cycles, and transit vectors t" and cost values c" for the paths p" in polynomial time with
respect to size(G) and tmax (see Fact 4.1(3) and 4.1(4)). The nonnegative integers yl, yt

that yield a minimal cost value

Z Yi ci
i=1
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are computable in polynomial time with respect to size(G) and size(m), because integer linear
programs with a fixed number of variables are solvable in polynomial time 11 ]. The cost of
a minimum cost m-path is the minimal cost value

C" + Z Yi Ci
i=1

such that

t" + _f Yi ti m
i=1

for all choices considered above. [3

The proof of Theorem 4.5 also shows that we can find an m-path in polynomial time with
respect to size(G), tma, and size(m), if one exists. The same idea can be used to prove the
following corollary.

COROLLARY 4.6. Let G (V, E) be a d-dimensional static graph, tmax be defined as in
Fact 4.1, u, v V, and m Zd for some constant d.

For each set W V with a constant number of vertices, it is decidable in polynomial
time with respect to size(G), tmax, and size(m) whether there is an m-pathfrom u to v in G
that passes all vertices in W.

Proof The proof proceeds analogously to the argumentation in the proof of Theorem 4.5
with the extension that p" additionally passes all vertices from W (see Fact 4.1 (4)). [3

We continue with the problem of deciding whether there are infinitely many m-paths with
decreasing costs.

LEMMA 4.7. Let G V, E) be a d-dimensional static graph, tmax be defined as in Fact
4.1, u, v V, and m Z.

Then, min_cost(G, u, v, m) is -oo ifand only ifthere is an m-path pfrom u to v that has
a complete path decomposition

(p’, (Xl, ul, tl, c) (xk, Uk, tk, Ck))

such that there are nonnegative integers Yl yk such that

k

Yi ti 0
i=1

and

k

Yi Ci < O,
i=1

and at most < d + ofthe yi ’s are nonzero.
Proof = The cost of the m-path p can be decreased below any bound by extending p at

vertex ui with yi simple cycles with transit vector ti and cost ci for k.

= If min_cost(G, u, v, m) -oo, there must be infinitely many m-paths from u to v
in G with different negative costs. But for each graph G the number of paths p’, vertices u i,

transit vectors ti, and cost values ci in all possible complete path decompositions

(p’, (x, u, t, c) (x, u, t, c))
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of m-paths in G is finite. If we were to construct for each such m-path a complete path
decomposition, then there would be an infinite number of path decompositions which differ
only in the xi’s. Since all xi’s are positive, a simple counting argument reveals that there must
exist two such complete path decompositions

(p’, (Xl, b/l, tl, Cl) (Xk, Uk, tk, C))

and

(p’, (Xtl b/l, tl, el) (X, /,/, tk, Ck))

’forl <i <kandsuch that X X

k k

ZXi "Ci ZX;’Ci.
i=I i=1

Since all paths are m-paths, there must exist some nonnegative integers yl (= x Xl)
y(= x, xg) such that

k

Zyi "ti --i--1

and

k

Z Yi ci < O.
i=1

As in the proof of Lemma 4.4, consider the d x k matrix A with columns t( t[,
the column vector y (Yl yk)r and the row vector c (c, c). We know that
A y 0 and c. y < 0. Obviously, the linear system of equations A y 0 and inequalities
c. y < 0 has a nonnegative rational solution such that at most d + entries of y are nonzero.
The extension of y to a nonnegative integral solution of A y 0 preserves c y < 0. [3

Lemma 4.7 implies the polynomial time decidability of the existence of an unbounded
solution, as the next theorem shows.

THEOREM 4.8. Let G (V, E) be a d-dimensional static graph, tmax be defined as in
Fact 4.1, u, v V, and m Zd for some constant d.

Then, the question whether min_cost(G, u, v, m) is -cxz is decidable in polynomial time
with respect to size(G), tmax, and size(m).

Proof. Corollary 4.6 implies that for each fixed dimension d and each vertex set W of at
most d + vertices, it is possible to test in polynomial time with respect to size(G), tmax, and
size(m) whether there is an m-path from u to v in G passing all vertices in W. That is, we can
consider

1. all sets W c V of < d + vertices and
2. all choices tl, Cl tl, Cl of transit vectors and cost values of simple minimum

cost cycles starting at vertices from W
such that there exists an m-path from u to v passing all vertices in W, and there are some
nonnegative integers y yt with

Z Yi ti 0
i=1
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and - Yi Ci < O.
i=1

The number of all these choices is again polynomially bounded in size(G) and tma. The
negative cost condition can even be verified in polynomial time with respect to size(G),
because linear programming belongs to P.

The main result of this section follows from Theorems 4.5 and 4.8.
COROLLARY 4.9. Let G (V, E) be a d-dimensional static graph, tmax be defined as in

Fact 4.1, u, v V, and m Zd for some constant d.
Then, min_cost(G, u, v, m) is computable in polynomial time with respect to size(G),

tmax, and size(m).
Proof. First decide whether min_cost(G, u, v, m) is -cxz as in the proof of Theorem 4.5.

If this does not hold, compute min_cost(G, u, v, m) as in the proof of Theorem 4.8.
We have shown that the MINIMUM COST m-PATH problem for fixed dimensions can

be solved in polynomial time with respect to the integers in the transit vectors. The solution
method introduced in the theorems above does not always yield an interesting algorithm from
a practical point of view. This is because the number of (small) integer linear programs that
we have to solve is exponential in d. However, it asymptotically improves the straightforward
solution of solving 2ILl different integer linear programs as considered in Theorem 3.2 for all
choices of subsets of edges.

5, Bounds on the path-length. Now we prove an upper bound on the total number of
edges in a minimum cost m-path. This bound can, for example, be used to control algorithms
for finding schedule functions. The proof is based on the following theorem of Grinberg and

Sevastanov [5, Thm. 1].
THEOREM 5.1 [5]. Let xl XN, X IRd be any collection of d-dimensional vectors

such that y..N,= xi x and Ilxi < for N. Then there is a permutation rr of the
integers {1 N} such that

j-d
Xyr(i) X <_ d

N
i=l

forj N.
This theorem can be used to show the following lemma.
LEMMA 5.2. Let t tN, Zd be a collection ofd-dimensional integral vectors such

that y-..U,= ti and Ilti < r for some integer r and N. If for each nonempty
subset Acc_ {tl tN}, it holds that Ztea tk k O, then

N _< (2. r. d + 1)d. lit 112,

where lit 112 is the Euclidean norm.

Proof By Theorem 5.1 it follows that there is a permutation 7r of the integers N
such that

j-dZ trr(i) N
i=1

.t <r.d

311Y112 (zid=l yi )(/2) for y (y Yd) Id.
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for j N. This inequality says that the sum of the first j vectors {= tr(i) differs
from vector L. by at most r d in each position. There are at most (2. r d + 1)a integral
points which differ from some point L. by at most r. d in each position. Now we estimate
the number of integral points which differ from some point of the set j := N}
by at most r d in each position. This number of integral points is roughly estimated by

(2. r d + 1)a Iltll2.

Since for each nonempty subset A

_
{t tN} all sums ZtkEA t are nonzero, the

number of integral points estimated above is an upper bound on the number of integral vectors
which are added in the complete sum.

Now we give an upper bound on the total number of edges in a minimum cost m-path.
LEMMA 5.3. Let G (V, E) be a d-dimensional static graph, tmax be defined as in Fact

4.1, u, v V, and m Zd.
If there exists a minimum cost m-path in G from u to v, then there also exists a minimum

cost m-path in G from u to v with at most

IVI 2 -+-IVI" (2. IVI" tmax" d + 1)a. IIm tran(p’)ll2

edges.
Proof Let p be a minimum cost m-path in G from u to v with a minimal number of

edges. Let

(p’, (x u t c), (xk, u, tk, Ck))

be a complete path decomposition for p and let N -= Xi. By the definition of a path
decomposition and by Fact 4.1, we know that

p’ has at most VI 2 edges,
Iltran(p’)II _< VI2, tmax, and

Ilti _< Wl tmax for all ti’s.
Without loss of generality we can assume that all vector subsums are different, because

p has minimal cost and a minimal number of edges. For r VI. tmax and m tran(p’),
by Lemma 5.2 we obtain the inequality

N < (2. IVI" tmax d + 1). IIm tran(p’)[12.

Since each ti originates from a cycle with at most VI edges and the path p’ has at most
edges, the path p has at most

IvI 2 + IWl. (2. IVI" tmax" d + 1)’t. IIm tran(p’)ll2

edges. [3

Lemma 5.3 also generalizes and improves a result given by Odin in [13, Lem. 6] for
one-dimensional reachability problems.

Note that the bound of Lemma 5.3 cannot be used to solve the unboundedness problem
of minimum cost m-paths, i.e., it cannot be used to solve the problem of whether for each
rational b there is an m-path with cost less than b. However, a necessary condition for the
unboundedness of minimum cost m-paths is the existence of a nonnegative rational solution
of the system A. x 0 with c. x < 0, where A and c are the vertex-edge adjacency matrix and
cost vector as defined for the general solution in 3. Note that this condition is not sufficient,
because we do not know whether there is any m-path containing all cycles represented by such
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(a,a,-1)

(a,-1,0)

(-1 ,o,o)

(,a! I’0) (a,0,o) o,(a,,) ]
l

1
G H

FIG. 5.1. Two three.dimensional reduced dependence graphs,

a solution For many interesting situations, however, the absence of m-paths with decreasing
costs can be presupposed as, for example, in static graphs without negative costs or without
0.cycles.

The next lemma proves the existence of minimum cost m-paths with an exponential
number of edges.

LEMMA 5.4. There are d-dimensional static graphs G (V, E) that have minimum cost
m-paths with

((tmax )d-I

edges, where tmax is defined as in Fact 4.1.
Proof Let a be some integer and G be a d-dimensional static graph with one vertex u

and d edges from u to u with transit vectors

(a a,a,a,-1),
(a a, a, -1,0),
(a a, -1, 0, 0),

(a, a, -1, 0, 0 0),
(a,- 1, 0, 0, 0 0),
(-1, O, O, O, 0 0).

Any (0 0, -b. a)-path from u to u for any b has

if2 (ad b)

edges.
Let H be the graph consisting of d cycles with one common vertex u such that each cycle

has the same number of edges labeled as in the example of Fig. 5.1 for d 3. Then, any
m (0 0,-b. a ( + 1))-path from u to u in H has f2((a Ivl). b) edges or,
equivalently,

f2 tmax" IIm 112

edges.
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POLYNOMIAL-TIME MEMBERSHIP COMPARABLE SETS*

MITSUNORI OGIHARA

Abstract. This paper studies a notion called polynomial-time membership comparable sets For a function g, a
set A is polynomial-time g-membership comparable if there is a polynomial-time computable function f such that
for any xt Xm withm > g(max{[xtl tx,.I}) f outputs b 6 {0, I} such that (A(Xl) A(xm)) - b. The
following is a list of major results proven in the paper:

1. Polynomial-time membership comparable sets construct a proper hierarchy according to the bound on

the number of arguments.
2. Polynomial-time membership comparable sets have polynomial-size circuits.
3 For any function f and any constant c > 0, if a set is <P ,,) t’reducible to a P-selective se< then the set

is polynomial-time + c) log f(n)-membership comparable.
4. For any C chosen from {PSPACE, UP, FewP, NP, C=P, PP, MODzP, MOD3P }, ifC

___
P.-mc(c Iogn)

for some c < I, then C P.
As a corollary of the last two results, it is shown that if there is some constant c < such that all C are polynomial-time
nO-truth-table reducible to some P-selective sets, then C P, which resolves a question that has been left open for a

long time.

Key words. P-selective sets polynomial-time reducibilities, polynomial-size circuits

AMS subject classifications. 68Q 15, 68Q05

1. Introduction. Given two strings x and y, can we tell which is more likely to be in a
set A? Jockusch [20] defined a set A as semirecursive if there is a recursive function f such
that for all x and y, (i) f(x, y) {x, y} and (ii) if {x, y} A A - 0, then f(x, y) A. We
call the function f a selector for A. Selman [30] considered a polynomial-time analogue of
semirecursive sets and defined a set A as P-selective if A has a polynomial-time computable
selector. P-selective sets have been widely studied [3], [11], [16]-[18], [22], [25], [27],
[30]-[32], [36]. Recently, there have been some remarkable results about P-selective sets.
Buhrman, van Helden, and Torenvliet [11] have shown that a set is in P if and only if it
is _<.-self-reducible and P-selective, while previously known characterization is A 6 P if
and only if A is <tt-self-reducible and P-selective [32]. By constructing P-selective sets
with certain properties, Hemaspaandra et al. [17] and Naik, Ogiwara, and Selman [27] have
proven that NP search problems are not reducible to corresponding decision problems unless
some implausible collapses of exponential-time complexity classes occur. Hemachandra et
al. [16] studied internal structure of the class of sets <-reducible to P-selective sets and
introduced the notion of f’C-selectivity for various function classes .T’C. Hemaspaandra et
al. [18] have studied sets with nondeterministically polynomial-time computable selectors,
and have proven that if there is an NP-function that computes satisfying assignments uniquely,
then the polynomial-time hierarchy [26], [34], collapses to its second level E’.

For a set A, let us identify A and its characteristic function. For any x and y, there are four
possible values of (A (x), A (y)). By mapping a pair (x, y) to y, a selector for A declares that
x 6 A y 6 A or, equivalently, (A(x), A(y)) (1, 0). Thus one can view a selector for A
as a function f that maps (x, y) to b 6 {0, 1}2 such that (A(x), A(y)) b, where b is always
either 01 or 10. An interesting and fundamental question arising from this observation is "how
strong is the restriction b 6 {01, 10}?" That is, if we allow f to map to 00 or 1, then how
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much does the complexity of A increase? Let us consider this in a more generalized setting
and define the notion of polynomial-time membership comparable sets. Let N (N+) denote the
set of all nonnegative (positive) integers. Call a function g N -- N+ polynomially bounded
if there is a polynomial p such that for every n, g(n) < p(n), and call it polynomial-time
computable if there is a polynomial-time bounded machine that, on input x, outputs g(.Ixl).

DEFINITION 1.1. Let g N --+ N+ be monotone nondecreasing, polynomial-time com-

putable, and polynomially bounded.
1. Afunction f is called a g-membership comparingfunction (a g-mc-function) for A

iffor every xl Xm with m >_ g(max{]xl IXml}),

f(x Xm) {0, 1} and (A(xl) A(xm)) 7 f(x Xm).

2. A set A is said to be polynomial-time g-membership comparable if there exists a
polynomial-time computable g-mc-functionfor A.

3. P-mc(g) denotes the class ofall polynomial-time g-membership comparable sets.

A crucial property ofmc-functions is that they exclude one value out of 2m possible values.
The notion--excluding possible values of (A (x l) A (Xm))--has already appeared in the
literature. For a fixed k > 1, the function that on input X xk, outputs A (xl)... A (xk)
has been called FA; some notions related to Fa have been introduced and studied (see [5],
[41, [7], [8]). If one can always reduce 2 possible values of Fa to m < 2, then Fa is said
to be computable by a set of m polynomial-time functions [4] and m-enumerable [12]. A
set A is non-p-superterse [7] if for some k >_ 1, there is a polynomial-time algorithm that
computes Fa using k adaptive queries to some set X. So, for a non-p-superterse set A,
Fa is 2k-l-enumerable for some k > 1. Polynomial-time membership comparable sets are
more general than these notions in the sense that (i) k can be increased according to the length
of the input and (ii) only one value is required to be excluded.

When a function g with the set of real numbers as its range is used, we will be identifying
g and .n.[max{1, lg(n)J}] purely as a convention. We use P-mc(const), P-mc(log), and
P-mc(poly), respectively, to denote U{P-mc(k) k > }, U{P-mc(f) f (.9(log n) },
and U{P-mc(p) p is a polynomial}, where log is base 2. It is possible for many different
(indeed, even an uncountable number of) sets to be in P-mc(poly) via the same function go
See Proposition 4.1 for an example of when this actually happens.

In 2 we study basic properties of polynomial-time membership comparable sets. It is
easily observed that the smallest P-mc class, namely P-mc(1), is equal to P. Noting that
P-Sel, the class of P-selective sets, is a subclass of P-mc(2) and that P C P-Sel [30], we have
P-mc(1) C P-mc(2). We show that the inequality holds for arbitrary k; that is, P-mc(k) C
P-mc(k / 1) for any k > 1. More generally, we prove that for any f and g such that
f(n) < g(n) for finitely many n, P-mc(g) contains a set not in P-mc(f). Therefore, P-mc
classes construct a proper hierarchy according to the bound on the number of arguments.

Because P-mc(2) sets can be viewed as less restrictive P-selective sets, one might expect
that P-mc sets do not go far beyond P-Sel. In 3 we consider the question of how they are
related to each other. We seek to prove inclusions between reducibility classes of P-Sel and
P-mc classes. For a reducibility <rp and a class C, let Rr (C) denote the class of all sets that
are _<f-reducible to some set in C. Basically, P-mc(2) properly includes P-Sel: there is a tally
set in P-mc(2) P-Sel. Furthermore, we prove for any function f that R/(n-tt(P-Sel)

___
P-mc((1 + c) log f(n)) for any constant c > 0, which yields R,,(P-Sel) c_ P-mc(const) and
Ru (P-Sel) _c P-mc(log).

We also study the question of the other direction, namely, whether P-mc sets are
polynomial-time reducible to P-selective sets. We show that P-mc(poly) _c P/poly, where
P/poly is the class of all sets having polynomial-size circuits. Then, since R:r.(P-Sel)
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P/poly [22], we have P-mc(poly)

_
Rr(P-Sel). The <-reducibility in this inclusion is

optimal because we show Rtt (P-Sel) c P-mc(poly). On the other hand, the converse state-
ment P/poly

_
P-mc(poly) does not appear to hold. But we can show at least that the

question is very subtle because P/poly P-mc(poly) implies P :fi NP. Thus, proving that
P-mc(poly) C P/poly is at least as hard as proving P 7 NP. We conjecture that the converse
inclusion does not hold.

It is well known that P/poly Rtl (SPARSE) Rtt (TALLY), where SPARSE (TALLY)
denotes the class of all sparse (tally) sets. Because it holds that P-mc(poly) _.c P/poly, every
P-mc set is <tPt-reducible to some tally set. In 4 we attempt to find close relationships between
P-mc sets and sparse sets as well as tally sets. We prove that Rt-tt(SPARSE) c_ P-mc(poly),
and thus Rtt (P-mc(poly)) P/poly. Interestingly, this contrasts with Rtt (P-Sel) C P/poly
16]. In order to study relationships between P-mc sets and tally sets, binary real numbers will

be useful, since the characteristic sequence of a tally set can be viewed as a binary real number
in [0, 1) (see [30]). For any binary real number r 6 [0, 1), we show that Prefix[r], the set of all
prefixes of r, is in P-mc(2), while there is a binary real number r such that Prefix[r] ’ P-Sel.

We add a few words about relationships between P-mc(poly) and TALLY. Noting that
P-mc(poly) _c P/poly and TALLY

_
P-mc(poly), for every A 6 P-mc(poly) we show that

there is a tally set T in P-mc(poly) A(A) such that A <tPt T. On the other hand, any tally
set is <.-equivalent to some P-mc(2) set. Thus, every set A in P-mc(poly) is <-reducible to
some set in P-mc(2) C)A(A). As a consequence, we have P/poly Rr (SPARSECqP-mc(2));
that is, <f.-reducibility to sparse sets in P-mc(2) completely characterizes P/poly.

Selman [30] showed that SAT is P-selective if and only if SAT is in P. Can we prove
similar result for P-mc sets? We consider this question in 5 Noting that P-mc(poly)

_
P/poly

and that NP

_
P/poly implies PH E’ [21 ], one can easily observe that SAT 6 P-mc(poly)

only if PH E’. But we have a stronger collapse for some P-mc class. We prove NP _c
P-mc(c log n) for some c < if and only if P NP.

The prooftechnique we develop enables us to resolve some open questions. The first bonus
we get is the following result: If NP

_
Rn,-tt (P-Sel) for some constant c < 1, then P NP.

One ofthe most important questions has been whether NP c__ R (P-Sel) ===> P NP holds for
a reducibility <rp [32], [36], 16], [35]. Selman extended his first result to _<pPtt-reducibility by
observing that Rptt(P-Sel) Rm (P-Sel) [32]. As for "nonpositive" truth-table reducibilities,
there have appeared some observations. Toda [36] proved that NP c_C_ Rt(P-Sel) implies
P FewP and RP NP. Hemachandra et al. [16] noticed that NP _c R-tt(P-Sel) implies
P NP. Thierauf, Toda, and Watanabe [35] proved that if NP __c Rtt(P-Sel), then NP is
in deterministic subexponential time. Nonetheless, the question of whether NP c_ Rtt (P-Sel)
implies P NP, and even whether NP

_
Rbtt(P-Sel) implies P NP, has been open for

a long time. We not only give an affirmative answer to the latter, but improve the upper
bound on the number of queries to n for any constant c < 1. We note here that the same
result has been independently proven by Beigel, Kummer and Stephan [9] and Agrawal and
Arvind ].

Another bonus we get concerns the complexity of functions that are polynomial-time
computable with access to sets in NP. Krentel [23] showed that for any function f(n) <

FpSAT DSATlog n, if then P NP. He asked whether the same statement holds2 f(n)-T "--(f(n)-I)-T’
for a larger function f. Krentel’s proof directly applies to the case f (n) _< c log n for some

I’DSAT FpSATconstant c < Beigel [6] asked the related question of whether -./(_t c_ (f(.>--r. For
the case f (n) < c log n with c < l, Beigel [6] showed that for any <f_.-hard set A for NP,
if FPf(n_t c_ FPfff(,,)_l_r for some X, then RP NP and P UP. Regarding the general
O(log n) case, Amir, Beigel, and Gasarch [4] showed, that for any function f(n) (9(log n),
FPsAT FPf()_

_
Tif f(,,)-tt c_ for some X then E FI. In this paper, we prove that the

conclusion of Beigel’s result can be strengthened to P NP.
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The proof techniques we develop can be applied to complexity classes other than NP. For
any class (7 chosen from {UP, FewP, C=P, PP, PSPACE, MODzP, MOD3P }, we prove
that ifC c_ P-mc(c logn) for some c < 1, then C P; and thus, ifC __. R,,,.-n(P-Sel) for some
c< l, thenC=P.

2 Basic properties ofpolynomial-time membership comparable sets. In this section
we prove some fundamental properties of polynomial-time membership comparable sets. The
reducibility notions we will use are from [24]. First we state some rather trivial properties,

PROPOSITION 2.1. 1, P P-mc(1).
2. For any f and g such that f (n) < g(n) for all but finitely many n, P-mc(f)

P-mc(g).
3. lfA f-tt B and B is in P-mc(f(n)), then A P-mc(f(p(n)))forsomepolynomial

p. Especially, for any k > 1, P-mc(k) is closed under <_f.,-reductions.
Proof. 1. The statement holds because for any set A, A is in P if and only if AC is in P if and.

only if there is a polynomial-time computable function f such that for all x, f(x) A’(x).
2. Let f and g be as in the hypothesis and let no be such that for all n > no, f (n) < g (n).

Let A 6 P-mc(f) and let T be the set of all strings in A of length at most no. Let x xm
and n be such that max{lxl Ixml} n and rn >_ g(n). If there is some such that
Ixil < no, then (A(x) A(xm)) 7& oi-lbOm-i-l, where b 0 if xi T and otherwise.
If, for every i, Ixil > no then (A(x) A(x,n)) 7 f(x, Xf(n)O’n-f(n). Therefore, A
is in P-mc(g).

3. Let A f-tt B via a machine M and B 6 P-mc(f) via h. Let p be a polynomial
bounding the run time of M. For each x, let Q(x) denote the unique query of M on x. Let.
W0 (Wl) be the set of all x such that M on x rejects (accepts) no matter what the answer from
the oracle is. Let R0 (R) be the set of all x such that M on x accepts if and only if Q(x)
is not in the oracle (Q(x) is in the oracle). Note that W0, W, R0, R 6 P. Let Xl Xm
and n be such that max{lxl IXml} n and rn > f(p(n)). Define h’(x ,Xm) as
follows.

Case 1. {x Xm} rq (Wo t3 Wl) 0. Let j be the smallest such that xi Wo t.) Wl.
Define h’(x Xm) = oJ-lbOm-j, where b = ifxj 6 W0 and 0 otherwise.

Case 2. {xl X,n} (Wo t3 WI) 0.
Subcase 2a. There is some (i, j), < j such that Q(xi) O(xj). Let (k, l) be the

smallest such pair. Define h’(x Xm) = 0t- n-t+l if either x, xt 6 R0 or x, xt 6 R1,
and 0h- 1"-+ otherwise.

Subcase 2b. For every i, j, < j, Q(xi) 5/= a(xj). Let b...bm h(xl X,n).
Define h’(x Xm) Cl Cm, where, for every i, <_ <_ m, ci bi if xi R and

bi otherwise.
It is easy to observe that h’ behaves correctly.
Proposition 2.1 (2) states that P-mc(f) c_. P-mc(g) if, for all but finitely many n, f(n) <_

g(n). Interestingly, as we shall show below, P-mc(f) differs from P-mc(g) if, for infinitely
many n, f (n) g(n). We note here that the proof we develop has a flavor similar to that of
[5, Thm. 2].

THEOREM 2.2. Let f and g be monotone nondecreasing, polynomial-time computable,
polynomially boundedfunctions that map N to N+. Supposefor infinitely many n it holds that
g(n) > f(n). Then there is a .set A P-mc(g) \ P-mc(f).

Proof. Let f and g be as in the hypothesis of the theorem. Since f is polynomially
bounded, there is some no such that for every n > no, f(n) < 2". Define a sequence {li}il
as follows:

(i) l min{n >_ no lg(n) > f(n)};
(ii) for/ > 1, li min{n >_ 22’’ g(n) > f(n)}.
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By our hypothesis, {li }i>_ is a sequence of integers for which g is larger than f. Let h,
be an enumeration of all polynomial-time computable functions such that for each i, hi is
computable in time n nt- i.

We construct A in stages. At stage s we diagonalize against h,, by putting at most f (l.,.)
strings of length 1,. into A. Note that there are more than f (1.) strings of length lL,. because
l. > no. The construction at stage s proceeds as follows" For each i, <_ < f(l,,.), let wi
be the ith smallest string of length 1,,.. Let b h,(wl ll)f(ls)). If b ’ {0, }."t,,, then h,
is already not an f-mc function. So, we proceed to the next stage, adding no new elements
to A. If b e {0, }ft., then for each we put wi into A if and only if the ith bit of b is a 1.
This yields h,(w wf..)) A(Wl)... A(tOf(l.)), so h, cannot be an f-mc function for
A. Clearly, this construction establishes A P-mc(f).

Next we define a g-mc function 9/ for A. Let y Ym be such that m

g(max{lyll lYre. I}). Without loss of generality we may assume that lYI _< _< lY,,,I,
Let # be the largest such that li <_ lYre I. There are the following four possible cases:

(a) For some i, lYil ’ {l lu}. Clearly, for any such i, yi A. Define
V(Y Ym) lm.

(b) For somei, j,i < j, it holds that yi yj. Clearly, -for suchi and j, yi A if
and only if yj A. So let s be the smallest such that yi appears in yi+l Ym. Define
)/(yl Ym) 0s lm-s+l.

(C) lYl[ lYml lu and y Ym are all distinct. By definition, it holds
that m > f(lu). Since A E t. has at most f(l,) elements, some Yi is not in A, Define
?/(Yl Ym) lm.

(d) ]Yl] [Ym] 6 {1, ,lu}, lYre] lu, ]Yl[ 1.,. for some s < /z, and y Ym
are all distinct. We simulate the construction of A at stage s to compute A (y) and define

/(Yl Ym) AC(y) lm-l,
In each case, it holds that v(yt Ym) :/: A(yt).o A(ym). So, y is a g-mc function

for A.
It remains to show that ?’ is polynomial-time computable. Since f and g are both

polynomial-time computable and {li}i>_l is a strictly increasing sequence, /z and 1
are computable in time polynomial in lYre I. So, one can easily compute the value of , for
the cases (a), (b), and (c)o Now suppose that case (d) holds. Since s < #, it holds that
s _< lYI _< loglog lYre]. Since h is computable in time n + s and f is polynomially
bounded, for some fixed constant k the construction at stage s can be simulated in time
O(s(lylk)’) _< O(]yl[ 21y’lk) <_ O(221:’’1) _< O([ym]). Thus, the question of whether Yl A
can be tested in time O(lYm I). Therefore, ?, is polynomial-time computable. This proves the
theorem.

COROLLARY 2.3. If f (n) > g(n) for infinitely many n and g(n) > f (n) for infinitely
many n, then by the above theorem, P-mc(f) and P-mc(g) are incomparable.

COROLLARY 2.4. P-mc classes construct a proper hierarchy according to the bound on
the number ofarguments; namely, P P-mc(1) C P-mc(2) C P-mc(3) C C P-mc(k) C
P-mc(k + 1) C... C P-mc(const) C P-mc(log) C P-mc(poly),

3. Relationships with P-selective sets. In this section we study relationships between
polynomial-time membership comparable sets and P-selective sets. First of all, by definition,
P-Sel is a subclass of P-mc(2).

PROPOSITION 3.1. P-Sel

___
P-mc(2).

The above inclusion is proper.
THEOREM 302. There is a tally set T P-mc(2) P-Sel.

Proof Let fl, f2 be an enumeration of all polynomial-time computable arity-2 func-
tions. Let ./’i be computable in time pi(n) n + i. Define #(0) and It(n) 2u(’’-) for
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n > 0, and v(n) -/(4n). For each > 1, let ui 0’(i), Our set T is constructed in stages.
At stage i, we do the following:

(*) If )(u.i, b/2i+l) b/2i, then put u_i+ into To Otherwise, put b/2i into T.
Clearly, for any either f is not a selector function or there exist some x 6 T and y T
such that either ..(x, y) y or f/(y,x) y. So T ’ P-Sel. We need to show that
T 6 P-mc(2). Note that for any i, the construction up to stage can be simulated in time

pi(2v(2i + I)) < v(2(i + 1)). Define a function g as follows: let x O and y 0 be
tally strings.

Case 1. s v(k) for any k. Define g(x, y)= 10.
Case 2. s v(k) for some k and =/= v(1) for any I. Define g(x, y) 01.
Case 3. s v(k) for some k and v(l) for some I.
Subcase 3ao Lk/2J < Ll/2J. Simulate the construction of T up to stage Lk/2j to test

whether x 6 T. Define g(x, y) 00 if x 6 T and 10 otherwise.
Subcase 3b. Lk/2J > L//2J. Simulate the construction of T up to stage L1/2J to test

whether y 6 T. Define g(x, y) 00 if y 6 T and 01 otherwise
Subcase 3c. Lk/2J l/2J. Define g(x, y) 11 if x - y and 01 otherwise.
It is easy to see that g witnesses the fact that T 6 P-mc(2)o This proves the

theorem.
Are reducibility classes of P-Sel included in P-mc(poly) ? The following theorem answers

the question.
THEOREM 3.3. Let f N -+ N+ be a monotone nondecreasing function. Let L be

<}(,_tt-reducible to a P-selective set. Then L P-mc((1 + c) log f (n)) for any constant

The proof of the theorem is based on Lemma 3.4 below of Toda, stating that, given a P-
selective set A and a finite set Q, one can compute a linear order over Q such that A A Q is the
initial segment of the order. Originally, Jockusch [20] (attributed to Appel and McLaughlin)
proved that being semi-recursive is equivalent to being the initial segment of a recursive linear
ordering. Regarding P-selective sets, which are defined as the polynomial-time analogue of
semi-recursive sets, Selman [32] showed that the initial segment of a polynomial-time linear
order is a P-selective set. Ko [22] showed that being P-selective is equivalent to being the
union of initial segments of polynomial-time preorder.

LEMMA 3.4 ([36]). Let A be P-selective. There is a polynomial-time algorithm that, given
a finite set Q I2", outputs an enumeration yl YIIQII of elements in Q such that there
exists some m, 0 <_ m < Q ][, such that A N Q {yi .<_ _< m }.

Now we prove Theorem 3.3.
P A via aProof of Theorem 3.3. Let f and L be as in the hypothesis. Let L

machine M and let A be P-selective. Let c > 0 and define h(n) [.(1 + c) log f(n)J. Let
n and xl c(,,) be such that n max{Ixl Ix,nil, For each i, <_ < h(n), let Qi
denote the set of all queries of M on xi, and let R Ql t2 U Qh(,,)o Since f is monotone
nondecreasing, Qi <_ f (n) so, for sufficiently large n, it holds that

Ilgl[ _< h(n)f(n) < 2lgh(n)+lgf(n) <_ 2h(n) 2.

By Lemma 3.4, in time polynomial in Y,e lYl and thus in time polynomial in Ixl, we can
compute an enumeration y YlINII of elements in R such that for some m, 0 _< m _<
RNA ={yi _<i <m}. Now for eachm, 0<m < [[RIl, letB,, ={yi _<i <m},and
for each j, <_ j < h(n), let bm,j if Me’" on x accepts and 0 otherwise. Clearly, there
is some m such that for every j, < j < h(n), L(x) bm,j. Since I[RI] _< 2’(’’ 2, there
is some v {0, 1}(’’) such that v :/= b,,,, bm,,(,, for any m. Let v0 be the smallest such v
and define r(x Xh(,,)) Vo. It is easy to see that r witnesses the fact that A 6 P-mc(h).
This proves the theorem.



1074 MITSUNORI OGIHARA

COROLLARY 3.5. P/tt(P-Sel) P-mc(const)and Ptt(P-Sel) c_ P-mc(log).
A function h is said to be polynomially length bounded if there is a polynomial p such

that for every x, Ih(x)l _< p(lxl).
DEFINITION 3.6 ([21]). A set L is in P/poly if there exist a polynomially length-bounded

function h and a set A P such thatfor every x, it holds that

x 6 L - (x, h(01’l)) 6 A.

Ko [22] showed that P-selective sets have polynomial-size circuits. Noting for a P-
selective set A, a finite set W, and a string x, that W is partitioned into two sets W, W2, such
that x 6 A ==, W _c A and x A"== W2 Ac, Ko developed a divide-and-conquer
method to find polynomially length-bounded advice. Such a method is, however, hard to find
for P-mc(2) sets, because the set W is now partitioned into four sets W W4 such that
x A W cc..A,x A == W2 AC, x A == W3 c_ AC, andx A == W4 Ac.
Nonetheless, very surprisingly, P-mc(poly) sets have polynomial-size circuits, which is stated
below.

THEOREM 3.7. P-mc(poly) c_ P/poly.
The proof of the above theorem is essentially the same as that of [4, Thm. 10], so we

omit the proof here. As a matter of fact, in [4], Amir, Beigel, and Gasarch showed that,
for any k > 1, P-mc(k) c_C_ P/poly, developing an algorithm to construct an advice string of
length O(kn2) for En. Thus, even if k is a function of n that is polynomially bounded, their
construction still works.

It is well known that P/poly Rtt (TALLY) Rtt (SPARSE) and TALLY c_ Rr (P-Sel)
[30]. So every set in P-mc(poly) is <.-reducible to some P-selective set.

COROLLARY 3.8. P-mc(poly)

__
Rr(P-Sel).

Since R,(P-Sel) c_ P-mc(log)and P-mc(log) :/: P-mc(poly), the above inclusion is
optimal.

COROLLARY 3.9. P-mc(poly) Rtt(P-Sel).
The converse of Theorem 3.7 does not appear to hold. The question of whether the

converse holds is very subtle, because proving P-mc(poly) - P/poly is at least as hard as
proving P :/: NP.

THEOREM 3.10. IfP NP, then P/poly C_ P-mc(poly).
Proof. Suppose P NP. Let L P/poly. Since P/poly Rtt(TALLY), there is

a tally set T and a polynomial time-bounded deterministic oracle Turing machine M such
that for every x, x 6 L if and only if Mr on x accepts. Let p be a polynomial bounding
the run time of M. Without loss of generality we may assume for every x and oracle X,
that any query of Mx on x is in {0 0P(Ixl)}. Let x X,n be strings of length at most
n with m p(n) + 1. Let T T, be an enumeration of all subsets of {0 0P"},
where k 2p(n). Note that every T/ can be represented by a string of length p(n). There
is some i, < < k, such that for every j, < j <_ m, MT on xj accepts if and only if
MT onxj accepts. For eachi, < < k, andj, < j < m, letb(i,j) lifMr on

xj accepts and 0 otherwise. For each i, < < k, let ci (b(i, 1) b(i, m))o Clearly,
there is some i, < < k, such that ci (L(x), L(xm)). Since m p(n) + 1, there
is some c 6 {0, 1}m such that c :fi ci for any i. Let be the smallest such c and define
g(xl Xm) = . Then, , (L(x) L(xm)). By our supposition that P NP, as a
representation of T/ranges over strings of length p(n), the above can be computed in time
polynomial in n, so g is polynomial-time computable. Therefore, L 6 P-mc(p + 1). Hence,
P/poly

___
P-mc(poly).

We conjecture that P-mc(poly) is a proper subclass of P/poly.
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4. Relationships with sparse and tally sets. In this section we study relationships be-
tween polynomial-time membership comparable sets and sparse sets as well as tally sets.
Since P/poly Rtt(SPARSE) Rtt (TALLY), by Theorem 3.7 it holds that P-mc(poly)
R,(SPARSE) and P-mc(poly)

___
Rtt(TALLY). Moreover, as P/poly RT(P-Sel) and

P-Sel c_ P-mc(2), we have SPARSE c_C_ RT (P-mc(poly)). But, in fact, it holds that SPARSE
P-mc(poly).

PROPOSITION 4.1. SPARSE c__ P-mc(poly),
Proof Let S be a sparse set. There is a polynomial p such that for every n, S

E-<"ll < p(n). Define g as a function that, given xi Xm with m > p(n) and n
max{lxl Ixm [}, outputs m, The function g is polynomial-time computable. For every
x x,, with m >__ p(n) andn max{lxl Ixml}, it cannot happen thatx Xm 6 S
because S c 5:-<" < p(n). Thus, g witnesses the fact that S 6 P-mc(poly).

Thus, it is possible for an uncountable number of sets to be in P-mc(poly) via the same
function g.

By Proposition 2.1 (3), we have the following theorem.
THEOREM 4.2. R-tt(SPARSE) c_ P-mc(poly).
For any tally set T, let r(T) denote T (0) T (00) T (000) The string r(T) can be viewed

as a binary real number. For a binary real number r(T) [0, 1), define Left-Cut[r] as the set

of binary strings w smaller than or equal to r(T) in the dictionary order and Prefix[r] as the
set of all initial bits of r(T). Selman [30] showed the following theorem.

THEOREM 4.3. For any binary real number r(T) [0, 1), the following properties hold:
1. Left-Cut[r] is P-selective.
2. Left-Cut[r] Pptt T and T < Left-Cut[r].
3. IfPrefix[r] is P-selective, then T P.
4. Prefix[r] <Ptt T and T < Prefix[r].

How complex is Prefix[r]? We show below that Prefix[r] is polynomial-time two-

membership comparable.
THEOREM 4.4. For any r [0, 1), Prefix[r] is in P-mc(2).
Proof. Let r 6 [0, 1). Let x, y be distinct two strings. Then the following properties

hold:
(i) If x is a prefix of y, then y Prefix[r] -- x Prefix[r].
(ii) If y is a prefix of x, then x 6 Prefix[r] -- y 6 Prefix[r].
(iii) if x is not a prefix of y and y is not a prefix of x, then at most one of x and y is in

Prefix[r].
Define g(x, y) 01 if the first condition is satisfied, 10 if the second condition is satisfied,
and 11 otherwise. Clearly, g witnesses the fact that Prefix[r] P-mc(2).

COROLLARY 4.5. For any tally set T, there is a sparse set S P-mc(2) such that T < S
P T.and S <tt

Since there is a tally set not in P, we have the following corollary.
COROLLARY 4.6. There is a tally set T such that Prefix[r(T)] is in P-mc(2) P-Sel.
It is well known that for every set A 6 P/poly, there is a tally set T 6 A’ (A) such that

A __<tP/ T (see, for example, [29]). By Proposition 4.1, TALLY

___
P-mc(poly). So we have the

following corollary.
P(A)COROLLARY 4.7. For every A P-mc(poly), tkere is a tally set T P-mc(poly) N A

suck tkat A < T.
Moreover, by Corollary 4.5, for every tally set T there is a sparse set S 6 P-me(2) such

that T and S are <.-equivalent. Therefore, we have the following corollary.
COROLLARY 4.8. For eve. A P-mc(poly), there is a sparse set S in P-mc(2) 7 A(A)

such that A < S.
As SPARSE

_
P-mc(poly), we have the following corollary.
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COROLLARY 4.9. For eve. sparse set S, there is a sparse set S’ P-mc(2) N A S) such
that S <p S’. Therefore,wT

P/poly Rtt(SPARSE) RT(SPARSE f-) P-mc(2)).

5, Polynomial-time membership comparable hard sets. In this section, we show for
some complexity classes C that if, for some c < 1, C c_ P-mc(c log n), then C P. We note
here that the author has been recently informed that some of the results in this section had
been independently proven by Agrawal and Arvind and Beigel, Kummer, and Stephan [9].
We start by considering NP.

THEOREM 5.1. IfNP C_ P-mc(c log n)for some c < 1, then P NP.
Proof Suppose that NP __c P-mc(c log n) for some c < 1. Take a as a natural number

such that c < 1/a. Consider an NP-complete set SAT. Without loss of generality we may
assume that

(*) for every formula qg, each truth assignment for q9 is encoded into a string of length
I01/za.
Let q9 be a formula and Y be a set of prefixes of truth assignments for p. Call Y good for 0 if
Y contains a prefix of a satisfying assignment for qg. By our assumption, there is an encoding
qg#Y of p and Y such that if IIYII _< Iol 1, then I0#YI I01 +/, Define A {p#Y Y is
good for 0}. Obviously, A 6 NP, so A 6 P-mc(c log n). Let f be a membership comparing
function witnessing this property.

Let o be a formula with IPl r 2a and Z {yl Yr-l} be a set of r many
prefixes of truth assignments for 0. Suppose that the sets of truth assignments represented by
these prefixes are disjoint; that is, for any i, j, < < j < r 1, Yi is not a prefix of yj and

yj is not a prefix of Yi. For each i, < < d, let Yi denote the set of all yj, < j < r 1,
such that the ith bit of j’s binary representation in {0, 1}’ is a 1; that is, j’s representation
is of the form b... b,/with bi 1. Note for any i, < < d, that life 2- r/2,
so I0#Y/I Iol +t/ r +/" 2d(l+l/a), and thus cloglo#Yil < cd(1 + 1/a) < (1
1/a2)d < d. So, given qg#Y qg#Ya as arguments, f must exclude one possibility of
(A(qg#Yt) A(0#Yd)); that is, f(p#Y 0#Yu) maps to some b b...bd {0, 1}
so that (A (p#Y A (qg#Y :/: b.

Suppose that b 0a. Then (A(p#Y) A(p#Yd)) =/: 0a holds. So, at least one of
qg#Y P#Yd is in A, and thus at least one of Y Yd is good for qg. Therefore q9 is
satisfiable.

On the other hand, suppose that b {0, 1}d {0d}. Let be the number whose binary
representation is b bl... b. We show that if Z is good then Z {Yt} is good. Assume,
by way of contradiction, that Z is good but Z {Yt} is not good. Then for every i, qg#Yi A
if and only if Yt Yi. On the other hand, for every i, yt Yi if and only if the th bit
of t, which is bi, is a 1. Therefore, for every i, P#Yi A if and only if bi 1. This
implies (A(qg#Y) A(qg#Yd)) b bd b, which contradicts f’s declaration that
(A(qg#Y) A(qg#Ya)) b. So, if Z is good then Z {y} is good. Moreover, if Z {Yt}
is good then, since it is a subset of Z, Z is good too. Therefore, in this case it holds that Z is
good if and only if Z {Yt} is good.

Define PRUNE as a procedure that, given q9 and Z as above, (1) computes b
f(o#Yt p#Y,) and (2) outputs YES if b is all 0 and outputs Z {yt} otherwise. Clearly,
PRUNE is a polynomial-time procedure and for every p and Z it holds that

(i) if PRUNE outputs YES, then 0 SAT, and
(ii) if PRUNE outputs a set Z’, then Z’ is good if and only if Z is good.

Moreover, when Z consists of truth assignments for qg, the question of whether Z is good can
be tested in time polynomial in I01.
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Now consider a decision procedure that, given a formula p, behaves as follows:
(0) Initially, set Z to {.}.
(1) According to IIZII, do the following"
(la) ]]Z]] < ]q)] 1. Let z be the smallest y 6 Z in canonical lexicographic order and

replace z with z0 and z 1.
(lb) IIZ]I Iq)[ 1. Call PRUNE(q), Z). If PRUNE outputs YES, then accept qg.

Otherwise, replace Z with the output of PRUNE.
(2) If not all y 6 Z are truth assignments for p, then goto (1). Otherwise, accept q) if

and only if Z is good.
It is not hard to see that the procedure is polynomial-time bounded and accepts q) if and only
if q) is satisfiable. Therefore SAT P. This proves the theorem, fq

Remark 1. We note here that the above proof does not seem to work for the case c > 1,
even if we wish to prove a consequence weaker than P NP. Let q) be of length 2a. Suppose
we wish to preserve [[ZII _< 2 t4’t) for some function H. (Note that H(d) O(d) if we
wish to develop a polynomial-time algorithm.) In order to eliminate one prefix from Z, we
construct subsets Y Yt4(a of Z, each consisting of 2t4()-t prefixes. Let be the average
length of prefixes in Z. Then, q)#Yi’s must encode at least 2a + 2t/(’-lt bits in average. Thus,
for some i, ]P#Yil > or(2a + 2/-/(e-lt) holds, where c is a constant depending only on the
size of the encoding alphabet. Now, the number of arguments we must give to f is at least

c log max{ I(p#Y Iqg#YH(d)l} >_ c log(u(2d + 2t4(a)-t))
c log ot + c log(2d + 2H(d)--t)
cH(d) + c log(2d-ti(d) / t/2).

Because cannot be bounded by any constant, we may assume log(2’t-/a) -t- t/2) >_ 1. So,
we need more than cH(d) / c arguments, but if c >_ this is impossible, because we have
only H(d) arguments. The same arguments apply for the proof of Theorem 5.5.

Next we consider subclasses of NP; namely, UP and FewP, which are defined by Valiant
[37] and Allender [2], respectively. For a polynomial time-bounded nondeterministic Turing
machine M, let #accM denote the function that maps x to the number of accepting computation
paths of M on input x. A set L is in UP (respectively, FewP) if there is a polynomial time-
bounded nondeterministic Turing machine M witnessing L 6 NP such that, for every x,
#acct(x) < (respectively, for every x, #acct(x) < p([xl) for some polynomial depending
only on M). By Cook’s reduction 14] and padding arguments (see, for example, 10]), for any
NP-acceptor M and any a 6 N+, one can construct a polynomial-time computable function

f such that the following conditions are satisfied:
(i) f (E*) is a set of formulas, and is in P;

(ii) for every x, #acc4(x) equals the number of satisfying assignments for f(x);
(iii) for every x, truth assignments for f(x) are of length If(x)l /2.

Define S f(E*) SAT and define A as in the proof of Theorem 5.1 with S in place of SAT.
Then L(M) <Pro S, S < A, and S, A 6 UP if L(M) UP (S, A 6 FewP if L(M) FewP)o
Thus, we can use our technique to prove results similar to that of Theorem 5.1 for UP and
FewP.

THEOREM 5.2. If UP c_ P-mc(c log n).]:or some c < 1, then UP P. Therefore, if
UP c_ R,,,.-tt(P-Sel) for some c < 1, then UP P.

THEOREM 5.3. IfFewP _c P-mc(c log n) for some c < 1, then FewP P. Therefore, if
UP c_ R,,,._tt(P-Sel) for some c < 1, then FewP P.

Next we consider counting complexity classes C=P and PP, and PSPACEo A set A is in
PP [15], [33] (C=P [38], [33]) if there exist some machines M and N such that for every x,
x A if and only if #acc(x) _> #aCcX(x) (#acca4(x) #aCCN(X)).
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THEOREM 5.4. Let C be in {PP, C=P, PSPACE}. If C c_ P-mc(c log n) for some c < 1,
then C P.

Proof. Note that NP is a subset of either C or co-C. Since C and co-C are both contained
in P-mc(c log n), by Theorem 5.1, P NP. Hence P E’. Since each of C=P, PP,
and PSPACE has "one word-decreasing self-reducible" _<,,P,-complete sets [28] and since, if a
"word-decreasing self-reducible" set A is in P/poly, then E’ (A) c_ E’ [21], we have C c_ E.
This establishes the fact that C P.

Let k > 2. A set A is in MODP [13] if there is some machine M such that for every
x, x 6 A if and only if #accM(x) 0 modulo k. The argument for C=P, PP, and PSPACE
cannot be applied to MODP, because it is not known whether NP or coNP is included in

MODP. So, we need to develop a direct proof.
THEOREM 5.5. Let k > 2. If MODP c__ P-mc(c logn)for some c < 1, then

MODP P.
Proof. Let. k > 2 and suppose MODP

___
P-mc(c log n) for some c < 1. Let a be a

natural number such that c < 1/a. Without loss of generality, we may assume for any
formula o of propositional logic and any truth assignment y for q) that [Yl Ig)[ l/2a. For a
formula o and y, [Yl _< [qg[ l/2a, let

Ix(o, y) II{Yz yz is a satisfying assignment for 0}ll modulo ko

Note that for every 0 and y, Ix(q), y) 6 {0 k 1}. Define Lo {o Ix(o, ,k) 0} and
LI {((p, l) IX(, .) l}. It is well known that L0 is <-complete for MODP and it is
clear that L0 is <g_l)_dtt-reducible to L I. We will show that L is in P. Let (# be a formula
and Y be aset ofpairs (yl, m) (yd, md) such that for all i, < < d, [Yi[ < [q)ll/2a and
mi {0 k }. Call Y good for q) if, for every i, < < d, Ix(x, yi) mi. By our
assumption on the length of formulas and their truth assignments, there is an encoding o#Y
such that if IIYII _< 1ol/2, then Io#YI Iol l/t/a, Define A as the set of all qo#Y such that
Y is good for (# Since MODkP is closed under <P -reductions [19] and thus co-MODP ismdt
closed under <cPtt-reductions by symmetry, we have A 6 co-MODP. So, by our supposition,
Ac is in P-mc(c log n). Let f be a function witnessing this property.

We will show that L 6 UP. Letp be aformula such that [q)[ r 2d and let
Z {(Yi, zi) < < r- 1} be such that for every i, < < r- 1., [Yi[ < r l/Za

andmi {0 k- 1}. Moreover, suppose for everyi, j, < < j < r- 1, thatyi
is not a prefix of yi and yj is not a prefix of Yi. For each l, < _< d, let Yt be the set
of all (Yi, Zi) such that the/th bit of i’s binary representation in {0, 1}d is a 1; that is, i’s
representation is of the form bl... bd with b 1. It is easy to see that each Yt contains
exactly r/2 pairs, and thus that [g)#Y/[ r +/a 2d(+/a). Let b f(p#Y O#Yd).
Since clog [0#Yl < cd(1 + l/a) < d(1 l/a2) < d,b must be oflength d and differ from
(AC (q)#Y AC (qg#Yd) ).

Suppose that b 6 0d. Then there is some such that q)#Yl Ac, so Y is not. good for
and thus Z is not good for q) because each Y is a subset of Z.

On the other hand, suppose that b 6 {0, }d {0d}. For each i, let bi denote the ith bit of b.
Let be the number whose binary representation is b. We show that Z is good if Z (Yt, mt)
is good. Assume, by way of contradiction, that Z {(Yt, m)} is good and Z is not good. By
definition, for every l, Y is good if and only if (yt, m) Yt. On the other hand, for every l,
(y, mt) Yt if and only if the/th bit of t’s binary representation, which is bt, is a 1o So, for
every l, Y is good if and only if b O. Thus, (AC(99#Y) AC(qg#Yd)) b...bd b,
which contradicts f’s declaration that (AC(qg#Y) AC(q)#Yd)) 7 b. Therefore, Z is good
if Z {(Yt, mt)} is good. Moreover, if Z is good then, obviously, for any nonempty subset Y
of Z, Y is good. Hence, Z is good if and only if Z {(yt, mt)} is good.
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Now define PRUNE as a procedure that, given x and Z as above, computes b
f(qg#Yi qg#Yd) and outputs NO if the value is all 0 and Z’ Z {(Yt, mr)} otherwise.
Then the following properties hold:

(i) PRUNE is a polynomial-time procedure;
(ii) if PRUNE outputs NO, then Z is not good;
(iii) if PRUNE outputs Z’, then Z is good if and only if Z’ is good.

Moreover, if Z consists only of pairs of the form (y, m) with y being a truth assignment for
qg, then the question of whether Z is good can be easily tested, because Z is good if and only
if, for every (y, m) 6 Z, it holds that m if y is a satisfying assignment for x and m 0
otherwise.

Now define M as a nondeterministic Turing machine that, on input (o, l), behaves as
follows:

(0) Initially, set Z to {(., l)}.
(1) .According to Z II, do one of the following:
(la) IIZII Iol 1. Call PRUNE(0, Z). If PRUNE outputs NO, then reject and halt.

Otherwise, set Z to the output of PRUNE.
(lb) IIZII < Iol- 1, Let Z {(yi,mi) < < d} and let Yt be the small-

est in {yl Ya} in canonical lexicographic order. Nondeterministically guess no, n
{0 k 1} such that no / nl mr modulo k and replace (Yr, mr) with two elements
(yrO, no) and (yrl, hi).

(2) If there is some (y, m) in Z such that y is not a truth assignment for o, then goto (1).
Otherwise, accept o if and only if Z is good.
Suppose that M on input (99, l) is at the start of step (1) with Z. Suppose that W is good. If M
is to enter (1 a), then Z is replaced with a good one, and ifM is to enter b), then, clearly, there
uniquely exists a guess of (no, n), for which Z is substituted with a good one. On the other
hand, suppose that Z is not good. If M is to enter (1 a), then M either rejects or substitutes
Z with one that is not good, and if M is to enter (lb), then for every guess of (no, n ), M
substitutes Z with one that is not good. So, if (o, l) is in L, then there exists a unique path
leading to step (2) with a good Z; and if (o, l) ’ L, there is no such path. Therefore, if
(qg, l) 6 L, there uniquely exists a path leading to acceptance, and if (o, l) L, then there
exist no such paths. This implies L 6 UP. So MOD,P c__ UP. Since UP _c MODkP, by
Theorem 5.2 we have UP P. Hence MODkP P. This proves the theorem.

The proof techniques we have developed enable us to resolve some open questions.
Selman [30] showed if NP

_
Rm (P-Sel), then P NP. it has been studied whether a similar

statement holds for more flexible reducibilities. But, it has been open for a long time whether
NP __. ebtt (P-Sel) implies P NP. By Theorems 3.3 and 5.1, we give an affirmative answer
to this question.

COROLLARY 5.6. NP C_ Rbtt (P-Sel) implies P NP. In fact, NP

_
Rn,’-tt (P-Sel) implies

P NPfor any c < 1.
Theorem 5.1 yields another consequence. For a set A and a function f N N,
A Alet FPf(,,)_r (FPf(n)_tt) denote the class of functions that are polynomial-time computable

with at most f(Ixl) adaptive (nonadaptive) queries to A. Krentel [23] showed that for any
FPsAT 17DSATlog n, c if and only if P NP. Krentel asked whether af(n) < f(n)-T --’’(f(n)-l)-T

similar result holds for a larger function f. Beigel [6] strengthened the bound to c log n for
17DSAT in place of FPSATany constant c < He further asked a similar question with "’f(n)-tt f(n)-Y

and showed that for any <’.tt-hard set A for NP, any constant c < 1, and any f such that
a C FP/ for some X then RP NP and P UP. We provef(n) < clogn, ifFPf(n).tt (n)-l)-T

that the conclusion, of Beigel’s result can be strengthened to P NP.
THEOREM 5.7. Let f(n) <_ c log n for some constant c < 1. Let B be <_P_tt-hardfor NP.

B C FP.(,,., then P NP.If for some set X, it holds that FP/(n).n
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Proof. The proof is quite similar to that of Theorem 5.1. Let f, c, B, and X be as in
the hypothesis. Without loss of generality we may assume that f(n) [(1 1/a) lognJ for
some natural number a. Define the notion of "good" sets, the encoding x#Z, and the set A
as in the proof of Theorem 5.1. For every q9 and a set Z of at most [o[ prefixes of truth
assignments for o, [0#ZI [0[ +/. Define g(n) f(n+l/). Then, g(n) < logn for all n
Let h be a function that, given 0 and a set Z of at most ]o[ prefixes of truth assignments
for 0, outputs (A(o#Y) A((p#Yg(ll) ), where Yi’s are subsets of Z defined in the proof

Pof Theorem 5 Since [p#Z[ [p[l+/a h FpAf(n)_tt and thus h 6 F f(n)-tt" SO, by our

supposition, h 6 FP.f(__)_v. Let M be a machine witnessing the fact that h 6 FPf(.._)_.
For every p and Z, there are 2g(l;I)-! possible outputs of M. Since g(n) < log n, all such
values can be computed in time polynomial in [(p[. Moreover, since there are 2g(ll) possible
values of (A(o#Y) A(o#Yg(ll)), we can compute, in time polynomial in [o[, a value
v E {0, }g(]cP]), which is not equal to (A(cp#Y) A(p#Yg(lo[))). Now let h’ be a function
that, given qg#Z, maps to 1)0lg[[-g([cp[). Clearly, h’ is polynomial-time computable, and
(a (qg#YI) a (gO#Ylog Iol)) k

Therefore, as in the proof of Theorem 5.1, we can define a polynomial-time decision
procedure for SAT. This proves the theorem.

The above two results can be applied to other complexity classes.
COROLLARY 5.8. Let C be a class chosenfrom PSPACE, UP, FewP, C_P, PP, MODzP,

MOD3P }.
1. lfC c_ Rn,-tt(P-Sel) for some c < 1, then C P.
2 Let H be <f_tt-hardfor A and let f(n) < clognfor some c < If

FPCf (,,)_ )_. for some X then C P.
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WITH QUASILINEAR QUERIES EXP IS NOT POLYNOMIAL TIME TURING
REDUCIBLE TO SPARSE SETS*

BIN FU

Abstract. We investigate the lower bounds of queries required by the polynomial time Turing reductions from ex-

ponential time classes to the sets of small density. For complexity classes E= DTIME(2’)) and EXP=DTIME(2n) ),
the following results are shown in this paper: (1) For any a < 1, every EXP-<n,,_.r-hard set is exponentially
dense. This yields EXP,; Pn,-a’(SPARSE) for all a < 1. (2) For any a < 1/2, every E-<,_a.-hard set is ex-
ponentially dense. (3) EPon/ogn)-T(TALLY). Our results substantially improve Watanabe’s earlier theorem,
EPlogn-tt(SPARSE) [Proc. 2nd IEEE Conference on Structure in Complexity Theory, 1987, pp. 138-146], [Proc.
7th IEEE Conference on Structure in Complexity Theory, 1992, pp. 222-238].

Key words, exponential time complexity classes, polynomial time Turing reducibilities, sparse sets
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1. Introduction. The study of the density of hard sets for complexity classes has a
long history. Berman and Hartmanis [BH77] conjectured that all NP-<m-complete sets are
isomorphic. Since all of the known NP-<P -complete sets are exponentially dense, Berman
and Hartmanis proposed a weaker conjecture in which all NP-<P -complete sets are not sparsem

A considerable number of previous works culminated in Mahaney [M82], which proved that
no NP-<n-hard set is sparse unless P=NP. Great effort has gone into extending Mahaney’s
result to weaker reductions. Ogiwara and Watanabe [OW91 proved that no NP-<tt-hard set
is sparse unless P=NP.

The fact that all NP-<,P-complete sets are not sparse implies PTNP. The study of the
density of hard sets for NP always needs some assumption (such as PTNP). On the other
hand, absolute results can be obtained for the density of hard sets for exponential time classes.
In an early paper [B76], Berman studied the structure of exponential time complete sets. In
[BH77], Berman and Hartmanis showed that no E-<,-hard set can be sparse. Watanabe
[Wa87] strengthed this result to <tt-hardness and his techniques can be used to show that

E Pog,,_tt(SPARSE). Separating a complexity class from a polynomial size circuit is one
of the fundamental problems in complexity theory. Many people have made great efforts
in this direction. It is unknown whether NEXP is computable in a polynomial size circuit.
The class of languages computable by a polynomial size circuit is the same as the class of
languages that is polynomial time Turing reducible to sparse sets (the class P-r(SPARSE)).
It is generally conjectured that EXP P-r(SPARSE) (equivalently, that EXP does not have
polynomial size circuits). Karp and Lipton [KL80] showed that if EXP_ P-r(SPARSE) then

EXP=E. Wilson [Wi85] constructed an oracle A such that NEXP_ Pa-(SPARSE) holds
relative to A. Heller [H86] constructed an oracle to collapse NEXP to BPP, which is a subclass
of Pa-(SPARSE). So, it is impossible to separate EXP from P-r(SPARSE) by relativizable
techniques. [HOW92] and [H90] are good surveys on the recent study of sparse sets and
exponential time classes.

In this paper, we show that for any a < 1, every EXP-<a_a.-hard set is exponentially
dense. This yields EXP P,a_-r(SPARSE) for all a < 1. Although <Pm-hardness for EXP is
equivalent to that for E [GH89], it does not seem to be true for <P -hardness with a < We-W

PE-<nc, a.-hard set is exponentially dense. Sparse languages andshow that for any a < , every

*Received by the editors September 14, 1992; accepted for publication (in revised form) May 17, 1994. This
research was supported in part by the 863 High Technology Plan of China (HTP863).

Department of Computer Science, Beijing Computer Institute, Beijing 100044, People’s Republic of China
and Beijing Laboratory of Cognitive Science, University of Science and Technology of China. Present address:
Department of Computer Science, Princeton University, Princeton, NJ 08544.
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tally languages are closely related. It is well known that PT(SPARSE) Ptt(TALLY) [BK88].
We also constructed a sparse set A in E such that A is Po(n/og,_T(TALLY)-immune. To
obtain the above results, we develop a new technique for dealing with <_-reductions instead
of counting the number of truth tables, which was used in the past.

Recently, Fu received a letter and a manuscript from Lutz, in which he and Mayordomo
[LM] proved, using a quite different technique, that for all a < every E-<P tt-hard set ismna
exponentially dense.

2. Preliminaries. We use E {0, as our alphabet. By "string" we mean an element
of E*; Ixl denotes the length of x. We use lexicographic order on E*. For any strings x and
y, x is smaller than y (i.e., x < y) if either Ixl < lYl or Ixl lYl and there exists some k,
< k __< Ix I, such that (i < < k[xi Yi] and [x 0 and y ]), where X is the

ith symbol of the string x. For two strings x < y in E*, the interval [x, y] is defined as the
set {z (z 6 E*) and (x < z < y)}. For S c_ E*, the cardinality of S is denoted by IISII. Let
S="(S-<’) consist of all words of length n(< n) in S. In particular, let
and Ixl n} and E -<" {x x 6 E* and Ixl _< n}. For a language A, XA is the characteristic
function of A. N {0, 1, 2 }. For a real number x, [x] is the biggest integer < x.
Our computation model is the Turing machine. We use the following three exponential time
complexity classes:

E [..jo= DTIME(2,,+),
EXP UX=l DTIME(2n+),
NEXP U= NTIME(2n+).

A <-reduction of A to B is a polynomial time oracle Turing machine M such that for
each x e * x e A == M8 accepts x

For a function g N N a <P(n f-reductin of A to B is a polynomial time oracleg

Turing machine M such that A < B is witnessed by M, and M will not query the
oracle more than g(n) times for each input with length n.

Let H c E*, C be a class of languages and <P be a type ofreduction. Pr(H) is the class ofr
Pall languages that are <r-reducible to H. Pr(C) is the class of languages that are <rP-reducible

to some languages in C. If Cc_. Pr(H), then we say H is c-<Pr-hard.
For language A

___
E*, we say A is exponentially dense if, for some c > 0, IIA-<II> 2

for all large n. If there exists a polynomial p(n) such that IIA-<II< p(n) for all n, then we
say A is sparse. SPARSE represents the class of all sparse languages. TALLY represents the
class of all languages T with T

_
{0}*.

Hartmanis [H83] introduced a "generalized Kolmogorov complexity measure." We em-
ploy this tool in the proof of our theorems.

We consider standard deterministic time-bounded Turing machines that act as transducers.
We assume a standard enumeration of such transducers, say Nl, Ng_ For each i, let fi be
the function computed by Ni and let Ti be the running time of the transducer Ni. We assume
that the enumeration has the property that there exists a universal Turing transducer Nu and
a description function d with the following property" for every > 0 there is a constant ci
such that for all x e E*, (a) d(i) is not a prefix of d(j) if - j, (b) fu(d(i)x) fi(x),
and (c) T,(d(i)x) < ci Ti(x) log T/(x) + ci. We then define the following classes of
strings"

Ki[g(n), t(n)] {y" x[Ixl g(n), fi(x) y, and T/(x) < t(n)]},
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where n lyl, and

K[g(n), t(n)l K,[g(n), t(n)],

where u denotes the index of the universal Turing machine.
We have the following fact.
LEMMA [H83]. Let be any index and let g(n) and t(n) be time-constructiblefunctions.

Then there exists c > 0 such that Ki[g(n), t(n)]

_
K,[g(n) + c, c t(n) log t(n) + c].

3. Number of queries and density. Suppose EXP (or E)_Pf(n)-T(S). We investigate
the lower bounds for the number of queries f (n) and the density of the set S in this section.
Resource-bounded Kolmogorov complexity theory plays a crucial role in the proofs of our
results.

For strings w, r E * and integer m, we say w is an m-block of r if r wl... w for
some k, Iwl IWkl m, and w wi for some integer < _< k. The least
number with w wi is called the location of w in r. Block (m, r) is defined as the set

{w w is a m-block of r}. For B c_ I]*, Block (m, B) tAreB Block(m, r).
The function cod * * is defined by cod(x) la la2.., lar02, where x

ala2.., ar ,*. The function bin" N --+ I* is defined so that for each 6 N, bin(i) is the
binary expression of (for example, bin(5) 101 and bin(8) 1000).

PROPOSITION 1. There exists a polynomial p(n) such that for all large n, if there exist
strings r E and u, v, w, x that satisfy r uvwvx and Ivl > 7 log n, then r K[n
1, p(n)].

Proof. Suppose n is large, r 6 En, and r uvwvx with Ivl > 7 log n.
Let rt cod(bin(lul)) cod(bin(Ivl)) cod(bin(I wl))uvwx. Clearly, if we have string r,

we can obtain u, v, w, x easily by decoding it. Thus r can be generated by r in polynomial
steps. Also, Irl 2lbin (lul)l / 2 + 21bin(Ivl)l + 2 + 2lbin (Iwl)l + 2 + n Ivl _<

log6 log n / 6 + n vl < n --5- if n is large enough. It is easy to see that there exists a
polynomial p(n) (which does not depend on r) such that

The proof of the following proposition needs the limitation limno(n
2.178. In fact, ln(nt/nn)/. F,i= ln(), whose limitation is f2 lnxdx -1. So, nt. >
") for all large n.(5

[[nb]] (b-a-6)na for allPROPOSITION 2. For every 0 <_. a < b and > O, n(b-a+)n > ,[n"]] > n
large n.

Proof Suppose n is sufficiently large such that 2[na] + 2 < nb; 4 < na; [ha]! >
([na]/3) [’] and [ha] > na/4. Then

[nb]([nb] 1)...([nb]-[na] + l) nb [n]

[na]] [na]i-n-;] 1).
>

(n) [n’l 2n------g > n(b-a-a)n"

On the other hand, [nb]([nb] 1)... ([nb] --[na] + l) < (rib) [n"]. So

([rib]l) (nb)[na]!_ (nb)[na]
<

-)[nl
< (4nb-a)[""l < (4nb-a)n (nb-a+a

2+b
THEOREM 3.1. For 0 < a < and b > O, there exists a set A in DTIME(2 ("l Pctt

(SPARSE) such that ifA is <P reducible to S, then S is exponentially dense.a-T-
9Proof. Choose an integer k such that a < and b > y--. We will construct a set A in

DTIME(22/9/(/’)C Pctt(SPARSE) such that A P-/_7(S) implies that S is exponentially
dense.
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We give an informal overview of the proof. Some ideas in [GW91] are involved in the
construction of set A. Set A will be built to be exponentially dense. Each string in A is hard
to compress and hard to describe relative to other strings in A. Suppose S is of small density
and A is Turing reducible to S via oracle Turing machine M bounded by a small number of
queries in at most p(n) time. For all inputs in En, every string queried by Ms is of length
<_ p(n). Partition E <p(n) into some intervals such that for any x _< y, x, y are in the same
interval iff for any z: x <_ z < y, )s(x) Xs(Y) )s(z). Thus, the number of intervals is
not more than 2 IIS-<P’)II +1. Since both the density of S and the number of queries of Ms

are small, there exists a subset B of A such that (i) B contains many elements, (ii) for all
inputs in B, MS will query the same number of questions, and (iii) all of the th queries of
Ms with inputs in B are in the same interval of E <p0’) for < t.

Let oei be the answer of oracle S for the ith query of Ms with an input in B. Strings
Xl xt, Yl Yt are chosen from B such that for each input string z in B, the ith string
queried by Ms with input z is located between the two th strings queried by Ms for inputs
xi, Yi, respectively. If we have ol oft, X xt, Yl Yt, then we can generate all
of the strings in B by simulating M (with no oracle) on all of the strings in En. Since the
number of queries is small and the density of B is large, we have the intuition that the
information content of ot oct, x xt, yl Yt is small and that of B is high. This
is a contradiction.

First, we construct the set A as follows.

CONSTRUCTION OF An.
Case 1. n :/: m+l for all integers m.

Set An 0.
Case 2. n m+l for some integer m.

2+8/(k+ I) Emn2+7/(k+l)Choose me east stnng r 6 " (= such that r K[n2+8/(+1)

1, 2ln (by Proposition 1, if m is large, then all m-blocks of r are different from each other).
Set An {UlU2... Umk each uj is a m-block of r and ul < u2 < < Umk}.

Let A U= An.
CLAIM 1. A Pctt(SPARSE).
Proof. Let rn be the string as in r in the construction of An (if n 76 m/+1, then r is

the empty string). Let So kJm=0Block(m, Z’mk+, ). It is easy to verify that So is sparse and
A <P S0-ctt

CLAIM 2. A 6 DTIME(2n2+9/k+’).
Proof For each x 6 *, x 6 A iff x 6 An, where n --Ixl.
Case 1. If n - m+ for all m, then An 13. Thus, x ’ A.
Case 2. If n m+l for some integer m, the time consumption of Case 2 of stage n is

bounded by 21In 2n2+8/k+ 2n2+9/+)< if n is large enough. Clearly the question of whether
x 6 A can be determined in 2n2+9/k+l) steps for all large n.

<P S via polynomialSuppose A -n-’/
<P

-T S and S is not exponentially dense. Let A
time oracle Turing machine M. Without loss of generality, we assume that M asks exactly
[n 1-l/] questions. Let p(n) be a polynomial with positive coefficients such that p(n) > n
and M will stop in at most p(n) steps for each input of length n.

Choose integer d such that p((n + 1)+) < nd for all n _> 2. Since S is not exponentially
2n

I/dk(k+l)
dense, there exist infinitely many n’s such that IIS-<nll <

Fix integers no, n, and m large enough to satisfy the following conditions:

(a) IISnll < 2"+’

(b) n > 2,
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(C) n mk+ 1,

(d) p(n) < no,

(e) no < p((m / 1)+),

(f)

(g)

z-r z+-r < and

(by Proposition 2, where --),

30+301ogn <n

(h) 2.2n:’ + < n

Note that

"(+)
2
+)IIS-<p’)[I < [IS-<nll _< 2"0 <

(because p(n) <_ no < p((m + 1)+) < p((n / 1)+) < na).
For each input x e En, the strings queried by Ms are of length < p(n). We partition

a <p(n) into intervals U, U2 such that for x < y in E-<P(n), X and y are in the same interval
if and only if for every z in [x, y], )s(x) )s(Y) )s(z).

Therefore, ]_<p(n) can be partitioned into at most 2 [IS<-p(n)ll -+-1 intervals. Since M asks
the oracle for all inputs of length n exactly [n -/] times, let [n 1-/] be the number of
queries of M for input of length n.

For input x e En, we define Queryts(x) =< M(x, 1) M(x, t) >, where M(x, i)
is the th string queried by MS.

For x, y En, we say Queryts(x) is similar to Queryts (y) if and only if M(x, i) and
M(y, i) are in the same interval Uj for all t.

Partition E into blocks B, B2 such that for any x, y En, x, y are in the same
block iff Queryts(x) is similar to Queryts(y). Since for each input in En, Ms queries the
oracle [n-/] times, E contains at most _

(2 IIS<-pn)II -t-1)n’- < (2.2n’-+‘’ + 1)n’ < (nn,c+,, )n’-. nn,+,,+’- nn’-r’

blocks.
By Case 2 of stage n in the construction, r has n2+7/(k+l) m-blocks. By (f), we have

Thus, there exists a block Bi such that Bi contains more than

)n - r--r+r/(1 + --
elements in An. Let B Bi f’) An. Thus,
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Since B has more than t’l (l+6/(k+l))n-/’+) strings, it follows that Block(m, B) contains
more than n2 m-blocks of the string r chosen in the construction of An (because

(n2 ) ( n2 ) < ?/(l+k..gT+.g-i.)n :-7-
-"?/ (l+----7)

mk nl--c.-.-.-

by (f)).
Now choose the strings x xt, y Yt from B such that for any u B, M(xi, i)

<_. M(u, i) < M(yi, i), t. Let Ol Xs(M(xi, i)), t. We will use
c, oft, X xt, y Yt to generate all of the strings in B.

For each u 6 n, the question of whether u is in B can be determined by the following
algorithm.

ALGORITHM (The reader should note that the algorithm will use the information of
Oil ot, x xt, y Yt, but it does not ask the oracle S directly.)

Input u with length n.
i’=
Repeat
Simulate the computation ofM (between the (i 1)th query and the ith query) with input

u until M makes the ith query (M(u, i) S?).
Simulate the computation of M with inputs xi, Yi, respectively, to get the strings M(xi, i)

and M(yi, i) (Since we have c oft, we know Xs(M(xi, j)) Xs(M(yi, j)) otj for all
j < i. Let M get answer otj at its j th query for all j < i. Thus, we can obtain M(xi, i) and
M(yi, i) in polynomial steps.)

If M(xi, i) < M(u, i) < M(yi, i)
then + and let M get the answer o from the oracle
else reject u and exit.

untili + 1.
Accept u iff M accepts u.

CLAIM 3. tt G B u will be accepted by the algorithm.
Proof. == Suppose u 6 B; note that Queryts (u) is similar to Query4s(v) for all v in

B. From the definition of ot ott, Xl xt, y Yt, M(xi, i) <_ M(u, i) <_ M(yi, i)
for all < t. Since Ms accepts u (because u 6 B _c A), u will be accepted by the algorithm.

==: Suppose u is accepted by the algorithm. It is easy to see that for all < t, M(xi, i) <
M(u, i) < M(yi, i). So, Queryts(u) is similar to Query4s(x) for all x in B. Since u is
accepted by the algorithm, u will be accepted by MS. Thus u

Therefore, if we have ot, oft, X xt, Yl Yt, then we can get all elements in
Block(m, B) within 22’’ steps.

We will show that r can be generated by a string of length < n2+8/(+I) n2 in 24n steps.
Let string cod(bin(n))cl ...OttXl...XtYl ytcod(bin(e)).., cod(bin(ez))r’,

where el ez and r’ are defined as follows.
Let w() < < w(z be all of the elements in Block(m, B). Since z =llBlock(m, B)II,

we must have n2 < z < n2+7/(k+1). For each m-block w (il of r in Block(m, B), let ei be the
location of w (i in r (this means w(i)

Wei, where r w... Wn2+7/(k+ and each wi is an
m-block of r).

Let r’ be the concatenation (preserving the order in r) ofthe m-blocks of r in Block(m, r)-
Block(m, B). That is, r’ wj.., wj,,2+7/+_:., and kl < k2 implies that j, < j2, where
Z" Wl... Wn+7/k+).

CLAIM 4.

]1 < n2+r-;’r n2.
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Proof I&l 21ogn+2+t+2t.n+Y,= Icod(bin(ei))l +lr’l < 7tn+z(21ogn+2)+
(n2+7/(k+l)-z)m < 7z+ 12zlogn+(n2+7/(+)-z)m n2+7/(+l)m-(m-121ogn-7)z <
n2+8/(/+1) n2 (by inequality (g)). [3

CLAIM 5. r can be generated by in 24n steps.
Proof If we have the string. cod(bin(n))cl oltx ...xtyl ytcod(bin(e)) cod(bin(ez))r,

we can obtain cod(bin(n)). Furthermore, we get n and [nl-1/k]. We can obtain

ot ot, x xt, y Yt, e ez and r’ Thus, within 23n steps we can gener-
ate all m-blocks of r in Block(m, B). From the el ez we can know the location of each
element of Block(m, B) in r. Thus r can be generated by . The above computation can be
finished in 24n steps.

Therefore, r is generated by a string of length < n2+8/+1) n2 in 2an steps. Thus,
r E K[n2+8/+1 1,2"]. This is a contradiction.

COROLLARY 3.2. For any 0 < a < 1, every EXP-<nr’,_x-hard set is exponentially dense.
<PCOROLLARY 3.3. For any 0 _< a < 7’ every E-_n,,_T-hard set is exponentially dense.

Proof. From Theorem 3.1, we know that for each integer k, there exists a language A
DTIME(2n2+’/k) such that A 6 Pn-,/k_T(S) implies that S is exponentially dense.

Suppose Ec__ Pno-a’(S) for some a < 7" Let k be an integer such that a < 7 , where

5=4-
Let A 6 DTIME (2n2+’/k) such that A 6 Pnt-/-T(S) implies that S is exponentially dense.

10nz+t/-n-ILet Al {pad(x) x 6 A and Ixl n} where pad(A) x Clearly, A E E. So
A 6 Pn’/2-’-T(S). Therefore,

A 6 Pn,1/2_,w_+.,_T(S)= P, (S) c P ,_._T(S).-’.2 -T

Hence, S is exponentially dense [-1

COROLLARY 3.4 Pctt(SPARSE) Pna-T (SPARSE)for all a < 1.
The obstacle for improving Corollary 3.2 to the case a is the fact that the number

of blocks Bt, B2 will be greater than the number of elements in An if M is allowed to
ask the oracle n times. So this cannot guarantee that there is a block Bi to contain expo-
nential elements in An. Improving Corollary 3.3 to a < may be possible if we can find
another way with information content less than ot olt, xl xt, Yt Yt to generate
all of the strings in B. Unfortunately, so far we have no more efficient way of replacing
ot Oil, x xt, y Yt, which have information content of nearly n2 (in fact, it is
O(n2-1/)) bits.

Let C be a class of languages and A c_ E*. if A is infinite and contains no infinite subsets
in C, then we say that A is C-immune. For functions f, g N ---+ N, we say f(n) is o(g (n))
if, for every c > 0, f(n) < cg(n) for all large n.

Book and Ko [BK88] showed that Pa-(SPARSE) Pa-(TALLY). Theorem 3.1 says that
each sparse set is not EXP-<na_.r-hard for all a < 1. For tally sets, a better lower bound than
n (a < 1) will be obtained in the following theorem.

THEOREM 3.5. There exists a sparse set A in E such that A is Po(n/ogn-T(TALLY)-
immune.

Proof For each integer n, let an be the least string in En such that an ’ K[n 1, 22"].
Let A {a a,, }. Clearly, A is a sparse set in E. Suppose that A contains an

<’ T via the polynomial timeinfinite subset A 6 Po(n/logn-T (TALLY) Let A --o(n/ogn-T
oracle Turing machine M such that M queries the oracle O(lo) times, where T c_ {0}*. Let
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p(n) be a polynomial which is the time bound for M. It is convenient to assume that each
string queried by M is in {0}*.

We choose a large n such that an E A1. Let x xt be the strings queried by
Mr with input a,. Let oti g.r(xi),i t. We use /3 cod(ot...ott)cod
(bin(Ixl I))cod(bin(lxz[))... cod(bin(Ixtl)) to code Otl oft, xl xt. Clearly, I/l o(n).
So, I/1 < if n is large. 71

The following algorithm will output an in 22n steps with input/3.

ALGORITHM (The algorithm will use the information of/3, but it does not ask the oracle
T directly.)

Input/3
Decode/3 to get t, ot at, x xt
For each x E E" do
begin
i:=1
Repeat
Simulate the computation of M (between the (i 1)th query and ith query) on input

x until M makes the th query (M(x, i) T ?).
If M(x, i) xi
then :-- + and let M get the answer O/i from the oracle.
else reject x

Until (i > t) or (x is rejected)
If M asks exactly questions and accepts x then output x and exit.
end

Since a,, K[n 1, 22n], this is a contradiction. [3

COROLLARY 3.6. E Pooh/ogn_-r(TALLY).
COROLLARY 3.7. E Pna_a’(TALLY)for all a < 1.
COROLLARY 3.8. SPARSE Pon/logn_r(TALLY).
Corollary 3.8 is in contrast to Buhrman, Longpre, and Spaan’s [BLS92] recent theorem,

SPARSE

_
Pctt(TALLY).

The set A constructed in the proof of Theorem 3.5 has the property that IIA=nll-- 1. It is
<P _tt-reducible to tally sets.easy to prove that for any set, A with IIA O(1) is --O<n/og,,

So more complicated sparse set should be constructed if we want to improve Theorem 3.5.
Our techniques seems unable to settle the following open problem: Does

EXP Pa_-r(SPARSE)for a ?
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NEW TIGHT BOUNDS ON UNIQUELY REPRESENTED DICTIONARIES*

ARNE ANDERSSON AND THOMAS OTTMANNt

Abstract. We present a solution to the dictionary problem, where each subset of size n of an ordered universe
is represented by a unique structure containing a (unique) binary search tree. The structure permits the execution of
search, insert, and delete operations in O(n 1/3) time in the worst case. We also give a general lower bound, stating
that for any unique representation of a set in a graph of bounded out-degree, one of the operations search or update
must require a cost of f(nl/3). Therefore, our result sheds new light on previously claimed lower bounds for the
unique representation of dictionaries.

Key words, analysis ofalgorithms, data structures, dictionary problem, uniquely represented dictionaries, binary
search trees

AMS subject classifications. 68P05, 68P10, 68P20, 68Q05, 68Q25, 68R10

1. Introduction. A dictionary is a set of items on which search, insert, or delete opera-
tions can be performed. The dictionaryproblem asks for a family of data structures to store the
sets of items and for algorithms to carry out the dictionary operations efficiently. We consider
a data structure as a graph consisting of nodes linked together by pointers; one item is stored
in each node. The nodes represent the storage locations. Pointer paths correspond to access
paths for the stored items.

In general, there can be many different structures which store the same set of items.
We may perform a sequence of insert and delete operations starting with an initially empty
structure to obtain a structure storing a given set of items. The shape of the obtained structure
may depend on the size ofthe stored set, the set itself (but not only on its size), or the generation
history.

We call a dictionary set-uniquely represented, if each set of items is represented by a
unique data structure. In other words, for each set of items there is only one possible graph
that represents the set. We call a dictionary size-uniquely represented if each set of the same
size is represented by the same structure. Note that each size-unique representation is also
set-unique. We also require that the values stored in the nodes are constrained by a fixed (for
any graph) total order, that is, the representation is order-unique. The unique representation
problem for dictionaries asks for efficient algorithms for maintaining a set- or size-unique
representation of dictionaries.

A simple example of a size-unique representation of dictionaries is a sorted linked list.
The randomized search trees of Aragon and Seidel (with the random generator replaced by
a universal hash function) are an example of a set-unique representation of dictionaries which
is not size-unique.

It seems that deterministic solutions of the unique representation problem require more
time for at least one of the three dictionary operations. Thus, a large variety of different
structures for storing the same set or sets of the same size seems to be the price that must be
paid for fast search and update. This observation was already made quite early by Snyder [5].
He shows that (x/if) time is necessary for at least one of the three dictionary operations if
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the dictionary is size-uniquely represented by a tree-like search structure. He also presents
a structure which he calls the "jelly-fish," for which each of the three dictionary operations,
search, insert, and delete, can be performed in time O (/-). However, the computational model
underlying Snyder’s lower bound proof and the operations used in the update algorithms for
the jelly-fish structure are not the same. Hence, as we will show in this paper, there is room
for improvement.

Recently, Sundar and Tarjan [6] studied the unique representation problem in a different
context. They use a nondestructive CONS operation as the only primitive for creating and
changing trees and they show that (R)() CONS operations are necessary and sufficient for
maintaining unique binary search trees.

In this paper we present new size- and order-unique representations of dictionaries that
allow us to perform search operations in time O(c. n #’) and updates in time O (/-d) when c is
even, and O(n (c-1)/2c) when c is odd, for any c >_ 2. As primitives for creating and changing
structures, we allow pointer changes and the creation and disposition of nodes as Snyder [5]
did. Similar to the structures of Snyder [5] and of Sundar and Tarjan [6], our structures are not
"pure" tree structures but can be viewed as trees embedded in graphs. We also give a lower
bound stating that f2 (n 1/3) time is necessary per operation when a dictionary is size- and
order-uniquely represented in a directed graph of bounded out-degree, and pointer changes
are the basic primitives for manipulating graphs.

Hence, we show that there is a huge gap between unique and nonunique representations
of dictionaries. We feel that these findings point to a fundamental fact in the theory of data
structures.

2. Model of computation. We consider size- and order-unique representations of dic-
tionaries by graphs of bounded out-degree (_< k) and assume that for a given n there is only
one graph of n nodes. Furthermore, we assume that for each graph the nodes are constrained
by a fixed total order. The elements of a given set of size n are stored in the nodes of the graph
in such a way that the ith element is stored in the ith node for each i.

Each search starts at one specified node, called the root, and follows a number of edges
until the searched element is found orthe search ends unsuccessfully, because some termination
condition has become true. All elements must be reachable from the root, and hence each
node (except the root) has to have at least one incoming edge. The cost of a search equals the
number of traversed edges plus one.

When performing an update, a graph may be changed by one of the following operations:
create/remove a node;
change/add/remove one outgoing edge from a node (pointer change);
exchange elements between two nodes.

Each operation requires a cost of (R) (1). After a creation the node contains an element and has
no outgoing edges. (Since the graph has its out-degree bounded by a constant k, we may add
k outgoing edges in constant time.)

It should be pointed out that this cost somewhat underestimates the real cost of pointer
changes and element exchanges, since we do not include the time required to locate the node
where a pointer change or an exchange has to be performed. However, when presenting our
upper bound, we will not hide any costs by this simplification.

3. Semidynamic c-leveljump lists. Snyder [5] introduced the jelly-fish as a size-unique
representation of dictionaries. We first propose a slightly different view of his structure. It
leads to the 2-level jump list, which has the same O (v/d) worst-case time bound for all three
dictionary operations. To simplify the presentation of 2-level jump lists we assume that i2 _<
n < (i + 1)2. Hence, we assume that the size n of the dictionary does not vary unboundedly
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i+1 2i+1 Ln/iJ. + n

FIG. 1. 2-leveljump list of size n.

insertion position

FIG. 2. Insertion of 9 into a 2-leveljump list.

under insertions and deletions, but stays in between the given bounds 2 _< n < (i 4- 1)2 for
some fixed i.

A 2-level jump list of size n consists of a doubly linked list of n nodes n; that is,
for each p, < p < n, the nodes p and p 4- are linked together by a pair of 1-level links.
We call the sequence of nodes linked together by l-level links the l-level list. Furthermore,
the nodes 1, 4- 1, 2i 4- In/i] 4- are linked together into the 2-level list, which we
also call the top-level list. Figure displays the structure of 2-level jump lists.

We require that the elements of a set of n items be stored in ascending order in the nodes
1, 2 n. Thus, we obtain a size- and order-unique representation of dictionaries.

It should be clear how to search for an item by performing at most 2i key comparisons"
use the top-level list to determine the sequence of at most nodes which may contain the item
and perform a linear search among them following l-level pointers. As long as n stays in the
range 2 _< n < (i 4- 1) 2, updates can also be performed in O(i) steps" First, determine the
position of the item which has to be inserted or deleted in the l-level list. This takes O(i)
steps. Then insert (or delete) the element in the l-level list. This is a constant time operation
that has the effect that one sequence of nodes in the l-level list spanned by a top-level-list
pointer has become either too long by one (after an insertion) or too short by one (after a
deletion). Therefore, some pointers of the top-level list have to be shifted by one position to
the left or one position to the right.

Figure 2 show an example of an insertion of item 9 into a 2-level jump list of size 11
storing the set {2, 3, 5, 7, 8, 10, 11, 12, 14, 17, 19}. Note that an insertion increases the length
of the tail of the 2-level jump list by one. Therefore, the top-level list has to grow by one
element as soon as the length of the tail exceeds i. Similarly, a deletion may require the
shortening of the top-level list by one element. Adjusting the top-level list after an insertion
or deletion takes time O(i) in the worst case.

So far, 2-level jump lists are only semidynamic, because we did not allow n to vary freely.
It is not difficult to see that the structure can be made fully dynamic without destroying its
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FIG. 3. 3-1eveljump list ofsize 30.

features. Maintain a pair of structures, a primary structure and a shadow structure, corre-
sponding to two adjacent ranges of n. Smoothly construct or destroy both structures during
insertions or deletions, and switch between the structures appropriately. Whenever n exceeds
the upper bound of the interval 2 _< n < (i + 1)2, we must have a 2-level jump list of size n
ready with top-level pointers of length (i + 1) instead of length i. Similarly, whenever n falls
below 2, a 2-level jump list with top-level pointers of length (i 1) must be available. Be-
cause we can spend additional time per update operation to construct (respectively, destroy)
part of the structures for n in one of the neighboring intervals (i / 1)2 _< n < (i + 2)2 or
(i 1)2 _< n < 2, and because the length of the interval 2 _< n < (i + 1)2 is (R)(i), we have
time O(i2) l(n) to construct the desired structures. This is certainly sufficient. We avoid a
more detailed description, because we will show in the next section that a much more elegant
solution to the problem of fully dynamizing the structure is possible.

The 2-level jump list and Snyder’s jelly-fish are similar. The jelly-fish consists of a binary
search tree of size (R) (4eft) where each leaf is associated with a circular list of size (R)(); cf.
Fig. 9(a); the 2-level jump list is illustrated in Fig. 9(c). A minor difference is that the tree is
replaced by a linked list; a major difference is that in our structure no nodes are distinguished
as leaves.

We will now introduce c-level jump lists for every c > 3 as natural generalizations of
2-level jump lists. For convenience let us assume that c < n < (i + 1)’ for some fixed i.
A c-level jump list of size n consists of n nodes n. The nodes are linked together by
pointers, arranged in levels:

Lower levels. For each j, < j < c/2] and each p, < p < n j-, the nodes p
and p + j- are linked together by a pair of j-level links.

Upper levels. For each j, [c/2] + < j < c, the nodes 1, j-t + 1, 2. j- + 1,
3 j- + are linked together, leaving at most iJ-1 nodes in a tail.

The sequence of nodes of a c-level jump list linked together by j-level links is called a j-level
list. A j-level list has maximal length In/ij-] O(ic-J+). Note the difference between
the lower and upper levels. In the lower levels, each node is involved in a j-level list, while
the upper levels only contain one j-level list each, involving only a few nodes.

Figure 3 shows the structure of a 3-level jump list of size 30.
Note that a c-level jump list of size n requires O(c. n) space.
Again, we require that the elements of a set of items of size n be stored in ascending

order in the nodes n in a c-level jump list of size n. This gives a size- and order-unique
representation of dictionaries.

To search for an item, start with the topmost list and determine the sequence of at most
c-1 nodes which may contain the searched item. Then, for each j c 1, c 2
follow a sequence of j-level pointers to determine the position of the searched item in the
j-level list until it has been found or j has become and the item has not been detected at its
expected place in the l-level list. Note that for each j, c > j _> 1, searching is restricted
to a j-level sublist of length at most i. In this way a successful or unsuccessful search can be
performed in O(c i) O(c n l/c) time in the worst case.
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start of
search path

searched item

FI6. 4. Example ofa possible search path.

expected position
for new element

FIG. 5. j-level lists affected by an insertion.

In Fig. 4 a possible search path in the 3-level jump list of Fig. 3 has been displayed using
arrows and links drawn in bold.

To insert an item into a c-level jump list first determine the expected position of the new
element by a search as previously explained. Then, the element is inserted into all j-level
lists, < j < [c/2]. For each j, < j < [c/2], all j-level links "jumping over" the
inserted element will be adjusted; see Fig. 5. That is, an insertion may be considered as the
simultaneous insertion of the same new element into j-l ordered doubly linked lists for all
j, < j < [c/2]. This takes time O(1 + + 2 +...-+- rc/2]-l) O(i Fc/2]-l) altogether.
Next, the pointers of all nodes in the upper-level lists to the fight of the insertion position
have to be shifted by one position to the left. This takes time O(Y-.j=Fc/27+ n/i j-l)
0 (Y.j=rc/Zq+lc ic-J+) O(i tc/ZJ) in the worst case. The total cost is O(i c/2]-1 -+- itc/ZJ),
which splits into two cases, depending on whether c is even or odd. Thus, it takes O(v/)
time when c is even and O(n (c-1)/2c) when c is odd to insert a new element into a c-level jump
list of size n, such that a c-level jump list of size n + is obtained.

Deletion can be performed in the analog manner at the same cost; wejust make an insertion
backwards.

Again, the structure can be fully dynamized by simultaneously maintaining a pair of
structures without destroying its features. We summarize our discussion by the following
theorem.

THEOREM 1. For each c > 3 the c-level jump lists yield a size- and order-unique repre-
sentation ofdictionaries requiring space O(c. n). Dictionary operations are supported at the
following worst-case costs:

search: O(c n/C);
insertion and deletion: O(v/-) time when c is even and O(n (c-l)/2c) when c is odd.
Choosing c 3 in this theorem balances search and update time and leads to a somewhat

surprising result in the light of Snyder’s [5] lower bound of f2 (v/-).
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COROLLARY 1. 3-level jump lists are a size- and order-unique representation of dictio-
naries which allow us to perform all three dictionary operations (search, insert, delete) in
time O(n /3) in the worst case.

It should be noted that any odd value of c gives us a violation of the previous lower bound.
The relation between this lower bound and our new upper bound is discussed at the end of this
paper.

4. A fully dynamic 3-level structure. In this section we will give a second proof of
Corollary by designing a fully dynamic 3-level structure. Hence, we will not refer to the
global technique offully dynamizing the semidynamic 3-leveljump list. Instead, by an explicit
construction, we will convince the reader that it is possible to "beat" Snyder’s lower bound.
The new structure, simply called the jump list, consists of a directed graph in which a binary
search tree is contained. As we will show, both the structure and its maintenance are quite
simple.

4.1. Data structure. A jump list of size n consists of n nodes n. These nodes are
linked together by three types of pointers:

1st level. The nodes n are linked together in sorted order in a doubly linked list.
2nd level. For each i, < < n- [n/3], there is a pointer from node to node 4-/i /3].
3rd level. The nodes 13, 23, 33 In1/3] are linked together by backward pointers,

that is, there is a pointer from node to node (i 1) for each i, < _< 1nl/3] 3.
This specification gives a size- and order-unique representation of dictionaries. It is not hard
to see that the structure may be viewed as a binary search tree with some additional pointers.
The nodes linked together on the 3rd level make up a left path with the first one of them (from
the right) as the root. From each node on this path there is a fight path of 2nd-level pointers.
Finally, from each node on a right path there is a left path of st-level pointers.

We explain this in greater detail. The length of the 3rd-level path, that is, the total
number of 3rd-level pointers, is In 1/3 11. The fight subtree of the node at position
contains the elements between this node and its parent (at position (i 4- 1)3). The number
of elements in this interval (including position i3) is 3i 2 4- 3i 4- and each 2nd-level pointer
in the interval points positions forward. Thus, starting from position 3, there is a path of
fight pointers consisting of 3i 4- 3 2nd-level pointers, ending at position (i 4- 1)3 1. Finally,
from each node on the right path there is a left path of length consisting of lst-level
pointers.

The elements at positions/n /3 4-1 n make up the right subtree ofthe root. Following
a chain of 2nd-level pointers from the root, we may not end up at the very last node of the
doubly linked list. Thus, the rightmost path in the tree may contain a tail of up to In 1/3] nodes.

We call this tree an embeddedbinary search tree. Note the similarity between this structure
and a threaded binary search tree [4]. In both cases the unused pointers at the bottom of the
tree point to nodes instead of being nil pointers. An example of a jump list and its embedded
binary search tree is given in Fig. 6.

The jump list described here requires four pointers per node. It is possible to use them
either by specifying which pointers to use on each level or specifying which pointers to use
as left and right pointers in the embedded tree. If desired, with some effort the number of
pointers per node may be decreased to three.

LEMMA 1. A search in a jump list (using the embedded binary search tree) requires
O(n /3) time in the worst case.

Proof Each root-to-leaf path down the embedded binary search tree is composed of
three parts corresponding to the three levels of the pointer structure. Each part has a length
of O (n I/3). From this the lemma follows, fq
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FIG. 6. A jump list containing 74 elements and the embedded binary search tree.

4.2. Maintenance algorithms. When inserting/deleting an element, we follow a search
path down the embedded binary search tree to find the update position. Then, the element
is added to/removed from the st-level list. The rest of the structure is adjusted by changing
some 2nd-level pointers in the neighborhood of the update position and reconstructing a part
(maybe all) of the 3rd-level list.

In detail, during an insertion the data structure is modified in the following way:
1. The new element is inserted into the lst-level list (at position p).
2. A 2nd-level pointer going out from p is created and each 2nd-level pointer going out

from a node to the left of p and ending to the right of p is shifted one position to the
left, that is, it now points to the left neighbor of its previous target node.

3. The 3rd-level list is reconstructed such that each node in this list to the fight of p is
replaced by its predecessor. That is, the 3rd-level pointer jumping over the insertion
position has to be "shortened" by one, and as a result of this all other 3rd-level pointers
to the right have to be shifted by one position to the left. If the tail becomes too long,
eventually one new 3rd-level pointer has to be created also. At each position where
the 3rd-level list is shifted, we also have to change the 2nd-level pointer.

The deletion algorithm works analogously by performing an insertion backwards.
Example. If we insert a new element between positions 40 and 41 into the structure in

Fig. 6, we have to change the pointers that are marked by bold lines in Fig. 7. The new pointers
that occur are drawn downwards.

LEMMA 2. The cost ofan update is O(n 1/3) in the worst case.

Proof. From the description of the maintenance algorithms it follows that after locating
the update position, O (1) pointer changes are made on the 1st level and O (n /3) are made on
the other two levels. Each pointer change requires O (1) time, except when the length of the
3rd-level path is increased. In that case a search is required to locate the last node. The total
cost of this is O (n 1/3), which completes the proof. [3
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FIG. 7. Performing an insertion at position 41 in the data structure ofFig. 6.

Altogether we have the following theorem.
THEOREM 2. Jump lists are a representation ofdictionaries with thefollowing properties:

they are size- and order-unique;
a dictionary ofsize n requires 0 (n) space;
the cost ofperforming a search, insert, or delete operation in ajump list which stores
a dictionary ofsize n is O(nl/3).

Note that the operation of exchanging elements between nodes has not been used in our
upper bound construction. We only use creation or deletion of nodes and pointer changes.
There are also no "hidden" costs required to locate nodes where pointer changes should be
made. All these locations can be found within the time bound of O (n /3).

5. A lower bound on unique representation. We give a lower bound on maintaining
size- and order-unique representations of dictionaries. Recall that we presuppose graphs with
bounded out-degree (= k) only. We assume that the size of the graph is unchanged and, as an
update, we regard the operation of deleting one element and inserting another. That is, after
an update the same graph must occur; only the stored elements may change. Also recall that
there is a one-to-one mapping between nodes and elements. Thus, when arguing about the
graph, we may argue about elements connected by edges instead of nodes.

We say that element y is a parent of element x if there is an edge from y to x. The set of
all x’s parents is called the parent-set of x.

We assume that the elements are taken from an ordered universe, and by the rank of an
element x, denoted rank(x), we mean the number of elements smaller than x in the stored set
plus one. Let x, y, and z be three elements such that rank(x) < rank(y) < rank(z). An edge
from x to z has a length ofrank(z) -rank(x) and covers the element y; we also say that element
z covers y. An edge from z to x has a negative length (and also covers y). The incoming
pattern of an element is given by the lengths of its incoming edges. Since the graph is unique,
the incoming pattern of an element x is exactly determined by the rank of x. Thus, each rank
is associated with a specific incoming pattern. We say that a rank r is critical if the pattern
associated with r differs from the pattern associated with r + 1. An element that has a critical
rank must change its incoming pattern when an update causes its rank to increase by one.
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FIG. 8. A graph.

Note the difference between parent-sets and incoming pattern. The parent-set of x tells
which elements are the parents of x, while the incoming pattern of x deals with differences in
ranks between x and its parents.

In a graph G, the longest distance from the root to an element is denoted by Do, the
largest number of nodes covering one node is denoted by Co, and the number of critical ranks
is denoted by Po.

Example. In Fig. 8 a graph G with k 3 is shown. The nodes are labeled with the ranks
of the contained elements. The root is 2. The parent-set of element 3 is the set of elements
and 4. Elements 3 and 4 have the same incoming pattern (edges of lengths 2 and -1). This
implies that rank 3 is not critical, while all other ranks (except the last rank) are critical. All
elements can be reached from the root by traversing at most two edges, thus Do 2. Element
3 is covered by four edges, (1-+ 5, 2-+-+4, 2-+ 5, and 4-+ 2). However, two of the edges lead
to the same element, so the number of elements covering 3 is three (2, 4, and 5). This is the
maximum number of covering elements, thus Co 3.

We start by showing some properties of a graph in Lemmas 3 and 4. Next, in Lemma 5
we compute the cost of structural changes. In Lemmas 6-9 we show that "bad" updates will
enforce a high restructuring cost. Finally, the lower bound is given in Theorem 3.

LEMMA 3. If 0 3DoCo < n, then in each set of 3DoCo consecutive elements not

containing the root there is at least one element with a critical rank.

Proof. If there is no critical rank all elements must have the same incoming pattern. We
prove the lemma by showing that this may not occur.

First, assume that to each element there is an edge of length L, L > Co 4- 1. Then, the
first element in the set is covered by at least Co 4- elements. Similarly, if to each element
there is an edge of length L, L < -(Co 4- 1), the last element in the set is covered by at least
Co 4- elements. In both cases we get a contradiction of the definition of Co.

Second, assume that to each element there is no edge longer than Co 4- 1. Let p be the
element with the median rank in the set. To reach p from outside the set we must pass a
distance of 1.5DoCo. Doing this by following edges of length at most Co 4- 1, we would
have to follow more than 1.5DoCo/(Co 4- 1) > Do edges. We get a contradiction of the
definition of Do.

Thus, our assumption that all elements have the same incoming pattern leads to a contra-
diction. This completes the proof.

LEMMA 4. If 0 3DoCo < n/2 then Do Co Po (n).
Proof From Lemma 3 we know that all (but one) sets of 3DoCo consecutive elements

contain one element with a critical rank. This gives

(1) Po >
3

-1--f2
UC UC

The last equality follows, since 3DoCo < n/2. ]
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LEMMA 5. Changing the parent-sets ofm elements requires a cost of f2 (m).
Proof We prove the lemma by showing that each restructuring operation changes the

parent-set of O(k) O(1) elements. From this fact it follows that f2(m) restructuring
operations are required to change the parent-sets of m elements. Recall that from the model
of computation we have the following possible operations:

Create a node. This operation does not affect the parent-set of any element. (If we
allow the new node to have k outgoing edges, the number of changed parent-sets
would be k).
Remove a node. This operation affects the parent-set of at most k + elements: the
element that was in the node and the elements reached from that node.
Change/add/remove one outgoing edge from a node (pointer change). This operation
changes the parent-set of at most two elements: one loses a parent and one gets a
new parent.
Exchange elements between two nodes. This operation changes the parent-set of at
most 2k / 2 elements: the two exchanged elements and their children.

Thus, each operation changes the parent-set of O(1) elements, which completes the
proof.

LEMMA 6. Let x be an element with critical rank. Then, x cannot have the sameparent-set
as before, after the following update:

1. delete the largest element;
2. insert a new smallest element.

Proof Let X denote the set of n (consecutive) elements that is stored in the graph
both before and after the update.

Assume that the parent-set of x is the same before and after the update. This implies that
neither the deleted element nor the inserted element can be a parent of x. Thus, the parent-set
only consists of elements in X. (Note that x also belongs to X.)

The update described in the lemma will cause the rank of each element in X to increase
by one, and hence the difference in rank between any two elements in X will be the same
after the update as before the update. Thus, if x has the same parent-set before and after the
update, each incoming edge will have the same length, and thus the incoming pattern of x will
be the same. We get a contradiction with the definition of a critical rank, which completes the
proof.

LEMMA 7. There is an update which requires a cost of (Pc).
Proof To prove the lemma we delete the largest element and insert a new smallest element.

This implies that the rank of each element (except the first one) will increase by one. Thus,
from Lemma 6 it follows that each element that had a critical rank before the update must

change its parent-set. This together with Lemma 5 completes the proof.
LEMMA 8. Let x and y be two elements, rank(x) < rank(y), such that x is y’s smallest

parent. Then, the parent-set ofy must be different after the following update:
1. delete the smallest element;
2. insert a new element between x and y (or anywhere ifx was the smallest element).
Proof The lemma is trivially true if x was the smallest element and therefore deleted.
Otherwise, we prove the lemma by showing that after the described update, there cannot

be an edge from x to y.
After the described update the rank of y is unchanged, and thus y has the same incoming

pattern. This implies that the difference in rank between y and its smallest parent (i.e., the
length of y’s longest incoming edge) must be the same as before the update. However, after
the update the rank of x is decreased by one. Thus, if there would be an edge from x to y after
the update, the length of the longest incoming edge of y would change. We get a contradiction,
which completes the proof.
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Note that there is a symmetric version of Lemma 8 for y’s largest parent (with a larger
rank). Because of the without-loss-of-generality- (w.l.o.g.-) assumption below, this symmetric
lemma is not needed.

LEMMA 9. There is an update which requires a cost of f2 (C6).
Proof We assume w.l.o.g, that there is an element p which is covered by (R)(C6) elements

q, q2 with larger ranks. To prove the lemma we delete the smallest element and insert a
new element which becomes the immediate successor of p in the ordered set. This will have
the effect that the situation described in Lemma 8 will occur for each element qi. This fact
together with Lemma 5 completes the proof.

THEOREM 3. For any size- and order-unique graph representation ofa dictionary there
is a dictionary operation which requires f2 (n 1/3) time.

Proof If C6 0 the graph G must be a linked list with D6 f2 (n). Hence, w.l.o.g.
we may assume that C6 > 0. From Lemma 4 it follows that at least one of the three D6,
C, and P6’s has to be f2(nl/3). Since the search cost is f2(D) and the update cost is
f2 (Max(C, Pc)), either a search or an update has to require f2(n 1/3) time.

Note that if an update involves a search for the update position, then the update requires
(n 1/3) time.
Note also that our lower bound for size-uniqueness may be transformed to be valid for

set-uniqueness by using Ramsey’s theorem [2] in the same way as Sundar and Tarjan [6].

tl. Comments and open problems. We feel that our findings point to a fundamental
fact in the theory of data structures. In particular, in the presence of earlier lower bounds for
unique representations [5], [6], stating that (R) (,-) time is required per dictionary operation,
the new upper bound presented above might seem surprising.

The lower bound given by Snyder [5] is based on the implicit assumption that changing the
status of an element from being stored in a leaf of a binary tree to being stored in an internal
node (or vice versa) requires f2 (1) time. As we have shown, this change can be achieved
without explicitly performing any operation at the node if the binary search tree is embedded
in a directed graph appropriately.

The lower bound by Sundar and Tarjan, stating that (R) (/-) CONS operations are required
per update, is roughly based on the following argument: By choosing an "adversary" sequence
of updates in a uniquely represented binary search tree, at each update we can enforce the
occurrence of f2 (,,/-) new subtrees, which have never existed before. From the assumption
that each occurring subtree has to be constructed at some moment, and the construction requires

(1) time per subtree, a lower bound of f2 (V/g) time per update follows.
The first argument, in which f2 (/-ff) new trees may occur per update, is tree for all

uniquely represented dictionaries by binary search trees and also for the "embedded" trees
presented here. However, all new subtrees may not need explicit construction. The assumption
that f2 (1) cost per new subtree is needed seems reasonable if CONS is the only primitive to
manipulate trees. But it does not hold if search trees are embedded in directed graphs that can
be updated by pointer changes.

It is intuitively clear that CONS operations may be implemented by creating or removing
nodes and changing the pointers of a set of nodes in a directed graph. Hence, it is possible to
obtain a size- and order-unique representation of dictionaries which is based on the ideas of
Sundar and Tarjan but uses pointer changes as primitives. This leads to the notion of shared
search trees [3]. Shared search trees are a size- and order-unique representation of dictionaries
requiring space O (n log n). For a shared search tree storing a dictionary of size n, a search
operation can be performed in time O (log n) and updates can be performed in time O
The shared search tree is a directed graph with nodes of unbounded degree (R)(log n). It is not
known whether there exists a set- and order-unique representation of dictionaries such that
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(b)
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FIG. 9. Evolution ofstructures. (a) Thejelly-fish structure ofSnyder [5]. Each "tentacle" consists ofa circular
list. (b) The same structure with the tree-shaped "body" replaced by a list. (c) The edges connecting the top and
bottom ofeach tentacle is replaced by aforward.link. We achieve a 2-leveljump list. (d) The 2nd level links are added

lognand we have the 3-level jump list. (e) Using tO(W) levels we obtain the shared search tree, a structure similar to

the one described by Sundar and Tarjan [6] with a search cost of O(log n) and an update cost of 0(-). The root

is marked by a double circle.

the underlying graph has bounded node-degree, a search operation can be performed in time
O(logn), and updates take time O(/-) or less in the worst case using pointer changes as
primitive operations.

There is a uniform way to evolve all the structures discussed in this paper, which is
illustrated in Fig. 9.

Our results also raise the following more general problem: All known classes of(balanced)
search trees are not set-unique representations of dictionaries, because in general the same set
of items may be represented by exponentially many different trees. Thus, there is a large gap
between unique representations and commonly used classes of trees to represent dictionaries.
The question is how efficiently can search and update algorithms operate if a dictionary of
size n is represented by f(n) different structures. In this paper we have dealt with the case

f(n) O (1). The classical theory of(balanced) binary search trees is based on the assumption
that f(n) is exponential. Nothing is known for any function f strictly in between these two
extremes.
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SCHEDULING JOBS WITH TEMPORAL DISTANCE CONSTRAINTS*
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Abstract. Thejob scheduling problems for real-time jobs with temporal distance constraints (JSD) are presented.
In JSD, the start times of two related jobs must be within a given distance. The general JSD problem is NP-hard.
We define the multilevel unit-time JSD (MUJSD) problem for systems with m chains of unit-time jobs in which
neighboring jobs in each chain must be scheduled within c time units. We present an o(ne)-time algorithm, where
n is the total number of jobs in the system, and also an o(mecg-)-time algorithm. Some other variations of the JSD
problems are also investigated,

Key words, deadline job scheduling, precedence constraint, real-time systems, relative timing constraint,
temporal distance

AMS subject classification. 68Q25

1. Introduction. In job scheduling problems, many timing requirements are defined as
independent conditions with absolute values. For example, eachjob has predefined ready time
and deadline. In some problems, jobs may also have precedence constraints, i.e., some jobs
must be finished before others can start. Job scheduling algorithms for real-time systems are
then designed to find feasible schedules in which all ready times, deadlines, and precedence
constraints are satisfied.

In many real-time applications, however, jobs must satisfy relative timing constraints.
For example, in a chemical process control system, one element must (or cannot) be added
into a processing unit within a certain time after another element has been put in. In a painting
process, a new coat of painting usually cannot be put on until a certain time after the previous
coat is completed. In all of these problems, the applications impose some relative distances
between the executions of related jobs. We call such constraints temporal distance constraints
[8], [9] and separation constraints [10].

Jobs with a temporal distance constraint must be executed inside the given time interval of
each other, while jobs with a separation constraint must be executed with a minimum interval
between them. In other words, a job has a relative ready time or deadline depending on when
its predecessor was executed Given a set ofjobs J {J, J2 Jn }, in which each job J/
has execution time ei, ready time ri, and deadline di, < <_ n, the job scheduling with
distance constraint (JSD) problem is to find a start time function f such that for _< i, j <_ n,
and/7 j,

(1) f (Ji) >_ ri,

(2) f (Ji) + ei < di, and
(3) If (Ji) f (J/)l < to(Ji, Jj).

In the third condition w(Ji, Jj) is the distance constraint between Ji and Jj. If there is
no distance constraint between Ji and Jj then w(Ji, Jj) cx. For the job scheduling with
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separation constraint (JSS) problem, the condition should be changed to
(3’) If (Ji) f (Jj)l > to(Ji, Jj).
In this paper, we study the JSD problems with various job models. We concentrate on the

single processor scheduling problems; the multiprocessor scheduling problem will be briefly
discussed at the end of this paper.

The rest of the paper is organized as follows. Next we discuss some related work. In 2,
we discuss the JSD problem in general and also define the multilevel unit-time JSD (MUJSD)
problem, in which there are multiple chains of unit-time jobs all with the same distance
constraint. An O(nZ)-time algorithm SMD for the MUJSD problem of n jobs is presented
in 3. In 4, a polynomial-time algorithm PMD for the MUJSD problem is also presented.
Section 5 discusses some extensions of the MUJSD problem We conclude the paper in 6.

1.1. Related work. In job scheduling problems, jobs must meet their timing constraints,
such as ready times, deadlines, and precedence constraints. The general problem of scheduling
jobs with different ready times and deadlines is known to be NP-complete [4], [5]. However,
if all jobs have the same execution time, the problem can be solved in polynomial time even
with precedence constraints 14]. There are many excellent survey papers on the problems of
deterministic job scheduling [2], [6], [1 l], [12].

In most of the previous work on job scheduling, job deadlines have fixed values. Very
little work was done on jobs with relative deadlines. A problem related to the JSD problem
is the linear array problem (LAP) [13]. Given a graph G in which each edge is labeled with
an integer value, LAP tries to arrange the vertices in a linear sequence. If two vertices are
adjacent in G, their distance in the sequence must not be larger than their linkage value in G. It
has been shown that the general LAP and some of its special cases are NP-complete [3], [13].
One of the NP-complete LAP cases is the bandwidth minimization problem (BMP), where
all edges are labeled with the same integer k. The BMP remains NP-complete for rooted
directed trees where the maximum in-degree is one and the maximum out-degree is at most
two [3], [5].

2. Scheduling jobs with distance constraints. As we already defined, distance con-
straints are defined for all and j such that ]f (Ji) f (Jj)] <_ to (Ji, Jj). In this paper, we
consider only the nonpreemptive JSD problem. The preemptive JSD problem is discussed in
[9]. We first consider the single-processor systems. The multiprocessor JSD problem will be
discussed in 5.

Ifjobs have different execution times, it is not hard to construct a special case with only
one distance constraint and show that the problem is NP-complete [7], [8]. We therefore
investigate only the nonpreemptive JSD problems in which all jobs have the same execution
time and the same ready time here. We call this problem the unit-time JSD (UJSD) problem.
Without loss of generality, we assume that all jobs require one unit of execution time and all
ready times are equal to 0. Also, we first assume that deadlines and distance constraints are
all integers. This assumption will be relaxed in 5 to include fractional number deadlines and
distance constraints. If all jobs have deadlines greater than or equal to the total number of
jobs, the UJSD problem is equivalent to LAP. This is obvious since we can use vertices to

represent the jobs and edges with labels to represent the distance constraints between jobs
Thus, we know that the UJSD problem is also NP-complete.

2.1. The MUJSD problem. In the following discussion, we restrict our attention to a
special class of the UJSD problem in which the graphs have a directed multichain tree structure
[1]. We will show that if all distance constraints are the same, the problem can be solved in
polynomial time. However, the problem becomes NP-complete ifdifferent distance constraints
are allowed for different pairs ofjobs.
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In an MUJSD system, the job set is divided into chains of jobs. In each chain, only the
firstjob has a deadline. The otherjobs have a constant distance constraint with their immediate
predecessors. Formally, there are two types ofjobs in an MUJSD system: head job set I-I and
tail job set T. Each job Hi in H H, H2 Hm has a deadline di. Jobs in T are grouped
into m subsets T, T2 Tin, where T/ {J l, Ji2 Jik,, }, and ki >_ O. Ti is the set of tail
jobs after the head job Hi, while Jij is the jth tail job of Hi. We define Jio Hi.

To satisfy the temporal distance constraint, job Jij must be started within c time units

after its immediate predecessor Ji,j- is started. That is, there is a precedence constraint from
Ji,j-1 tO Jij and the distance constraint between these two jobs is a constant c. If c is larger
than or equal to the number of head jobs m, it is easy to find a schedule which can satisfy the
constraint. We thus assume c is less than m. The total number ofjobs n in the MUJSD system
is rn + z’in__l ki.

The problem can be represented by a directed multichain tree structure as follows. Each
job is defined as a vertex in the tree. Each job sequence, Jio, Jil Jiki, is defined as a chain
in the tree with a directed edge labeled c between all adjacent vertices in the chain. A dummy
vertex R is defined as the root of the tree. We also define a directed edge from R to each Hi
in I-I with a label of the deadline di (Fig. 2.1). Thus the structure has multiple levels and all
edges except those on the first level have label c.

We have designed two different algorithms for the MUJSD problem. The first algorithm
SMD has a time complexity of O(n2), where n is the number of jobs in the system. The
complexity is a polynomial function of the output size, since SMD will find the start times
for all of the n jobs. However, it is a pseudopolynomial function of the input size since only
the m, c, and ki’s, need to be specified in the input. We thus present another algorithm PMD
which is an O(m22) polynomial-time algorithm of the input size.

3. A pseudopolynomial time algorithm for MUJSD. Before we present the SMD al-
gorithm for the MUJSD problem, we first show some properties of the MUJSD schedules.
These properties will motivate the design of the SMD algorithm.

3.1. Properties of the MUJSD schedules. In our discussion, we use time slot, or just
slot, to refer to the unit-time interval It 1, t]. Therefore, if we say job J is scheduled at
slot or slot is assigned to (occupied by) J in a schedule f, it means that J will be finished
by or f(J) 1. We define the virtual deadline dij of job Jij as di) di + j c for
< _< m and 0 < j < ki. Thus, dio di. In a feasible schedule, job Jij must be scheduled

at a slot no later than dij. However, scheduling Ji) at slot dij may not be sufficient to satisfy
the distance constraint for Jij since its predecessor Ji,j- may have been scheduled at a slot
earlier than dij c. In other words, the virtual deadline of a job is only an "upper bound" of
its completion time.

For any time t, we define h(t) as the number of jobs with virtual deadlines less than or
equal to t. Clearly, if there are more jobs to be executed than the time slots available, there
cannot be any feasible schedule for the system. In other words, for an MUJSD system with n
jobs, if there exists a t, _< < n, such that h(t) > t, then there is no feasible schedule for
the MUJSD system.

In SMD, the final schedule is constructed by adding one job at a time to an initially empty
schedule. In what follows, when we say a job J is scheduled in a partial schedule f, we mean
that f (J) is defined. We call a partial schedule wellformed if, for all jobs scheduled in the
partial schedule, all their predecessors must have been scheduled in the partial schedule and
all the timing constraints on them are satisfied.

DEFINITION. A schedule f is called a well-formed partial schedule iffor all Jil scheduled
in f, Jip, 0 p < 1, is also scheduled in f, and all constraintsfor Jil are satisfied.
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FIG. 2. I. The m-chain tree structure ofthe MUJSD problem.

In the following discussion, we sometimes omit the words well formed if it is obvious
in the context. We also say that job Jij can be feasibly scheduled into a well-formed partial
schedule f if Jij can be added to f to get another well-formed partial schedule which satisfies
all of the timing constraints.

DEFINITION. A job Jit is reschedulable in a partial schedule f if Jit has been scheduled
in f, which satisfies either condition R1 or R2:

R1. Ji,l.+l, Jil’S immediate successor, is scheduled in f and f (Ji,l+l) < f (Jil) "+" ;
R2. none of Jit’s successors has been scheduled in f
Let us now consider the condition that a job can be added to a partial schedule. To add

a job into a partial schedule, we need to find an empty slot for it. If a head job Hi is to be
scheduled into a partial schedule f and if there is an empty slot before di, then we can simply
schedule tti in the empty slot closest to and before di.

However, if the job to be added is a tail job, the condition is not so simple. This is
because for a tail job, both precedence and distance constraints must be satisfied. To satisfy
the precedence constraint, we need to find an empty slot after the job’s predecessor. To sat-

isfy the distance constraint, the distance between the empty slot and the job’s predecessor must
be less than or equal to c. If there is any empty slot which can satisfy both the precedence and
distance constraints, we can simply schedule the job at the latest such empty slot. However,
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if there is an empty slot but it is before the job’s predecessor, we need to relocate the empty
slot (or the predecessor) so that the empty slot can be used by the job without violating the
precedence and the distance constraints.

In the following lemma we will see that if a job is reschedulable in a partial schedule and
if there is an empty slot in front of the job’s currently scheduled slot, the job’s slot can be made
empty by rescheduling the jobs at some earlier time slots. The proof of the lemma uses the
fact that if a job is reschedulable, it has the freedom to move forward in the partial schedule.
The exact final location of the job depends on what kind ofjobs are in front of it in the partial
schedule. In all cases, we can show that the partial schedule after the move still satisfies all of
the constraints.

LEMMA 3.1. Given a partial schedule f and a reschedulablejob Jil currently scheduled
at slot Q, if P is the closest empty slot before slot Q, we can find a new partial schedule g
by rescheduling only the jobs scheduled between P and Q, so that slot Q is empty in g and
g(Jil) >_ Q c, where c is the distance constraint.

Proof. We prove the lemma by induction on D Q P the distance between the empty
slot and Jim’s scheduled slot in f. Since Jit is reschedulable, either R1 or R2 is true for Jit.

Induction base. If D 1, i.e., the empty slot is immediately before Q, then we can move

Jit to slot P to get g. If .li is a tail job, the move will not violate the distance constraint between
Ji and its predecessor. If Ji is a head job, the move will not violate its deadline constraint. If
R1 is true, i.e., f (Ji,l+l) < f (Jil) -+- c, then g(Ji,t+l) < g(Jil) + c; the distance constraint is
still satisfied. If R2 is true, i.e., f(Ji,t+l) is undefined, no distance constraint between Ji and
its successors can be violated in g. Moreover, g(Ji) f (Jiz) >_ f(Ji) c Q c.

Induction hypothesis. Assume the lemma is true for any partial schedule f and a reschedu-
lable job Jit in f with D < u.

Induction step. We prove that the lemma holds for any partial schedule f and a reschedu-
lable job Jit in f with D u. We need to prove two cases.

Case 1. R1 is true for Jil (i.e., f (Jil+t) < f (Jil) "+- c).
Suppose slot R is assigned to Ji,t+. We have R Q < c. Let us inspect slots Q 1, Q

2 R c one at a time. We will eventually find one of the following:
(1) the empty slot P,
(2) the slot s assigned to Ji,t-, or
(3) a slot s’ assigned to a job which is reschedulable in f.

If slots P and s are not found first, we will definitely find an s’. This is because if slot R c
is not empty or assigned to Ji,t-, then the job scheduled at slot R c must either have its
immediate successor scheduled at a slot earlier than slot R (since slot R is now occupied by
Ji,t+ or have no successor scheduled, which means that it must be a reschedulable job in f.
Therefore, at least slot R c satisfies one of the above three conditions. We now show how
to find g in all these situations.

(1) If we first find the empty slot P, we can simply reschedule Ji at P and leave slot Q
empty to get a partial schedule g.

(2) If we first find the slot s, by induction hypothesis we can get a new partial schedule

f’ such that slot s is empty and f’ (J/,__ ) > s c (since f (Jil) f (Ji,-1) < c, i.e.,
Ji,t- is reschedulable in f and s P < u). Then, we can reschedule Jit at slot s and
leave slot Q empty to get a well-formed partial schedule g.

(3) If we first find a slot s’, which is assigned to a reschedulable job, again by induction
hypothesis we can find a new well-formed partial schedule f’ such that slot s’ is empty.
Then, we can reschedule Ji at the new empty slot s’ and leave slot Q empty to get a
well-formed partial schedule go

In all situations g(Jil) > f (Jil) c Q c.
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Case 2. R2 is true for Jit (i.e., none of J)t’s successors has been scheduled).
In this case, we will inspect slots Q 1, Q 2 Q c one at a time. If, before we

reach slot Q c, we find one of the slots P, s, or s’ as defined in Case 1, the lemma can be
proved as in Case 1. If we cannot find any such slot before we inspect slot Q c, then the
lemma can be proved as follows:

(1) If Ji is a head job, then slot Q c is either empty or occupied by a reschedulable job,
since the job scheduled at slot Q c must have its immediate successor scheduled at
a slot earlier than slot Q or have no successor scheduled. The lemma can be proved
as in Case 1.

(2) If Jil is a tail job, then the job scheduled at slot Q c must be Ji,l-l. If we remove
Jit from f to get a new partial schedule f’, then Ji,t- is a reschedulable job in f’.
By induction hypothesis, we can get a new partial schedule g’ from f’ such that slot
Q c is empty in g’, and g’(Ji,-) > f(Ji,t.-) c. Then, we can reschedule Jit
at slot Q c to get a well-formed partial schedule g without violating the distance
constraint between Ji and Ji,t-.

In both Cases and 2 the onlyjobs rescheduled are thosejobs that were scheduled between
P and Q. The lemma is true by induction. [3

From Lemma 3.1, we can derive a sufficient condition that a tail job can be feasibly
scheduled into a partial schedule. This is shown in the following lemma.

LEMMA 3.2. In an MUJSD system, suppose a tail job Jit is not scheduled in a partial
schedule f but all its predecessors have been scheduled. If there is any empty slot before
f(Ji,l-) + c + 1, then we can alwaysfind a new well-formed partial schedule in which Jit is
scheduled.

Proof. If there is any empty slot between f(Ji,l-l) q" and f(Ji,l-1) -[" -[- 1, job Jil
can be scheduled at the empty slot closest to and before f (Ji,t_ ) + c + 1. If there are empty
slots only before f(Ji,t_l), from Lemma 3.1, we can always find another partial schedule

f’ so that slot f(Ji,t-) + is empty and f’(Ji,t-) > f(Ji,t-) c. Jil can then be sche-
duled at f(Ji,-l). It is easy to see that the new partial schedule is still well formed in
both cases. ]

3.2. The SMD algorithm. We have shown that, for a job Ji yet to be scheduled into a
partial schedule f, if all its predecessors have been scheduled and there is an empty slot before
the time that Jil must be finished, then Jit can always be feasibly scheduled into f. With this
property, we now present the scheduling algorithm SMD for the MUJSD problem.

ALGORITHM SMD
Step 1. Sort the jobs into S, $2 S with nonincreasing number of successors.
Step 2. For from to n do

if Si is a head job Hj then SCHED(i, dj, O)
else suppose Si’s predecessor is scheduled at slot s;

SCHED(i, s + c, 0);

procedure SCHED(i, t, r);

if 0 then output "unschedulable" and stop
else if slot is empty then f (Si) /* schedule Si at slot */

else{
suppose slot is now assigned to Sk.;
if (Sk is the predecessor of Si) or (r and S is reschedulable)
then f(Si) l; /* schedule Si at slot */
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SCHED(k, 1, 1); /* reschedule S, */

else SCHED(i, 1, r);

In SMD, we schedule one job at a time. Among all jobs remaining to be scheduled, we
always pick the job with the largest number of successors to schedule next. If the job is a head
job we schedule it at the empty slot, if any, closest to and before the job’s deadline. If the job
is a tail job with its predecessor scheduled at slot s, and if there exists any empty slot between
time s and time s 4- c, we can simply schedule the job at the empty slot closest to time s 4- c;
otherwise we schedule the tail job at slot s and then reschedule its predecessor.

All of the scheduling decisions are made in procedure SCHED, which can be invoked with
the parameter r 0 or r 1. When we try to schedule a job Si which has not been scheduled
before, SCHED is invoked with r 0. When SCHED is invoked with r 1, it reschedules
a job Si (which will be moved to a new slot) by inspecting the slot t. The feasibility of the
schedules produced by the algorithm is shown next.

LEMMA 3.3. If SMD terminates successfully without reporting "unschedulable," the
schedule generated by the algorithm is afeasible schedulefor the job set.

Proof From the discussion in 3.1, it is easy to see that each successful iteration of Step 2
in SMD will produce a well-formed partial schedule. If the algorithm terminates successfully
without reporting "unschedulable" then all jobs must have been scheduled with all constraints
satisfied. Hence, the final schedule produced is feasible.

THEOREM 3.4. Algorithm SMD has a time complexity of 0 (n2).
Proof Step (sorting) can be done in O(n log n). In Step 2 the algorithm will recursively

call SCHED with the second parameter setting to if and only if time slot has already
been assigned to some other job. Since the total number of jobs is n, the total number of
recursive calls is at most O(n). This means that Step 2 can be done in O(n2) with carefully
designed data structures. Therefore, the time complexity of Algorithm SMD is O (n2), [-]

3.3. The schedulability condition for MUJSD systems, In Lemma 3.3, we show that
if SMD produces a schedule for an MUJSD system, then the schedule satisfies all of the
precedence, deadline, and distance constraints for the job set of the MUJSD system. In this
section, we show that if an MUJSD system is schedulable, then SMD will find a feasible
schedule for it. In other words, SMD reports a failure only if the job set is unschedulable.

To find a sufficient scheduling condition for MUJSD systems, we need a more dynamic
notion that can be used to discuss the partial schedules produced by SMD. For each partial
schedule produced by SMD, we define an effective deadline for each job in the system as
follows.

DEFINITION. Given a partial schedule f, ifjob Ji. has been scheduled, its effective dead-
line is defined as f (Jix) + 1o If Jix is a headjob and has not yet been scheduled, its effective
deadline is defined as its deadline di. If Jix is a tail job and has not yet been scheduled, its

effective deadline is the effective deadline of its predecessor Ji,x- plus c.

Before the final schedule is produced, the effective deadline of a job may be changed
whenever SMD (re)schedules the job itself or one of its predecessors. In SMD, when SCHED
tries to move a job from slot to slot 1, the job to be scheduled at slot thus has a new
deadline constraint of 1. In other words, the effective deadline of the job is changed to 1o
Moreover, the effective deadlines of its unscheduled successors are affected accordingly.

One of the properties of SMD is that once a slot is assigned to a job, the slot will never
become empty again. Moreover, during the execution of SMD, ifjob Si is scheduled at slot
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and its immediate successor Si is also scheduled in the partial schedule, then slot 4- c must
be nonempty. This can be easily seen from the algorithm.

For the rest of the discussion, to distinguish the different states when running SMD, when
we refer to a partial schedule f, we actually include the current effective deadlines of all
the jobs (scheduled or not) in the system. In the following defintion, we define u(f, d) as
the number of unscheduled jobs with effective deadlines less than or equal to d in the partial
schedule f, and e(f, d) as the number of empty slots before time d in f.

DEFINITION A partial schedule f is said to be extensible if e(f, d) >_ u(f d)for all
d>0.

It is obvious that when two or more jobs are competing for a slot (i.e., these jobs have
the same effective deadline), only one of them can be scheduled at the slot; the others must be
scheduled at some earlier slots.

LEMMA 3.5. In a partial schedule f, suppose Si is an unscheduledjob with an effective
deadline d and e(f, d) u(f, d) > O. If there is anotherjob with the same effective deadline
d, we can derive another schedule g from f by changing the effective deadline of Si from d
to d and maintain the condition that e(g d) u(g, d) >_ O. Furthermore, it is also true

that e(g, d -1) u(g d -1) >0.

Proof. Note that Si is unscheduled in both f and g, but it has different effective deadlines
in them. It is obvious that e(g, d) e(.f, d) and u(g, d) u(f, d). Therefore we have
e(g, d) u (g, d) e(f, d) u (f, d) > O.

If slot d is nonempty in f (and thus in g) then elf, d) e(f, d 1) e(g d 1) and
u(g,d-1) < u(f,d)o Therefore, e(g,d-1)-u(g,d-1) > e(f,d)-u(f,d) > O. Ifslotd
is empty in f then there must be another unscheduled job with effective deadline do We have
e(g,d- 1) > e(f,d)- andu(g,d- 1) _< u(f,d)- l. Again, e(g,d.- 1)-u(gd- 1) >_
e(f, d) u(f, d) > O.

We have shown the feasibility of the partial schedule generated after each iteration in
Step 2 of SMD. Also note that if the partial schedule, generated after Si-1 is scheduled, is
extensible, by Lemma 3.2 and the definition of extensibility, we know that Si can always be
feasibly scheduled. Therefore, if we can show that the partial schedule, generated after Si is
scheduled, is still extensible, then we can prove the correctness of algorithm SMD.

LEMMA 3.6. In Step 2 ofSMD, if the current partial schedule before an iteration of the
loop is extensible, then the partial schedule produced after the iteration is still extensible.

Proof Suppose that after Si- is scheduled, the partial schedule f produced by SMD
is extensible. We now prove that the partial schedule, produced after Si is scheduled, is also
extensible. To prove this it suffices for us to show that every operation in SMD that changes
the effective deadline of a job from to will not affect the extensibility of the partial
schedule. There are two cases to be considered.

Case 1. This case involves scheduling the current job Si (r 0 in SCHED).
Suppose we are trying to schedule Si at time slot t. If slot is empty we will sched-

ule Si at slot t, which does not affect the extensibility of the partial schedule. If slot
is occupied by Sk and Sk is the immediate predecessor of Si, we will schedule Si at slot
and try to reschedule Sk at slot by calling SCHED with r 1. By Lemma 3.5,

scheduling Si at slot and rescheduling Sk by changing the effective deadline of S, to
will not affect the extensibility of the partial schedule. If slot is occupied by S, and Sk
is not the immediate predecessor of Si, we will try to schedule Si at slot by calling
SCHED with r 0. This changes the effective deadline of Si to and the effective
deadlines of all its successors, if any, to one unit time smaller. We next prove that changing
the effective deadlines of Si and its successors will. not affect the extensibility of the partial
schedule.
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Since Si is the job to be scheduled and Sk is a job that has already been scheduled, we
must have k < i, that is, the number of successors of Sk is no less than that of Si. If none of
Sk’s successors has been scheduled, then for each of S;’s successors there is a corresponding
successor job of Sk that has the same effective deadline. On the other hand, if the immediate
successor of Sk has been scheduled, then slot / c must be occupied by some job S. with
z < i. Repeating the above argument, we can see that for job Si and each of its successor
jobs, either there is another unscheduled job with the same effective deadline or the time slot
for the effective deadline is nonempty. With these conditions, by Lemma 3.5, changing the
effective deadlines of Si and all its successor jobs to one unit time smaller will not affect the
extensibility of the partial schedule.

Case 2. This case involves rescheduling a job Sj (r in SCHED).
Suppose we are trying to schedule Sj at time slot t. If slot is empty or occupied by the

immediate predecessor of Sj, the situation is similar to that in Case 1. If slot is occupied by
S and S is not the immediate predecessor of Sj, then we will schedule either Sj or Sk at slot
and try to reschedule the other one at slot 1. In the following proof, we use Sp for the

job to be rescheduled and Sq for the job now scheduled at t. Scheduling Sq at slot does not

change its effective deadline so that the extensibility of the partial schedule is not affected.
We only need to show that rescheduling Sp by changing its effective deadline to will
also not affect the extensibility of the partial schedule.

If St,’s immediate successor has been scheduled, then changing St,’s effective dead-
line to will not change the effective deadline of any other unscheduled job, and by
Lemma 3.5, this does not affect the extensibility of the partial schedule, since slot is
nonempty (now occupied by Sq). On the other hand, if none of Sp’s successors has been
scheduled, then Sp, Si, and Sp’s immediate successor have nonincreasing numbers of suc-
cessors. Since Sp was to be rescheduled because of the operation of rescheduling some
other job, we must have + c < s, where s is the first slot in which we tried to sched-
ule Si. This means slot + c must. be nonempty at that moment. Suppose Sy is currently
scheduled at slot + c. Since the number of successors of Sy is no less than the number
of successors of Si, it is no less than the number of successors of Sp minus one. Using an
argument similar to that in Case 1, we can show that, for job Sp and each of its succes-
sor jobs, either there is an unscheduled job with the same effective deadline or the effective
deadline slot is nonempty. Then, by Lemma 3.5, changing the effective deadlines of Sp and
all its successor jobs to one unit time smaller will not affect the extensibility of the partial
schedule. [3

LEMMA 3.7. For any MUJSD problem with n jobs, ifh (d) < dfor all d, <_ d < n, then
SMD willfind a feasible schedule for it.

Proof. Initially we have u(f, d) h(d) < d e(f, d) for all d > 0, where f is the
empty schedule before Step 2. Thus the empty schedule f is an extensible partial schedule.
Moreover, Sl can be feasibly scheduled into f, and by Lemma 3.6, the partial schedule
produced is still extensible. Similarly, we can show that in each iteration of Step 2, Si can
always be feasibly scheduled and the partial schedule produced is still extensible. Therefore,
all jobs can be feasibly scheduled, i.e., .Algorithm SMD will finally find a .feasible schedule
for this MUJSD problem. [3

4. A polynomial-time algorithm for the MUJSD problem. In this section, we present
the PMD algorithm which will generate a feasible schedule for a schedulable MUJSD system
with m job chains and distance constraint c in O(m2c2) time. We first introduce the data
structures used in the algorithm. The algorithm is then presented in detail, including an
example on job rescheduling. We also prove the properties and the time complexity of the
algorithm.
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FIG. 4.1. The schedule corresponds to the S-list [(9; 22; I 3)2 (5; 15; 2, 2), (1" 5" 4)].

4.1. Data structures. To have a polynomial-time algorithm, the output (i.e., the sched-
ule) from the algorithm cannot specify the start time of each job Jij. Instead, we must use
a data structure to describe the schedule for each job chain Bi. We use a list, called S-list,
to describe the schedule for each chain in an MUJSD system. Every element in the S-list is
of the form (j" s; c l, c_ ct), where -,I=1 ci c. The cis define the distance patterns
between jobs. An S-list specifies the job positions backwards. Suppose S-list Si (the S-list for
the job chain Bi) is (j; s; c, c2 c), (j’; s’; c’ c2 ck) ]; this means that
Jij is scheduled at slot s, Ji,j- is scheduled at c time units before Jij (i.e., slot s c), Ji,j-.2
is scheduled at c2 time units before Ji,j- (i.e., slot s c c2) and Ji,j- is scheduled
at ct time units before Jij-t+. The pattern repeats for those preceding jobs up to job Ji,j’+,
since j’ is defined in the next element. Job Ji,j’ starts a new distance pattern, starting at slot s’.

Figure 4.1 shows the schedule corresponding to the S-list [(9; 22; 1, 3), (5; 15; 2, 2), (1; 5;
4)] for job chain Bi (note that distance constraint c 4). The first element in the S-list is (9;
22; 1, 3), which means that Ji9 is scheduled at slot 22, JiB is scheduled at slot 21 (= 22 1),
Ji7 is scheduled at slot 18 (-- 21 3), and Ji6 is scheduled at slot 17 (= 18 1). Since the
second element in the S-list is (5; 15; 2, 2), the scheduled position of Ji5 is defined by the
second element, not the first element. That is, J/5 is scheduled at slot 15. Similarly, Ji4 is
scheduled at slot 13 (= 15 2), Ji3 is scheduled at slot 11 (-- 13 2), and Ji2 is scheduled
at slot 9 (-- 11 2). The last element (1; 5; 4) specifies that Ji is scheduled at slot 5 and Jio
is scheduled at slot (-- 5 4). It is obvious that, given a valid S-list, there is exactly one
schedule corresponding to it.

For each job chain Bi, we define two deadlines as follows.
DEFINITION. The head deadline ofthe chain Bi is the deadline di ofthe headjob Hi. The

tail deadline of Bi is the virtual deadline dii di +" ki c ofthe last tailjob Ji.
Since the PMD algorithm must work on a sequence of time slots, not individual slots,

we partition time slots into groups. Let Dmax max<<m {di/i be the latest tail deadline of
all job chains. It is obvious that no job can be scheduled after Dmaxo We partition all of the
time slots before Dma (including slots before time 0) into c different groups, which we call
E-groups Ei, <_ <_ c Let Di Dmax + for < < c. Ei consists of time slots
Di, Di c, Di 2c When we schedule the jobs in the PMD algorithm, the slots in an
E-group will be filled from the tail. We call a sequence of empty slots s, s c, s 2c in
an E-group a v-chain with the tail position s. Initially, each E-group Ei is a v-chain with tail
position Di. We call it v-chain V;. In the algorithm, these v-chains will be filled up from the
tail so that they become shorter and shorter.

4.2. The PMD algorithm. We now present the PMD algorithm. In Step 1, we sort the
job chains and reindex them so that the chain with a larger tail deadline has a larger index
(ties are broken arbitrarily). Also, we create a pseudochain 0 which has only one job with a
deadline 0 (note that the head deadlines of all the other job chains are larger than 0). This
pseudochain serves as a marker to trigger the final cleanup process which will move jobs
scheduled before time 0 to empty slots after time 0o Step 2 sets the initial tail positions of the
v-chains and initializes the counter p which points to the current job chain being scheduled,
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Step 3 is the main step of the algorithm where we try to fit each job chain into some
v-chain. We process the job chains one at a time starting from the chain with the latest tail
deadline. We try to schedule job chain Bp into the v-chain V.,, which has the latest tail position
D.,. If the tail deadline dp,,, of Bp is larger than or equal to Dy, we can schedule the whole
job chain in a single assignment. If p > 0, we create an S-list [(kp; Dy; c)] for Bp, and reset
the tail position of V.v to D.v (kp -+- 1)c. If p 0, we have already scheduled chains to rn
and all the tail positions of the v-chains are less than or equal to 0. Therefore, we can go to

Step 4 to check if the schedule that is found is feasible.
If the tail deadline dpkp of Bp is less than Dy, slot Dy cannot be used by any job in B to

Bp. However, there may be some previously scheduled jobs that can be rescheduled at Dy.
Therefore, we search for any scheduled job chain Bi which has at least one job scheduled
before Dy with a virtual deadline > Dy. We then reschedule some of the jobs in Bi. The
rescheduling procedure will be discussed in detail in the next section. If we cannot find such
a job chain, then we reset the tail position of Vy to Dy [(D.y dp,,)/c]c. Step 3 is then
repeated to schedule job chain Bp.

Step 4 checks if the schedule that is found is feasible. We only need to check if all head
jobs are scheduled after time 0. If any of the head jobs is scheduled before time 0 then the
schedule is infeasible. Given an S-list Si, it is easy to find the scheduled slot of the head job
Jio in at most O (c) time. Therefore, Step 4 can be done in time O (mc).

ALGORITHM PMD
Step 1. Sort and reindex the job chains in nondecreasing tail deadline order

(i.e., diki <_ di+l,ki+,, for _< < m);
Create a pseudochain B0 with do 0 and k0 0;

Step 2. Set D dmk,,
Fori=2tocdo{setDi Di-l -1;
Set p m;

Step 3. Let y be the index of the v-chain with Dy max Di;
_<_ .<_

If dp, >_ Oy

then {/* schedule chain p */

If p 0 goto Step 4;
initialize S-list Sp to be [(kp; Dy; c)];
reset Dy Dy (kp + 1)c;
set p p 1;

else {/* reschedule chains */

Among scheduled chains p + to m find a chain Bi,
and locate the job Jij, j > O, where
($3.1) Jij is the latest job in Bi scheduled before Dy, and
($3.2) dij > Dy.
If Bi and job Jij exist

then reschedule jobs Jio, Ji,..., Jij;/* as in 4.3 *!
else reset Dy Dy [(Dy dpkp)/C]C;

Repeat Step 3.
Step 4. If there is any head job scheduled before time 0

then output "unschedulable";
else output the m S-lists.

4.3. Rescheduling job chains. In Step 3 of PMD, after job Jij is identified, we want
to reschedule it and all its predecessor jobs to some new slots. To have a polynomial-time
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FIG. 4.2. An example ofthe rescheduling procedure q[’Algorithm PMD.

algorithm we must reschedule the jobs altogether by computing the resulting S-list directly,
not individually. We first remove jobs Jio, Jii Jij from the schedule. This is done by
returning all their slots to the corresponding v-chains. We then try to fill the jobs backwards
into the available slots as late as possible (starting from D.). However, we still need to satisfy
the deadline requirement of Ji0. Therefore we may have more than one distance pattern for
the rescheduled jobs. Let us first use an example to illustrate the rescheduling procedure
(Fig. 4.2).

Example. Suppose dpk, < Dy 30 and c 4. Vy has a tail position Dy 30 and consists
of slots 30, 26, 22 Also suppose Si is [(8; 32; 1, 3), (2; 19; 4)] and di0 18 (Fig. 4.2(a)).
Ji6 is currently scheduled at slot 28 and has a virtual deadline di6 18 +6.4 42. Therefore,
Ji6 can be rescheduled at slot Dx. (Note that Ji7 is scheduled at slot 31 > Dy.) Let the v-chain
with tail position 20 be v-chain Vx,, and the v-chain with tail position 7 be v-chain Vx., i.e.,
Dx, 20 and D 7. Note that slots in V, and Vx2 are in the same E-groups as those slots
currently occupied by jobs Jio, Jii Ji6. If we "unschedule" jobs Jio, Jii Ji6, the tail
positions Dx, and Dx2 will become 28 and 27, respectively (Fig. 4.2(b)).

We will reschedule jobs Jio, Jii Ji6 at only those slots in Vx, Vx,, and V2 as late
as possible. However, they still must satisfy the deadline and distance constraints. In other
words, Ji6 is rescheduled at slot 30, Ji is rescheduled at slot 28, Ji4 is rescheduled at slot
27, Ji is rescheduled at slot 26, and Ji2 is rescheduled at slot 24. Ideally, we would like to

reschedule J at slot 23. But since the deadline of Jio is 18, Ji cannot be scheduled at a slot
later than 22 18 + c. Therefore, the best we can do is schedule Jio at slot 18 and Jii at slot
22. The final schedule for these jobs is shown in Fig. 4.2(c). The new S-list for the th chain
becomes [(8; 32; 1, 3), (6; 30; 2, 1, 1), (1; 22; 4)], and the tail positions D.., D,, and D. of
V., V,, and V. now become 14, 20, and 23, respectively.

Before we present the rescheduling procedure, we need to define some notation. Let Jij
be the job that satisfies conditions ($3.1) and ($3.2) in Step 3 of PMD. Suppose the current

Si has a form [(ji; sl; Cl, 6"12 ell,) (jq; Sq; Cql, Cq2 Cqlu)], and Jij’s scheduled
position is defined in the uth element (j,; s,; c,l, c,2 ca,). In Lemma 4.1 we will show
that

(1) u=qorq-1;
(2) if there is more than one element in Si, Ji; is not scheduled at Sq_;
(3) if there is only one element in Si, Jij is not scheduled at Sq;
(4) if j > jq then the last element in Si has a simple distance pattern (jq; Sq; c).

Suppose there are L distance patterns in the uth element of Si, i.e., L l. Let us rename the
c,,’s as C’s, i.e., C c,,, for v 1,2 L. Also, we define Co C/. Suppose job Jij
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is currently scheduled at slot K. We will define some special E-groups for our discussion as
follows"

(1) If j g: jq, and we suppose that the current distance pattern between Jij and Ji,j+
is Cr, 0 < r < L (i.e., K s, Q. c _,r,,= Cv for some integer Q), we will

L Cvcall the E-groups that slots K, K Cr+, K C+ Cr+2 K- Yv=r+
LK Y-v=r+/ C C,......and K Y.,=r+ Cv = C, belong to as Ex,, E,

and ExL, respectively.
(2) If j jq, we know that L and CL c from Lemma 4.1. We will define r

(hence, C CL c) and call the E-group to which K belongs E..
Finally, we will rename y as x0 so that Dxo Dy.

The rescheduling procedure has two parts. In the first part, we unschedule jobs Jio, Ji,
and Jij. To do this, there are three cases. If j > jq (i.e., u q 1) we delete the

last element in Si, i.e., element (jq; Sq" Cql). If j jq (SO u q) we again delete the last
element in Si, since we are going to reschedule all the jobs defined in this element. Finally,
if j < jq (again u q) we don’t need to delete any element. In Lemma 4.1, we will prove
that jobs Jio, Ji Jij are currently scheduled at the slots that belong to the L E-groups
Ex,, Ex: Ex (condition (c)), and if we unschedule these jobs, their slots will merge with
the existing v-chains in the L E-groups (condition (d)). Therefore, we need to reset Dx,, D2,

L Cv CDry. to K, K Cr+l, K Cr+l Cr+2, K -,v=r+l Cv, K Lv=r+l
and K- ZL r-I

=r+l C Y-.o= Cv, respectively. These L v-chains and the v-chain V0
with tail position Dxo D are the only v-chains that will be used in the second part of the
rescheduling. That is, we try to reschedule jobs Jio, Ji Jij at only these L + v-chains
and the latest possible slots.

In part two of the rescheduling, among the L + v-chains, we find the latest slot H before
the head deadline di of Bi (i.e., H max{t <_ di and Dx,,-t 0 (modulo c), 0 < v < L}).
Suppose H is in v-chain Vx, i.e., D. H c for some integer . We know that there are
(L + 1) + (c + 1) empty slots available between slots H and Dxo for rescheduling the j +

jobs. We want to reschedule the jobs at the latest possible slots, yet Jio must be scheduled at
or before H. There are three possibilities:

(1) If oe 0 and Dxo H j .c, Jij should be rescheduled at slot Dxo Dy. Each Jiv,
0 < v < j, should be scheduled, at c time units before Ji.+l. In this way, Jio will
be rescheduled at slot Dxo j c H, which is the latest slot in which Jio can be
scheduled. In terms of the data structure, we append the element (j; Dxo; c) to the end
of S/and reset Dx0 H c. Since Dxl Dx2 Dxt have been reset to appropriate
values, they don’t need to be changed.

(2) If j + > 6(L + 1) + (oe + 1), then the total number of jobs to be rescheduled is
larger than or equal to the total number of empty slots available from slot H to slot
D,0. Therefore, Jio will automatically be scheduled at slot H or earlier. As for the
data structure, we append the element (j; D0; Dxo K, C+I, Cr+2 CL, C1, C2,

Cr-, Cr Dxo + K) to the end of Sio Also, assume that (j + 1) .(L + 1) + ?,
for some integer ) and 0 < ?, < (L + 1). We reset D,,, to D.. ( + p)c for
v 0, L, where p if ?, > v and p 0 otherwise.

(3) If j + < a(L + 1) + (oe + 1), then the number of jobs to be rescheduled is less
than the number of empty slots available. In this case, we still need to reschedule job
Jio at slot H or earlier because of the deadline constraint. From earlier discussions,
we know that D H (D H) + (Dxo Dx) 6 c + (Dxo Dx) (note
that0 < Dxo- D,o < c). Now, ifj-a < oe, then if we try to reschedule jobs
Jij, Ji,j- Jio one by one at the available empty slots from Dx,, to H, we will
schedule job Jia at a sl.ot later than D. But since job Jia cannot be scheduled at
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a slot later than Dx, we schedule it at slot Dx. Therefore, the schedule pattern
changes from job Jia. If j < c, we define j’ 6 and s’ D.o, or else define
j’ (j o) ,k(L + 1) (, + 1) and s’ Dx [(j oe 6)/L]c, where
j-o-3 .. L + ?, for some integers,k and0 < ?’ < L. We thus append
elements (j; Dxo" D.,, K, Cr+, Cr+2 Ct, Cl, C2 Cr--, Cr D. + K)
and (j’; s’; c) to the end of Si. We must also update Dxo, D., DxL as follows. If
j-6 < or, Dx,. is reset to Dx,,-cforO < v < j-3 andD. is reset toH-c
(Dr, for j 3 < v < L and v :fi cr, remain unchanged since they have been reset
to the appropriate values already). If j 6 > cr, D.,, for 0 < v < c is reset to

Dx,,- (,k + + [(, L +cr v)/L])c, Dx is reset to H -c, and Dj. forcr < v < L
is reset to Ds,. (5 + [(y (v c 1))/L])c.

After we have rescheduled the jobs in Bi we repeat Step 3 to schedule the current Bp.
It is easy to see that after the rescheduling the tail positions of some of the v-chains may
increase, but max<v<. D should decrease, since the tail positions of the v-chains involved in
the rescheduling procedure will get smaller values than the original Dy.

4.4. Properties ot" Algorithm PMD. In this section, we prove the correctness and the
time complexity of Algorithm PMD.

LEMMA 4.1. During the execution of Algorithm PMD, suppose job chain Ba has been
scheduledand suppose the S-list Sa is [(j" Sl; Cll, Cl2 C,) (jq" Sq; Cql, Cq2
Cqt,)]. Also, suppose Vy is the v-chain with the largest tail position Dy among all v-chains.
Let Jao, Ja Jab, b > O, be the jobs in Ba currently scheduled before Dy. The following
conditions must be true:

(a) Ifq > then b < jq-1 and ifq then b < jq.
(b) lfb > jq then lq (hence Cql C).
Suppose Jab is scheduled at slot K which is defined in the uth element of Sa, i.e., u q

if jq < b < jq-I and u q if b < jq. Let L 1, be the number ofdistance patterns in the
element, and let us rename Cv cu, for v 1, 2 L and Co Cc c,1. If b jq,
we canfind two integers Q and r, 0 < r < L, such that the current distance between Jab and
Ja,b+ is Cr, and K s, Q c y.= C,. Let slots K, K Cr+ 1, K Cr+l Cr+2

L r-1C C, and K ---v=r+l Cv Zv=l Cv belong to theK- Zv=r+l Cv, K }’--=r+
E-groups E.,, E and Ex, respectively. If b jq, from (b) we know that L and
Ce Co c. In this case, let E., be the E-group to which K belongs and let r (hence,
C C1 c). Thefollowing conditions must also be true:

(c) Ifb > jq then slot Sq Ex for some < v < L.
(d) For each v, < v < L, let Jab’ be the first job in chain a scheduled at slot s’ and

s’ E,,. Ifthere exists such a b’ then .Dx, s’ c; otherwise, Su c < Dx, < s.
Proof It is obvious that the initial empty schedule satisfies conditions (a)-(d). Suppose

conditions (a)-(d) are true before an iteration of Step 3. We now show that after the iteration
they still hold. If dp, > Dy, we will schedule Bp at Vy by setting Sp to [(kp; Oy; c)] and
decrease the value of Dy. It is easy to see that conditions (a)-(d) still hold, since the value of
max <<c D, is smaller than the original Dy. Ifdp,, < Dy and nojob chain satisfies conditions
($3.1) and ($3.2) in Step 3, we will only decrease the value of Dy, hence conditions (a)-(d)
still hold. If we invoke the rescheduling procedure, the only job chain that will be affected is
Bi. Because Bi satisfies conditions (a)-(d), the rescheduling procedure is valid as discussed
in the previous section. Moreover, although the tail positions of some v-chains may increase,
the value max<v<c D will only decrease. Therefore, conditions (a)-(d) still hold for all
of the scheduled chains except Bi. However, after the rescheduling procedure, Ji will be
scheduled at the original Dy and it is not hard to see from the rescheduling procedure that all
four conditions still hold for Bi after the rescheduling. [2
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LEMMA 4.2. In Step 3 ofAlgorithm PMD, ifdpk,, < D.v and none ofthe scheduled chains

satisfies conditions ($3.1) and ($3.2), then none of the jobs currently scheduled before slot
D, v c has a virtual deadline larger than or equal to D.v v c for each v 1, 2

Proof From the algorithm we know that if a scheduled chain Bi has a job scheduled
before slot Dr, then it must have at least one job scheduled after slot D.o Let Ji,j+ be the first
job in chain that is scheduled after slot D.,. Suppose there is a job Jij, with virtual deadline
larger than or equal to D.v v c and currently scheduled before slot D., v c for some
v > 1. We must have (j + 1) j’ > v + 1, i.e., j j’ > v. This means that Jiy, which is
scheduled before slot D.v, has a virtual deadline larger than or equal to D.v. Hence, Bi satisfies
conditions ($3.1) and ($3.2), which contradicts the assumption.

THEOREM 4.3. Algorithm PMD will find afeasible schedule if the system is schedulable
and will output "unschedulable" ifthe system is unschedulable.

Proof From the algorithm, we know that the final schedule generated by Algorithm
PMD has no two jobs occupying the same slot. Moreover, the schedule satisfies the deadline,
distance, and precedence constraints. Now, the only thing we need to prove is that if the
system is schedulable, none of the jobs will be scheduled before time 0. If there is no empty
slot from slot to slot D in the final schedule, where D maxl<i<m diki, then ajob scheduled
before time 0 implies that the total number of jobs in the system is larger than D, which in
turn implies that the system is unschedulable. Suppose there are empty slots before time D
in the generated schedule. Let be the first empty slot. From Lemma 4.2, it is easy to see that
none of the jobs scheduled before slot has a virtual deadline larger than or equal to t. If there
is a job scheduled before time 0, then the total number ofjobs with virtual deadlines les,s than
is larger than 1, hence the system is unschedulable. ]

LEMMA 4.4. In Step 3 ofAlgorithm PMD, finding a chain that satisfies conditions ($3.1)
and ($3.2) or making sure that none of the chains satisfies the two conditions can be done in
time at most 0 (mc).

Proof By Lemma 4.1, any chain that satisfies conditions ($3.1) and ($3.2) must have
j < jq-1. That is, we only need to check for each of the chains p 4-1 to m, the last two elements
of its associated S-list. To locate the job Jij in chain that satisfies the two conditions needs
time at most O (c), since the c-pattern of each element in the S-list has at most c components.
Therefore, the total time needed is at most O (mc).

THEOREM 4.5. The time complexity ofAlgorithm PMD is at most 0(m2c2).
Proof The time complexity of the algorithm is dominated by Step 3. Finding D.v needs

time O (c) and we will show that Step 3 will be repeated at most O(mc) times, therefore, the
total time spent on finding maxl<v<c Dv is O(mc2). Initializing S-list Sp can be done in O(1)
time and there are total m S-lists, therefore, the total time spent on the "then" part of the test

"dp,,, >_ D," is O(m). From Lemma 4.4, finding a chain Bi that satisfies ($3.1) and ($3.2) or
making sure that no such chain exists needs time at most O (mc). Rescheduling a chain needs
time at most O (c). Since each job chain will be rescheduled with respect to each v-chain at
most once, the rescheduling procedure will be executed at most O (mc) times and Step 3 will
be repeated at most O(mc) times. Therefore, the total rescheduling procedure takes time at
most 0(m2c2). Since this complexity dominates the whole algorithm, the complexity of the
algorithm is at most 0(m22). [-]

Given an MUJSD system, if we want to know the schedulability of the system, we can
use the PMD algorithm, which takes time 0(m22) to find a schedule for it. If there exists a
feasible schedule for the system, then it is schedulable; otherwise, it is unschedulable. In fact,
it can be shown that the schedulability test for an MUJSD system can be done in time O(mZc)
[7].
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5. Some extensions to the MUJSD problem. In the MUJSD problem, we assume all
deadlines and distance constraints are integers. If we allow deadlines and distance constraints
to be fractional numbers, both SMD and PMD can still be used. If we change all deadlines di,

_< _< n, and the distance constraint c in an MUJSD system to _di] and cJ, respectively,
the modified system is schedulable if and only if the original system is schedulable.

The MUJSD problem also assumes that all distance constraints are the same. In the
following discussion, we investigate several related problems which extend MUJSD in terms
of the distance constraint values, job set structure, and the number of processors. We show
that these problems are NP-complete.

5.1. The general MUJSD problem. One extension of the MUJSD problem is to allow
different jobs to have different distance constraints instead of having only an identical distance
constraint c for all jobs. We call this extension the general MUJSD problem. However, we
can show that the general MUJSD problem is NP-completeo

THEOREM 5.1. The extension of the MUJSD problem, where different chains may have

different distance constraints, is NP-complete in the strong sense.

Proof. It is easy to see that this problem is in NP. To complete the proof, we reduce the 3-
PARTITION problem [5], which has been shown to be NP-complete in the strong sense, to the
problem. The 3-PARTITION problem can be stated as follows: Given a positive integer b and
amultisetA {a,ag,_ a3t} f3/psitiveintegers suchthat t=l ai 1.b and b/4 < ai

b/2 for each _< _< 31, can A be partitioned into disjoint sets SI, Se St such that, for
<_ j <_ l, -’aiSj ai b? Given an instance of the 3-PARTITION problem, we construct an

MUJSD system with distinct distance constraints as follows: H {H, He H3t, H3t+l }.
di l(b + 1) ai for < _< 31, and d31+l b + 1. ki ai for _< < 3l, and

k3t+ 1. Let ci denote the distance constraint of the ith chain, i.e., the distance constraint
between Ji,j-t and Jij for <_ j <_ ki. ci for < _< 3l, and c3t+ b + 1. It is easy to
see that the transformation can be done in polynomial time.

Now, we show that the system constructed above is schedulable if and only if the instance
of the 3-PARTITION problem has a solution. The total number of jobs in the system is
(31 + 1) + t-.= ki (31 + 1) + (lb 31) + (1 1) l(b + 1). Moreover, all jobs in the
system, except job J3t+,l-Z, have virtual deadlines less than or equal to l(b + 1) 1. That
rneans job J3t+,t- cannot be scheduled before time (b + !) and because of the restrictions
of the deadline ofjob H3t.+ (d31+! b + 1) and the distance constraint of the (31 + 1)st chain
(c3t+ =b+ l),job J3t+l,j must be scheduled at time slot (j + 1)(b+ 1)for0 < j < l- 1.
At this point, there are disjoint time intervals available for the jobs in the first 31 chains, and
each time interval has a length of exactly b.

Since the distance constraints of the first 31 chains are one, all jobs in each chain must
be scheduled consecutively. This enforces the fact that. all the jobs in each chain must be
scheduled in the same time interval. Moreover, there are ki + ai jobs in the th chain for
< < 31. It is easy to see that the system is schedulable if and only if the partition exists

for the instance of the 3-PARTITION problem. This concludes our proof.
The above strong NP-completeness result shows that it is unlikely to find an algorithm

in time polynomial in the total number ofjobs n for the MUJSD problem in which different
chains can have different distance constraints. It also implies that the general MUJSD problem
is NP-complete.

5.2. The bilevel tree UJSD problem. We have shown that the MUJSD problem with
distinct distance constraints is NP-complete. With distinct distance constraints, even if we
restrict the graph to a bilevel tree (not a bilevel chain tree) we can show that the problem is
still NP-complete.
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THEOREM 5.2. The UJSD problem is NP-complete even if the graph is a bilevel tree.

Proof. It is easy to see that the bilevel tree UJSD is in NP. To complete the proof, we shall
reduce 3SAT [5] to it. The 3SAT problem is as follows: Given a set U {u l, u2 u,, of
n variables and a collection C {cl, c2 c,,,} of m clauses over U such that ]cil 3 for
< < m, does there exist a satisfying truth assignment for C? Given an instance of 3SAT we

construct a bilevel tree UJSD problem in polynomial time as follows: Let ci {vi, Ui2,

for _< < m. Define R as the dummy root of the bilevel tree. Also, define the head jobs as
bl and/i for < < n, and the tail jobs as wij for < < m and < j < 3. Each head job
us or t has a deadline 21, i.e., there is a directed edge from the root R to us and another to
both with a deadline constraint 21. For each job wij, if Vii Ul (tl) in 3SAT, then there is a
precedence constraint from job us (tt) to job wi) with a distance constraint 2n 21 + 3i.

To show that the collection C is satisfiable if and only if the constructed bilevel tree UJSD
has a feasible schedule, let us note the following observations. The dummy job R is assumed
to be scheduled at slot 0. All of the other jobs must be scheduled from slot to slot 2n + 3m.
For all l, the deadlines ofjobs us and t2t are both 21. Since jobs u and t can be scheduled at
slots and 2, only one of them must be scheduled at slot and the other must be scheduled
at slot 2. Similarly, if the scheduling problem has a feasible schedule, one of the two jobs ut
and t must be scheduled at slot 21 and the other must be scheduled at slot 2l. Let’s call
slot 21 thefalsity slot ofjobs us and tT and call slot 21 the truth slot ofjobs ut and tt. The
virtual deadline ofjob wij, whose predecessor is either ut or t2, is 2l 4- 2n 21 4- 3i 2n 4- 3i,
which is independent of j. Again, for the scheduling problem to have a feasible schedule, the
three jobs wi, Wi2, and wi3 must be scheduled at the three slots 2n 4- 3i 2, 2n 4- 3i 1,
and 2n 4- 3i. Moreover, any one of the three Wij’S can be scheduled at slot 2n 4- 3i if and only
if its predecessor us (or t2t) is scheduled at slot 21. From the above observations, it is easy to
see that a feasible schedule exists if and only if, for each set of the three jobs {wi, wi2, wi3 },
< < m, at least one of their predecessors is scheduled at its truth slot.

5.3. The multiprocessor problems. In all of the above discussions we only consider
single processor scheduling. As we can expect, the problem becomes harder if there are
multiple processors. The following lemma and theorem discuss multiprocessor scheduling
with distance constraints.

DEFINITION. A schedule for an MUJSD system on P processors is called nonsplit if all
jobs in each chain are scheduled on the same processor; otherwise it is called a split schedule.

For an MUJSD system with distance constraint c l, each job must be scheduled right
after its immediate predecessor. However, two consecutive jobs need not be executed on the
same processor. For the case in which c l, we call time a split point of a schedule S if
there is a chain that is split on different processors at time in S.

LEMMA 5.3. If an MUJSD system with distance constraint c is schedulable on P
processors, then there exists a feasible nonsplit schedulefor the system.

Proof Let S be a split schedule for the system. We now show, for P 2, that S can
be transformed to a nonsplit schedule. The proof for P > 2 can be shown in a similar way.
Let be the earliest split point in S. Suppose the ith chain is split at time t. Without loss of
generality, assume thatjobs Jio, Jil Ji,j--I are scheduled at times t-j, t-j+ l,
respectively, on processor l; jobs Jij, Ji,j+ Ji,j+1 are scheduled at times t, 4-
+/, respectively, on processor 2; andjobs (if any) Ji,++, Ji,j++2 Jq are scheduled after
time 4-14- on processor 1. Moreover, assume thatjobs Q0, Q Qt are scheduled at times
t, + + l, respectively, on processor l. Then, we can move jobs Jij, Ji,j+l Ji,j+t
from processor 2 to processor and move jobs Q0, Q Q from processor to processor
2 to get another feasible schedule S’. It is easy to see that the earliest split point t’ of S’ must
be larger than the earliest split point of S. Repeating the above process we will finally get a
feasible nonsplit schedule, since the total completion time of schedule S is finite.
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THEOREM 5.4. The multiprocessor MUJSD problem is (at least) NP-complete in the
ordinary sense if the number ofprocessors P is fixed, and NP-complete in the strong sense if
P is arbitrary.

Proof If the distance constraint c is equal to then the problem is equivalent to the tra-
ditional nonpreemptive multiprocessor scheduling problem, except that in the multiprocessor
MUJSD problem a chain of jobs can be split and scheduled on more than one processor as
long as the (temporal) distance between a job and its immediate predecessor is less than or
equal to the distance constraint c 1. However, by the above lemma, the split and nonsplit
cases are equivalent for c 1. Therefore, the theorem follows from the known results that
the nonpreemptive multiprocessor scheduling problem is NP-complete in the ordinary sense
if P is fixed and NP-complete in the strong sense if P is arbitrary [5]. [3

6. Conclusions. Many real-time systems must enforce temporal distance constraints on
some of their jobs. In this paper, we investigated the scheduling problem in which jobs have
some relative temporal distance constraints and presented some basic results on the scheduling
problems for jobs with distance constraints. We showed that some of the special cases of the
unit-time JSD problem are NP-complete. However, we presented an O(n2) pseudopolynomial-
time algorithm and an O(mZc2) polynomial-time algorithm for the MUJSD problem with m
chains, n totaljobs, and a uniform distance constraint c in the MUJSD system. Some extensions
of the MUJSD problem have also been studied.

Aeknowledgmento The authors thank the anonymous referee for valuable comments and
suggestions on an earlier manuscript of this paper.
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ON THE APPROXIMATION OF SHORTEST COMMON SUPERSEQUENCES
AND LONGEST COMMON SUBSEQUENCES*

TAO JIANG AND MING LI

Abstract. The problems of finding shortest common supersequences (SCS) and longest common subsequences
(LCS) are two well-known NP-hard problems that have applications in many areas, including computational molec-
ular biology, data compression, robot motion planning, and scheduling, text editing, etc. A lot of fruitless effort has
been spent in searching for good approximation algorithms for these problems. In this paper, we show that these
problems are inherently hard to approximate in the worst case. In particular, we prove that (i) SCS does not have a
polynomial-time linear approximation algorithm unless P NP; (ii) There exists a constant 6 > 0 such that, if SCS has
a polynomial-time approximation algorithm with ratio log n, where n is the numberof input sequences, then NP is con-
tained in DTIME(2pyg "); (iii) There exists a constant 3 > 0 such that, ifLCS has a polynomial-time approximation
algorithm with performance ratio n, then P NP. The proofs utilize the recent results ofArora et al. [Proc. 23rd IEEE
Symposium on Foundations of Computer Science, 1992, pp. 14-23] on the complexity of approximation problems.

In the second part of the paper, we introduce a new method for analyzing the average-case performance of
algorithms for sequences, based on Kolmogorov complexity. Despite the above nonapproximability results, we
show that near optimal solutions for both SCS and LCS can be found on the average. More precisely, consider a
fixed alphabet E and suppose that the input sequences are generated randomly according to the uniform probability
distribution and are of the same length n. Moreover, assume that the number of input sequences is polynomial in n.
Then, there are simple greedy algorithms which approximate SCS and LCS with expected additive errors O(n0707)
and O(n 1/2+E) for any E > 0, respectively.

Incidentally, our analyses also provide tight upper and lower bounds on the expected LCS and SCS lengths for a
set of random sequences solving a generalization of another well-known open question on the expected LCS length
for two random sequences [K. Alexander, The rate ofconvergence ofthe Inean length of the longest common subse-
quence, 1992, manuscript], IV. Chvatal and D. Sankoff, J. Appl. Probab., 12 (1975), pp. 306-315], [D. Sankoff and
J. Kruskall, eds., Time Warps, String Edits, and Macromolecules: The Theory and Practice ofSequence Comparison,
Addison-Wesley, Reading, MA, 1983].

Key words, shortest common supersequence, longest common subsequence, approximation algorithm, NP-
hardness, average-case analysis, random sequence
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1o Introduction. For two sequences s s... Sm and t... tn, we say that s is a
subsequence of and, equivalently, is a supersequence of s, if for some i < < ira,
sj tij. Given a finite set of sequences S, a shortest common supersequence (SCS) of S is
a shortest possible sequence s such that each sequence in S is a subsequence of s. A longest
common subsequence (LCS) of S is a longest possible sequence s such that each sequence in
S is a supersequence of s.

These problems arise naturally in many practical situations. Researchers in many different
areas have been trying for years to obtain partial solutions: dynamic programming, when the
number of sequences is constant, or, ad hoc algorithms when we do not care about absolute
optimal solutions.

In artificial intelligence (specifically, planning), the actions of a robot (and human for
that matter) need to be planned. A robot usually has many goals to achieve. To achieve
each goal the robot sometimes needs to perform a (linearly ordered) sequence of operations,
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where identical operations in different sequences may be factored out and only performed
once. Optimally merging these sequences of actions of the robot implies efficiency. Practical
examples include robotic assembly lines [8] and metal cutting in the domain of automated
manufacturing 10], 15]. The essence of solutions to such problems are good approximation
algorithms for the SCS problem. The SCS problem also has applications in text editing [24],
data compression [27], and query optimization in database systems [25].

In molecular biology, an LCS (of some DNA sequences) is commonly used as a measure
of similarity in the comparison of biological sequences [6]. Efficient algorithms for finding an
LCS could be very useful. Many papers in molecular biology have been written on this issue.
We refer the readers to [6], [7], and [26]. Other applications of the LCS problem include
the widely used diff file comparison program [1], data compression, and syntactic pattern
recognition 19].

For a long time, it has been well known that the SCS and LCS problems (even on a binary
alphabet) are all NP-hard [9], [21], [23]. For n sequences of length m, it is known that, by
dynamic programming techniques, both SCS and LCS problems can be solved in O(m") time;
this result is independently a result ofmany authors in computer science (e.g., 11 ], [29]) and bi-
ology. However, since the parameter rn is usually extremely large in practice (e.g., in computer
text editing and DNA/RNA sequence comparison), the time requirement O(m") is intolerable
even for small to moderate n. There have been attempts to speed up the dynamic programming
solution for LCS 12], 13 ]. The improved algorithms still run in O (mn) time in the worst case.

In the very first paper [21] that proves the NP-hardness of the SCS and LCS problems,
Maier already asks for approximation algorithms. For the past many years, various groups of
people in the diverse fields of artificial intelligence, theoretical computer science, and biology
have looked for heuristic algorithms to approximate the SCS and LCS problems, but so far no
polynomial time algorithms with guaranteed approximation bounds have been found.

In this paper, we show that it is indeed not surprising that the search for good approximation
algorithms has been fruitless, because good approximations of these problems would imply
that P NP. Specifically, we show the following:

1. No polynomial-time algorithm can achieve a constant approximation ratio for any
constant for the SCS problem unless P NP. (The approximation ratio is the worst-
case ratio between the approximate solution and the optimal solution.)

2. There exists a constant 6 > 0 such that, if SCS has a polynomial-time approximation
algorithm with ratio log n, where n is the number of input sequences, then NP is
contained in DTIME(2pyg n).

3. There exists a constant > 0 such that, if the LCS problem has a polynomial-time
approximation algorithm with performance ratio n, then P NP.

The above results assume an unbounded alphabet. Our proofs utilize the recent results of
Arora et al. on the complexity of approximation problems [3]. An overview of the results
in [3] that are of special interest to us will be given in the next section.

On the other hand, one should not be too discouraged by the nonapproximability results
above. Many heuristic algorithms for SCS and LCS seem to work well in practice. They are
usually greedy-style algorithms and run very fast. These algorithms cannot always guarantee
an optimal solution or even an approximately good solution, but they produce a satisfactory
solution in most cases. In this paper, we try to provide a (partial) theoretical explanation by
proving that both SCS andLCS can be indeed very well approximated on the average. Consider
the SCS and LCS problems on a fixed alphabet E. Suppose that the input sequences are of
length n, the number of input sequences is polynomial in n, and all sequences are equally likely
and mutually independent. We show that some simple greedy algorithms approximate SCS
and LCS with expected additive errors O(n0"707) and O(n 1/2+) for any > 0, respectively.
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(The additive error is the difference between the approximate solution and optimal solution.)
The algorithm for SCS is actually interesting and perhaps useful in practice, although the
algorithm for LCS is somewhat trivial and impractical. Our analyses are based on a new
average-case analysis method using Kolmogorov complexity.

It also turns out that such analyses enable us also to obtain a tight bound on the expected
length of an LCS or an SCS of random sequences. Our results show that, over a fixed alphabet
of size k, the expected length of an LCS (or an SCS) for n random sequences of length n is

-t-- n l/2+e for any e > 0 (or (..-" -+- O(n’77), respectively). In contrast, the tight bound
on the expected LCS length for two random sequences is a well-known open question in
statistics [2], [5], [24].

In 2, we review the recent surprisingly fast development in the complexity theory of
approximation. The hardness of approximating an SCS or an LCS is shown in 3. We analyze
the average-case performance of some greedy algorithms in 4. Some concluding remarks are
given in 5.

2. Recent works on the complexity of approximation. Designing efficient approxi-
mation algorithms with good performance guarantees is not an easy task. This is a result
of the fact that the approximation of a large number of optimization problems is intractable.
On the other hand, proving the intractability of an approximation problem can also be hard,
essentially because the approximability properties are generally not preserved in a conven-
tional polynomial-time reduction [9]. Nevertheless, there have been some very significant
developments in the last five years. We only discuss the work that will be needed for our
results.

In 1988, Papadimitriou and Yannakakis defined a special reduction that. preserves certain
approximability properties [22]. Using this reduction, based on Fagin’s syntactic definition
of the class NP, they introduced a class of natural optimization problems, MAX SNP, which
includes the vertex cover and independent set problems on bounded-degree graphs, max cut,
various versions ofmaximum satisfiability, etc. It is known that every problem in this class can
be approximated within some constant factor, and a polynomial-time approximation scheme
(PTAS) for any MAX SNP-complete problem would imply one for every other problem in
the class. (A problem has a PTAS if, for every fixed e > 0, the problem can be approximated
within factor + e in polynomial time.)

Recently, Arora et al. made some significant progress in the theory ofinteractive proofs [3].
As an application of their results, they showed that if any MAX SNP-hard problem has a
PTAS, then P NP, thus confirming the common belief that no MAX SNP-hard problem
has a PTAS. Their results also show that, unless P NP, the largest clique problem does not
have a polynomial-time approximation algorithm with performance ratio n for some constant
3. Using these results and the graph product technique, Karger, Motwani, and. Ramkumar
are able to prove that longest paths cannot be approximated within any constant factor [14].
Very recently, Lund and Yannakakis showed that graph coloring cannot be approximated with
ratio n for some e > 0 and set covering cannot be approximated with ratio c log n for any
c < [201.

Before we leave this section, we recall the definition of the special reduction introduced
by Papadimitriou and Yannakakis [22], used to show the MAX SNP-hardness of a problem.
Suppose that FI and I-I’ are two optimization (i.e., maximization or minimization) problems.
We say that rI L-reduces (linearly reduces) to FI’ if there are two polynomial-time algorithms
f and g and constants c, fl > 0 such that, for any instance I of l-I,

1. OPT((/)) < oe. OPT(I);
2. given any solution of f(1) with weight w’, algorithm g produces in polynomial time

a solution of I with weight w satisfying Iw OPT(I)I _</31w’ OPT(f(I))I.
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The following are two simple facts concerning L-reductions. First, the composition of
two L-reductions is also an L-reduction. Second, if problem 1-I L-reduces to problem 1-I’
and lq’ can be approximated in polynomial time within a factor of / e, then FI can be
approximated within factor / otfle. In particular, if FI’ has a PTAS, then so does FI.

A problem is MAX SNP-hard if every problem in MAX SNP can be L-reduced to it.
Thus, by the result of Arora et al., a MAX SNP-hard problem does not have a PTAS unless
P=NP.

3. Nonapproximability of SCS and LCS. In this section, we show that there do not
exist polynomial-time approximation algorithms for SCS and LCS with good performance
ratios. The proof for LCS is a direct reduction from the largest clique problem. The proof
for SCS is more involved. We first show that a restricted version of SCS, in which every
input sequence is of length 2 and every letter of the alphabet appears at most three times in
the input sequences, is MAX SNP-hard. Thus this restricted version of SCS does not have a
PTAS, assuming that P NP. Then we define the product of sets of sequences and relate the
SCS of such a product to the SCS’s of the components constituting the product. Finally, we
demonstrate that a polynomial-time constant ratio approximation algorithm for SCS would
imply a PTAS for the restricted SCS by blowing up instances using the product of sets of
sequences.

3.1. Approximating LCS is hard.
THEOREM 3.1. There exists a constant > 0 such that, if the LCS problem has a

polynomial time-approximation algorithm with performance ratio n, where n is the number

of input sequences, then P NP.
Proof We reduce the largest clique problem to LCS. Let G (V, E) be a graph and

V {v v,, be the vertex set. Our alphabet I2 is chosen to be V.
Consider a vertex 1) and suppose that vi is adjacent to vertices vi, rio, where it <
< iq. For convenience, let i0 0 and iq+.l n / 1. Let p be the unique index such that

0 _< p _< q and ip < < ip+l. We include the following two sequences"

X l) l)ip 1) 1) l)i 1)i+ lYn,

X U Ui- l)i + l)n Ui lYip_ l)iq

LetS={xi,xill < < n}.
LEMMA 3.2. The graph G has a clique of size k if and only if the set S has a common

subsequence of length kfor any k.

Proof The "only if" part is clear. To prove the "if" part, let y be a common subsequence
for S. If vi appears in y, then the sequence xi makes sure that all vertices on the left of vi in
y are adjacent to vi in G and, similarly, the sequence x[ ensures that that all vertices on the
fight of vi in y are adjacent to vi in G. Thus the vertices appearing in y actually form a clique
of G.

The proof is completed by recalling the result of Arora et al. which states that, unless
P NP, the largest clique problem does not have a polynomial-time approximation algorithm
with performance ratio n on graphs with n vertices for some constant > 0 [3].

The above result shows that for some constant 6 > 0, there is no algorithm that, given
a set S of n sequences, will find a common subsequence of length at least OPT(S)/n in
polynomial time. But the question of whether there might be some other < 1, such that
one can find a common subsequence of length at least OPT(S )/n in polynomial time, still
remains open. We conjecture that the answer is negative.

It is also natural to measure the performance of an approximation algorithm for LCS
in terms of the size of the alphabet or the maximum length of its input sequences. Clearly
Theorem 3.1 holds when n is replaced by these parameters.
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We now consider the approximation of LCS on a fixed alphabet. Let the alphabet I2
{a ak }. It is trivial to show that LCS on 12 can be approximated with ratio k.

THEOREM 3.3. For any set S of sequences from 12, the algorithm, Long-Run, finds a
common subsequencefor S of length at least OPT(S) / k.

ALGORITHM LONG-RUN.
Find maximum m such that a is a common subsequence of all input sequences for some

a E 12. Output am as the approximation of LCS.
The question of whether LCS on a bounded alphabet is MAX SNP-hard remains open.

Although we believe that the answer is "yes," even when the alphabet is binary, we have not
been able to establish an L-reduction from any known MAX SNP-hard problem. Observe
that Maier’s construction for the NP-hardness of LCS on a bounded alphabet [21 does not
constitute an L-reduction. In his construction, an instance G of vertex cover is mapped to an
instance S of LCS (or SCS) with the property that OPT(S) is at least quadratic in OPT(G).

Conjecture. LCS on a binary alphabet is MAX SNP-hard.

3.2. Restricted versions of SCS and MAX SNP-hardness. Maier proved the NP-
hardness of SCS on an unbounded alphabet by reducing the vertex cover problem to SCS [21 ].
For any graph G of n vertices and m edges, the construction guarantees that G has a vertex
cover of size if and only the constructed instance of SCS has a common supersequence of
length 2n + 6m + 8 max{n, m} + t. It is easy to see that the reduction is actually linear if the
graph G is of bounded degree. Since the vertex cover problem on bounded-degree graphs is
MAX SNP-hard, so is SCS.

Let SCS(/, r) denote the restricted version ofSCS in which each input sequence is oflength
and each letter appears at most r times totally in all sequences. Such restricted problems

have .been recently studied by Timkovskii [28]. We will need the version SCS(2, 3) later to
prove that SCS cannot be linearly approximated. It is known that SCS(2, 2) can be solved in
polynomial time and SCS(2, 3) is NP-hard [28]. Obviously, SCS(/, r) can be approximated
with ratio r. This is true because each letter appears only r times in total in an instance of
SCS(/, r). Thus a plain concatenation already achieves an approximation ratio r.

THEOREM 3.4. SCS(2, 3) does not have a PTAS unless P NP.
Proof A polynomial-time reduction from the feedback vertex set problem on bounded-

degree digraphs [9] to SCS(2, 3) is given in [28]. Let G (V, E) be a digraph of degree 3.
The reduction defines a set S {uvl(u, v) E}. Clearly, S is an instance of SCS(2, 3). It is
shown that G has a feedback vertex set of size if and only if S has a common supersequence
of length [VI + t.

It is easy to L-reduce vertex cover on bounded-degree graphs to feedback vertex set on
bounded-degree graphs by replacing each edge in the instance of vertex cover with a directed
cycle. The reduction from feedback vertex set to SCS(2, 3) is actually linear for the digraphs
resulting from this construction, because the optimal feedback vertex set for these graphs is
linear in ]VI. Since the composition of two L-reductions is an L-reduction, we have an L-
reduction from the vertex cover problem on bounded degree graphs to SCS(2, 3). The theorem
follows from the fact that vertex cover on bounded degree graphs is MAX SNP-hard. [

The status of the complexity of approximating SCS on a fixed alphabet is quite similar to
that for LCS. We can show that SCS on a fixed alphabet has a trivial constant ratio approxima-
tion. But we do not know if the problem is MAX SNP-hard. Again, observe that the reduction
in Maier’s original proof of the NP-hardness for SCS on a bounded alphabet is not linear.

THEOREM 3.5. Let 12 be an alphabet ofk letters. For any set S ofsequencesfrom 12, we
can find a common supersequencefor S of length at most k. OPT(S in polynomial time.
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Proof. Let/max be the maximum length of input sequences in S. Then (al ak)lmx is a
common supersequence for S satisfying the length requirement. [2

Conjecture. SCS on a binary alphabet is MAX SNP-hard.

3.3. The product of sets of sequences. First, we extend the operation "concatenation
to sets of sequences. Let X and Y be two sets of sequences. Define the concatenation of
X, Y, denoted X Y, as the set {x ylx X, y Y}. For example, if X {abab, aabb} and
Y {123, 231,312}, then

X Y {abab123, aabb123, abab231, aabb231, abab312, aabb312}.

The following lemma is quite useful in our construction.
LEMMA 3.6. Let X X X2... X,,. Suppose that y is a supersequence for X. Then

there exist Yt, Y2 Yn :such that y Yl Y...o Yn and each Yi is a supersequence for Xi,
l<i<n.

in’}. Fix a sequence xProof. Let Xt {x,.. Xp} and X’ X2oo, X {x’ Xq
X’. Since the supersequence y contains x .x xp x as subsequences, it must contain

where yl,i is a supersequence for X To see this, just consider thea subsequence yl,i "xi,
of y The rightmostin the subsequences x .x Xp .xpositions of the first letter of x

occurrence gives yl,i. See Fig. 1. In the figure, the .’s represent sequences x xp and the
#’s represent the sequences x Xq. The sequences are aligned according to their relative
positions in y.

Thus, for each < < q, we have a sequence Yl,i such that yl,i is a supersequence for

X and yl,i x is a subsequence of y. Now we consider the positions of the last letter of
of y and partition y at the leftmostYt. Yl,q in the subsequences y,l "Xl Yl,q Xq

such position. Let the left part of y be Yl and the right part be y’. Then, clearly, Yl is a
supersequence for X and y’ is a supersequence for X’. See Fig. 2. In this figure, the .’s now
represent sequences y, Yl,q.

We can do this recursively on y’ and Y’ to obtain Y2,
We are now ready to define the product of sets of sequences. The symbol x will be used

to denote the product operation. We start by defining the product of single letters. Let E and
I2’ be two alphabets and a E, b E’ be two letters. The product of a and b is simply the
composite letter (a, b) E x 12’. The product of a sequence x a a2... a,, and a letter
b is a x b a2 b an x b. The product of a set X {x, x2 xn} of sequences
and a letter a is the set {Xl x a, x2 x a xn x a}. The product of a set X of sequences
and a sequence y a .a2..o a,, is the set X x a X x a2 X an. Finally, let X and
Y {Y, Y2 y, be two sets of sequences. The product of X and Y is the set Ui=1X x yio

For example, if X {aabb, abab} and Y 121,212}, then X x Y contains the 16 sequences
in Fig. 3.

x 1 *** **** *** ### ## ### xi’
x2 *** **** **** ***** #### #### x

Xp ** ***** ***** ## ### ### xi
Yl,i

FIG. 1. Finding Yl,i in the supersequence y.
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Yl,1 ** *** *** *** ## ## ## ### X’1

Y 1,2

Yl,q ** **** ** **** ### ## ## ## ####

yt .
FG. 2. Finding y in the supersequence y.

X’q

(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(a, l)(b, 1)(b, 1)

(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)

(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(a, 1)(b, 1)(b, 1)

(a, 1)(a, 1)(b, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)

(a, l)(b, l)(a, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(a, 1)(b, 1)(b, 1)

(a, 1)(b, l)(a, l)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(b, l)(a, 1)(b, 1)

(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)(a, l)(a, 1)(b, 1)(b, 1)

(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(b, 1)(a, l)(b, 1)

(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(a, l)(b, l)(b, l)(a, 2)(a, 2)(b, 2)(b, 2)

(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(a, 1)(b, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)

(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)

(a, 2)(a, 2)(b, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)

(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)

(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(a, l)(b, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)

(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(a, 2)(b, 2)(b, 2)

(a, 2)(b, 2)(a, 2)(b, 2)(a, 1)(b, 1)(a, 1)(b, 1)(a, 2)(b, 2)(a, 2)(b, 2)

FIG. 3. The product of {aabb, abab} and {121,212}.

Note that if each sequence in X has length l and each sequence in Y has length 12, then
X x Y contains Y[" XIh sequences of length l 12. Thus, X x Y does not have polynomial
size in general.

In this paper, we will only be interested in products in which the second operand has a
special property. Let Y be a set of sequences with the following property: each sequence is of
even length and every letter at an even position is unique in Y, i.e., the letter appears only once
(totally) in all sequences in Y. We will refer to such unique letters as delimiters. The following
lemma relates the SCS of a product to the SCS’s of its operands and is crucial to 3.4.

LEMMA 3.7. Let X and Y be sets of sequences. Suppose that Y has the above special
property. Then OPT(X x Y) OPT(X) OPT(Y). Moreover, given a supersequence for
X x Y oflength l, we canfind in time polynomial in IX x YI supersequencesfor X and Y of
lengths ll and 12, respectively, such that Ii 12 <_ I.
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Proof Clearly, OPT(X Y) _< OPT(X) OPT(Y). Suppose that z is a supersequence
for X Y of length l. We show how to find supersequences for X and Y of lengths l and
12, respectively, such that l 12 _< in polynomial time. Let E be the alphabet corresponding
to Y. For each letter a 6 E, we call the product X a an a component. The letters are
divided into delimiters and nondelimiters. For convenience, call the nondelimiters normal
letters. Our basic idea is to rearrange the supersequence z without increasing length such that
each component appears in a consecutive region. Then we can "extract" the components and
identify the desired supersequences for X and Y.

Using Lemma 3.6, we can extract from z a supersequence for each delimiter component.
as follows. Let y alaz..an be a sequence in Y. Consider the delimiter a2. Since z
is a supersequence for the product X y X a X a2... X an, there must be
Zl, z2 Zn such that zi is a supersequence for X ai and z zl z,,2... Z,n. NOW we look at

z2 and concentrate on the sequences in the a2 component. We can rearrange z2 such that the
letters appearing in the a. component form a consecutive block by shifting them to the right

Since a2 is unique in Y zl z2appropriately. Denote the new sequence Z2 Z.n is also a
supersequence for X Y. This way we have extracted a supersequence for the a2 component.
Supersequences for other delimiter components can be extracted similarly. Note that the above
does not increase the length of the whole supersequence.

Call the final supersequence after the above process z’o So z’ has the form u . v. u2"/32

where each vi is a supersequence for some delimiter component and ui is a sequence of letters
from some normal components. We can easily rearrange z’ so that each u actually becomes
either nil or a supersequence for some normal component by shifting the normal component
letters to the rightmost possible position (stopped only by some relevant delimiter block).
Thus we now have a supersequence of the form u’ v u2 v2 where each u’i is either
nil or a supersequence for some normal component Now the pattern u’ v u v2
naturally defines a supersequence for Y. Let l be the minimum length of the supersequences
for the components (and thus X) and 12. be the length of the supersequence for Y. Then
ll.12 <1.

3.4. SCS has no linear approximation algorithms. The basic idea is to use the product
operation to blow up a given instance of SCS. However, the product of sets of sequences
cannot be performed in polynomial time unless the the second operand contains sequences
of bounded length. Thus we consider the restricted version SCS(2, 3). A nice thing about
SCS(2, 3) is the fact that for any instance S of SCS(2, 3), the total length of the sequences in S
is at most 3.OPT(S). Thus, we can insert unique delimiters into the sequences as required in

3.3 without affecting the MAX SNP-hardness. So, let SCS(2, 3)’ denote the version whose
instances are obtained from instances of SCS(2, 3) by inserting unique delimiters. Let S be
an instance of SCS(2, 3) of total length n and S’ be the corresponding instance of SCS(2, 3)’.
It is easy to see that S has a common supersequence of length if and only if S’ has a common
supersequence of length n + t. Since 0(n), this forms an L-reduction from SCS(2, 3) to
SCS(2, 3)’, and hence SCS(2, 3)’ is also MAX SNP-hard.

For any set S, S denotes the product of k S’s. The next lemma follows from Lemma 3.7.
LEMMA 3.8. Let k > be a fixed integer. For any instance S ofSCS(2, 3)’, OPT(S)

OPT(S). Moreover, given a supersequencefor S oflength l, we canfind in polynomial time
a supersequencefor S of length /k.

Observe that if lSI n, then Skl n4, since each sequence in S has length 4. Now
we can prove the main result, in this section.
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THEOREM 3.9. (i) There does not exist a polynomial-time linear approximation algorithm
for SCS unless P NP. (ii) There exists a constant > 0 such that, ifSCS has a polynomial-
time approximation algorithm with ratio log n, where n is the number of input sequences,
then NP is contained in DTII[E(2plylg n).

Proof. We only prove (i). The proof of (ii) is similar. The idea is to show that if SCS has
a polynomial-time linear approximation algorithm, then SCS(2, 3)’ has a PTAS. Suppose that.
SCS has a polynomial-time approximation algorithm with performance ratio or. For any given
> 0, let k [log+ ot]. Then, by Lemma 3.8, we have an approximation algorithm for

SCS(2, 3)’ with ratio ot/ < + . The algorithm runs in time g/O(4k), thus it is polynomial
in n. This implies a PTAS for SCS(2, 3)’. [3

It is interesting to note that our nonapproximability result for SCS is weaker than that
of LCS (and the longest path problem in [14]). It seems to require new techniques to

prove a stronger lower bound. The growth rate of n4 is too high. This is essentially
a result of the way we define the product of sets of sequences. If we can find a bet-
ter way of taking products and lower the rate to something like n, then the bound in
(ii) can be strengthened to 2lgn for any 6 < 1, as shown in [14] for the longest path
problem.

4. Algorithms with good average-case performance. We have seen that the LCS and
SCS problems are not only NP-hard to solve exactly, but also NP-hard to approximate.
The approximation of these problems restricted to fixed alphabets also seems to be hard.
In this section, we consider the average-case performance of some simple greedy algo-
rithms for LCS and SCS and prove that these algorithms can find a nearly optimal so-
lution in almost all the cases, assuming that all sequences are equally likely and the se-
quences are independent of each other. Note that our probability model may not be real-
istic, because in practice the sequences are usually related to each other and thus are not

independent.
From now on, let E {al a} be a fixed alphabet of size k. For convenience, we

will assume that the input is always n sequences over E, each of length n, although our results
actually hold when the number of input sequences is polynomial in n. We prove that some
remarkably simple greedy algorithms can approximate LCS and SCS with minor expected
additive errors. Some of the technical results are actually quite interesting in their own right.
They give tight bounds on the expected length of an LCS or SCS of n random sequences of
length n. It turns out that Kolmogorov complexity is a convenient and crucial tool for our
analyses.

4.1. Kolmogorov complexity. Kolmogorov complexity has been used in [8] as an ef-
fective method for analyzing the average-case performance of some algorithms for the SCS
problem. It was also used recently by Munro (see [17]) to obtain the average-case com-
plexity of Heapsort, solving a long-standing open question. Here we use Kolmogorov com-
plexity as a tool for analyzing some combinatorial properties of random sequences which
result in tight upper and lower bounds on the average-case performance of some algorithms
for LCS and SCS problems. One can compare the use of Kolmogorov complexity with
the probabilistic method. In a sense, taking a Kolmogorov random string as the input is
like taking an expectation as in the second moment method. A Kolmogorov random input
has the random string properties, yet these properties hold with certainty rather than with
some (high) probability. This fact greatly simplifies many proofs. To make this paper self
contained, we briefly review the definition and some properties of Kolmogorov complex-
ity, tailored to our needs. For a complete treatment of this subject, see 17] or the survey
[16].
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Fix a universal Turing machine U with input alphabet E. The machine U takes two
parameters p and y. U interprets p as a program and simulates p on input yo The Kolmogorov
complexity of a string x 6 E*, given y 6 E*, is defined as

Kt.(xly) min{Ipl U(p, y) x}.

Because one can prove an invariance theorem that claims that Kolmogorov complexity, defined
with respect to any two different universal machines, differs by only an additive constant, we
will drop the subscript U. In fact, for the purpose of our analysis, one fixed universal Turing
machine is always assumed. Thus K(xly) is the minimum number of digits (i.e., letters in E)
in a description from which x can be effectively reconstructed, given y Let K(x) K(x].),
where . denotes the null string.

By simple counting, for each n, c < n, and y, there are at least E 1" E ’-’ / distinct
x’s of length n with the property

(1) K(xly) > n c.

We call a string x of length n random if

K(x) n- logn,

where the logarithm is taken over base [EI. Sometimes, we need to encode x in a self-
delimiting form Y to be able to decompose Yy into x and y. One possible coding for Y may be
10L(x) 10x, where L(x) is the binary representation of Ixl with each bit doubled. (Assume that
0, 6 E.) For example, ifx 0000000, Ixl 111 inbinary, and L(x)= 111111. This costs
us about 2 log Ix extra bits. Thus, the self-delimiting representation Y of x requires at most

Ixl / 2 log Ixl / 4 digits [16]. Note that our Kolmogorov complexity is a bit unconventional,
since here we consider strings over the arbitrary fixed alphabet E instead of binary strings.

4.2. Longest common subsequences: The average case. We have shown that the LCS
problem cannot be approximated with ratio n for some 6 > 0 in polynomial time unless
NP P. Thus no polynomial-time algorithm can produce even approximately long com-
mon subsequences. However, this claim only holds for the (probably extremely rare) worst
cases. Here we would like to show that for random input sequences, the LCS problem can be
approximated up to a small additive error.

THEOREM 4.1. For an input set S containing n sequences of length n, the algorithm
Long-Run approximates the LCS with an expected additive error O(n /2+) for arbitrarily
small > O.

The proof is based on the following two lemmas which give a lower bound on the per-
formance of Long-Run and an upper bound on the length of an LCS for a set of Kolmogorov
random strings.

LEMMA 4.2. Let > 0 be any constant and x, a string of length n. Ifsome letter a E
1/2+ 1/2+:appears in x less than - n times or more than - + n times, thenfor some constant

6>0,

K (xi) <_ n cn2

Proof. In principle, this result can be proved using methods in [18]. By encoding each
letter as a binary string of log2 k bits, the results in 18] imply that, when logz k is an integer,
the lemma is true. To show the general case, we simply do a direct estimation as follows.

1/2+Suppose that for some letter a 6 E, x contains only d n a’s. There are only

n ) ),,_/(-
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strings of length n with d occurrences of a. Taking a logarithm with base k would give us the
number of digits specifying xi. By an elementary estimation (using Stirling’s formula), we
can show that

(2) n) )n-algk d (k < n n2

for some 6 > 0. Thus K(xi) < n -n2.
Now consider a fixed Kolmogorov random string x of length n2o Cut x into n equal-length

pieces X xn. It follows from Lemma 4.2 and the randomness of x that, for each a
a appears in each of x x,, at least f O (n 1/2+) times for any small > 0. Thus

(3) an/k’-O(n/’+)

is a common subsequence of sequences xl x,,. In the next lemma, we show that an LCS
for xl xn cannot really be much longer than the one in formula (3).

LEMMA 4.3. For any common subsequence s ofx x,,

(4) [s[ < + n-+.

Proof For the purpose of making a contradiction, suppose that

Isl + n

We will try to compress x using s. The idea is to save n digits for some 3 > 0 on each xi.
Fix anxi. We do another encoding ofxi. Lets sis2... Sp, p Is[. We align the letters

in s with the corresponding letters in xi greedily from left to right and rewrite xi as follows"

(5) 01S10/2S2... OlpSpX

Here 1 is the longest prefix of X containing no s, O(2 is the longest substring of Xi starting
from s containing no s2, and so on. x is the remaining part of xi after s,. Thus otj does not
contain letter sj for j p. That is, each otj contains at most k letters in E. In
other words, O/j E ( {Sj })*.

We now show that xi can be compressed by at least n digits for some 3 > 0 with the help
of s. In fact, it is sufficient to prove that the prefix

(6) y OIISIO/2S2 OlpSp,

can be compressed by this amount.
Using s, we know which k letters in E appear in O/i for each i. Thus we can recode y

as follows. For each i, if si ak, then do nothing. Otherwise, replace si by ak, the last letter
in E, and in oti, replace every ak by si. We can convert this transformed string y’ back to y
using s by reversing above process.

1/2+Now this transformed string y’ is also a string over E. But in y’ letter ak appears f +n
times, since Is is at least this long. By Lemma 4.2, for some constant > 0, we have

n2
K (y’) <_ lY’I- k
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But from y’ and s we can obtain y, and hence, together with a self-delimiting form of xi, we
can obtain xi. We conclude that

K(xils) <_ n- / O(logn),
k

where the term O(log n) takes care of the extra digits required for the self-delimiting repre-
sentation of x and the description of the above procedure.

We repeat the above argument for every xi. In total, we save (n l+2e digits encoding
Thus,

K(x) < n2 (n l+2e) / Is] + O(n logn) < ]xl log

Therefore, x is not random, and we have a contradiction! S
We are now ready to prove the theorem.

Proofof Theorem 4.1. Consider all possible inputs of n sequences of length n. For each
such input, we concatenate the n sequences together to obtain one string. Only about 1/n2

of them are not random by formula (1). That is, only 1/n2 of them do not satisfy K (x) >_
Ix] log Ix 1. For all the others, the above lower and upper bounds apply, and the algorithm
Long-Run produces a common subsequence that is at most O(n /2+) shorter than the LCS
for any fixed e > 0. Observe that the worst-case error of Long-Run is (k 1)n/k. Thus, a
simple averaging shows that the expected error of Long-Run is O (n 1/2+e) for any fixed e > 0.

Lemmas 4.2 and 4.3 actually give very tight upper and lower bounds on the expected
LCS length of n random sequences of length n. We note in passing that the same problem for
two sequences is still open and there is a large gap between the current best upper and lower
bounds [2], [5], [24].

COROLLARY 4.4. The expected length ofan LCSfor a set ofn random sequences oflength
n 1/2+e for any > O.n is -4.3. Shortest eOnllnon supersequenees: The average ease. In [8], the performance of

the following algorithm for the SCS problem is analyzed.

ALGORITHM MAJORITY-MERGE
1. Input: n sequences, each of length n.
2. Set supersequence s := null string;
3. Let a be the majority among the leftmost letters of the remaining sequences. Set

s :-- sa and delete the front a from these sequences. Repeat this step until no
sequences are left.

4. Output s.

It is shown in [8] that, on an alphabet of size k, Majority-Merge produces a common
supersequence of length O (n log n) in the worst case and a common supersequence of length
(k / 1)n/2 / O (/-) on the average. In the next theorem, we will show that. its average-case
performance is actually near optimal.

THEOREM 4.5. For a set S containing n sequences over I2 of length n, the algorithm
Majority-Merge approximates the SCS with an expected additive error O(n), where
x//2 0.707.

As in the proof of Theorem 4.1, we first consider Kolmogorov random strings and obtain
some tight upper bound on the performance of the algorithm Majority-Merge and a lower
bound on the length of the SCS. So, again, fix a Kolmogorov random string x of length n2

and cut x into n equal-length pieces x x,,. Let S {x x,,}. It is shown in [8] that
Majority-Merge actually finds a common supersequence of length (k + l)n/2 + O(x/-d) on
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the set S. Hence, it suffices to prove that OPT(S) >_ (k + 1)n/2 O(na). We prove this in
what follows by using essential properties of Kolmogorov random strings.

Fix an arbitrary SCS s ss2.., st for S and let t denote the procedure that produces s
on set S by scanning the input sequences from left to fight and merging common letters. We
want to show that

l>
(k+l)n

_O(n).
2

Note that (i) clearly < kn and (ii) t is uniquely determined by the SCS s. Let us arrange
the input sequences x x,, as an n n matrix M with xi as row i. For each < < l, call
the sequence from top to bottom, consisting of the first letters in the remaining input sequences
after steps of,A the ithfrontier. Thus a frontier is just a jagged line from top to bottom,
indicating which letter is being considered by 4 at the moment in each sequence xi.

Since 4 totally merges n2 letters in producing s, the number n2/l represents the average
number of letters merged by 4 in one step. We want to show that on the average, t merges
at most 2n/(k + 1) + O(n) letters in a step for some 3 < 1, i.e.,

n2 2n
< + O(n)
(+)

This would imply that >_ (k + 1)n/2 O(n).
CLAIM 4.6. On the average, .A merges at most 2n/(k + 1) + 0 (n) letters in a step.

Proof The basic idea is to show that the average merge amount takes its maximum
when the supersequence s is of the form zr* for some permutation rr of alphabet E, using the
property that after each merge, the successors of the merged letters are "generated" according
to a fair-coin rule, i.e., the letters a a, must be distributed evenly among these "new"
letters. This property holds because the matrix M is random.

For each < < and _< j < k, let rij denote the number of letter aj contained in

frontier i. Define ri Y=I ri,j for each as the length of frontier i. Clearly, n rl > >

rt. Let l0 be the smallest index such that rt0 < 2n/(k + 1). Then we only need to prove an
upper bound of 2n/(k + 1) + O(n) on the average amount of merges made by .A up to step
10, since it merges at most 2n/(k + 1) letters every step after step 10. For each _< _< 10,
denote the number of letters merged at step as mi.

First we would like to show that, at any step, if a large number of some letter a is merged,
then the new letters immediately behind these a’s in the involved input sequences should have
approximately equal share of the letters a ak. In view of Lemma 4.2, this is true as long
as we can show that the subsequence consisting of these new letters in the next frontier is more
or less random. We need the following lemma, which indirectly proves the randomness of
this subsequence.

LEMMA 4.7. Let frontier(i) be the list ofpositions indicating where the ith frontier cuts
through sequences x xn. Let M’ be the all the letters on the left of the ith frontier
including the ith frontier, plainly listed column by columnfrom left to right. Then,

K(frontier(i)ls i, M’, n) 5 O(1).

Proof Given s, i, M’, n, we can simulate 1,, together with s, on partial input M’ for
steps. Then we should have the positions for the th frontier. Note that in the listing of M’ it
is not necessary that each column is of length n, since some input sequences may have already
run out. But this can be detected easily using n. Thus in all the future steps, we know that
these sequences are not present any more and can correctly arrange the letters of M’.
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In the following calculation, let e be the solution of the following equation:

-23 =3,

where 3 + e. So e (,,/ 1)/2 , 0.207 and 3 ,f/2 0.707.
Let < l0 be any index. Suppose that the letter aj E is chosen to be merged by

4 at step i. If the letter aj appears in the ith frontier f2 (n) times, i.e., ri.j f2 (n), then
by Lemma 4.2, if the letters a ak are unevenly distributed among the subsequence of
frontier + consisting of the successors of these merged aj’s, then we can compress this
subsequence by f2 (n2a) letters

LEMMA 4.8. There are at most O(n-2) O(n) subsequences of tength n f2(n)
such that some letter appears n/2+ more often (or less often) than the average n‘t / k in these
subsequences.

Proof. Otherwise we can describe the random rnatrix M by simply listing all the letters
other than those appearing in the subsequences mentioned above, recording the supersequence
s and the locations (i.e., indices) of the subsequences and compressing the subsequences using
s. Since we save f2(n2e) letters on each such subsequence by Lemma 4.2, in total we save
more than f2 (nl-2) ff2(n2) (n) letters. Thus we can encode x in less than Ixl- log
letters. Note that by Lemma 4.7, the position of the letters of frontier in their corresponding
input sequence can be derived from s, i, n, and the preceding frontiers.

Let the frontiers containing the q O (n) unevenly distributed subsequences be indexed
pl pq. Let P0 and Pq+l l0 + 1. Cut M into q + sections Mo Mq, where

Mi begins at frontier pi and ends at frontier pi+l 1.
Now we fix a section Mg and calculate the total amount of merges made by A in Mg.

Since the letters in each set of new letters (after a merge) are distributed uniformly within this
section, we have the following relation between ri+l,j and ri,j. Suppose that the letter ah is
merged at step i, pg < < pg+. Then ri+l,j ri,j + ri,h/ k -t- O(n) for each j h, and
ri+l,h ri,h/k -4- O(n). (Note that the recurrence is automatically true if ri,h < O(n3).) To
simplify the presentation, we will drop the minor term O(n) below when using the above
recurrence relation and simply add O(n) (pg+ pg) later to the total amount of merges in
section Mg. It is easy to verify that in the worst case this fluctuation of magnitude O (n) can
add at most k O(n) O(n) to the average merge amount.

Define a function/9(tl tk, i, j) satisfying the following recurrence relation:

p(t tk, i, 1) ti, < <_ k,

p(tl, tk, j mod k j+ 1)
p(t tk, j mod k, j)

k

p(t t, j + mod k, j + 1) p(tl t, j + rood k, j)

p(t t, j mod k, j)
+

k

p(tl t,j+k- lmodk, j+ 1) p(t t,j+k- modk, j)

p(tl t, j rood k, j)

k

Intuitively, the function p(t t, i, j) corresponds to the distribution of letters a
a in the frontiers if the letters are merged following the sequence rr*, where rr ai. ai is



1136 TAO JIANG AND MING LI

some permutation of E and, initially, the letters ai, ai, are distributed as (t tk). Let

/Z(tl tk, i) p(tl tk, j rood k, j).
j=l

Thus/z(tt t, i) represents the total amount of merges achieved following the sequence
n’* for steps, given the initial distribution (t tk) of letters ai ai. It can be shown
that

/z(tl t,, i) Z co(i j + 1) .t],
j=l

where co(i) is a function defined recursively as follows:

co(i) 0, i_<0,

k

co(i) + co(i- j)/k,
j=l

i>1.

Intuitively, the number co(i j + 1) represents the total contribution to the amount of
merges achieved in steps from a letter that is merged at step j, __< j _< i. Note that co (i) is
an increasing function. We can prove the following lemma by induction.

LEMMA 4.9. Let be any index such that pg <_ <_ pg+l 1. Suppose that ri.j, > >_.

ri,j, where j jk is some permutation of k. Then S"p’+’-I
z.-,j=i mj <_ Ll,(ri,j ri,jk,

Pg+l i).
Proof The lemma holds clearly if pg+! 1. Now we prove that the lemma holds for

i, assuming that it holds for + 1. For convenience, here we assume that j jk k.
Suppose that ,A merges the letter ah at step i. Then

Pt+ p.+

Z mj --ri,h-t- mj
j=i j=i+!

ri,h q-/z(ri+l,1 ri.+l,h-l, ri.+.l,h+l ri+l,k, ri+l,h, Pg+l 1),

where ri+l,j ri,j -+- ri,h/k for each j -J: h, and ri+l,h = ri,h/k. Observe that ri+l,l > >_.
ri+l,h-I >_. ri+l,h+l >_’’" >_ ri+l,k >_ ri+.l,h. However,

ri,h + /z(ri+l,I ri+l,h-l, ri+ l,h.+ ri+l,k, ri+l,h, Pg+l 1)

lz(ri,h, ri, ri,h-l, ri,h+l ri,k, Pg+l i)

CO(Pg+I i), ri,h "- CO(Pg+I 1) "ri, q-’’" "4r co(Pg+I h + 1) ri,h-t

+ ro(pg+ h).ri,h+l .+.., + co(Pg+l k + 1) ri,k

_< co(Pg+l i). ri, +’" + co(Pg+l k + 1) ri,k

bl.(ri, ri,k, Pg+l i).

The above inequality holds because co(j) is increasing and ri.l >_ >_. ri,k. [3
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Hence, the total amount of merges made by 4 in section Mg is

p+

Z mj <_ #(rp,,,1 rp,k, Pg+l Pg)
j=Pg

k

o)(Pg+l pg + j) rp,,j
j-I

k

< Z a)(pg.+l pg) rp,,j
j=l

k

= o)(Pg+l pg) rpg,j
j=l

__< W(Pg+l pg)’ n.

We need one more lemma.
2iLEMMA4.10. w(i) < + 1.

Proof Clearly, the lemma holds for all < 1, Now suppose that it holds for all < h for
some h. Then

k

4- 1) 1+ Ze(h + j)/k(.o(h
j=l

k 2(h + j)_<2+
= k(k + 1)

2(h+l)-k-
=2+

k+l
2(h + 1)

=1+, [3
k+l

Therefore,

P"+’X-,t- 2n(pg+ pg)
mj < W(Pg+l- p.g n < + n,

k+lj=Pg

Now we add O(n) (p,e+ pg) back to the above bound and conclude that the total amount
of merges in section Mg is at most

2n(pg+ pg) + n + O(n) (pg+, p).
k+l

Thus, the total amount of merges in all sections is

2n(pg+ + n + O(n) (pg+ pg)
Pg)

k+lg=O

znto,. + n(q + l) + O(n) lo
k+l

___._2nl _f. n O(n) + O(n) lo
k+l
2nlo

-f- O (n lo.
k+l
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2nThat is, the overall average amount of merges is + O(n) + O(n0"707). This
completes the proof of the claim. [2

Proof of Theorem 4.5. As in the argument at the end of the proof of Theorem 4.1, and
because Majority-Merge produces a common supersequence of length O (n log n) in the worst
case [8], the algorithm has an expected additive error O(n77).

The above proof implies the following interesting corollary.
COROLLARY 4.11. The expected length of an SCS for a set of n random ,sequences of

length n is (k + 1)n/2 4- O (n0"707).
As we mentioned before, both Theorems 4.1 and 4.5 actually hold for inputs consisting

of p(n) sequences of length n, where p() is some fixed polynomial.

5. Some remarks. A problem that is closely related to the SCS problem is the short-
est common superstring problem. Although this problem is also NP-hard, the status of its
approximation complexity is quite different. Glum et al. have shown that shortest common
superstring problem can be approximated within a factor of 3 in polynomial time [4], They
also showed that the problem (on an unbounded alphabet) is MAX SNP-hard.

Acknowledgments. We thank the referees for many constructive criticisms and sugges-
tions, and we thank C. Fraser for a correction,

REFERENCES

A. AHO, J. HOPCROFr, AND J. ULLMAN, Data Structures andAlgorithms, Addison-Wesley, Reading, MA, 1983.
[2] K. ALEXANDER, The rate of convergence of the mean length of the longest common subsequence, 1992,

manuscripL
[3] A. ARORA, C. LUND, Ro MOTWANI, M. SUDAN, AND M. SZEGEDY, Pro().[ verification and hardness of approxi-

mation problems, in Proc. 33rd IEEE Symposium on Foundations of Computer Science, Pittsburgh, PA,
1992, pp. 14-23.

[4] A. GLUM, T. JIANG, M. LI, J, ’]"ROMP, AND M. YANNAKAKIS, Linear approximation ofshortest superstrings, in
Proc. 23rd ACM Symposium on Theory of Computing, 1991, pp. 328-336; J. Assoc. Comput. Mach., to

appear.
[5] V. CHVATAL AND D. SANKOFF, Longest common subsequences of two random sequences, Jo Appl. Probab. 12

(1975), pp. 306-315.
[6] M. O. DAYHOFF, Computer analysis ofprotein evolution, Sci. Amer., 221 (1969), pp. 86-95.
[7] D. E. FOULSER, On random strings and sequence comparisons, Ph.D. thesis, Computer Science Department,

Stanford University, 1986.
[8] D. E. FOULSER, M. LI, AND Q. YANG, Theory and algorithms for plan merging, Artificial Intelligence, 57

(1992), pp. 143-181.
[9] GAREY AND D. JOHNSON, Computers and Intractability, W. H. Freeman, New York, 1979.

[10] C. C. HAYES, A model ofplanning for plan efficiency: Taking advantage of operator overlap, in Proc. lth
International Joint Conference of Artificial Intelligence, Detroit, Michigan, 1989, pp. 949-953.

[11] D.S. HIRSCHBERG, The longest common subsequence problem, Ph.D. thesis, Princeton University, 1975.
[12] W. J. Hsu AND M. W. DI.I, Computing a longest common subsequencefor a set of strings, BIT 24. (1984),

pp. 45-59.
[13] R. W. IRVING AND C. B. FRASER, Two algorithms .[’or the longest common subsequence of three (or more)

strings, in Proc. Symposium on Combinatorial Pattern Matching, Tucson, AZ, 1992.
[14] D. KARGER, R. MOTWANI, AND G. D. S. RAMKUMAR, On approximating the longest path in a graph, in Proc.

Workshop on Algorithms and Data Structure, Montreal, Canada, 1993, pp. 421-432.
[15] R. KARINTHI, D. S. NAU, AND Q. YANG, Handling [eature interactions in process planning, J. Appl. Artif.

Intell., 6 (1992), pp. 389-415.
[16] M. L AND R M. B. VTANYI, Kolmogorov complexity and its applications, in Handbook of Theoretical Com-

puter Science, Vol. A, J van Leeuwen, ed., Elsevier/MIT Press, New York, NY, Cambridge, MA, 1990,
pp. 187-254.

17] An Introduction to Kolmogorov Complexity and Its Applications, Springer-Verlag, New York, Berlin,
Heidelberg, 1993.



APPROXIMATION OF SUPERSEQUENCES AND SUBSEQUENCES 139

18] M. LI AND P. M. B, VITAN’I, Combinatorial properties offinite sequences with high Kolmogorov complexity,
Math. Systems Theory, to appear.

19] S, Y. LtJ AND K. S. Ft, A sentence-to-sentence clustering procedure.[brpattern analysis, IEEE Trans. Systems.
Man Cybernet, SMC-8(5) (1978), pp. 381-389.

[20] C. LUND ANt M, YANNAKAKIS, On the hardness of approximating minimization problems, in Proc. ACM
Symposium Theory of Computing, San Diego, CA, 1993, pp. 286-293.

[21] D. MAIER, The complexity ofsome problems on subsequences and supersequences J. Assoc, Comput, Macho
25 (1978), pp. 322-336.

[22] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Optimization, approximation, and complexity classes, J. Comput.
System Sci., 43 (1991), pp. 425-440.

[23] K. RAHA AND E. UKKONEN, The shortest common supersequenceproblem over bina, alphabet is NP-complete,
Theoret. Comput. Sci., 16 1981), pp. 187-198.

[24] D. SANKOFt AND J. KRUSKALL, EDS., Time Warps, String Edits, and Macromolecules: The Theo and Practice

ofSequence Comparison, Addison-Wesley, Reading, MA, 1983.
[25] T. SELLIS, Multiple query.’ optimization, ACM Trans. Database Systems, 13 (1988), pp. 23--.52.
[26] T, E SMITH AND M. S. WATERMAN, Identification of common molecular subsequences, J. Molecular Biology,

147 (1981), pp. 195--197.
[27] J. STORER, Data Compression: Methods and Theo’, Computer Science Press, Rockville, MD, 1988.
[28] V. G. TIMKOVSKII, Complexity of common subsequence and supersequence problems and related problems

Kibernetika, 5 (1989), pp. 1-13. (English translation.)
[29] R.A. WAGNER AND M.. J. FISCHER, The string-to-string correction problem J. Assoc. Comput. Mach., 21 1974)

pp. 168-.- 173.



SIAM J. COMPUT.
Vol. 24, No. 6, pp. 1141-1156, December 1995

1995 Society for Industrial and Applied Mathematics
001

ON THE GENERATION OF RANDOM BINARY SEARCH TREES*

LUC DEVROYE AND JOHN MICHAEL ROBSON

Abstract. We consider the computer generation of random binary search trees with n nodes for the standard
random permutation model. The algorithms discussed here output the number of external nodes at each level, but
not the shape of the tree. This is important, for example, when one wishes to simulate the height of the binary search
tree. Various paradigms are proposed, including depth-first search with pruning, incremental methods in which the
tree grows with random-sized jumps, and a tree growing procedure gleaned from birth-and-death processes. The last
method takes O (log n) expected time.

Key words, binary search tree, height of a tree, probabilistic analysis, expected complexity, simulation, random
combinatorial object, point process, recursive procedure
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68P 10, 60C05

1. Introduction. The binary search tree is one of the most frequently used structures in
computer science, see e.g., Aho, Hopcroft, and Ullman ], Knuth 19], or Cormen, Leiserson,
and Rivest [4]. A random binary search tree is defined as the random binary tree obtained by
consecutive insertion of X1 Xn into an initially empty tree, where X1 Xn is either
an independently and identically distributed (i.i.d.) sequence of random variables with a fixed
density, or an equiprobable random permutation of 1 n }. The height Hn of the tree is the
maximal distance between any node and the root (thus, H1 0, as the root is at distance 0 from
itself, and H2 1). In this paper, we propose various methods for the generation of random
binary search trees. Trees with n nodes necessarily require f2 (n) time. Since many quantities
related to random trees such as their heights grow logarithmically with n, large size trees are
required in simulations that attempt to extract asymptotic information. In fact, one often does
not care about the actual tree, but rather about the number of nodes at each level. The methods
given below take sublinear expected time and output a random vector (no nm) where ni
is the number of external nodes at level i. The height Hn is nothing but m 1, for example.
Early studies of H include Robson [26], [27], Pittel [23], and Mahmoud and Pittel [21]. See
also Mahmoud [20]. While it is known that

Hn def
c 4.33107...a.s.

log n

as n --+ ec (Devroye, [6], [9]), very little additional information is available regarding Hn,
and one is led to simulation in order to study the second-order properties of H such as its
variance, its asymptotic distribution, and so forth. Such simulations require formidable values
of n in view of the logarithmic growth of Hn with n. It is thus of great importance to ensure
that the time and especially the space requirements grow slowly with n.

Constructing the tree by consecutive insertions leads to a (R) (n log n) expected time and
(R) (n) space algorithm. One can exploit a certain growth property of the random binary search
tree (all external nodes are equally likely to receive a new node), leading to a (R)(n) time and
(9 (n) space method for growing the tree by direct insertion of new nodes at old leaves. With
extra effort, the space requirement can be reduced to 6)(log n) expected space.
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In 3, we present a simple method that requires O(n/log n) expected time and O(log n)
expected space. A shortcut is required as a sublinear time method cannot possibly con-
sider all nodes in the tree. The algorithm presented here uses some sort of depth-first
search with tree pruning gleaned from game tree search applications. The idea of sim-
ulating random variables via shortcuts that bypass the definition of the random variables
has been exploited by many. For example, the maximum of n i.i.d, random variables with
a given density f can be generated in expected time O(1) or O(log n) depending upon
whether the distribution function is available at unit cost or not [28], [5]. The sum of n
i.i.d, random variables can also be generated in time o(n); often, O(1) expected time is
achievable, as is demonstrated in [7], [11]. A binomial (n, p) random variable represent-
ing the outcome of n coin flips is nowadays routinely generated in O(1) expected time
([2], [15], [24], [25], [10], [16], [29]-[30]) uniformly bounded over n and p. The result
of this paper is just another illustration of the same principle. The method of 3 is extremely
easy to implement, and is competitive with the other methods for values n that are not too

large.
In 4, we recall a simple linear time method based upon growing a random binary search

tree by replacing external nodes, i.e., not by insertion from the root down, Probabilistic
shortcuts based upon waiting times allow us in 5 to reduce the expected time to O(log n).
This requires efficient generators for a multivariate hypergeometric and a certain waiting
time distribution, thereby rendering the programming effort and the overhead a bit heavier.
Nevertheless, for medium-sized values of n, the method is very useful.

In 6, a random binary search tree is grown by imagining that each external node is a living
organism that will bear two children and die according to a simple Poisson point process. We
then let the time grow by constant amounts, so that the tree grows at an exponential rate. At
any given moment, we have a correctly distributed binary search tree, but the size is random.
When one stops as soon as the size of the tree is n or larger, the expected time complexity is
O (log4 n). A modification of the algorithm is introduced to obtain the right size. The constant
in O (log4 n) is rather large due to the overhead in a multinomial random vector generator used
in a bottleneck portion of the algorithm. This last method is useful for extremely large n, such
as n 104.

2. Two key properties of random binary search trees.
FACT 1. Ifwe associate with node in a random binary search tree an integer Si denoting

the size ofthe subtree rooted at that node, thenfor any (i.e., left or right) child j ofnode i, we
have

where means "is distributed as," and U is a uniform [0, 1] random variable independent of
si.

As an immediate corollary of this we have the following fact.
FACT 2. Let node in a random binary search tree have children j and k. Then

max(Sj S) C= LSi max(U, 1- U)J c-- [si + U J2

where U is a uniform [0, 1] random variable independent of Si.
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3. A simple algorithm for the height of a random binary search tree.

3.1. Description. The algorithm keeps a stack of nodes characterized by a pair (I, s),
where is the level of a node (i.e., its distance from the root), and s is the size of the subtree
rooted at that node. The actual position of each node in the tree and the actual tree with all
its links are never constructed. As we proceed, nodes on the stack are split into two nodes
representing the children. A node (1, s) is thus split into (l + 1, Sl) and (1 + 1, si), where
S + s2 s 1. Moreover, S is distributed as Ls U/, where U is uniformly distributed on
[0, ]. See Fact above. The new nodes are put back on the stack with the largest subtree on
top. A node (1, s) can at best produce a node at distance + s from the root, so there is
no point in processing or stacking such a node if + s does not exceed the current value
of the height of the tree, i.e., the largest level among all nodes seen thus far. This observation
is at the basis of the sublinear expected time: not all nodes in the random binary search tree
are expanded; in fact, only a negligible fraction (O (1/log n)) is ever expanded.

A sublinea depth-first search algorithm.

makenull (S) (S is a stack).
push ((O,n),S) (put the root onto the stack).
h +-0 (h is the current value of the height).
while not empty (S) do

pop ((1, s), S)
+/-f l+s- > h then
l+-l+l
if > h then h +--l
generate U uniformly on [1/2, 1].
$2 <--- [sUJ S1 +’-" S- 1- $2.

if Sl > then if l+sl-1 >h then push ((l, sl),S).
if $2 > then if + S2 --1 > h then push ((/,S2), S).

return h.

3.2. Expected stack size. It is easy to verify by induction that every level except the
furthest can occur at most once on the stack; the furthest occurs at most twice (iust note that
the level numbers of the nodes on the stack are strictly increasing except possibly for the top
node). This shows without further ado that the maximal stack size is less than one plus the
height of the tree, and this in turn is less than (c + e) log n almost surely for any e > 0.
Furthermore, the expected stack size is not greater than (c / o(1)) log n.

3.3. Expected time analysis. Initially, we push and pop a sequence of nodes that corre-
spond to a path down the tree ending with a node with a subtree of size one. After that, the
algorithm backtracks by processing a node closer to the root. Let us call L,, the level of this
furthest node encountered in the first phase of the algorithm. Let

S0=n;

L l+Ui (i> l)Si-- Si-1
2

where U1, U2 are i.i.d, uniform [0, 1] random variables. The sequence So, S corre-
sponds to the sizes of the subtrees rooted at the nodes processed on the first pass (see Fact 2).
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It is clear that Ln k if and only if Sk_ > and Sk 1. The asymptotic behavior of Ln is
covered by the following result.

FACT 3. As n --+ oc, we have

L
-+ 3.258891 a.s.

logn log(e/2)

as n -+ oc. In particular, ifa < 1/log(e/2), then

P{Ln < alogn} O(n-)

for some fi > 0 depending upon a.

Proof Observe that

+ Ui
k < Sk < nn

2 2..._

Hence,

P{L,, _< k} < P{S, < 1}

{-I(lq Ui ) }<P n <k+
i=1

< P log n + log
2’_.

l- -t /log
Ui

<--P i=1 k k

Now take k [a log nq with 0 <a < 1/log(e/2). We now apply a large deviation theorem
(see, e.g., [22] or [12, 1.9]), which states that if Y1, Y2 are i.i.d, random variables with
mean , and if Ee-1 < for some > 0, then, for every e > 0, there exists a > 0 such
that

}P
i=1

Yi " z -- e-
Now, applied to our situation, noting that

Elg( l+U!)2 -log(2/e)

and that

log n log(k + 1)
k k a

+ o(1),

we obtain

{ log(1 +Ui)P /=1 2
log n log(k + 1)
k k

O(e-,logn) O(r/-’)
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for some > 0, provided that -1/a < log(2/e). This proves the second half of Fact 3. In
the same manner, one can show that

P{L,, > a logn} o(1)

for all a > 1/log(e/2).
THEOREM. The expected time taken by the algorithm given above is 0 (n/ log n).
Proof The running time of the algorithm is appropriately measured by the number of

nodes that are ever stacked. On the first pass just described, we push at most 2(Ln + 1)
onto the stack. After this first pass, only nodes with the property that the (l, s) pair satisfies
/ s > Ln can ever be pushed onto the stack. The expected number of nodes pushed on

the stack after the first pass is not more than

E rain n, 2

2P{N R 1}+ 2P{alogn+N- > 3.21ogn}
logn k logn

+ nP{L, < 3.2 log n}

de I + II +III
where N is the size of the subtree of a typical node at distance k from the root. Here we took
into account that there are potentially 2 nodes at distance k from the root. Observe next that

N [Nk_IUJ N0 n,

where U, U2 are i.i.d uniform [0, 1] random variables. Thus,

N n Ui elogn-G,
i=1

where G is a gamma (k) random variable. We have

(log n
P{N

k(1 logn/(k + 1))

by an inequality for the left tail of the gamma distribution found, for example, in [9]. As a
result of this estimate, we see that for a > 1,

I 2P{N 1}
a log

(2 log n)e- og,,

z,og,, k(1- 1/a)

a elog,, (21ogn)te-21g’’

a-1 ka log
an

P{Z > alogn},
a-1

where Z is a Poisson (2 log n) random variable. We will see that we need to take a 6 (2, 3.2).
By Chebyshev’s inequality, since a > 2, we see that

Var{Z} 2
P{Z > a logn} <

(a 2)2 log2 n (a 2)2 log n
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We conclude that for a > 2,

I <
2an

(a 1)(a 2) 2 logn

Next,

1-6III nP{L,1 < 3.21ogn} < n

for some > 0 by Fact 3. Finally, if y log n log log n log(3.2 a),

II=
k <a log n

k<l.1 logn

< 2n0’77 +

< 2n0.77 .+.

Z 2kP{alogn+N.- > 3.2 logn}

< 2n0"77 -q- ey

21+1.1 logn _[_ Z
1.1 logn_<.k<a logn

1.1 logn<k<a logn

2kP{N- > (3.2- a)logn}

2P{log n G > log(3.2 a) + log log n

2 y’e-.’

k!(1 y/(k + 1))1.1 log n_<k <a log

Z (2y)e-2y
k!

1.1 log <k <a log n

< 2n0"77 -}- 11 ey

11 ) n2n’77 J"
3.2 a log n

Thus, I + II + III O(n/logn). V1

4. A simple linear time algorithm. In [7, p.650], a linear time method is given for
generating a random binary search tree. The basic algorithm is shown below.

rn <--0 (m is the number of levels)

n0 +--
for N :: to n do (N is the number of external nodes)
generate L randomly in {0 m}

according to the frequencies no nm
nL +- nl
if L:m then m +--m+
nc+ +-- nL+l k- 2

return (no, n1 nm)
(the height of the tree is m-1)

In this algorithm, we keep the number of external nodes at each level in an array (no, n 1,

nm). The expected storage needed for this is O(logn) since the expected height is
O (log n). The algorithm is based upon the fact that when adding a new node, each of the ex-
ternal nodes is equally likely to receive the node. To generate the random integer L according
to the vector of frequencies (no nm), one can trivially proceed in time O(1 + m), but
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this would result in overall expected time O (n log n). To generate L in O (1) expected time,
one has to either use more space or more programming resources. For example, keeping an
array with no + n + / nm entries, of which ni entries have label i, would enable us to
generate L in O (1) time. The overall time and space both are O (n). By a dynamic version of
the guide table method (see [3] or [13], for the raw guide table method), O(logn) expected
space is achievable provided that we can update the guide table in O (1) amortized time. This
is easy to achieve if we take care to rebuild the table every log nth (or mth) entry. Between
rebuilding, the new entries in the table are collected in a simple overflow list; this does not
affect the overall linear expected time.

5. Discrete jumps in the simulation: An O( log n) method.

5.1. Description. Consider a vector (no, n nm) representing the number ofexternal
nodes at levels 0, m, respectively, and assume that no + + nm n for now. The
previous linear time algorithm is based upon the selection of a uniform random external node,
say one at level k 6 {0 m }, and the updating of the vector by the rule

nk +--nk- 1,
n+ +- n+ / 2.

Imagine that the n original external nodes are white balls in an urn, and that the label of each
ball is its level number. A randomly selected (white) ball is removed. If its label is k, two
black balls with label k / are added. This process can be repeated until we pick a black
ball for the first time. The number of draws required until this happens is a random variable
T,, 6 {2 n / }. We say that T,, has the waiting-time distribution with parameter n. We
can let the tree-growing process jump ahead by T steps at once if we are given T. Indeed,
given T, it suffices to draw T white balls uniformly and without replacement from the urn.
The vector (Do, D Din) represents the number of balls drawn with labels 0, m,
respectively. The distribution of this vector is multivariate hypergeometric; the details on how
to generate the vector on a computer will be given later; it suffices for now to say that this
vector can be generated in O(m) expected time uniformly over all n. Now, the vector of
external nodes is updated by the rule

(no nm, nm+l) <-- (no nm, 0)
(Do, D D,,,, 0)

+ 2(0, Do Din)

The single black ball is taken care of by selecting a label L at random from the T white
ball labels just selected, the kth label being picked with probability proportional to Dr.. This
label can be chosen in time O (m) by the trivial algorithm

generate X uniformly on {1 T-1}.
S <-- Do, L +-O.
while X > S do

L+-L+I
S+--S+DI

A further update is required:

(nL+l, nL+2) +-- (nL+l 1, nL+2 / 2)
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where, if L m + 1, we define nm+2 0 before the update and nm+2 2 after the change.
The number of external nodes now is n + T instead of n. Iterate this process until we obtain
more external nodes than needed. It is a simple matter to get the exact size one wants by
simply truncating T in the last iteration. Let us first provide the algorithm in its entirety:

N +-1 (N is the number of external nodes)
m +-0 (m is the number of levels)

n0+-I
repeat

generate T 6{2 N+ i} with the waiting time distribution
with parameter N

if T+N>n+I
then T +- n + 2- N, S +- -1
else generate S uniformly in {0 T-I}

generate a multivariate hypergeometric (Do Din)
with parameters T-I and (no nm)

if Dm>O
then m +-m+

(no nm) +- (no nm-1, 0) (Do Dm-1, 0) + 2(0, Do Din-l)
else (no nm) +- (no nm) (Do Din) + 2(0, Do Din-l)

then generate a random integer L 6 {0 m}
from S by inversion according to the frequencies Do Dm
nt.+1 +- nL+
if L+2_<m then nL+2 +-nL+2+2

else n+2 +-2, m +-m+
until T + N >_ n /
return (n0, nl rim)

The algorithm given above returns a vector with m components n;, where n; is the number of
external nodes on level i. Clearly, for a random binary search tree with n nodes, we have n /
external nodes, and thus -i ni n / 1. Thus, besides the height of the binary search tree
(m 1), we also have information about the distribution of the nodes over the various levels.

A few details have to be ironed out:
Determine the waiting time distribution for T and show how a random variate T can
be generated in constant expected time, bounded uniformly over n.

Show how one can generate a multivariate hypergeometric random variate.
Show that the algorithm takes O (x/-6 log n) expected time units.

5.2. The distribution of T. By using the urn with white balls and black balls, we see
that P{T > k} is equal to the probability that in the first k draws only white balls are chosen.
Clearly then, if the urn has n white balls to begin with,

k-1

P T > k il
n

n +
2<k<n+l_

so that

P{T k + l}
(2n2k

<k _<n.
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Random variate generation can be dealt with by von Neumann’s rejection method, which
requires a summable function of k that dominates the probability vector given above. In von
Neumann’s method, worked out below for our case, it suffices to generate random variates
from a distribution with probabilities proportional to the bounding vector and stop when for
the first time an acceptance condition is satisfied. We first derive an upper bound from the
following inequality:

2k 2k2/3nP{T =k+ l} <_ --e- <_k <_n.

This can be shown as follows. Using log(1 + u) >_ 2u/(2 + u) for u > 0, we have

2kn‘-1 2k _2kZ/(2n+k)P{T-k+I} < <--e
(n + k)k n

2ke-2k2/3n
2(x + 1) _2xZ/3n< e ,k-l<x<k.

Observe that

2x -2x2/3n 3
e
n 2’

Thus, the density 2(x/ 1) e-2xZ/3n on the positive hairline is the mixture of the Maxwell density
and the normal density. The rejection method for T can be summarized as follows:

generator for T with parameter n

repeat
generate U,V uniform [0, I]
if U < 3/2

3/2+P2n
then generate an exponential random variate E; set Y +-/3nE/2
else generate N standard normal; set Y +-/3nN2/4

x +-FYl
until Y _< n and V2X+----!2exp(-2X2/3n), < (2Y/n) ,+,)/(,)
return T +--Y+I

The expected number of iterations in this algorithm is 3/2 + v/3rc/4n. The expected time
is uniformly bounded over n if we can evaluate factorials in O (1) time or if we can verify the
acceptance condition in O (1) time. Ifwe accept a model in which simple basic operations take
constant time, regardless of the size of the operands. The factorial, evaluated naively, would
thus take time proportional to n. One can consult Chapter X of [7] on this issue; depending
upon the situation, one can use a combination of either Stifling’s approximation or Binet’s
approximation with the alternating series acceptance]rejection method. Another property we
will require is that P{T > v/-/4} > 1/2 > 0. Toseethis, observe that with s [v/-n-/4] < n,
fors- > 1,
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P{T > s} >
+s-1

n+s-1

> (1 2(s-1)2)n+s--1

>
-2

since s < + q%/4. When s 1 (thus, n < 4), the inequality we are trying to establish is
obviously satisfied, as T > 2 with probability one.

5.3. Generation ofrandom vectors with a multivariate hypergeometrie distribution.
The random vector (Do, DI Om) obtained by drawing without replacement k balls from
an urn having ni balls with label i, 0 < < m, is called a multivariate hypergeometric random
vector with parameters k and (no, n nm). In a simple hypergeometric situation, we have
rn 1. For rn 1, various generators have uniformly fast expected time per random variate;
see for example the generators of Kachitvichyanukul 15], Kachitvichyanukul and Schmeiser
[16], [17], Stadlober [29]-[31], or Devroye [7]. Using these algorithms, we can generate Do
by drawing from an urn with no balls labeled 0 and n / / nm balls labeled "> 0." By
repeating this step, we can generate the multivariate hypereometric random variate in expected
time O (m) uniformly in all the other parameters.

5.4. Probabilistie analysis. We will show the following fact.
FACT 4. The algorithm given above takes expected time O(x/-ff log n).
Proof The following notation will be used: the number of external nodes at the beginning

of the th iteration is Ni" thus,

1--/0</1 <N2 <""

We consider the algorithm without truncation, iterated ad infinitum. Let Ti be the value of the
waiting time random variable for the th iteration; its parameter is Ni-1, and we have

Ni Ni-1 / Ti (i >_ 1).

The algorithm halts after iteration k when for the first time Nk > n / 1. The number of
iterations is denoted by J,. Clearly, J,, > k if and only if Nk < n / 1. Also, by construction,
Ni > 2i for all i, so that J, < n. This implies that

EJ, _< P{J: > i} < if (neP{N < n + 1} + k)
l<i<n

We will see that EJ n2 0 (n). Then we continue as follows" if the vector of external nodes at
the outset of an iteration is (no nm), then that iteration takes expected time bounded by
a universal constant times m / 1. Clearly, m _< H,,, the height of the random tree generated.
Hence, the overall expected time is bounded by

cE{J + J.H,,},
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where c is a universal constant. By the Cauchy-Schwarz inequality, we have

2 2E{ J, H,, _< v/EJ,EH,
From [6], we recall that EH,2 O(log2 n). Since EJ2n O(n), Fact 4 is proved.

To show EJ O(n), it clearly suffices to choose k (R) (v/-ff) and to show that

P{N, < n + 1} O(1/n).

Let Ii be the indicator function of the event T/ > w/Ni 1/4. Thus,

Ni >_ Ni-l + max 2, v/Ni-1/4 Ii >_ 1.

Consider a deterministic sequence di determined by do 1,

By induction, it is easy to see that Ni >_ dee, where

Bi Z!
j=l

Again by induction, we have di >_ (i/8)2 for all >_ 1. Thus, Ni >_ (Bi/8)2. The !i’s are
dependent. Nevertheless, we have shown that E{!j Ill !i-l} > 1/2, so that by a simple
coupling argument, Bi is stochastically dominated by a binomial (i, 1/2) random variable B.
Therefore, by Hoeffding’s inequality [14],

P{Nk <n+l} <P{Bk < 8v/n+l}
< P{B EB < 8v/n + k/Z}
< P {B EBb, < -k/4}

(if k > 32/n + 1)

< e-2(k/4)2/k
e-k

Take k 32v/n + and conclude that

P{Nk < n + 1} O(1/n),

as required. In fact, we have shown that

2 <: 16n + 17EJn

for all n large enough.
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6. A birth-and-death process method.

6.1. Derivation. In Robson [26], [27], simulations were reported that were based upon
an ultra-fast algorithm that produces random binary search trees of random size. This method
has never been published nor analyzed. Also, the modifications required to produce a random
tree of the correct size are discussed in this paper.

Once again, consider a vector (no, n nm) representing the number of external nodes
at levels 0, 1 m, respectively, and assume that no + + nm n for now. Every
external node should be considered as a living element in a birth-and-death process with unit
reproduction rate for each element. When an external node gives birth, it produces two new
elements (which live at one level below their parent), and it immediately dies, for a net gain
of one element. This is nothing but the Yule process (a special case of a pure birth process;
see [32, p. 215]). The n nodes at time will thus spawn families of offspring at time + A of
i.i.d, sizes $1 Sn. The common distribution of the Si’s is that of S, where

P{S k} (1 e-A)k-1 e-x (k > 1).

If the state at time is described by (no, n nm), then our purpose is to efficiently
generate an updated state at time / A, where A is a constant to be selected. The first step is
to generate the sizes of the subtrees of external nodes (at time + A) with roots at the elements
alive at time t. This leads to the generation of the triangular array of random integers N (i, j),
each representing the number of size j subtrees with original root at level i. Thus,

ZN(i,j)--ni, O<i <m.
j--1

In fact, (N (i, 1), N(i, 2), N (i, 3) is multinomial with parameter ni and probabilities given
by pl (A), P2 (A) By repeatedly appealing to a uniformly fast binomial generator, we
can generate this vector in expected time bounded by a constant times the expected value
of the maximal size subtree m(ni) for any of the ni roots. Now, the maximum of ni i.i.d.
geometric random variables described by the probabilities pi (A), > 1, has an expected value
not exceeding

+ logni
1+

log(l/(1 e-X))

Since each ni does not exceed n, we see that, given m, all N (i, j) can be generated in expected
time O(m log n).

The next step in the algorithm consists of generating the correct numbers of external nodes
at all levels. This can be done in one sweep from 0 to m. Assume that we are given N (i, j),
j > 1, for fixed i. This leads to N(i, 1) external nodes at level i. For fixed j > 2, we obtain
no external nodes at level i. Rather, it is possible to determine how many subtrees rooted at
nodes of level + this leads to. Indeed, a node at level with a subtree having j external
nodes yields a left child at level + 1 which itself has a subtree of (random) size S > 2, where
S is equally likely to take any value between 1 and j 1. The size of the subtree rooted at the
right child is j S. Of course, we won’t have to do this for each node separately. Rather, it
is easy to see that we need only generate a multinomial random vector w l, we wj_ with_. w N(i, j), and equal probabilities. Here w represents the number of left child nodes at
level / having external nodes in their subtrees. Adding in the sizes of the right subtrees,
we see that at level/+ 1, the N(i, j) level nodes spawn 2N(i, j)nodes with w + wj_t nodes
of size 1. A uniformly fast binomial generator can "split" all N (i, j) at level in this manner
in expected time O(EM(ni)2). For fixed A, this is O(log2 n).
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The sizes of the nodes at level + can now be updated, and they in turn are split. An
iteration thus takes expected time not exceeding EHN times O(log2 n) where N is the number
of external nodes at the end of the iteration.

a generator for a random binary search tree
with > n+ external nodes

N<--l, m+-0, n0+--1
while N <n+l do

r+-l, tl <-- 0
processed +-0, j +-0
while processed < N do

generate a multinomial random vector (Ul, U2 uR) with
parameter nj and probabilities pk--e-A(l--e-A)k-l, k >_

N +- N + b/1 / 2U2 +’’" + RuR nJ
if R <r then (U+l u) +-0, R +-r

(u 1, u2 Ur) +- (u 1, u2 Ur) / (tl, t2 tr)
nj <--ul, processed - processed -+-u
j+-j+l
m +--2, (t t) <--0
while m < R do

generate a multinomial random vector (w Wm-)
with parameter Um and equal probabilities 1/(m-I)

(tl tin-l) +-- (tl tm-1) / (LOl LOm-1)
(tl tm-1) +- (tl tm-1) / (Win-1 Wl)
m+--m+l

if_ um--O then r +- else r +-max{i’ti >0}
return (no, n nm)

6.2. Probabilistie analysis.
FACT 5. The algorithm shown above halts in expected time 0 (log4 n).
Proof Consider the overall number of external nodes T/ after iterations, starting with

To 1. Ti is the sum of T/_I i.i.d, geometric random variables with probabilities given by
pl (A), pz(A) The expected value of one geometric random variable is ex. Thus,

eiA (i > O)ETi eAEL_

The tree thus grows exponentially quickly. In fact, we know much more. By the derivation
given above, the distribution of Ti is geometric itself with parameter e-ix. It is perhaps a
bit counterintuitive that Ti has a monotonically decreasing discrete density, with the value
being most likely. Clearly, if we are aiming for a tree of approximate size n, then we can take
A log 2, and perform log2 n iterations. Or we can iterate until for the first time Ti > n / 1.
In the latter case, if the number of iterations is J,, and the height after stopping is HN, the
overall expected time is bounded by O (log2 n) times

E{J.HN} <_ V/E {J.2} E {HN2 O(log2 n),

provided that EHN O(log n) and that E j2 O (log2 n). We conclude that the expected
complexity is O (log4 n). But

P{Jn > k} < P{T/ < n + 1} (1 -e-/x)
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so that

E{JZ}:2kP{J >k}

< k*(k* + 1) + (n + 1) 2ke-zx

k>k*

<_ k*(k* + 1) + (n + 1) 2xe-xA dx

k*(k* + 1) + (n + 1)2A-2(1 + Ak*)e-k*x

log n )
2

< 2 q-
A -+ 2A-2(1 + log(n + 1))

(take k*- [21og(n + 1)/A])
O (log2 n)

Finally, we show that EHN O(logn). Clearly, for k > 0,

P{HN > 4e log(n + 1) + 4ek + 1}
_< P{N > k2(n + 1)2} q-- P{H/2(n+I)2 > 4e log(n + 1) + 4ek + 1},

where we used the monotonicity of the tree-building process; here Hi denotes the height of
the tree in the birth-and-death process at the moment that it has precisely j + external nodes.
The last probability decreases exponentially quickly with n and k" for k >_ 2 log n,

[9, Thm 5]. Therefore,

2(2 logn) 2(2elogn/k)
P{H,, > k} < <

nk! n

Also,

P{Hk2n+l) > 4e log(n + 1) +4ek + 1}

4e(log(n + 1) + 1ogk))(4elg(n+l)+4ek+2< 2 4e log(n + 1) + 4ek

_<2k-2(n+ 1)-2.
k2(n + 1)2

P{N > k2(n -+- 1) 2} _< P{U=o[T/ < n -+- 1, Tk+ k2(n + 1)2]}
< (n + 1) sup P{Tk < n + 1, T+I >_ kZ(n q-- 1)2}

l<k<n

(n + 1) sup -- P{Tk j}P{Tk+I >_ k2(n + 1)21T j}
<k <n

< (n + 1) sup P{Tk+I _>_ kZ(n-k- 1)21Tk --n}
l<k<n

(n + 1)P{T1 > kZ(n -+- 1)21T0 n}

<_ k-4(n + 1)-3E{T121To n}

k-4(n -I- 1) -3 ((ne/X) 2 + n(ex 1))

k4(n q- 1)

Sum the upper bounds over k > 0, and conclude that EHN _< 4e log(n + 1) + O (1).
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6.3. Stopping at exactly n nodes. To obtain a tree of exactly n nodes from the algorithm
above, we need to modify it so that before each iteration copies of N, m and (no, n nm)
are made and, if the iteration would increase the number of nodes beyond n, the iteration is
aborted by returning to the copied values. To preserve the expected time O (log4 n), it is also
necessary to reduce the value of A when it is likely that taking a time step of A will give an
aborted iteration. A simple approach is to take A as log((n + N)/2N) whenever this is less
than log 2 (that is when N > n/3), so that the expected number of new nodes created is half
of the number required to reach n.

FACT 6. The algorithm modified in this way halts in expected time 0 (log4 n).
Proof. To prove the bound O (log4 n) on the expected time, it is only necessary to show

that the bound E {J2} O(loge n) still holds. First we count only nonaborted iterations.
By the reasoning above, the bound holds for the number of iterations to reach n/3 nodes.
After n/3 nodes, each iteration has value of A such that the expected number of new nodes is
half that required to reach n and it is easy to see that there is a constant c > 0 such that each
iteration has probability at least c of adding at least half of that expected number (since the rate
of creation of new nodes is at least that of a Poisson process creating N nodes per unit time).
But the maximum number of iterations after n /3 nodes which add at least a quarter ofthe n N
nodes still required is O(log n) so that the expectation E {J} O(log2 n/c2) O(loge n)
as required.

To handle aborted iterations, we use a similar argument: each iteration has a probability
at least 1/2 of not being aborted; hence including aborted iterations can increase E J,2 by
at most a factor of 4. [

In practice it would be sensible to halt this process when the number of nodes required to
be added was small (say < log2 n) and finish the simulation with the method of 5.

Acknowledgments. We thank the referees.
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ON THE VARIANCE OF THE HEIGHT OF RANDOM BINARY SEARCH TREES*

LUC DEVROYE aND BRUCE REEDt

Abstract. Let Hn be the height of a random binary search tree on n nodes. We show that there exists a constant
4.31107... such that P {IHn clogn] > /loglogn} -- 0, where/ > 15o/ln2 93.2933 The

proof uses the second moment method and does not rely on properties of branching processes. We also show that
Var{Hn} O((loglogn)2).

Key words, binary search tree, probabilistic analysis, random tree, asymptotics, height, second moment method

AMS subject classifications. 68Q25, 60C05

1. Introduction. The height Hn of a random binary search tree on n nodes, constructed
in the usual manner, starting from a random equiprobable permutation of n, is known
to be close to o log n, where o 4.31107... is the unique solution on [2, x) of the equation
o log((2e)/o) 1. First, Pittel [12] showed that Hn/log n --+ 9/almost surely as n --+ cx
for some positive constant V. This constant was known not to exceed o (Robson 15]), and
it was shown in Devroye [4] that ?, o as a consequence of the fact that EH c log n.
Robson 16] has found that H does not vary much from experiment to experiment and seems
to have a fixed range of width not depending on n. Devroye [5] proved that H c log n
O (v/log n log log n) in probability, but this does not quite confirm Robson’s findings. It is the
purpose of this paper to prove the following theorem.

THEOREM.

and

EH, o log n + O (log log n)

Var H, O ((log log n)2)

While this is a major step forward, we still do not know whether Var{Hn} O(1).
For more information on random binary search trees, one may consult Knuth [7], [8], Aho,
Hopcroft, and Ullman [1], [2], Mahmoud and Pittel [10], Devroye [6], Mahmoud [9], and
Pittel 13].

Finally, we note that this paper contains the first proof of the asymptotic properties of
Hn that is not based upon the theory of branching processes or branching random walks. We
merely employ a well-known representation of random binary search trees from Devroye [4],
and combine it with the second moment method, which has found so many other applications
in the theory of random graphs (see, e.g., Palmer 11]).

2. Notation and definitions. Let T be the complete infinite binary tree. Each node x
has a right son r (x) and a left son (x). We consider a random labelled tree R obtained from
T by choosing a uniform [0, 1] random variable U (x) for each node x of T and labelling
the edge (x, r(x)) by U(x) and the edge (x, l(x)) by U(x). The label of edge a is denoted
L (a). We let R be the random tree consisting of the first k edge levels of R.

For each node y of R, we let f(y) be the product of the labels of the edges on the
unique path from the root to y. We remark that for each x 6 R, log U (x) is an exponential

*Received by the editors September 24, 1992; accepted for publication (in revised form) April 21, 1994. This
research was supported by Natural Sciences and Engineering Research Council of Canada grant A3456.

tSchool of Computer Science, McGill University, Montreal, Quebec H3A 2K6, Canada (iac@czodo.
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random variable with mean 1. If the labels on the path from the root to a node y of R are

U1 Ui, then we define

.() L... ILnUJU2J UJ
Also, log f (y) is distributed as the sum of independently and identically distributed (i.i.d.)
exponential random variables with mean 1, i.e., it is gamma distributed with parameter i.

Fact 1. It is well known that we can construct a random binary search tree Tn on n nodes
by taking a copy R of Roo and letting Tn consist of those nodes y of R with hn (y) >_ 1. (See,
e.g., Devroye [4].)

Fact 2. Let y be a node of Roo at depth (i.e., at edge-distance from the root). Then

nf(y) <_ h, (y) <_ nf (y)

Facts and 2 basically allow us to obtain refined information regarding Hn merely by
studying Roo. The inequality in Fact 2 introduces a certain looseness; in fact, it will limit the
accuracy of the results on Hn to be O (log log n).

3. Lemmas regarding the gamma distribution. The sum S,, of n i.i.d, exponential
random variables with mean is gamma (n) distributed. Its density is given by

tn-le-t
g(t)-

(n- 1)!’
> 0.

LEMMA 1. Let {tn} be a sequence of numbers such that t, cn as n --+ x for some
c 6 (0, 1). Then

e-"(tn)
P {S. < t.}

-c n[

Proof By integration by parts,

tn- e-t
P {S,, < t,}

(n 1)----7 dt

t" n+l
e-t,, n tn. +

(n +
e-’" (t.)"

-c n
LEMMA 2. Let (0, 1) be afixed constant. Then

e-’"(tn)
< P {S, <tn}n 1-t

n+2 )(n -t- 2)!

e-’"(tn)"
n

Proof The lower bound follows directly by integration by parts as in the proof of Lemma
1. For the upper bound, note that

P{S < tn} < e-’n ( (tn)n (tn)’’+l (tn)’+2 )n! + (n+l)!
+

(n+2)!
+""

n! n+ i n+

<
e-tn(tn)n ( ),n!
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LEMMA 3.

A _< q/-2" P {S,, < n/a} <_ B,

where A e-1/le/x/- and B o/((o 1)x/-).
Proof. From Lemma 2,

e-"/’ (n /o) e-"/C (n /o)"
< P {S, < n/c} <_

n! 1- 1/o n!

Use the fact that n! (n/e)"2---e/(ie") for some 0 E (0, 1) and the definition ofo.
LEMMA 4. There exists a universal constant C such that

P S, > Cn <_. 2-2n

C 5 will do.

Proof Take C > 1. By Chernoff’s exponential bounding method (Chernoff [3]), for
t>0,

P {S,, > Cn} < E etS"e-t’ (1 -t)-"e-t’ (Gel-C)"
where we take 1/C. For C large enough (e.g., C > 5), this is less than 4-". q

LEMMA 5. Let El, E2 E,, be i.i.d, random variables with a density, and let a be a

fixed constant. Then

P {E < a, E + E2 < 2a E +... + E, < na El +... + E, < na} >

Proof Define Fi Ei a for all i. Define Er Er-n, when n < r < 2n. Then, by
symmetry,

P{E <a,E+E2 <2a EI + + E,, <ha Ei + + E, <ha}

P {F1 < 0, F+F2 <0 Flq’’"-l-Fn <01FI+...+F, <0}

P {Fi < O, Fi -+- Fi+l < O, Fi +...-k- Fi+n-1 < 01 F1 +...-+- Fn < 0}
i=1

P {Fs < O, Fs + Fs+ < 0 Fs +... + Fs+,- < 0 F +... + F, < 0},

where S is independent of the Ei’s and uniformly distributed on n }. Now, fix E
E,, and let s E n} be the (unique) value at which i>o,i Fi is maximal. If s 1,
then y’[= Fi < 0 for all j > 0. If s > 1, then, as Y-’i’-- Fi < 0, we see that z..i=sS"s+J Fi

-F.j
i=1 Fi Y’i= Fi < 0 for all j > 0. Thus,

P {Fs < O, Fs + Fs+ < 0 Fs q-". nt- Fs+n-1 < 0 FI +..-+ F, < 0}

> P{S-s}=-. fq

4. Proof of the theorem.
LEMMA 6. Consider positive integers n > k. Then

P {H, >k} > P {3leafy Rk f(y) > (k+ 1)/n}.

Proof This follows immediately from Facts and 2. [3

LEMMA 7. There exists a constant d > 0 such thatfor sufficiently large j,

P {3 leaf y e Ri f(Y) > (J + 1)/exp(j/c + d log(j/o))} >

We may pick d e + 15/log 2for any small > O.
j
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Proof. The proof is contained in 5. 71
LEMMA 8. Let d be the constant ofLemma 7. Then, for sufficiently large n,

P {Hn >_alogn-daloglogn-1}>_ 1-
(a log n)

We may choose d + 15/log2for any small > O.
Proof The proof follows from Lemmas 6 and 7 by setting j k [a log n

da log log n]. 71
LEMMA 9.

P {Hn > [alogn+i} < >0.

Proof See Devroye [4, p. 492]. 71
Note that the theorem follows from Lemmas 8 and 9 without work.

5. Proof of Lemma 7.
LEMMA 10. For every withprobability at least --2-i, every leafofRi has f(y) > e-5i.
Proof. The probability that, for some leaf y of Ri, we have f(y) < e-5i is at most 2

times P{ Si > 5i }, where Si is gamma distributed. By Lemma 4, this does not exceed 2i/4
2-i. [-]

LEMMA 11. For sufficiently large k with probability at least 1 / k3, there is a leaf y of Rk
with f(y) > e-/.

Lemma 11 will be proved in 6. If Lemma 11 is true, then we can proceed with the
proof of Lemma 7 as follows: First note that we can obtain a copy of Ri+k by making each
leaf of Ri a root of a copy of R, where all these trees are independently labelled. Define
k /j A log jJ and A log j so that j k + with some constant A to be picked
further on. Note first that for j large enough, if A > a,

Then,

-+5i <-+5Alog -log(j+l).

P N leaf y E R with f(y) > 1/exp(j/a + 5A log(j/a) log(j + 1))}

< P {3 leaf y Ri with f(y) < e-5i

+ P ] leaf y Ri with f(y) >_ 1/exp(j/a + d log(j/a) log(j + 1))

leaf y e Ri f(y) > e-5i

<_ 2-i + P {every copy of Rk contains no leaf y with f(y) > 1/exp(k/a)}

(by Lemma 10)

< 2-i -+- (1 -k-3) 2i
(by Lemma 11)

< 2-i + exp (-2ik-3)

__< j-Alog2 q_ exp (_jAlog2-3)

<j-3
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for j large enough, provided that A log 2 > 3. This proves Lemma 7. We note that we can
pick d 5A, where A + max(a, 3/log 2) for any small > 0.

6. Proof of Lemma 11. Let P be a path from the root to a leaf y of Rk. The condition

f (y) > 1/e/" is equivalent to

(- log L(e)) <_
eEP

We call a leaf y special if, in addition to the above condition, it satisfies

Z(- log L(e)) <_
eEP’

IP’I

for every subpath P’ of P that originates at a terminal vertex y. Such subpaths are called
terminal. Let $ be the collection of special leaves of Rk. By Lemma 5, the expected number
of special leaves is at least 1/k times P {S < k/o} times 2. By Lemma 3,

EISI
e-1/12

x/k 2

Next, we consider the expected number of pairs of special leaves to be able to apply the
second moment method. We fix a leaf z of R and count IS], given that z 6 $. To this end,
let w be another leaf of R. Let P.. and P,,, denote the paths from the root of R to z and w,
respectively. Then P= and P,,, have an initial common subsequence, i.e., the join P. N P,,,. Let
el, e2 ek be the edges on the path from the root to z and define Qi {el ei }. For any
j, the number of leaves of R whose join with P. is Q.i is 2-j Furthermore, the probability
that a leaf w 6 R is a special leaf, given that z 6 S and Pz N P,,, Qj, is bounded above by
the probability that for the terminal path P’ c_ P,I, Q.i with IP’I max(0, k j 1), we
have

Z(- log L(e)) <
eP’

IP’I

Note that P’ contains one edge less than P,I,- Q.i. Later, this allows us to work out a conditional
probability, given z 6 S, without much trouble. By Lemma 3, the probability of the event
mentioned above is at most

(c- 1)x/’2zr(k- j- 1)2-j-1

Thus,

E {l{w C S" P, Pz, QjIIIz c S}
2k-J

(o- 1)x/2n’(k- j- 1)2-j-1

2c

(a- 1)/27r(k- j- 1)
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when k j >_ 2. The previous expected value is bounded by 2 when k j 6 {0, 1}. Therefore,

Hence, by the second moment method,

EIS[
e{IsI 1}

+ supz leafof R. E{ISIIz c S}
E ISI

-2k/3

,f--(2k + 3)k3/2

k

for all k large enough. This concludes the proof of Lemma 11.

Acknowledgments. The authors thank Colin McDiarmid and an anonymous referee for
helpful comments.

REFERENCES

A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis ofComputer Algorithms, Addison-

Wesley, Reading, MA, 1975.
[2] ,Data Structures and Algorithms, Addison-Wesley, Reading, MA, 1983.
[3] H. CI-IERNOFF, A measure ofasymptotic efficiency for tests ofa hypothesis based on the sum of observations,

Ann. Math. Statist., 23 (1952), pp. 493-507.
[4] L. DEVROYE, A note on the height ofbinary search trees, J. Assoc. Comput. Mach., 33 (1986), pp. 489-498.
[5] ,Branching processes in the analysis ofthe heights of trees, Acta Inform., 24 (1987), pp. 277-298.
[6] ,On the height ofrandom m-ary search trees, Random Structures Algorithms, (1990), pp. 191-203.
[7] D.E. KNtrrH, TheArt ofComputer Programming, Vol. 1: FundamentaIAlgorithms, Addison-Wesley, Reading,

MA, 1973.
[8] , The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley, Reading, MA,

1973.
[9] H.M. MAHMOUD, Evolution ofRandom Search Trees, John Wiley, New York, 1992.
10] H. MAHMOUD AND B. PITTEL, On the mostprobable shape ofa search tree grownfrom a random permutation,

SIAM J. Algebraic Discrete Meth., 5 (1984), pp. 69-81.
11] E.M. PALMER, Graphical Evolution, John Wiley, New York, 1985.

[12] B. PITTEL, On growing random binary trees, J. Math. Anal. Appl., 103 (1984), pp. 461-480.
13] .,Note on the heights ofrandom recursive trees and random m-ary search trees, Tech. report, Department

of Mathematics, Ohio State University, 1992.
[14] R. PY:E, Spacings, Roy. Statist. Soc. Ser. B, 7 (1965), pp. 395-445.
[15] J.M. ROBSON, The height ofbinary search trees, Austral. Comput. J., 11 (1979), pp. 151-153.
16] ., The asymptotic behaviour ofthe height ofbinary search trees, Austral. Comput. Sci. Comm., Queens-

land Univ. Tech., Brisbane, 1982, p. 88.



SIAM J. COMPUT.
Vol. 24, No. 6, pp. 1163-1169, December 1995

() 1995 Society for Industrial and Applied Mathematics
OO3

CONSTRUCTING ItUFFMAN TREES IN PARALLEL*
LAWRENCE L. LARMORE? AD TERESA M. PRZYTYCKA

Abstract. We present a parallel algorithm for the Huffman coding problem. We reduce the Huffman coding
problem to the concave least weight subsequence (CLWS) problem and give a parallel algorithm that solves the
latter problem in O(log n) time with n processors on a concurrent read exclusive write parameter random-access
machine (CREW PRAM). This leads to the first sublinear-time o(n2)-total-work parallel algorithm for Huffman
coding. This reduction of the Huffman coding problem to the CLWS problem also yields an alternative O(n log n)-
time (or linear-time, for a sorted input sequence) algorithm for Huffman coding.

Key words. Huffman coding, parallel algorithms

AMS subject classification. 68P20

1. Introduction. Throughout this paper, a tree is a regular binary tree (i.e., a binary tree
in which each internal node has two children). The level of a node in a tree is its distance from
the root. The problem of constructing a Huffman tree, given a sequence of n nonnegative real
numbers, xl, x2 Xn, is to construct a tree with n leaves, where the leaves of the tree are
in one-to-one correspondence with elements of the sequence to minimize the following cost
function:

(1) c(T) Xi.i,
i=1

where i is the level of the leaf corresponding to X The value X associated with a leaf v is
called the weight of v.

The Huffman tree problem, also called the Huffman coding problem, can be solved in
O (n log n) sequential time [9], or linear time ifthe input sequence is sorted. Despite substantial
effort, however, no good parallel algorithm is known for the problem. Currently, the best
algorithm for the Huffman coding problem takes O (log2 n) time with roughly n2 concurrent
read exclusive write parameter random-access machine (CREW PRAM) processors [3]. An
approximate solution for the Huffman coding problem can be computed in O (log n log* n)
time using a linear number of CREW processors [10]. In this paper we present the first
sublinear-time, o(n2)-work parallel algorithm for the Huffman coding problem. At the heart
of our algorithm, is the reduction of the Huffman coding problem to the concave least weight
subsequence (CLWS) problem. This reduction leads to a new linear-time (ifthe input sequence
of weights is sorted) sequential algorithm for the Huffman coding problem.

The CLWS problem has a number of applications, including paragraph breaking. A good
parallel algorithm for this problem is thus interesting in its own right. Hirschberg and Larmore
[7] define the least weight subsequence (LWS) problem as follows: Given an integer n and a
real-valued weight function w(i, j) defined for integers 0 < < j < n, find a sequence of

*Received by the editors June 24, 1992; accepted for publication (in revised form) May 23, 1994.
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1This correspondence need not preserve order.
2The paragraph breaking problem involves finding the best way of breaking a paragraph of text into lines, a

problem that must be handled by text processing software such as TEX.
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integers - (0 o0 < ox < < ok-x < ok n) such that w() i=0 (i, i+
is minimized. Thus, the LWS problem reduces trivially to the minimum path problem on a
weighted directed acyclic graph. The single source LWS problem involves finding such a
minimal sequence 0 o0 < 0/1 < < O/k-1 < O(k m for all m < n. The weight function
is said to be concave if, for all 0 < i0 < ix < j0 < jl < n,

(2) w(io, jo) / w(ix, jl) _< w(io, jl) + W(il, jo).

The inequality (2) is also called the quadrangle inequality [17].
The LWS problem, with the restriction that the weight function is concave, is called the

CLWS problem. Hirschberg and Larmore [7] show that the LWS problem can be solved in
O(n2) sequential time, while the CLWS problem can be solved in O(n logn) time. Galil
and Giancarlo [5] give an O(n logn)-time bound for the convex least weight subsequence
problem (i.e., when the weight function satisfies the reverse of inequality (2)). Wilber [16]
gives an O(n)-time algorithm for the CLWS problem. Linear-time algorithms for this prob-
lem are also given by Klawe 12], Larmore and Schieber [15], and Galil and Park [6]. The
best-known sequential algorithm for the convex case is by Klawe and Kleitman 13]. Their
algorithm requires O(nc(n)) time, where ot is the inverse of the Ackerman function. All of
these algorithms actually solve the single source problems.

In the parallel setting, the CLWS problem seems to be more difficult than the correspond-
ing convex problem. Lam and Chan[ 14] present an O (log2 n log log n)-time, n! log log n-
processor CREW PRAM algorithm to solve the convex problem. On the other hand, the
best current A/’C algorithm for the CLWS problem uses concave matrix multiplication tech-
niques [1]-[3] and requires O(log2 n) time with n2/log2n processors. In this paper, we
present an O (x/-ff log n)-time n-processor CREW PRAM algorithm to solve the CLWS prob-
lem.

This paper is organized as follows. In 2, we give a parallel algorithm for the CLWS
problem. In 3, we reduce the Huffman coding problem to the CLWS problem. We conclude
with some open questions.

2. The parallel single source CLWS algorithm. Consider an instance of the CLWS
problem over [0, n] defined by a weight function w, and let lws(i, j) denote the LWS problem
on [i, j] defined by restricting w to pairs within that interval. Let W(i, j) be the weight of an
optimal solution to lws(i, j). For convenience, we let W(i, i) 0 for all i.
Define

and
f (j) W(O, j)

undefined
pred(j) min{i < j, f (j) f (i) + w(i, j)}

(j) (f(j), pred(j)).

forj -0,
for0< j_<n,

Thus f(j) is equal to the weight of an LWS for the interval [0, j] and pred(j) is equal to the
index of the second-to-last element of such a subsequence. (In case of ties, we let pred(j) be
as small as possible.) To solve the LWS problem it suffices to compute the pair f(j) for all
j [0, nl.

Given an interval I [i, i2]

___
[0, n] we can also consider a restricted version of the

LWS problem in which we require that, for all j > i2, pred(j) 6 I (i.e., for any j > i2 the
second-to-last element of the solution to lws(0, j) belongs to I). To solve this problem it
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suffices to compute the pair Ur (j) for all 0 < j < n, where

W(0, j)fl (j) minil(f (i) + w(i, j))
forj _<i2,
fori2<j_<n,

undefined

predx(j) min{ili < j, f (j) f (i) + w(i, j)}
min{i I, < j, fi(j) f (i) + w(i, j)}

r (j) (fl (j), pred (j)).

forj --0,
for0<j_<i2,
fori2 < j <n,

Computing .L’[0’km], given "L-’[0’(k-1)m] and ffz’[(k-1)m+l,km], is relatively easy and is based
on the following fact.

FACT 2.1. Let I [0, i]. Then f(k) rain {j 6 [i + 1, k]lfl(j)+ W(j, k)} for any
k>i.

Proof Let j be the first element of the solution to lws(0, k) such that j > i. It is possible
that j k. Then f(k) f (j) + W(j, k) fl (j) + W(j, k). By the minimality of the
solution, f (k) <_ fi (j,) + W(j’, k) for any j’ _< k. [3

2.1. The dominance partition. Throughout this subsection, fix I [il, i2]. For any
I, let D (i) {j > i2 PredI (j) }. We shall see that if D (i) is not empty, it must be

an interval, which we call the interval dominated by i.
For any r < s, let boundary(r, s) be the maximum j > s for which fr (j) < fL; (j). If

there is no such j we use the default value boundary(r, s) s.

LEMMA 2.2. Let r < s. Then f" (k) fr (k) is a monotone decreasingfunction ofk.

Proof Let s < k < U. Then

fs (k’) fr (k’) fs (k) + fr (k) w(s, k’) w(r, k’) w(s, k) + w(r, k) < 0

by (2). [3

LEMMA 2.3. For any r < s, given the values ofthefunction f (k) for all k < s, the value
boundary(r, s) can be computed in 0 (log n) sequential time.

Proof The correct value of k boundary(r, s) is the maximum k for which f" (k)
fr (k) > 0, which can be found by binary search by Lemma 2.2. [3

LEMMA 2.4. Let I. Then D (i) is either empty or an interval.

Proof By Lemma 2.2,

D (i) A [boundary(r, i) + 1, n]
il<r<i

f-) A [i2 + 1, boundary(i, s)].
<i2

The intersection of any number of intervals is either empty or an interval.
LEMMA 2.5. Let i’, i" I, where i’ < i". Then O (i’) lies entirely to the left ofO

ifboth are nonempty.
Proof D (i’) lies entirely in the interval [i2, boundary(/’, i")], while D (i") lies entirely

to the right of boundary(/’, i").
LEMMA 2.6. Let I [i, + m]. Given 5rI0,i-ll, ’l can be computed in O(logn +

m2 logn/p + n logn/p) time with p CREWPRAMprocessors.
Proof Let right (i) rain{boundary(i, s) < s < i2} and left (i)

max{boundary(r, i) i2 _< r < }. If left (i) > right (i), then D (i) 0. Otherwise,
D (i) [left (i), right (i)]. We can compute right (i) for all 6 I using m2 processors in
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O (log n) time as follows. Each processor computes boundary(i, j) for one pair < j in I using
binary search (see Lemma 2.3). All values of right (i) rain{boundary(i, j) < j < i2}
can be computed in O (log m) time with m2/ log m processors. Values of left are computed
similarly.

All values of pred can then be computed in O (log n) time with n/log n processors, if
k left (i) < right (i), initialize pred (k) i, otherwise initialize pred (k) 0. Using
a prefix-sum technique, all correct values of pred are then computed. Finally, f (k) is
computed using pred in O (1) time using n processors.

The result for p processors follows by Brent’s principle.

2.2. The algorithm. Fix a parameter m < n.

ALGORITHM CLWS
1. preprocessing:
for all i, j such that < j and j < m do solve lws(i, j);
2. initialization:
for all 0 < j < n do f[o, ol(j) O,
3. iteratively compute f’[O,iml
fori’-- lton/mdo

3.1. for all k 6 [(i 1)m + 1, im] do compute f’[O’im](k) (-- f’(k))
3.2. if < n/m then

3.2.1 compute ffC’[(i-1)m+l,im];
3.2.2 compute )’[0,im].

THEOREM 2.7. Algorithm CLWS can be implemented to run in 0 (n log n/m + n2/mp +
nm log n/p) time with p CREWPRAMprocessors.

Proof The implementation of step 2 is straightforward. We need to show the implemen-
tation of steps and 3 and prove correctness.

STEP 1.
Implementation. Assign one processor to each element of the sequence. Compute the

solution to lws(i, j) for all pairs 0 _< < j _< n, such that j _< -4- m, using a linear-time
algorithm for one instance of size m of the single source CLWS problem for each i.

Correctness. The correctness is immediate.
Complexity. The complexity is O (m) time with n processors.
STEP 3.1.
Implementation. Let f[’im](k) min.j[(i_X)m,im],j<_k f[O,(i-X)m](j) "4- W(j, k)} for all

k in the interval [(i 1)m + 1, m].
Correctness. The correctness is proven by Fact 2.1.
Complexity. Assign one processor to each pair j, k 6 I, j < k, and compute for each

such pair the value f[o,(i-1)m](j) -4- W(j, k). This requires O(1) time using m2 processors.
Over all iterations, 0 (n/m) time is needed. Then we compute the corresponding minima
in O (log m) time using m2/log m processors. Over all iterations of the main loop, this step
requires O (n log m/m) total time with m2/ log m processors.

STEP 3.2. By Lemma 2.6, this step takes O(log n) time with m2 processors at each
iteration. Over all iterations of the main loop, this step requires O (n log n/m) total time with
m2 processors.

STEP 3.3.
Implementation. For all j [im + 1, n], let

f[O,im](j) min f[o,(i-1)m](j), f[(i-1)m+l,im](j) }.
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Correctness. The correctness is immediate by the definition of f l, since [0, m]
[0, (i 1)m] U [(i 1)m + 1, im].

Complexity. The complexity is O (1) time with n processors.
The statement of the lemma follows from Brent’s principle.

3. Reduction of the I-Iuffman tree problem to CLWS. A regular binary tree can be
uniquely described by listing the levels of its leaves in left to right order. If T is a regular
binary tree and i is the level of the ith leaf of T, where the leaves are indexed from left to

right, we call (el, 2 n) the leafpattern of T. A tree is said to be left justified [3] if its
leaf pattern is nonincreasing.

LEMMA 3.1 [8]. Given an arbitrary input sequence x-, there is a Huffman tree for that
is leftjustified.

For the remainder of this section we assume that n > 2, because the case n 1 is trivial.
By Lemma 3.1, sorting reduces our initial problem to that of constructing a left-justified tree
which minimizes the cost function c. We show that the latter problem can be reduced to the
CLWS problem. A left-justified tree T of height k can be uniquely described by listing the
numbers of internal nodes on each level of the tree. Thus T can be described by a monotone

sequence of integers 0 c0, c1 ck-1, ck n 1, where, for any j > 0, cj otj_ is
equal to the number of internal nodes on level k j. We call such a sequence the level sequence
of the tree T. Observe that not every monotone sequence from 0 to n is a level sequence
for a left-justified tree. For example, if n 4, (0,1,2,3) and (0,2,3) are level sequences for
left-justified trees, while (0,3) and (0,1,3) are not.

A simple but important property of a level sequence is given in the following lemma.
LEMMA 3.2. Let T be a left-justified tree with level sequence 0 oo, o c_1,

o n 1. Then, for any 0 < < k, T has precisely 2oi+ oi leaves at levels k and
below.

Proof Let/i be the number of leaves of T at levels k i, k + k, i.e., at levels
k and below. By the definition of a level sequence, O/i is the number of internal nodes
of T at level k and below. For any forest consisting of regular binary trees, the number
of leaves is the sum of the number of internal nodes and the number of roots. Let F be the
forest consisting of all internal nodes of T at level k and all their descendants. F has

O/i+ internal nodes, 0/i+ --O roots, and/i leaves. Therefore/i lY/+I -(Ogi+l- O/i)

20ti+l O/i [-]

As an immediate consequence of Lemma 3.2 we obtain the following lemma.
LEMMA 3.3. A left-justified tree T can be computedfrom its level sequence - in 0 (log n)

time with n/log n exlusive read exclusive write (EREW) processors.
Proof Using Lemma 3.2, compute the number of leaves at each level. Then, using a

prefix-sum computation, for each for < < n, compute the level of the th leaf in T.
Given the sequence of its leaf levels, T can be constructed in O(log n) time with n/log n
processors 11 ]. [3

The main result of this section is stated in the following theorem.
THEOREM 3.4. Let s l, s2 s be the sequence ofprefix sums for a nondecreasing

sequence Xl,X2 x,, i.e., si Y.I=x x.i’ and let w(i, j), be the weight function
defined asfollows:

w(i, j) { s2j-i if2j <_ n,
otherwise;

then the LWSproblem defined by w is concave and the solution to this problem is equal to the
level sequence ofthe left-justified Huffman trebfor 2.



1168 LAWRENCE L. LARMORE AND TERESA M. PRZYTYCKA

Proof We define a strictly monotone sequence of integers (0 O/0 O/ n 1),
for n > 0, as regular if 2oti O/i-1 20/i+1 O/i n for all 0 < < k. Note that if is

regular, O/-1 n 2.
We make the following three claims.
CLAIM A. IfT is any left-justified tree and-ff is the level sequencefor T, then -ff is regular.

Furthermore, c(T) w().
CLAIM B. If’ff is regular, then it is the level sequence ofsome left-justified tree.

CLAIM C. lf is a monotone sequencefrom 0 to n which is not regular, then there is

some regular monotone sequencefrom 0 to n whose weight is no greater than that ofF.
Proof of Claim A. Let/i be the number of leaves at levels k and below. Trivially,

/i < /3i+1. Since/3i 20/i+ O/i, by Lemma 3.2 we have that is regular. There are/3o
leaves of T at level k and/i i- leaves at level k for 0 < < k. Since T is left justified,
the total weight of the leaves at level k is s0 if 0 and s/ si_ if > 0. Thus

k

c(T) kso + Z(k i)(sfli sfii_,)
i=1

k-I

S[3i Z 11)(o/i’ O/i+1) //3()"
i--0 --0

Proof of Claim B. Let/ n and/i 20/i+1 O/i for 0 < < k. Since is regular,
/i /i-t-1 for all 0 < < k.

We construct T in a bottom-up fashion. Let F be the forest obtained by combining
the first/0 leaves in pairs. For > 0, let F be the forest obtained by combining the roots

of Fi-1 and the next fli fli-1 leaves in pairs. By induction, F has O/i O/i-1 roots, since

/0 20/ 2(o/- O/0) and O/i --O/i-1 -JI- /i i-1 2(o/i+1 --o/i) for/ > 0.
Finally, let T F. T is a tree, since O/ O/_ 1. By the construction, is its level

sequence.
ProofofClaim C. Define E =0 O/i. Suppose is not regular. Choose 0 < < k,

for which 20/i O/i-1 P > 20/i+1 O/i q. Let ’ (o/0... O/i-l, O/i 1, O/i+1 O/k).
Then w() w(’) Sp + Sq Sp_2 Sq+l Xp -+- Xp+ Xq+ > 0 and E’ E 1.
we repeat this construction as many times as necessary until a regular sequence is obtained.
Since E is decremented at each step, the process must converge.

We now return to the proof of Theorem 3.4. Let (0 O/0 O/ n 1) be an
optimal solution to the LWS. By Claim C, we can assume that is regular. By Claim B, there
is a left-justified tree T whose cost is w(). By Claim A, T must be optimal.

We remark that a regular optimal solution can be guaranteed by adopting the rule that, in
case of ties, pred(k) is chosen as small as possible. This is a rule which our parallel algorithm
enforces. This finishes the proof of Theorem 3.4. [3

COROLLARY 3.5. For any value of the parameter m in the interval [1, n l, the Huffman
coding problem can be solved in O(n logn/m + nZ/mp + nm logn/p) time with p CREW
PRAMprocessors.

Proof The proof is immediate by Theorems 2.7 and 3.4 and Lemma 3.3. U
COROLLARY 3.6. The Huffman coding problem can be solved in O(,,/-ff log n) time with

n CREWPRAMprocessors.
Proof Let p n and m v/h and apply Corollary 3.5. [q

4. Open questions. In this paper we present a parallel algorithm for the Huffman coding
program that performs O(n3/2 log n) work. The algorithm requires O(n /2 log n) time. Czu-
maj [4] presents a parallel CLWS algorithm that runs in O(n /2 log3/2 n) time with n log n
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processors, thus reducing the total work by a logarithmic factor. A challenging open question
is whether there exists an A/’C algorithm that solves the Huffman coding problem with o(n2)
total work.

Acknowledgments. We thank an anonymous referee for a large number of helpful com-
ments.
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WEAKLY HARD PROBLEMS*

JACK H. LUTZ?

Abstract. A weak completeness phenomenon is investigated in the complexity class E
DTIME(21inear). According to standard terminology, a language H is <-hard for E if the set Pm(H ), consist-
ing of all languages A <Pm H, contains the entire class E. A language C is <Pm-Complete for E if it is P<m-hard for
E and an element of E. Generalizing this, a language H is weakly <Pm-hard for E if the set Pm (H) does not have
measure 0 in E. A language C is weakly <m-Complete for E if it is weakly <Pm-hard for E and an element of E.

The main result of this paper is the construction of a language that is weakly <P -complete, but not <P -complete,
for E. The existence of such languages implies that previously known strong lower bounds on the complexity of
weakly <Pm-hard problems for E (given by work of Lutz, Mayordomo, and Juedes) are indeed more general than the
corresponding bounds for <m-hard problems for E.

The proof of this result introduces a new diagonalization method called martingale diagonalization. Using this
method, one simultaneously develops an infinite family ofpolynomial time computable martingales (betting strategies)
and a corresponding family of languages that defeat these martingales (prevent them from winning too much money)
while also pursuing another agenda. Martingale diagonalization may be useful for a variety of applications.

Key words, complete problems, complexity classes, computational complexity, resource-bounded measure,
weak completeness

AMS subject classification. 68Q 15

1. Introduction. In practice to date, proving that a decision problem (i.e., language)
H

___
{0, }* is computationally intractable usually amounts to proving that every member

of the complexity class E DTIME(21inear)mor some larger classhis efficiently reducible
to H. (See [25] for a survey of such arguments.) For example, some problems involving
the existence of winning strategies for certain two-person combinatorial games are known to
be intractable because they are polynomial time many-one hard (in fact, logarithmic space
many-one complete) for E [24].

Briefly, a language H is polynomial time many-one hard (abbreviated <P-hard) for E if
every language A 6 E is polynomial time many-one reducible to H (abbreviated A <m H).
A language C is <_m-complete for E if C E and C is <m-hard for E.

A language H that is <m-hard for E is clearly intractable in the sense that H ’ P, i.e., H
is not decidable in polynomial time. This is because a well-known diagonalization argument
[3] shows that there is a language B 6 E P. Since B 6 E, it must be the case that B <m H.
Since B P, it follows that H P.

In fact, languages that are <em-hard for E are known to have much stronger intractability
properties. Three examples follow:

(A) Meyer [15] has shown that every <m-hard language H for E is dense. This means
that there is a real number e > 0 such that, for all sufficiently large n, H contains at
least 2n strings x 6 {0, }-<n.

(B) Sch6ning [23] and Huynh [6] have shown that every <m-hard language H for E is
hard to approximate in the sense that, for every language A 6 P, the symmetric
difference A A H is dense. (Note that this immediately implies result (A) above.)

(C) Orponen and Sch6ning [16] have shown that every _<1-hard language H for E has a
dense polynomial complexity core K. This condition, defined precisely in 2, means,
roughly, that K is dense and every Turing machine that is consistent with H performs

*Received by the editors May 24, 1993; accepted for publication (in revised form) May 31, 1994. This research
was supported in part by National Science Foundation grant CCR-9157382 with matching funds from Rockwell
International and Microware Systems Corporation.

Department of Computer Science, Iowa State University, Ames, Iowa 50011.
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badly (either by running for more than polynomially many steps or failing to decide)
on all but finitely many inputs x 6 K.

In fact, the proofs of results (A), (B), and (C) all have the same overall structure as the
proof that no <Pm-hard language H for E is in P. In each case, a "very intractable" language
B 6 E is exhibited by diagonalization. This intractability of B, together with the fact that
B -<Pm H, is then shown to imply the appropriate intractability property for H.

At this time, it appears likely that most interesting intractable problems are not <Pro-hard
for E or larger classes. Insofar as this is true, results such as (A), (B), and (C) fail to have
interesting cases. Lutz [8] proposed to remedy this limitation by weakening the requirement
that H be <Pm-hard for E in such results.

To be more specific, given a language H, the <Pm-span ofH (also called the lower <-Pm-span
of H [7]) is the set

Pm(H)- {A c_ {0, 1}* A -<Pm H}
consisting of all languages that are polynomial time many-one reducible to H. The language
H is <Pm-hard for E if E

___
Pm (H), i.e., if Pm (H) contains all of the complexity class E.

Lutz [8] proposed consideration of weaker hypotheses, stating only that Pm (H) contains a
nonnegligible subset of E.

The expression "nonnegligible subset of E" can be assigned two useful meanings, one in
terms of resource-bounded category [8] and the other in terms of resource-bounded measure
[9], [10]. (Caution" Resource-bounded measure was incorrectly formulated in [8]. The
present paper refers only to the corrected formulation in terms of martingales presented in
[9], [10] and discussed briefly in 3.) Resource-bounded category, a complexity-theoretic
generalization of classical Baire category [17], led to an extension of result (B) in [8]. Work
since [8] has focused instead on resource-bounded measure.

Resource-bounded measure is a generalization of classical Lebesgue measure [2], [18],
[17]. As such, it has Lebesgue measure as a special case, but other special cases provide
internal measures for various complexity classes. This paper concerns the special case of
measure in the complexity class E. In particular, resource-bounded measure defines precisely
what it means for a set X of languages to have measure 0 in E. This condition, written
#(X E) 0, means intuitively that X N E is a negligibly small subset of E. (This intuition
is justified technically in [9] and in 3.) A set Y of languages has measure in E, written
#(Y E) 1, if #(Y’ E) 0, where Y is the complement of Y. In this latter case, Y is
said to contain almost every language in E.

It is emphasized here that not every set X of languages has a measure ("is measurable")
in E. In particular, the expression "#(X E) 7 0" only means that X does not have measure
0 in E. It does not necessarily imply that X has some other measure in E.

Generalizing the notion of <Pm-hardness for E, say that a language H is weakly <Pm-hard
for E if #(Pm (H) E) 0, i.e., if Pm (H) does not have measure 0 in E. Similarly, say that
a language C is weakly <_Pm-complete for E if C 6 E and C is weakly <Prn-hard for E. Since
E does not have measure 0 in E [9], it is clear that every P<m-hard language for E is weakly

<P-complete language for E is weakly <P-complete for E.<P-hard for E, and hence every
The following extensions of results (A), (B), and (C) are now known:
(A’) Lutz and Mayordomo [12] have shown that every weakly <Pm-hard language H for

E (in fact, every -n<P -,-hard language for E for o < 1) is dense.
(B’) The method of 12] extends in a straightforward manner to show that, for every weakly

_<P -hard language H forE and every language A 6 P, the symmetric difference A/xH
is dense.
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(C’) Juedes and Lutz [7] have shown that every weakly _<Pm-hard language H for E has
a dense exponential complexity core K. (This condition, defined in 2, implies
immediately that K is a dense polynomial complexity core of H.)

Results (A’), (B’), and (C’) extend the strong intractability results (A), (B), and (C) from
_<1-hard languages for E to weakly <m-hard languages for E. This extends the class of
problems to which well-understood lower bound techniques can be applied unless every weakly
<P-hard languagefor E is already <-hardfor E. Surprisingly, although weak <’ -hardness
appears to be a weaker hypothesis than <Pm-hardness, this has not been proven to date.

The present paper remedies this situation. In fact, the main theorem, in 4, says that
there exist languages that are weakly _<Pm-complete but not <P -complete for E. It follows that
results (A’), (B’), and (C’) do indeed extend the class ofproblems for which strong intractability
results can be proven.

The main theorem is proven by means of a new diagonalization method called martingale
diagonalization. This method involves the simultaneous construction, by a mutual recursion,
of (i) an infinite sequence of polynomial time computable martingales (betting strategies), and
(ii) a corresponding sequence of languages that defeats these martingales (prevents them from
winning too much money), while also pursuing another agenda. The interplay between these
two constructions ensures that the sequence of languages in (ii) can be used to construct a
language that is weakly <Pm-complete but not _<Pro-complete for E. Martingale diagonalization
may turn out to be useful for a variety of applications.

The proof of the main theorem also makes essential use of a recent theorem of Juedes
and Lutz [7], which gives a nontrivial upper bound on the complexities of _<Pm-hard languages
for E.

Section 2 presents basic notation and definitions. Section 3 provides definitions and basic
properties of feasible (polynomial time computable) martingales, uses these to define measure
in E, and proves a new result, the rigid enumeration theorem. This result provides a uniform
enumeration of feasible martingales that is crucial for the martingale diagonalization method.
Section 4 is devoted entirely to the main theorem and its proof. Section 5 briefly discusses
directions for future work with particular emphasis on the search for natural problems that
are weakly <’-hard for E.

2. Preliminaries. All languages (synonymously, decision problems) in this paper are
sets of binary strings, i.e., sets A c_ {0, }*.

The standard enumeration of {0, }* is the infinite sequence

,, 0, 1, 00, 01, 10, 11,000, 001

in which strings appear first in order of length, then in lexicographic order. The symbol ,k

denotes the empty string and the expression wl denotes the length of a string w 6 {0, }*. It
is convenient to write the standard enumeration in the form

O, 1, 2, 3,

That is, for each n 6 N, n is the nth string (counting from 0) in the standard enumeration of
{0, }*. Thus, 0 ,k, 1 0, 2 1, 3 00, etc. Note also that Inl denotes the length of the
nth string in {0, }*.

The Boolean value of a condition p is

ifTt is true,
[[Tr]] 0 if p is false.
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Each language A _c {0, }* is identified with its characteristic sequence, which is the infinite
binary sequence

XA 0 E A]][[I E A]][[2 6 A]]

The expression XA [0..n 1] denotes the string consisting of the first n bits of XA.
This paper uses the standard pairingfunction

(,)" N x N-LN

defined by

k+n+ 1)(k,n)
2

+k

for all k, n 6 N. This pairing function induces the pairing function

(,)" {0, 1}* (0, 1}*--{0, 1}*

defined in the obvious way, i.e., (k, n) is the (k, n)th string in the standard enumeration of
{0, 1}*. Note that [(k, n)[ < 2([k[ + In[) for all k, n 6 {0, 1}*.

As noted in 1, a language A {0, }* is dense if there is a real number e > 0 such that,
for all sufficiently large n, A contains at least 2n strings x 6 {0, 1} -<’.

Given a function N -- N, the complexity class DTIME(t(n)) consists of every
language A c_ {0, 1}* such that [[x E A]] is computable (by a deterministic Turing machine)
in O (t (Ix I)) steps. Similarly, the complexity class DTIMEF(t (n)) consists of every function

f {0, 1}* --+ {0, 1}* such that f(x) is computable in O(t(lxl)) steps. The complexity classes

p- U DTIME(nk),
k=0

PF U DTIMEF(nk)’
k=0

E U DTIME(2")’
k=0

E2 UDTIME(2nk)
k=0

are of particular interest in this paper.
A language A is polynomial time many-one reducible to a language B, written A <m B,

if there is a function f 6 PF such that A f-l(B), i.e., for all x
f(x) B.

Complexity cores, first introduced by Lynch 13], have been studied extensively. The rest
of this section specifies the notions of complexity cores mentioned in 1.

Given a (deterministic Turing) machine M and an input x E {0, 1}*, write

M(x) 0
if M accepts x,
if M rejects x,
in any other case.
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If M(x) {0, 1}, then timet(x) denotes the number of steps used in the computation of
M(x). If M(x) _1_, then timeM(x) oc. A machine M is consistent with a language A if
M(x) [[x A whenever M(x) {0, 1}.

DEFINITION. Let N --+ N be a time bound and let A, K

_
{0, 1}*. Then K is

a DTIME(t(n))-complexity core of A if, for every c N and every machine M that is
consistent with A, the "fast set"

F x timeM(x) _< c. t(Ixl) + c

hasfinite intersection with K. (By the definition of time/(x), M(x) {0, 1}for all x F.
Thus F is the set ofall strings that M "decides efficiently. ")

Note that every subset of a DTIME(t(n))-complexity core of A is a DTIME(t(n))-
complexity core of A. Note also that, if s (n) O (t (n)), then every DTIME(t (n )-complexity
core of A is a DTIME(s (n )-complexity core of A.

DEFINITION. Let A, K c_ {0, }*.
1. K is a polynomial complexity core of A if K is a DTIME(nk)-complexity core of A

for all k N.
2. K is an exponential complexity core of A ifthere is a real number > 0 such that K

is a DTIME(2n )-complexity core of A.
Intuitively, a P-complexity core of A is a set of infeasible instances of A, while an

exponential complexity core of A is a set of extremely hard instances of A.

3. Feasible martingales. This section presents some basic properties of martingales
(betting strategies) that are computable in polynomial time. Such martingales are used to
develop a fragment ofresource-bounded measure that is sufficient for understanding the notion
of weakly hard problems. This section also proves the rigid enumeration theorem, which is
crucial for the martingale diagonalization method used to prove the main theorem in 4.

DEFINITION. A martingale is afunction d {0, }* --+ [0, oc) with the property that, for
all w {0, 1}*,

(3.1) d(w)
d(wO) + d(wl)

A martingale d succeeds on a language A c_ {0, 1}* if

lim sup d
n---- o

(Recall that )A [0..n 1] is the string consisting ofthefirst n bits ofthe characteristic sequence
of A.) Finally, for each martingale d, define the set

S[d] A c_ {0, 1}*ld succeeds on A }.
Intuitively, a martingale d is a betting strategy that, given a language A, starts with capital

(amount of money) d(,k) and bets on the membership or nonmembership of the successive
strings 0, 1, 2 (the standard enumeration of {0, 1}*) in A. Prior to betting on a string n,
the strategy has capital d (w), where

w I[0 All... I[n- 1 All.

After betting on the string n, the strategy has capital d(wb), where b n 6 A]]. Condition
(3.1) ensures that the betting is fair. The strategy succeeds on A if its capital is unbounded as
the betting progresses.



WEAKLY HARD PROBLEMS 1175

d(000) =0

d(/k)

d(O0) 4 d(O1) 0

d(O01) =S

d(O010) 0 d(O011) 16

d()=O

FIG. 1. The martingale d ofExample 3.1.

Example 3.1. Define d: {0, 1}* [0, oc)by the following recursion. Let w 6 {0, 1}*
andb6 {0,1}.

(i) d(gk)= 1.
(ii) d(wb) 2. d(w) lib [[ ]w] is prime]]]].

(See Fig. 1.) It is easily checked that d is a martingale that succeeds on the language A
P P is prime and on no other language.

Example 3.2. Define d {0, }* -+ [0, oc) by the following recursion. Let w 6 {0, 1}*.
(i) d(.)= 1.

3d(w).(ii) d(w0)

ld(w).(iii) d(w 1)
(See Fig. 2.) It is obvious that d is a martingale that succeeds on every finite language A. In
fact, it is easily checked that S[d] contains exactly every language A for which the quantity

#(0, XA [0..n 1])
log 3

is unbounded as n --+ oc, where #(0, w) denotes the number of O’s in the string w.
Martingales were used extensively by Schnorr 19]-[22] in his investigation ofrandom and

pseudorandom sequences. Lutz [9], 10] used martingales that are computable in polynomial
time to characterize sets that have measure 0 in E.

Since martingales are real valued, their computations must employ finite approximations
of real numbers. For this purpose, let

D={m.Z-lm, nN}
be the set of nonnegative dyadic rationals. These are nonnegative rational numbers with finite
binary expansions.

DEFINITION. 1. A computation ofa martingale d is afunction d N {0, }* -- D such
that

(3.2) ,(w) d(tv)l <_ 2

for all r N and w {0, 1}* satisfying r > ]w], where dr(w) d(r, w).
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d(A)

FIG. 2. The martingale d ofExample 3.2.

2. A strong computation ofa martingale d is a computation d of d that satisfies (3.2)for
all r N and w {0, 1}*.

3. A computation d ofa martingal...e d is rigid if it has thefollowing two properties:
(a) For each r N, thefunction dr is a martingale.
(b) For all r N and w {0, 1}*, if r > ]wl, then

[r(W) d"r+l(W) < 2-(r+l).

4. A p-computation ofa martingale d is a computation d of d such that dr(w) is com-
putable in time polynomial in r + w I.

5. A p-martingale is a martingale that has a p-computation.
Here, a martingale is considered "feasible" if and only if it is a p-martingale, i.e., if and

only if it has a p-computation. Intuitively, one might prefer to insist that feasible martingales
have strong p-computations, thereby avoiding the ad hoc condition r > wl. On the other hand,
in the technical arguments of this paper, it is useful to have rigid p-computations for reasons
explained below. Fortunately, the following lemma shows that all three of these conditions
are equivalent.

LEMMA 3.3 (rigid computation lemma). For a martingale d, the following three condi-
tions are equivalent:

(1) d has a p-computation.
(2) d has a strong p-computation.
(3) d has a rigid p-computation.
Proof It is trivial that (3) implies (1). To see that (1) implies (2).: let d be a p-computation

of d. Then the function d N x {0, 1}* ---> D defined by dr(w) dr+lwl(w) is easily seen to
be a strong p-computation of d, so (2)...holds.

To see that (2) implies (3), let d be a strong p-computation of d. Define a function
d N x {0, 1}* --+ D by the following recursion. Assume that r N, w {0, 1}*, b {0, 1},
and b b.

(i) dr()V) d2r+2(.).

(ii) dr(wb) dr() q- (d2r+2(wb) d2r+2(wb))/2.
It suffices to show that d is a rigid p-computation of d.
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It is first shown, by induction on w, that

(3.3) I"r(W)- d(w)[ _< 2-(2r+2)(1 + Iwl)

holds for all r N and w {0, }*. For w ), this follows immediately from the facts that
dr(,) d2r+2()) and d is a p-computation of d. For the induction step, assume that (3.3)
holds. Then, for b 6 {0, 1},

d2r+2(wb) d2r+2(tob)
d(wb)I"dr(wb) d(wb)] "r(W) +

2

d2r+2(wb) d2r+2(wb)
d(wb)< r(w)-d(w) + d(w)+

2

d(wb) + d(wb) d2r+2(wb) d2r+2(wb)I"r LO d(112) .qt._ ._{_
2 2

’2r+2(wb) d(wb) d(w-) d’2r+2(w)]r(l/2) d(l/)) +
2 + 2

l’2r+2(wa) d(wa)ll’2r+2(wb -d(wb)l /_< lar( ) +
< 2-(2r+2) (1 -t-Iwl) + 2-(2r+2)

2-(2r+2)(1 + ]wbl).

-d(wb)

(The last inequality holds by the induction hypothesis and the fact that d is a strong p-
computation of d.) This confirms the fact that (3.3) holds for all r 6 N and w 6 {0, }*.

Now let r 6 N and w 6 {0, }* be such that r > [w[. Then, by (3.3),

(3.4)
Idr(W) -d(w)l 2-(2r+2)(1 nt- Iwl)

< 2-(2r+2) (1 -t- r)
< 2-(r+2).

This shows that d is a computation of d. In fact, since d is a p-computation, the fact that d
is a p-computation of d is easily checked. The fact that d is rigid follows from the following
two observations:

(a) For each r N, the function dr is clearly a martingale by clause (ii) in the definition
ofd.

(b) For all r N and w {0, }*, by (3.4),

< 2-(r+2) + 2-(r+3)

< 2-(r+l)"

Thus (3) holds, rq

Note that the proof of Lemma 3.3 does not construct a p-computation of d that is both
strong and rigid. In fact, it seems reasonable to conjecture that there exists a p-martingale d
for which no p-computation is both strong and rigid.
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Note that a function d N {0, }* -+ D is a rigid computation of some martingale d if
and only if it satisfies the predicates

Olr, u,(d"’) [r < Iwl or Ir(W)- d"’r+l(W)[ < 2-(r+l)]

and

ir, (d) (11))
dr(wO) + dr(wl)

for all r E N and w E {0, 1}*. The next theorem exploits this fact to give a very useful
enumeration of all p-martingales. The following definition specifies the useful properties of
this enumeration.

DEFINITION. A rigid enumeration,d0,.dl do, dl ofall p-martingales consists of
a sequence do, dl and a sequence do, dl with thefollowing properties:

(i) do, dl is an enumeration ofall p-martingales.
(ii) For each k N, dk is a rigid p-computation of dk.
(iii) There is an algorithm that, given k, r N and w {0, }*, computes d,r(W) in at

most (2 + r + Iwl) Ikl steps.
The following theorem is the main result of this section.
THEOREM 3.4 (rigid enumeration theorem). There exists a rigid enumeration of all

p-martingales.
Proof Fix a function N2 x {0, 1}* --+ D with the following properties: (Write

g,r(W) "k(r, w) "(k, r, w).)
(i) ’0, 1 is an enumeration of all functions f N {0, 1}* --+ D such that f(r, w)

is computable in time polynomial in r + w I.
(ii) There is an algorithm that, given k, r N and w E {0, 1}*, computes g,r(W) in at

most (2 + r + Iwl) Ikl steps.
(The existence of such an efficient universal function is well known [3], [4].)

Most of this proof is devoted to two claims and their respective proofs.
CLAIM 1. There is afunction" N2 {0, 1}* --+ D with thefollowing properties: (Write

g’,r(W) l(r, w) (k, r, w).)
(a) For each k N, is a rigid p-computation ofsome martingale g.
(b) For each k N, if is already a rigid p-computation ofsome martingale g, then

gk g.
(c) There is a constant c N such that, for all k, r N and w {0, }*, ,r (w) is

computable in at most (2 + r + Iwl)/lkl steps.
Assume for the moment that Claim 1 is true. Define functions" N2 x {0, }* --+ D and

d" N x {0, 1}* --+ [0, cx) by

"k,r UO { J,ro W if k 0c’(l+ljl) lj,
if k is not of this form,

d(w) lim dk,r(W).
r-+oo

CLAIM 2. The sequences do, dl and do, dl constitute a rigid enumeration ofall
p-martingales.
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To prove Claim 2 (still assuming Claim 1), first note that, for all k 6 N and w 6 {0, 1}*,

dk (W) [ gi (tO)
[ 0

if k 0c’(l+[j[) j,
if k is not of this form.

By part (a) of Claim 1, this immediately implies that each dk is a p-martingale. Conversely,
assume that d’ {0, }* --+ [0, ec) is a p-martingale. Then, by the rigid computation lemma
and clause (i) in the specification of, there is some j 6 N such thatj is a rigid p-computation
of d’. Choose k 6 N such that k 0c(l+ljl) lj. Then k g’/ g/ by part (b) of Claim 1,
so dk is a rigid p-computation2f d’, so dk d’. This shows that do, dl is an enumeration
of all p-martingales and each dk is a rigid p-computation of d. For k 0c(l+ljl) lj, the time
t(k, r, w) required to compute dk,r(W) satisfies

t(k, r, w) < Ikl + (2 + r + Iwl)

2Ikl-1 -I- (2 + r + Iw[)

_< (2+r+lwl) Ikl.

This proves Claim 2, and hence the theorem. All that remains, then, is to prove Claim 1.
To prove Claim 1, the values k.r(W) are first specified for all k, r 6 N and w 6 {0, 1}*.

Define the following predicates: In these predicates, it is useful to regard k, r 6 N and
w 6 {0, }* as parameters and f, f" N2 {0, 1}* --+ D as variables.)

Otk,r,w(f, ?) [r < [w[ or ]k,r(w)- fk,r+l(W) 2-(r+l)]

flk,r,w(f, f) ,r(tO)
A,r (1100 -}- A,r W 1) .

2

Define ’" N2 x {0, }* -+ D by recursion on r and w as follows. Let k, r N, w {0, }*,
andb {0,1}.

(I) ’k,oOv) g,o(X).

k,r+i ()) if o/,r,)v , ),
(II) ’,r+I(X)

’,r(X) otherwise.

] ,o(wb) ifflk,o,,(,’),
(III) ,o(wb)

k,o(W) otherwise.

k,r+l (llob)

(IV) "k,r+ (rob)

"k,r Wb -[- k,r+ (110) k,r (W)

if Olk,r, wO ", " and
Olk,r, ", " and

flk,r+l,w (, ’),
otherwise.

By condition (ii) in the choice of, the function" defined by this recursion is easily seen
to satisfy condition (c) of Claim 1.
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To see that " satisfies condition (a) of Claim 1, let k 6 N be arbitrary. A routine induction
on r shows that fik,r,,,,(’, ’) holds for all r 6 N and w 6 {0, 1}*. It follows easily that each
g"*,r is a martingale. A routine induction on w then shows that Ok,r,,,, (’, ’) holds for all r 6 N
and w 6 {0, }*. It follows that ’ is a rigid p-computation of the martingale g defined by
g(w) limr-.c g",,r(W). Thus " satisfies condition (a) of Claim 1.

Finally, to see that " satisfies condition (b) of Claim 1, fix k 6 N and assume that k is
a rigid computation of some martingale gk. Then a routine induction on r and w shows that
g’, g",. (The o and fi predicates hold throughout the induction, so the "otherwise" cases are
never invoked in the definition of ’.) This completes the proof of Claim and the proof of
the rigid enumeration theorem.

The rest of this section briefly develops those aspects of measure in E that are used in this
paper. The key ideas are in the following definition.

DEFINITION. 1. A set X of languages has p-measure 0, written lZp (X O, if there is a
p-martingale d such that X S[d].

2. A set X oflanguages has measure 0 in E, written #(X E) 0, if #p(X N E) 0.
3. A set X of languages has measure 1 in E, written/z(X E) 1, if #(X E) 0,

where X is the complement of X. In this case, X is said to contain almost every language
in E.

4. The expression #(X E) - 0 indicates that X does not have measure 0 in E. Note
that this does not assert that #(X E) has some nonzero value.

Thus, a set X of languages has measure 0 in E if there is a feasible martingale that succeeds
on every element of X.

The following fact is obvious but useful.
PROPOSITION 3.5. Every set X oflanguages satisfies the implications

#p(X 0 #(X E) 0, #p(X 0 =:=:ff Pr[A 6 X 0,

where the probability Pr[A 6 X is computed according to the random experiment in which
a language A G {0, }* is chosen probabilistically using an independent toss ofafair coin to
decide whether each string x {0, }* is in A.

The right-hand implication in Proposition 3.5 makes it clear that p-measure 0 sets are
negligibly small. What is significant for complexity theory is that, if X has measure 0 in E,
then X fq E is negligibly small as a subset of E. This intuition is technically justified in [9],
where it is shown that finite subsets of E have measure 0 in E and the sets of measure 0 in
E are closed under subset, finite unions, and certain countable unions called p-unions. Most
importantly, the following theorem is shown.

THEOREM 3.6 [9]. #(E E) - 0.
Combined with the aforementioned closure properties, this result (which is a special case

of the more general measure conservation theorem [9]) ensures that X N E is, in a nontrivial
sense, a negligibly small subset of E whenever X has measure 0 in E.

4. Weak completeness in E. In standard terminology, a language H is <m-hard for a

complexity class C if the set

Pm(H)--{AIA <_m n

<e-hard for C. Thecontains all of C. A language C is <P -complete for C if C 6 C and C is
following definition generalizes these notions for the complexity class C E.
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DEFINITION. A language H is weakly <_Pm-hardfor E/f/z(Pm(H E) 0, i.e., the set

Pm (H does not have measure 0 in E. A language C is weakly <Pm-completefor E if C E
and C is weakly <Pm-hardfor E.

By Theorem 3.6, every <Pm-hard language for E is weakly <Pm-hard for E, whence every
_< Pm -complete language for E is weakly <Pm-complete for E. The following result says that the
converse does not hold, i.e., that in E, weak <Pm-completeness is a proper generalization of
<P -completeness.

THEOREM 4.1 (main theorem). There is a language C that is weakly <_Pm-complete, but
not <Pro-complete, for E.

The rest of this section is devoted to proving the main theorem.
A recent theorem of Juedes and Lutz gives a necessary condition for a language to be

<_Pm-hard for E. This condition, based on an idea of Meyer 15], plays an important role in the
present proof. The key ideas are developed in the following definitions.

DEFINITION. The collision set ofafunction f’{0, 1}* --+ {0, 1}* is

Cf (n N l(3m < n) f(m) f(n) }.

A function f {0, }* {0, }* is one-to-one almost everywhere if Cf isfinite.
DEFINITION. Let A c_ {0, }* and N --+ N. A many-one reduction ofA is a computable

function f {0, 1}* --+ {0, 1}* such that A f-l(f (A)), i.e., such that, for all x {0, 1}*,
f (x) f (A) implies x 6 A. A <mTIME(t-reduction of A is a many-one reduction f of A
such that f DTIMEF(t).

DEFINITION. Let A cc_ {0, }* and N -+ N. Then A is incompressible by _<mDTIME(t-
reductions ifevery <DmTaM(t)-reduction of A is one-to-one almost everywhere.

Intuitively, if f is a _<TI(t-reduction of A and Cf is large, then f compresses many
questions (x 6 A?) to fewer questions (f(x) f(A)?). If A is incompressible by <mDTIM(t-
reductions, then A is "very complex" in the sense that very little such compression can occur.

The following result is used here.
THEOREM 4.2 (Juedes and Lutz [7]). No language that is <Pm-hardfor E is incompressible

by <_DmTIME(Z4" -reductions.
Since almost every language (and almost every language in E) is incompressible by

<mTIME(z4"-reductions [7], Theorem 4.2 says that the <Pm-hard languages are "unusually sim-
ple" in at least this one respect.

The largest part of the proof of the main theorem is the construction of a language H 6 E2
with the following two properties:

(I) H is weakly _<Pm-hard for E.
(II) H is incompressible by <DmTIM(z4n-reductions.

By Theorem 4.2, this language H cannot be <Pm-hard for E. A padding argument then gives
the main theorem.

The language H is constructed by diagonalization. If establishing property (I), the con-
struction uses a fixed rigid enumeration do, dl do, dl of all p-martingales. Such a
rigid enumeration exists by Theorem 3.4. In establishing property (II), the construction uses

5n 4na fixed function f such that f 6 DTIMEF(2 and f is universal for DTIMEF(2 in the
sense that

DTIMEF(24n) fi N},

where j (x) f ((i, x)). (The existence of such an efficient universal function is well known
[31, [4].)
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In addition to the pairing function (,) mentioned in 2, the construction of H uses the
ordering <* of N2 defined by

(j,m) <* (k,n) [(1 + Ijl)(1 + Iml) < (1 -t-Ikl)(1 + Inl)
or [(1 + Ijl)(1 / Iml) (1 / Ikl)(1 / Inl)

and (j, m) < (k, n)]]

for all j, m, k, n 6 N. It is easy to check that (N2, <*) is order isomorphic to (N, <). For
(k, n) 6 N2, let

#*(k, n) I{(J, m) N21 (j, m) <* (k,

be the number of <*-predecessors of (k, n) in N2. Two important properties of <* are

(j,m) <* (k,n) == (1 + Ijl)(1 + Iml) (1 -k-Ikl)(1 + Inl)

and

#*(k, n) 20((l+lkl)(l+lnl)).

by
Using the ordering <*, define the modified collision set C.*, ofa function fi 6 DTIMEF(24")

C’ {(k, n) N: (S(j, m) <* (k, n)) fi((j, m)) fi((k, n))}.

Also, for k 6 N, define the kth slice of C as the set

Ci*,k n N l(k,/’/) C;/.

LEMMA 4.3. For all N, thefunction 3 is one-to-one almost everywhere ifand only if
the set C isfinite.

Proof Fix 6 N and define an equivalence relation i on {0, }* by

X ’i Y == J(X)= fi(Y).

Then the collision set Cfi and the modified-collision set C each consist of all but one of the
elements of all the nonsingleton equivalence classes of -i. It follows immediately that Cfi
and C are either both finite or both infinite. [

Overview of the construction. Informally and intuitively, the language H is constructed
by deciding the Boolean values I[ (k, n) 6 H]I for successive (k, n) in the ordering <* of N2.
It is convenient to regard H as consisting of the separate "strands" Hk n (k, n) 6 H
for k 0, 1, 2 (See Fig. 3.) The construction exploits the ordering <* to ensure that
H 6 E2 and each Hk 6 E. The "ultimate objective" of each H is to ensure that a specially
constructed martingale d does not succeed on H. For each k, all but finitely many of
the values [[n 6 H]I are chosen according to this ultimate objective. The exceptions occur
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H0 H1 H2 Hk

InEHk]=I(k,n) EH]

FIG. 3. The strands ofH.

when values [In 6 Hk]] are chosen to "destroy" various functions f/ 6 DTIMEF(24n), i.e., to
ensure that these functions are not many-one reductions of H.

The specially constructed martingales are of the form dk d + i=0 di,, where d is
taken from the rigid enumeration of all p-martingales given by Theorem 3.4 and the martingales
di, are defined below. Since dk does not succeed on H, d also does not succeed on H.
Since k is arbitrary here and each H 6 Pm (H) f) E, it follows that Pm (H) A E does not have
p-measure 0, i.e., that Pm (H) does not have measure 0 in E. Thus H is weakly _<Pm-hard for
E. On the other hand, since dk does not succeed on Hk, none of the martingales di,i succeeds
on H. Moreover, matters are arranged so that, for every many-one reduction fi of H with C
infinite, either some di, succeeds on Hk or else fi is eventually "destroyed" by some value
[In H]]. It follows that H is incompressible by <mDTlME(Z4")-reductions, whence H is not
_<Pm-hard for E by Theorem 4.2.

Precise details follow.
The construction. The language H

_
{0, 1}* is defined by

H (k,n)In H },

where the languages H0, H1 are defined, along with th...e auxiliary martingales
do, dl by the following recursion: (Recall that do, dl ;do, dx is a fixed rigid
enumeration of all p-martingales.)

(1) For k 6 N and w 6 {0, }*, define

"k(tO) dk(W) + Z di,k(tO),
i=0

where the functions di,k are computed as follows. Assume that w 6 {0, 1}*, n Iwl, and
b 6 {0, 1}.

(a) di,k(Z) 2-i.
(b) If (k, n) C/*, then di.(wb) di.(w).
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(c) If (k, n) 6 Ci*, then

di,l(wb) 2. di,k(w) .b Ilm Hj]]],

where (j, m) is the <*-least paint in N2 such that fi((j, m)) f/((k, n)).
It is clear that each di,k, and hence each d, is a martingale.
For k, r 6 N and w 6 {0, }*, the approximation

dk,r(W) dk,r+l(W) +
r+lwl+l

E di,k (to)
i=0

of d(w) is also used. It is easy to check that

,r(W) d(w) <_ 2

for all k, r 6 N and w 6 {0, }* satisfying r + 1 >_ wl.
(2) In the construction of the languages H0, H1 the operation

destroy ft. at (k, n)

is often performed. In all such instances, it is known that (k, n) 6 C/* and the operation is
performed by setting

IIn c H]l IIm Hill,

where (j, m) is the <*-least pair in N2 such that f/((j, m)) fi((k, n)). Note that a single
performance of this operation ensures that is not a many-one reduction of H.

The sets

Dk,, c N (S(j, m) <* (k, n)) f/is destroyed at (j, m)

for k, n 6 N, are also used in the construction. It is emphasized that an index appears in
only if the operation destroy fi at (j, m) is explicitly performed for some (j, m) <* (k, n). In
particular, for each (j, m) there is at most one such that fi is destroyed at (j, m), even though
there are many i’ such that f/ fi,. Thus each D,, is a finite set with IDa,, < #*(k, n).

For k, n N, let

t(k, n) min N Ii Dk,,, and (k, n) c C; }.

Note that t(k, n) is finite for all k, n 6 N (because fi is constant for infinitely many i). The
values [In 6 H]] are defined according to the following two cases.

Case 1. If t(k, n) < k, then destroy f,(k,,) at (k, n).
Case 2. If (k, n) > k, then set

n c H]] ,.(wl) < ,,.(wO)
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begin
w :: XH,[O..n- 1];
for b {0, 1} do
begin
1) d,n+l (wb)
for 0 to 2n + do 6, 6 + dk (wb)

end; //Now 60 dk,n (w0) and 61 d,n (w 1).//
if t(k, n) _< k
then destroy f(k,n) at (k, n)
else n H]] := [[61 _< 60]]

end.

FIG. 4. Computation of[In E Hk]] in the proofofLemma 4.4.

where w X/4k [0..n 1]. This completes the construction of the languages H0, H1 and

the martingales do, d
The following lemmas are used to prove the main theorem.
LEMMA 4.4. H 6 E2. For each k N, Hk E.
Proof Assume first that (k, n) 6 N2 and the values m 6 Hi 1] are known (stored) for all

pairs (j, m) <* (k, n), as is the set D,n. Consider the computation of [In 6 H]] exhibited in
Fig. 4.

To estimate the time required for this computation, recall the properties

(j, m) <* (k, n) ==, (1 + jl)(1 + Iml) < (1 + Ikl)(1 -4-Inl),

#*(k, n) 20((l/lkl)(l/lnl))

of <* and note the following:
(i) The computation of w re.quires at most n #*(k, n) 2O((l+lkl)(l+lnl)) steps.
(ii) The computation of dk,,+l(wb) requires at most (3 + n + Iwb)lkl

2((l/lkl)(l/lnl)) steps.
(iii) For0 _< _< 2n + 1, the condition (k, n) C[ can be tested in at most (1 +#*(k, n))2.

O(251(i’(k’n))l) 20(lil+O((l/lkl)(l+lnl))) 20((l+lkl)(l+lnl)) steps.
(iv) By (iii), for 0 < < 2n + 1, the computation of di,(wb) requires at most O(n

2((l/lkl)(l/lnl)) 2((l/lkl)(l/lnl))) 2 ((l/lkl)(l/lnl)) steps.

(v) By (ii) and (iv), the entire computation of 6 d,, (wb), i.e., the for-loop in Fig. 4,
requires at most 2 ((l/lkl)(l/lnl)) -+- (2n + 2)2((l/lkl)(l/lnl)) 2((l/lkl)(l/lnl)) steps.

(vi) As in (iii), for 0 < < k, the condition (k, n) 6 Ci* can be tested in at most
2 ((l/lkl)(l/lnl)) steps. Thus, testing the condition t(k, n) < k and computing t(k, n)
if this condition is true requires at most (k + 1) 2((l/lkl)(l/lnl)) 2 ((l/lkl)(l/lnl))

steps. It follows easily that the if-then-else in Fig. 4 requires at most 2
steps.

By (i), (v), and (vi), the computation described in Fig. 4 requires at most 20((l/lkl)(l/lnl)) steps
to compute i[n 6 Hll, given the set D, and the values I[m 6 Hi ]] for (j, m) <* (k, n).

The condition (k, n) 6 H can now be decided by computing and storing the successive
values m 6 Hi]] according to the <*-ordering of N2, using the computation in Fig. 4 and
updating Di,n at each stage. This requires at most (1 + #*(k,n)) O(20((l/lkl)(l/lnl)))
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20((l+lkl)(l+lnl)) steps. Since 20((l+lkl)(l+lnl)) 20((l+l<k’n)l)2), this proves that H E2. Also,
for fixed k, 20((l+lkl)(l+lnl)) 20(l+lnl), SO each Hk E. [3

LEMMA 4.5. For all N, if there exist infinitely many k N such that the slice C* isi,k

nonempty, then ft" is not a many-one reduction of H.
Proof. Fix N and assume that the set

is infinite. For each k 6 S, let nk min Ci*,,k For every k 6 S, at least one of the following
four conditions must hold:

(i) > k.
(ii) < t(k, n).
(iii) t(k, n) < < k.
(iv) t(k, n) <__ k.

(In fact, for all real numbers a, b, and c, at least one of a > c, a < b, b < a < c, b a < c
must hold.) It is clear that condition (i) holds for only finitely many k. For each k such that
condition (iii) holds, the construction of H ensures that f,(,nk is destroyed at (k, nk). Since
each f./is destroyed at most once in the construction of H, it follows that condition (iii) holds
for only finitely many k. Since S is infinite, this implies that there is some k 6 S such that
condition (ii) or condition (iv) holds.

Fix such a number k. If condition (ii) holds, then 6 D,nk (because (k, n) 6 C/*), so

fi is not a many-one reduction of H. If condition (iv) holds, then j5 is destroyed at (k, n),
so f/ is not a many-one reduction of H. Thus, in any case, f/ is not a many-one reduction
of H.

LEMMA 4.6. For all i, k N, if fi is a many-one reduction ofH and Ci*, is infinite, then
di,k succeeds on Hk.

Proof Assume that i, k 6 N, fi is a many-one reduction of H, and Ci*, is infinite.
Consider the successive values

r di,k (XH [O..n 1])

for n 0, 1, 2 Clause (a) of the definition of di,k says that r0 2-i, while clauses (b)
and (c) ensure that each rn+l {0, rn, 2rn }. In fact, since fi is a reduction of H, clause (c)
never causes rn+l to be 0. We thus have the recurrence

r0 2-i { rn if/7 Ci*,k
rn+l= 2r ifn6C*i,k"

Since C* is infinite, this implies that r -+ cxz as n --+ cxz, whence di,l succeeds on H [3
i,k

LEMMA 4.7. For all k N, dk does not succeed on Hk.
Proof Fix k 6 N and consider the manner in which the values [[n 6 H]] are decided for

n 0, 1, 2 There can be at most finitely many values of n for which Case holds. (This
is because each occurrence of Case involves a new value of t(k, n) with t(k, n) < k.) Thus
there exists no 6 N such that Case 2 holds for all n >_ no. For all n 6 N, let

w XH [O..n 1]
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be the n-bit prefix of X/4k. Then, for all m >__ no, Case 2 ensures that

dk(Wm+l) <_ dk,m(VOm+l) -}- 2-m

dk,m(WmO) "+- dk,m(tOm 1)
< q- 2

2

dk(WmO) -+- 2 -+- dk(Wm 1) -+- 2

dk(WmO .qt_ dk(Wm 1)

dk(Wm) "+- 21-m

-t- 2-m

It follows that, for all n > no,

n-1

"k(Wn) < "k(Wno)nt- Z 21-m < d’k(Wn) nt- 4.
m----lO

Thus, if

max d(w,),
0<n <no

then

d,(wn) < a + 4

for all n E N. Hence d does not succeed on Hk. [3

LEMMA 4.8. H is weakly <-hardfor E.
Proof. Let k E N. It is clear that H Pm(H and S[dk]

_
S[d]. It follows by

Lemmas 4.4 and 4.7 that

Hk Pm(H f’! E S[d]

___
Pm(H A E S[dk],

whence Pm(H )AE S[d,]. Since k is arbitrary here, this implies that/zp(Pm (H)NE) - 0,
i.e.,/z(Pm(H E) - 0. Thus H is weakly <m-hard for E. [3

LEMMA 4.9. H is not <m-hardfor E.

Proof By Theorem 4.2, it suffices to show that H is incompressible by <mTIME(24’’)-
reductions. Fix 6 N such that j is a many-one reduction of H. It suffices to show that j is
one-to-one almost everywhere.

Note the following two things:
(i) For each k 6 N, the slice C* is finite by Lemmas 4.7 and 4.6i,k

(ii) By Lemma 4.5, there are only finitely many k E N such that Ci*,k O.
Taken together, (i) and (ii) imply that C/* is finite. It follows by Lemma 4.3 that fi is one-to-one
almost everywhere. [3

By Lemmas 4.4, 4.8, and 4.9, the language H 6 E2 is weakly _<m-hard but not <m-hard
for E. From this, a simple padding argument suffices to prove the main theorem.
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Proofofmain theorem. Let H be defined as above. By Lemma 4.4, there is a polynomial
q(n) >_ n such that H 6 DTIME(2q(n)). Let

C-{x lOq(Ixl’I x H}.

It is easy to check that C 6 E and Pm(C) Pm(H ). It follows by Lemmas 4.8 and 4.9 that
C is weakly <P-complete but not <e-complete for E. q

5. Conclusion. The most important problem suggested by this work is the finding of
"natural" examples of languages that are weakly <em-complete but not <e-complete for E.
As noted in 1, such languages would provably be strongly intractable. It is reasonable to
hope that the study of such natural examples would yield new insights into the nature of
intractability.

It is especially intriguing.to consider the possibility that SAT and other natural NP-
complete problems may be weakly <em-Complete for E, i.e., that NP may not have measure 0
in E. The hypothesis that SAT is weakly <em-Complete for E implies, but may in some sense
be stronger than, the P NP hypothesis. For example, recent work has shown that, if SAT
is weakly <e-complete for E, then NP contains P-bi-immune languages 14] every <e-hardm

language for NP is dense [12], every <em-complete language for NP has a dense exponential
complexity core [7], and there is a language that is <e-complete but not <em-complete for
NP 11 ]. Further investigation of the consequences and reasonableness of this hypothesis is
indicated.

It is routine to modify the proof of the main theorem to construct languages that are
weakly _<era-complete but not <era-complete for larger classes such as E2 and ESPACE. A more
interesting, and perhaps harder question concerns alternate versions of the main theorem in
which <e is replaced by other reducibilities Homer, Kurtz, and Royer [5] have proven that
a language is <le_tt-hard for E if and only if it is e<m-hard for E. It follows immediately that
the language C given by the main theorem is weakly <e_tt-complete but not <_tt-complete
for E. That is, the main theorem holds with <e replaced by _<e_tt. Beyond this, little is
known. New techniques may be required to determine whether the main theorem holds with
<e replaced by <.
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DATA-STRUCTURAL BOOTSTRAPPING, LINEAR PATH COMPRESSION, AND
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Abstract. A deque with heap order is a linear list of elements with real-valued keys that allows insertions and
deletions of elements at both ends of the list. It also allows the findmin (alternatively findmax) operation, which
returns the element of least (greatest) key, but it does not allow a general deletemin (deletemax) operation. Such a
data structure is also called a mindeque (maxdeque). Whereas implementing heap-ordered deques in constant time
per operation is a solved problem, catenating heap-ordered deques in sublogarithmic time has remained open until
now.

This paper provides an efficient implementation of catenable heap-ordered deques, yielding constant amortized
time per operation. The important algorithmic technique employed is an idea that we call data-structural bootstrap-
ping: we abstract heap-ordered deques by representing them by their minimum elements, thereby reducing catenation
to simple insertion, The efficiency of the resulting data structure depends upon the complexity of a special case of
path compression that we prove takes linear time.

Key words, path compression, lists, queues, deques, catenation, heap order, priority queues, data-structural
bootstrapping
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1. Introduction. A deque with heap order is a linear list of elements with real-valued
keys that allows insertions and deletions of elements at both ends of the list. It also allows the
findmin (alternatively findmax) operation, which returns the element of least (greatest) key,
but it does not allow a general deletemin (deletemax) operation. Such a data structure is also
called a mindeque (maxdeque). The restricted access and lack of deletemin distinguish heap-
ordered deques from general heaps and allow faster operation times than heaps. Gajewska
and Tarjan 11] show how to implement heap-ordered deques with constant time (amortized
or worst-case) per operation; they leave open the problem of how to catenate heap-ordered
deques.

This paper provides an efficient implementation of catenable heap-ordered deques; we
achieve constant amortized time per operation. The important algorithmic technique employed
is an idea of Driscoll, Sleator, and Tarjan [8], which we call data-structural bootstrapping:
we abstract the heap-ordered deques of Gajewska and Tarjan by representing them in terms
of their minimum elements; in this way, catenation becomes no more difficult than insertion.
To prove that the resulting data structure achieves constant amortized time per operation, we
consider order-preserving path compression. This is a generalization of special cases of path
compression originally introduced by Hart and Sharir 12] and subsequently analyzed by Loebl
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and Negetfil [17]-[ 19] and Lucas [20]. We prove a linear bound on deque-ordered spine-only
path compression, a case of order-preserving path compression used in our data structure.

Our result is important in the following respects. It shows how the bootstrapping technique
of Driscoll, Sleator, and Tarjan, originally developed to create confluently persistent catenable
lists, is in fact a generally useful tool in the design of efficient data structures. Additionally,
we not only unify the special cases of path compression considered by Loebl and Negetfil and
by Lucas, but we extend their results to a more general case. Furthermore, we provide what
we believe is the first practical application of this type of result.

Sections 2 and 3 of this paper describe our data structure for catenable heap-ordered
deques, using the bootstrapping technique of Driscoll, Sleator, and Tarjan. Sections 4 and
5 define and analyze deque-ordered spine-only path compression, proving the linearity of
this special case of path compression. These latter sections are the technically difficult part
of the paper. In 6, we prove a nonlinear lower bound for general order-preserving path
compression and provide a nontrivial worst-case bound per heap-ordered deque operation
based on an alternative implementation. We conclude in 7. A preliminary version of this
paper appears as Buchsbaum, Sundar, and Tarjan [41.

2. Lists, heap order, and catenation. Consider the following operations to be performed
on a linear list d of elements:

push(x, d) Insert x as the new first element of d; the previous ith element becomes the
(i + 1)st.

pop(d) Remove and return the first element of d (or 0 if d is empty); the previous
ith element, for >_ 2, becomes the (i 1)st.

inject(x, d) Insert x as the new last element of d.
eject(d) Remove and return the last element of d (or 0 if d is empty).
We assume the existence of a rnakelist operation that returns an initially empty list. If

only push and pop (or inject and eject) are allowed, d is a stack (formally a list oftype stack).
If only push and eject (or inject and pop) are allowed, d is a queue. If all the operations
are allowed, d is a double-ended queue or deque. If both insertion operations but only one
of the deletion operations are allowed, d is an output-restricted deque. Such data structures
can easily be implemented by doubly linked (in some cases singly linked) lists yielding O (1)
worst-case times for each of the allowed operations [23].

If each element in d has a real-valued key, we may also want to consider the following
operation:

findmin(d) Find and return an element of minimum key in d (or 0 if d is empty).
Findmin does not modify the list itself. If d is a deque, then d together with findmin is a

heap-ordered deque or mindeque. Analogous data structures are obtained by adding findmin
to stacks, queues, and output-restricted queues. A related data structure is the priority queue
with attrition [22]. We can also consider thefindmax operation but restrict ourselves without
loss of generality to findmin for the remainder of this paper.

Finally, if dl and d2 are lists of the same type and of size (number of elements) S and s2,

respectively, then we define the following operation:
catenate(dl, d2) Add the elements of d2 to the back of dl; i.e., let the (Sl + i)th element

of dl be the ith element of d2 for < _< s2. The first Sl elements of dl
are unchanged. This operation destroys d2.

Catenating lists in O (1) time is straightforward; catenating heap-ordered lists is more
problematic. This paper demonstrates how to implement catenable heap-ordered deques
(or catenable mindeques) efficiently. In particular, our data structure performs n insertions
(pushes and injects), m deletions (pops and ejects), and q catenations, all intermixed on q +
catenable heap-ordered deques in total time O(n + m + q), such that findmin always takes
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rightward minima

5 6 4 10 7 8 14 11 9 10

(a)

rightward minima

12 20 10 11 2 10 4

leftward minima

5.. 0.
(b)

FI6.2.1. (a) A heap-ordered queue with minimum key 4. (b) A heap-ordered deque with minimum key 0; the
center line is the break point between the two stacks.

O (1) worst-case time. Furthermore, if q is fixed, each operation requires O (1) worst-case
time.

We remark that an equivalent formulation of the problem is to have the makelist operation
take an element as an argument and return a list of one element. Then push and inject can be
treated as special cases of catenation. We choose the former suite of operations to distinguish
catenation as a special operation that complicates the implementation of heap-ordered deques.

2.1. Related work and applications. Queues with heap order are useful in pagination
[7], [13], [16], [21] and very large scale integration (VLSI) river routing [6]. Booth and
Westbrook [3] use catenable heap-ordered queues in the sensitivity analysis of minimum
spanning trees, shortest path trees, and minimum cost network flow on planar graphs. Larmore
and Hirschberg 16] and Cole and Siegel [6] independently showed how to implement heap-
ordered queues in O (1) amortized time per operation [24]. Gajewska and Tarjan 11 modified
their techniques to produce heap-ordered deques with O (1) time per operation; they give both
amortized and worst-case solutions. Applications of heap-ordered deques include computing
all pairs shortest path information 10] and external farthest neighbors for simple polygons ].
Whereas a simple extension of the previous heap-ordered queue techniques yields efficiently
catenable heap-ordered queues (again O(1) amortized time per operation), Gajewska and
Tarjan left the question of how to construct efficiently catenable heap-ordered deques as an
open problem. We address this problem.

We remark that in a preliminary version of this paper [4], we posed the designing of
catenable heap-ordered deques with O(1) worst-case time per operation (as opposed to our
amortized time solution) as an open problem. Kosaraju 15] subsequently solved this problem.
We contrast the two results in 7. (See also the note added in proof.)

2.2. Reviewing heap-ordered queues and deques. For completeness, we begin by re-
viewing how to implement heap-ordered queues and deques. Identify the head of a list (where
the first element sits) as the left end of the list and the tail as the right. A minimum element
of a list is an element of minimum key. To implement a heap-ordered queue d, maintain a
secondary list d’ of rightward minima. This list has as its first element the minimum element
x of d; the second element is the minimum element of d to the right of x and so on; see
Fig. 2.1 (a).

To pop an element e from d, if e is minimum, the new minimum element of d becomes
the successor of e in d’ (and that element becomes the new head of d’, i.e., d’ is also popped).
Otherwise, no change to d’ takes place. To inject an element e of key k into d, consider
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the rightmost element x of d’. If key(x) > k, eject x from d’ and continue the search with
the new rightmost element of d’. Once the rightmost element of d’ is of lesser value than
k, inject k into d’; note that k might be the only element of d’ after this procedure. The
findmin operation on d is now implemented by returning the head of d’. This is one possible
implementation of the previous technique [6], 16] yielding O (1) amortized time bounds for
all the queue operations. We note that the technique also extends to the implementation of
heap-ordered stacks, which can be used to create heap-ordered deques as well as heap-ordered
output-restricted deques. Furthermore, it is simple to add catenation to heap-ordered queues,
stacks, and output-restricted deques using the same idea.

Gajewska and Tarjan [11 implement heap-ordered deques by representing them as two
heap-ordered stacks as in Fig. 2.1 (b). When one stack is emptied, the heap-ordered deque is
rebuilt so that the two stacks differ in size by no more than one. The findmin operation returns
the minimum of the minimum elements in the left and right stacks. By gradually rebuilding
the stacks concurrently with the deque operations, they achieve O(1) worst-case time per
operation. Using two stacks, however, does not allow the easy implementation of catenation
that is possible with heap-ordered queues.

3. Data-structural bootstrapping and catenable heap-ordered deques. We employ a
technique of Driscoll, Sleator, and Tarjan [8] to bootstrap the heap-ordered deques and allow
their efficient catenation. We wish to implement a catenable heap-ordered deque d; call the
elements of d basic elements. We freely interchange the notion of elements and their keys
(e.g., x > y for two elements x and y implies that the key of x is greater than the key of y).

Our data structure D is itself a heap-ordered deque. Each element of D consists of a basic
element of d combined with a pointer. For an element x of D, let e be the basic element of
x and p be the pointer of x. If p 0, then e is a basic element of d; in this case we call x a
d-element of D. Otherwise, e is the minimum basic element of a heap-ordered deque to which
p points. This other heap-ordered deque has the same type of elements as D, and the structure
is recursive; the minimum element of D thus contains the minimum basic element among all
those in the heap-ordered deques reachable via pointers from D. The d-elements of D occur
in a natural left-to-right order that can be obtained by recursively visiting each element from
head to tail in D, listing d-elements as they are encountered. The resulting ordered list of
d-elements corresponds to the basic elements in order, in the catenable heap-ordered deque d
we are implementing.

In this fashion, there is a one-to-one correspondence between the elements ofD and the
nodes of a heap-ordered tree; see Fig. 3.1 (a)-(b). In the tree, the leaves represent d-elements
of D and hence basic elements of d, and we maintain a heap invariant on the tree: the nonleaf
(or internal) nodes contain the lowest values among their children. The internal nodes are
precisely the non-d elements of D and the heap-ordered deques reachable from D. The leaves
in the tree also have a natural left-to-right order corresponding to that on the d-elements of D.

The concept of representing a heap-ordered linear list of items by exploiting the induced
left-to-right order of the leaves in a normal heap-ordered tree arises in the pagodas of Franon,
Viennot, and Vuillemin [9]. Similar data structures are the Cartesian tree [27] and the treap [2].
These maintain one tree under both symmetric and heap orders (on two distinct keys per
node). If the symmetrically ordered key represents the position of the node in a linear list, the
data structure supports heap-ordered list access operations. The idea of bootstrapping heap-
ordered deques to implement catenable heap-ordered deques in the above recursive fashion
generalizes the technique of Kosaraju 14], by which he designs catenable deques (not heap
ordered) by decomposing the deques into contiguous pieces and storing those pieces in a
stack. His data structure can be extended to maintain heap order, but it only accommodates
a fixed number of deques. Driscoll, Sleator, and Tarjan [8] bootstrap fully persistent lists to
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!oool
(a) (b)

(c) (d)

FIG. 3.1. (a) A heap-ordered tree. (b) The corresponding catenable heap-ordered deque: boxes surround heap-
ordered deques, the minimum values ofwhich are elements in the parent heap-ordered deque. (c) The tree of(a) after
a left pull. (d) The corresponding catenable heap-ordered deque.

implement confluently persistent catenable lists. Recently, Buchsbaum and Tarjan [5] further
refined bootstrapping into two distinct types, structural abstraction, which is the method of
Driscoll, Sleator, and Tarjan, and structural decomposition, and use them to design efficient,
confluently persistent deques.

3.1. The pull operation. We now define a left pull operation on the heap-ordered tree
T in a way similar to the definition of the pull operation of Driscoll, Sleator, and Tarjan [8].
If the leftmost child x of the root of T is a leaf, a left pull on T does nothing. Otherwise, a
left pull on T removes the leftmost child x’ from x and makes x’ a child of the root of T to
the left of x; x’ thus becomes the new leftmost child of the root of T, and if x is now a leaf,
it is deleted. See Fig. 3.1 (c) for an example. The heap invariant of the tree is maintained by
updating x, if necessary, to contain the lowest key among those of its children. We define
a right pull on T symmetrically. Both pull operations preserve the left-to-right order of the
leaves of T.

A left pull is now extended to the data structure D as follows. If the first element x of D
is a d-element (has a 0 pointer), a left pull on D does nothing. Otherwise, pop D, returning x.
Denote by d(x) the heap-ordered deque to which the pointer of x points. Pop d(x), returning
x’. If d(x) is still nonempty, push x back onto D; the pointer of x still points to d(x), but
popping d(x) may change the basic element of x (the minimum basic element of d(x)). Then
push x’ onto D. A right pull on D is defined symmetrically. Since we use only heap-ordered
deque operations to implement pulls on D, the minimum values of all the heap-ordered deques,
in particular, that of D, are maintained correctly. The popping and repushing ofx are executed
precisely to maintain the correct minimum values; i.e., if x’ is the minimum element of x, then
popping x’ from x and pushing it onto D necessitates changing the minima lists of D, which
is effected by the popping and pushing of x before the pushing of x’. Figure 3.1(d) shows
the result of a left pull on D. Again, the pull operations preserve the left-to-right order of the
d-elements of D.

It is now straightforward to implement the catenable heap-ordered deque operations on d
as follows: (We assume that the makelist operation returns an empty heap-ordered deque D.)
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push(x, d)

pop(d)

inject(x, d)
eject(d)
findmin(d)

Create element 2 composed of basic element x and pointer 0. Push
onto D.
Repeatedly left pull D until its head element is a d element. Then pop
D; this returns an element 2. Return the basic element x of 2.
Symmetric to push.
Symmetric to pop.
Return the basic element in the minimum element of D.

catenate(dl, d2) For c 1, 2}, let i be an element containing the basic element in
the minimum element of Di and a pointer to Di. Push 1 onto D2.
(Alternatively, we could inject 2 into D1.)

That D correctly simulates d is easily proven by induction on the number of operations.

3.2. Time analysis. We now state the following theorem.
THEOREM 3.1. An intermixed set ofn insertions, m deletions, and q catenations on q +

catenable heap-ordered deques takes total time 0 (n + m + q); findmin always takes 0 (1)
worst-case time.

Proof We first note that push (inject) requires a constant amount of time to prepare the
element (from the given basic element and a 0 pointer) in addition to one "real" heap-ordered
deque push (inject). If we use the Gajewska-Tarjan heap-ordered deques 11 ], each real heap-
ordered deque operation takes O (1) time. Either the amortized or worst-case solution they
offer suffices for the data structure in this section; the implementation given in 6.2 requires
their worst-case solution. Continuing, each catenation also entails one real push or inject in
addition to some constant amount of preprocessing time. Each deletion entails some number
of pulls, each of which requires a constant number of real heap-ordered deque operations plus
one final real pop or eject.

If we consider the corresponding heap-ordered tree, we see that the set of insertions,
catenations, and deletions maps to an instance of disjoint set union [25]. In particular, the
insertions and catenations correspond to unions and the deletions correspond to finds on the
elements that are eventually deleted. That is, a sequence of pulls effects a path compression.
Furthermore, note that the path compressions are all spine compressions. This notion will be
defined in detail in 4; briefly, each compression involves a path of only leftmost children (or
only rightmost children). Theorem 5.4 will prove the linearity of such path compressions. It
is unnecessary to maintain the heap-ordered trees in a balanced fashion (e.g., doing unions by
size or rank).

Findmin is performed by one real heap-ordered deque findmin, which takes O (1) worst-
case time. [3

Note that if q O (1), that is, if there is only a constant number of heap-ordered deques
to be catenated, our data structure implements all the operations in O(1) time each. Thus
our structure unifies the general problem with this special case mentioned by Gajewska and
Tarjan [11 ], which they solved by using the techniques of Kosaraju [14].

COROLLARY 3.2. An intermixed sequence of insertions, catenations, deletions, andfind-
rains can beperformed on afixed number ofcatenable heap-ordereddeques in 0 (1) worst-case
time per operation.

Proof If q O (1), each sequence of pulls is of constant length. [3

4. Path compression. In this section we introduce some definitions necessary in the
analysis of our special case of path compression. Initially, we have a tree T with n nodes
(and n edges). An edge (u, v) connects node u with its parent v in the tree; we say that
p(u) v in T. Each node, except for the root of the tree, has precisely one edge joining it to
its parent. The parent pointers define a path from x to the root of T in the natural way. A node
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x is a descendant of a node y if y lies on the path from x to the root of the tree; symmetrically,
y is an ancestor of x. Note that x is both an ancestor and a descendant of itself. A proper
ancestor (descendant) of x is an ancestor (descendant) y of x such that y - x.

A path compression from xo on a tree T is a sequence of nodes C (x0 xt) such
that > 0 and p(xi) Xi+l in T for 0 < < I. Its effect is to update the parents of the nodes
along the path, making them all point to xt, the root ofthe compression,

p(xi) <-- xz, 0 < < I.
We say that the compression C roots at x; furthermore, xi for 0 < < is a nonroot node of
the path compression. The cost of C is [C[ 1.

If C (x0) and x0 is a leafnode, i.e., a node with no children, then C is a leafdeletion;
the effect of C is to remove x from T. In this case the cost of C is CI 1. A sequence of
path compressions on T To is a sequence (C Cm) such that Ci is a path compression
or a leaf deletion on Ti_ and the result of Ci applied to T/_ is T/. The cost of a sequence of
path compressions on T is im__l ICi].

We now define the rising roots condition [20], which links the notion ofpath compressions
above with the well-known union and find operations used in the disjoint set union problem
(see, e.g., Tarjan and van Leeuwen [25]). For any node x in T, let kx be the smallest such
that x appears as a nonroot node in Ci; kx oo if there is no such i.

DEFINITION 4.1 (rising roots condition). A sequence ofpath compressions (C Cm)
satisfies the rising roots condition ifand only iffor every node x and every > kx, x appears
as a nonroot node in Ci if Ci is a compressionfrom a descendant ofx in Ti_ .

The rising roots condition tells us precisely when a sequence of path compressions on
some initial tree corresponds to an intermixed sequence of unions, finds, and leaf deletions.

LEMMA 4.2. A sequence ofpath compressions (on an initial tree) satisfying the rising
roots condition corresponds to some sequence of intermixed union, find, and leaf deletion
operations. Conversely, a sequence of intermixed union, find, and leaf deletion operations
corresponds to some sequence ofpath compressions satisfying the rising roots condition.

Proof See Lucas [20, Lem. 1]. V]

The above correspondence is straightforward. The roots of the compressions in the path
compression sequence are the roots of the finds in the union-find instance, and vice versa.
This correspondence can be used to simplify the analysis of disjoint set union instances by
assuming that all the unions are done before the first find. Any result for a class of path
compressions satisfying the rising roots condition maps to a result for a class of disjoint set
union problems.

We now introduce the notion of order to restrict the path compression sequences we shall
consider. Given a tree T, embed T in the plane, yielding a left-to-right order on the children
of each node. The nearest common ancestor of two nodes x and y (nca(x, y)) is the deepest
node z in T such that z is an ancestor of both x and y. For x, a proper descendant of z, let
cx(z) be the child of z that is an ancestor of x; note that cx(z) might equal x. We define a
partial order on T as follows: for any pair of nodes x and y, if z nca(x, y) and z ’ {x, y},
then x y if cx(z) is to the left of Cy(Z).

DEFINITION 4.3 (order preservation). A path compression on a tree T that yields a tree
T’ is order preserving ifx y in T ==:> x y in T’. A leafdeletion is always taken as order
preserving. A sequence (C1 Cm) ofpath compressions on To is order preserving/f Ci is
order preservingfor < < m.

Note that as there is, in general, more than one way to effect a path compression (in
terms of the left-to-right order of the newly acquired children of the root of the compression),
Definition 4.3 depends upon the actual implementation of the path compressions involved.
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/1\ T_ t__._xt._._.xt_._at.._.xt_...x

/L 2 T3 To T1T2 T
4

TO (a) (b)

FIG. 4.1. (a) An order-preserving path compression; triangles denote subtrees. (b) A path compression that
cannot be order-preserving; x must become either left ofT or right of Tr.

We assume for simplicity that a compression is effected in an order-preserving way if it can
be. We now describe exactly when a path compression (sequence) is order preserving.

LEMMA 4.4. A path compression (xo xt) is order preserving ifand only if xi is the

lefimost or rightmost child ofxi+l for O < < 1.

Proof First note that the last nonroot node in the compression need not be an extremal
(leftmost or rightmost) child of its parent; only the nodes whose parents change need to be
extremal.

Now, assume that xi is an extremal child of Xi+l for 0 < < 1. Then we can effect
the path compression top-down in an order preserving way as follows. If xt_2 is the leftmost
(rightmost) child of xt_ 1, and y is the rightmost (leftmost) sibling to the left (right) of xi_ 1,

make xt-2 a new child of xt in between y and x_ 1; y might be nil. Continue in this fashion
down to x0; see Fig. 4.1(a).

On the other hand, let j < be such that x.i is not an extremal child of x.i+l. Let L
be any left sibling of x.i and R be any right sibling of x.i. Before the compression we have
L Xi R. If, however, x.i becomes a left sibling of x.i+l during the compression, then after
the compression we have x.i L; similarly, if Xi becomes a right sibling of x.j+l, then after
the compression we have R x.i. See Figure 4.1 (b).

Note that an only child, i.e., a node with no siblings, qualifies as both a leftmost and a
rightmost child of its parent. Now consider a postorder (preorder) assigned to the nodes of a
tree. In this paper we consider a restricted case of order-preserving path compression.

DEFINITION 4.5 (spine compression). A path compression (xo xz) is a left-spine
compression (right-spine compression) if xi is the lefimost (rightmost) child ofxi+l for 0 <

< and the compression preserves the postorder (preorder) ofthe tree. A sequence of
path compressions is a sequence ofspine-only path compressions ifeach path compression in
the sequence is a left-spine compression or a right-spine compression.

Clearly left- and right-spine compressions are order preserving. Lucas [20] proves that
a sequence of left-spine path compressions done in postorder and satisfying the rising roots
condition requires linear time; i.e., given an initially postordered tree, each node in postorder
is the subject of one left-spine path compression and is then deleted. Loebl and Negeffil 17]-
19] prove linearity in a more general case, that of a sequence of left-spine path compressions

satisfying the rising roots condition; they refer to this as a localpostorder. These results derive
from an open problem of Hart and Sharir 12]" What is the complexity of a sequence of path
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compressions done in postorder without the rising roots condition? Both the Lucas and the
Loebl-Negetfil problems are special cases of this problem.

We now introduce a more general order of path compressions than that of either Lucas or
Loebl and Negetfil. Let T(v be the subtree rooted at v just before the first path compression
that includes v as a nonroot node and let T(v be the subtree of T( rooted at x for some child
x of v in T(.

DEFINITION 4.6 (deque order). An order-preserving sequence ofpath compressions is a
deque-ordered sequence ifand only if for any v with two children x and y in T such that
x < y, the following is true" if the first path compression C’ that orders v and y results in
y v, then all path compressionsfrom nodes in Tx( precede C’; otherwise, ifthefirstpath
compression C" that orders v and x results in v x, then all path compressionsfrom nodes
in Ty( precede Cif.

It is important to note that Definition 4.6 refers to nodes in a tree, e.g., T( with respect
to T(. That is, an actual compression may take place from a node that, at the time of the
compression, is no longer a descendant of x (or v).

In the next section we prove our main result" a deque-ordered sequence of spine-only
path compressions that satisfies the rising roots condition takes at most linear time.

5. Linearity of deque-ordered spine-only compression. We unfortunately find it nec-
essary to divide the following definitions into two separate cases to handle differently what
happens to the left and right of various nodes. Let Pi (v) be the parent of v in T/. For some
path compression sequence (C Cm) on To and a node v, we call Ci a left compression
with respect to v if

(1) Ci starts from a node x that is a descendant of v in To;
(2) Ci is a left-spine compression.
We define a right compression with respect to v symmetrically by replacing (2) with
(2’) Ci is a right-spine compression.

Note that x might not be a descendant of v at the time the path compression occurs. Let
high/ (v) be the shallowest node w that is a proper ancestor of v in To and the root of a left
compression with respect to v; if there is no such path compression, then high/ (v) 0.
Symmetrically, let higha (v) be the shallowest node w that is a proper ancestor of v in To and
the root of a right compression with respect to v; higha (v) 0 if no such compression exists.
Again, it is critical to realize that the compression might not be from a descendant of v at the
time.

Letting levelL (0) levelR (0) -1, we now define

levelL (v) levelc (hight (v)) + 1,

last/ (v) min {i v is not a proper descendant of hight (v) in T/} U {m + 1}},
levelR(v) level(high(v)) + 1,

last(v) min {{i v is not a proper descendant of highe(v) in T/] U {m + 1}].

To make lastL and lastR well defined, we say that v is never a descendant of 0. The definitions
of level and level are static; they are defined purely with respect to the initial tree and the
sequence of path compressions. A left-level-defining descendant of v is a descendant (if one
exists) x of v in To such that a left compression with respect to v from x roots at highz (v);
we call the actual compression a left-level-defining compression of v. Symmetrically define a
right-level-defining descendant and right-level-defining compression of v.

We now prove a set of technical lemmas that localize the compressions affecting a vertex
to one or two left levels and one or two right levels adjacent to those of the vertex. Again we
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let p(v) (pi(v)) be the parent of v (in Ti) (for v not the root) and cx(v) be the child of v that
is an ancestor of x if x is a proper descendant of v.

LEMMA 5.1. In a path compression sequence (C1 Cm) on To, for any node v,
1. foranyO < < lastL(v), levelz(v) > levelL(pi(v));
2. for any 0 < < lastR(v), levelR(v) > level(pi(v)).

Proof We prove part (1) of the lemma; the proof for (2) is symmetric. In To, consider
any root-to-leaf path partitioned by nodes of level/ zero. We use induction on the length of
each partitioned subpath. The base case is the head r of the path; levelc (r) 0. Note that
level/ (r) 0 hight (r) 0 lastL (r) 0; the claim for the base case is thus vacuous.

For a node v such that level/ (v) > 0 and r is the nearest ancestor of v such that level/ (r)
0, let x be a left-level-defining descendant of v. Any left compression with respect to v from
x is also a left compression with respect to po(v) from x. Thus, if high/(v) r then
hight (y) r for every y such that y is an ancestor of v and a proper descendant of r in To.
(No left compression with respect to r may root at a proper ancestor of r, since levelc (r) 0.)
By the definition of levelt, levelc (v) > levelL (po(v)). On the other hand, if high/ (v) r

then hight (v) is a descendant of hight (po(v)) in To. Both high/ (v) and hight (po(v)) are
descendants of r in To. By the definition of level/ and the induction hypothesis, level1 (v) >_
levelL (p0(v)).

For a node v in Ti such that 0 < < last/ (v), by definition v is a proper descendant
of hight (v) in Ti. By the above proof of monotonicity, it is still the case that levelc (v) >_
levelc(pi(v)).

Leaf deletions trivially preserve part (1) of the lemma.
LEMMA 5.2. In a path compression sequence (C1 Cm) on To, for any node v not the

root of To,
1. levelc (p(v)) changes at most once during compressions Ca through Clastl(V)-l;
2. level(p(v)) changes at most once during compressions CI through Claste(v)-.

Proof Again we prove part (1) of the lemma; the proof for (2) is symmetric. Let
level (v) 1. Via the path compression sequence, v becomes a child of higher and higher
nodes on the initial path from v to the root of To. By Lemma 5.1, level/ (p(v)) never increases
during compressions C1 through Clastl. (v)-I By definition the highest node that becomes p(v)
during these compressions is of levelL not less than 1. Assuming laStL (V) > 0, Lemma 5.1
states that levelL (po(v)) < levelc (v), and therefore levelc (p(v)) can change only once, from
to 1, during compressions C1 through Clast1(v)-l. [-]

Note that Lemmas 5.1 and 5.2 are completely general; they apply to any sequence of path
compressions. We have not yet used the rising roots condition, spine-only compression, or
deque order. The following lemma is critical to the counting argument used in the proof of
Theorem 5.4, and it is here that we rely upon these conditions. We use the notation T( and

Tx( as in Definition 4.6.
LEMMA 5.3. in a deque-ordered sequence C Cm ofspine-only path compressions

satisfying the rising roots condition, any node v can be in at most one compression ofeach of
thefollowing two types:

1. (a) The compression is a left-spine compressionfrom a proper descendant u of v;
(b) level/ (c,(v)) levelL (v) levelc (p(v)) before the compression; and
(c) p(v) changes during the compression, but level/ (p(v)) does not.

2. (a) The compression is a right-spine compressionfrom a proper descendant u ofv;
(b) level (c, (v)) level(v) level(p(v)) before the compression; and
(c) p(v) changes during the compression, but levelR(p(v)) does not.

Proof Again we prove part (1) of the lemma; the proof for (2) is symmetric. Let
levelL (v). Consider the children of v in T(; by the rising roots condition v can acquire
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FIG. 5.1. (a) A left spine (incident subtrees not shown)" circles are nodes oflevel/ l, and squares are nodes of
levelz, 1. (b) After compressing the path of (a).

no more children. Furthermore, each compression as specified in the lemma removes a child
from v. Now, if v has more than one child of levelL just before the first such compression,
consider any two such children x and y such that x y. Let x’ be a left-level-defining
descendant of x. Note that x’ is a node in T(V; by order preservation, Cx,(V) y in T (’.

Consider the first compression Ci that orders y and v. If Ci makes y v (i.e., it is a
left-spine compression), then by Definition 4.6 all the compressions from nodes in T.(.,,)(v
must precede Ci. In particular, the left-level-defining compression from x’ rooting at a levelL

node must occur before Ci. By the rising roots condition, Ci must therefore root at a
node of levelL no greater than 1; thus, if level/ (p(v)) levelL (v) just before Ci,
then levelL (p(v)) changes (to 1) during Ci. From that point until compression
level (v) :/: levelL (p(v)), completing the proof. Note that < laStL (V).

We can now prove our main result.

THEOREM 5.4. Any deque-orderedsequence C1 Cm ofm spine-onlypath compres-
sions (and intermixed leafdeletions) satisfying the rising roots condition on an initial tree of
n nodes incurs cost at most 3m + 4n.

Proof Consider any left-spine path compression C (x0 xk). The definition of
level together with Lemma 5.1 shows that there are some b and such that level/ (xi) for
0 < _< b and level (Xi) for b < < k. If all the nodes on the path compression are
of the same level/, we say that b 1. See Fig. 5.1 (a).

Whereas before the compression, p(xi) Xi+l for 0 _< < k, after the compression
p(xi) xl for 0 _< < k. Each node xi for 0 < < b has the level of its parent change,
which by Lemma 5.2 can happen only once per node; we therefore charge each ofthese pointer
changes to the nodes themselves. Furthermore, for all nodes xi for b + < < k 1, xi is
involved in the one type-(1) compression allowed by Lemma 5.3. Again, the related charges
are incurred against the nodes themselves. Symmetric charges can be made against the nodes
for a right-spine compression. The remaining charges, those for nodes xb (if it exists), xb+l,
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FIG. 6. I. A Bo-tree and the two ways to make a Bk-tree.

and xk-, are incurred against the compression itself. See Fig. 5.1(b). Since leaf deletions
take unit time, the bound follows.

It is not hard to see that the data structure of 3 uses a deque-ordered sequence of spine-
only path compressions satisfying the rising roots condition. Thus, the proof of Theorem 5.4
completes the proof of Theorem 3.1. We again mention that the initial tree To need not be
balanced.

6. Further results. In this section we prove that general order-preserving path compres-
sion, even with the rising roots condition, can require superlinear time. Thus, adding further
restrictions, such as deque order and spine-only path compression, is critical for achieving
the above results. We also show how to achieve O (log* n) worst-case time per heap-ordered
deque operation when the number of deques is unbounded.

6.1. A lower bound for order-preserving path compression. In this section, we give
an example demonstrating 2n order-preserving path compressions and leaf deletions satisfying
the rising roots condition on an initial tree of size 2n with total cost 2n + n log n. Thus, at least
one of the additional restrictions of spine-only path compression and deque order is crucial to
the linearity of the path compression sequence used by the heap-ordered deque data structure.

To begin, we define the following trees inductively: a B0-tree is a singleton node; a Bk-
tree, k > 0, is formed by linking two Bk_l-trees as in Fig. 6.1. These trees resemble the
binomial trees of Vuillemin [26]; since we allow linking in two directions, however, there are
2 possible B-trees. It is easy to prove by induction that if T is a B-tree, then (1) TI 2,
and (2) the depth of T is k.

Let Lk be a collection containing one Bi-tree for 0 _< < k laid out in the plane in some
left-to-right order. We define a deque order on L inductively: L0 is always laid out in deque
order Lk is laid out in deque order if and only if (1) the Bk-tree is the leftmost (or rightmost)
tree, and (2) the rest of the trees form a collection L_I laid out in deque order to the right (or
left) of the B-tree. See Fig. 6.2. We use the following lemma in our lower bound construction.

LEMMA 6.1. A collection Lk laid out in deque order with the root ofeach Bi-tree in the
collection connected to a common parent x forms a B+1-tree.

Proof The proof is by induction. The base case for k 0 is trivial. For k > 0, consider
a collection L laid out in deque order. Assume without loss of generality that the B-tree
T is leftmost. By the induction hypothesis, the collection Lk-1 laid out in deque order to
the right of T together with the node x forms a B-tree Tr. The root of T, however, is the
leftmost child of x, the root of Tr, and so by definition this structure forms a Bk+l-tree. See
Fig. 6.2. S
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k Bk_ Bk_4 Bk_3 Bk_2

FIG. 6.2. A collection Lk laid out in deque order. The roots of the Bi-trees are children ofa common node x.
The trees inside the box together with x form a Bk-tree as described in Lemma 6.1.

We augment a Bk-tree by making its root the child of a new root node. Call the augmented
tree an Ak-tree; see Fig. 6.3(a). Let r be the root of an A-tree. By definition, the leftmost
(and rightmost) child of r is the root r-l of a Bk_a-tree. Either the leftmost or rightmost
child of r_ is the root rk-2 of a B_z-tree. Continuing in this way, we derive a path P
(so, r0, rl r_l, r) in the A-tree, where ri is the root of a B;-tree (and so is the root of
a B0-tree). Note that there are two B0-trees in the unwound construction. Furthermore, each
node in P other than r is an extremal child of its parent. See Fig. 6.3(b). Thus, P can be
compressed in an order-preserving way.

LEMMA 6.2. Compressing P in an order-preserving way yields a collection Lk-1 oftrees
laid out in deque order and an extra Bo-tree, all connected to the common node r.

Proof After the compression, the leftmost (or rightmost) child of r is rk-1 (descending
from which is the Bk-1-tree). By induction, the Bi-trees descending from nodes ri, 0 <_ <
k 1, form a collection Lk-2 laid out in deque order to the right (or left) of the Bk_l-tree;
their roots, along with so, all become children of r. See Fig. 6.3(c). [3

By compressing P, we can change the A-tree into a B-tree and an extra node. Deleting
the extra node and repeating the procedure yields our result.

THEOREM 6.3. A sequence of n order-preserving path compressions and leaf deletions
satisfying the rising roots condition on an initial tree ofn nodes can incur (R) (n log n) cost.

Proof First, we derive the lower bound. Form the initial tree T by augmenting a Bk-tree
n times, where n 2k. This produces a Bk-tree attached to a path (x xn) of n nodes as

depicted in Fig. 6.4. Form the path P as used in Lemma 6.2 from the Bk-tree and node Xl. By
Lemma 6.2, compressing path P yields a collection L_ of trees laid out in deque order and
an extra B0-tree, all of the roots of which are children of X l. Deleting the extra B0-tree, which
is just a singleton node, yields a Bk-tree, the root of which is a child of node x2; Lemma 6.1
shows this. We can perform this procedure n times, each time performing a path compression
of length k 4- and a leaf deletion. The path compressions are order preserving and satisfy
the rising roots condition. Initially, TI 2n and k log2 n, thus proving the lower bound.

Since the path compressions satisfy the rising roots condition, Lemma 4.2 shows that
the path compression sequence corresponds to an instance of disjoint set union with path
compression. Tarjan and van Leeuwen [25] prove that such a sequence incurs O(n log n)
cost. VI

6.2. A worst-case upper bound per heap-ordered deque operation. Theorems 3.1
and 5.4 prove that our heap-ordered deque data structure requires O (1) amortized time per
operation. The worst-case time per operation onthe data structure can easily be linear, however,
or at best O (log n) (for a heap-ordered deque of n elements) if we link heap-ordered deques
by size.



BOOTSTRAPPING, PATH COMPRESSION, AND MINDEQUES 1203

(a)

F

Bk-2 /
Bk-3k-4
(rk-5

Bk_4

Bk_5

(b)

so

rk -1

Bk_2 Bk.3 Bk_5 B! Bk_4 Bk_
(cl

FIG. 6.3. (a) An Ak-tree. (b) An Ak-tree unwound to show path P in bold. (c) After compressing path P.

Buchsbaum and Tarjan [5] recently used two types of data-structural bootstrapping to

design confluently persistent deques. One of the key ideas of that work is the spine decom-
position, which breaks a tree into paths and represents those paths by catenable deques. If
the leaves of the tree represent elements of a deque and the tree maintains balance, then the
deques representing the paths of the tree are strictly smaller than the deque represented by the
tree itself. (In fact, they are logarithmic in the size of the original deque.) They call this type
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FIG. 6.4. A Bk-tree augmented n times.

of bootstrapping (i.e., homogeneously decomposing a data structure into smaller instances)
structural decomposition. Via structural abstraction, they represent the tree paths (and associ-
ated lists of paths) by persistent version numbers. The result is confluently persistent deques
of n elements that require only O(log* n) amortized time per operation. (They also give a
worst-case time solution.)

We remark here that the same decomposition is possible for trees representing heap-
ordered deques. Instead of representing the tree paths and associated lists by version numbers,
we represent them by their minimum elements. Thus, we can obtain the same O(log* n)
time bound per operation for catenable heap-ordered deques. The underlying persistence
machinery produces the amortization in the confluently persistent deque bound. For the heap-
ordered deque application, the time bound is worst case, not amortized. As discussed below,
Kosaraju 15] has recently discovered an O (1) worst-case time solution that uses additional
ideas.

7. Conclusion and open problems. We have described how to implement catenable
heap-ordered double-ended queues in constant amortized time per operation (worst case if the
number of queues is fixed); we have also given an O(log* n) worst-case time per operation
solution for an arbitrary number of queues. The important pieces of our work are the use of
the bootstrapping technique of Driscoll, Sleator, and Tarjan [8] in designing the data structure
and the analysis of deque-ordered spine-only path compression in proving its efficiency. In
particular, our path compression result generalizes the work of Loebl and Neetfil [17]-[19]
and Lucas [20] and provides what we believe is the first application for such results.

In a preliminary version of this paper [4], we asked if there was an implementation of
catenable heap-ordered deques that achieves constant worst-case time per operation (for an
arbitrary number of deques). Kosaraju [15] subsequently designed such a data structure.
His solution begins with an alternative structure, based on finger search trees, that requires
O (1) amortized time per operation. He combines this with structural abstraction in a clever
two-tiered data structure that maintains an intricate balance invariant. None of the known
solutions is immediately extensible to the confluently persistent deque problem of Buchsbaum
and Tarjan [5], however: our solution has amortized complexity, and Kosaraju’s worst-case
solution uses catenable double-ended queues deep in the data structure. Extending any of
these methods to give an O (1)-time implementation of confluently persistent deques remains
an open problem. (See note added in proof.)

Data-structural bootstrapping holds promise as a general tool for designing data struc-
tures with some sort ofjoin operation together with a property secondary to the original data
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structure. Driscoll, Sleator, and Tarjan [8] use structural abstraction to effect persistence
in catenable lists; we employ it to effect heap order in catenable deques. Buchsbaum and
Tarjan [5] use structural abstraction and structural decomposition to produce confluently per-
sistent deques. Work on formalizing these methods and finding further applications seems
worthwhile.

The Hart-Sharir 12] open problem of postorder path compression without the rising
roots condition remains tantalizingly open. We note that our lower bound construction in 6.1
does not involve any order on the compressions themselves. Furthermore, the construction
produces an unbalanced initial tree. Thus, one can still formulate intermediate open problems
incorporating different notions of order as well as the absence or presence of rising roots and
tree balance that might be easier to solve than the Hart-Sharir problem.

Note added in proof. Since this article went to press, Haim, Kaplan, and Tarjan have
devised an algorithm to implement confluently persistent output-restricted deques with con-
stant worst-case time per operation, via a technique called recursive slowdown. This result
will appear in the 1995 Symposium on the Theory of Computing. They have extended this
result to the unrestricted case as well. Chris Okasaki has discovered a completely different
solution to the problem, with a constant time bound per operation that is amortized rather than
worst case. So far his result is limited to the output-restricted case.

Acknowledgments. Jeff Westbrook initially brought the problem of catenable heap-
ordered deques to our attention. Rao Kosaraju provided patient insight into the problem.
Milena Mihail and Peter Winkler rendered thoughtful criticism of an earlier draft of2 and 3.
Haim Kaplan corrected some minor problems with the formalism in 5. Greg Frederickson
pointed us to Booth and Westbrook [3].
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Abstract. Pattern matching is an important operation used in many applications such as functional programming,
rewriting, and rule-based expert systems. By preprocessing the patterns into a deterministic finite state automaton, we
can rapidly select the matching pattern(s) in a single scan of the relevant portions of the input term. This automaton
is typically based on left-to-right traversal of the patterns. By adapting the traversal order to suit the set of input
patterns, it is possible to considerably reduce the space and matching time requirements of the automaton. The design
of such adaptive automata is the focus of this paper. We first formalize the notion of an adaptive traversal. We
then present several strategies for synthesizing adaptive traversal orders aimed at reducing space and matching time
complexity. In the worst case, however, the space requirements can be exponential in the size of the patterns. We
show this by establishing an exponential lower bound on space that is independent of the traversal order used. We
then discuss an orthogonal approach to space minimization based on direct construction of optimal directed acyclic
graph (dag) automata. Finally, our work stresses the impact of typing in pattern matching. In particular, we show
that several important problems (e.g., lazy pattern matching in ML) are computationally difficult in the presence of
type disciplines, whereas they can be solved efficiently in the untyped setting.

Keywords, pattern matching, indexing, discrimination nets, functional programming, algorithms and complexity
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1. Introduction. Pattern matching is a fundamental operation in a number of important
applications such as functional and equational programming 11 ], [21 ], term rewriting, theorem
proving [7], and rule-based systems [6]. In most of these applications, patterns are partially
ordered by assigning priorities. For instance, in languages such as ML 10] and Haskell 13],
a pattern occurring earlier in the text has a higher priority over those patterns following it. In
HOPE [3] and in many rule-based systems, more specific patterns have higher priority over
less specific ones [6], 16], [20]. In theorem-proving applications, priorities are used to encode
efficient heuristics. Applications that do not impose priorities can be handled as a special case
by assigning equal priorities to all patterns.

The typical approach to fast pattern matching is to preprocess the patterns into a determin-
istic finite state automaton that can rapidly select the patterns that match the input term. The
main advantage of such a matching automaton is that all pattern matches can be identified in
a single scan (i.e., no backtracking) of portions of input terms relevant for matching purposes
and is done in time that is independent of the number of patterns. Existing automaton-based
approaches (as well as the approach we present in this paper) do not handle nonlinear patterns
(i.e., patterns with multiple occurrences of the same variable). This is because many applica-
tions use only linear patterns; and even for those applications that permit nonlinear patterns,
it has been observed that most failures are associated with symbol mismatches [4], which can
be detected without taking nonlinearity into account.

Figure 1 shows a matching automaton constructed on the basis of a left-to-right traversal
of patterns. Each state of the automaton corresponds to the prefix of the input term seen
in reaching that state and is annotated with the set of patterns that can possibly match. For
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FIG. 1. Automatafor f (x, a, b), f (b, a, a), f (x, a, y).

instance, state s4 corresponds to having inspected the prefix f(b, a, x), where x denotes the
subterm that has not yet been examined. This state is annotated with the pattern set 1, 2, 3}
since we cannot rule out a match for any of the three patterns on the basis of the prefix
f(b,a,x).

Pattern matching automata have been studied extensively for over a decade. Christian [4]
obtained dramatic speedups in a Knuth-Bendix completion system by using an automaton for
unprioritized patterns based on left-to-right traversal. Graf [9] describes a similar automaton
for unprioritized patterns. In functional programming, Augustsson [1], [2] and Wadler [26]
describe pattern matching techniques that are based on left-to-right traversal, but which also
deal with priorities.

The methods of Augustsson and Wadler are economical in terms of space usage, but may
reexamine symbols in the input term. In the worst case, these methods can degenerate to the
naive method oftesting each pattern separately against the input term. In contrast, the methods
of Christian [4], Graf [9], and Schnoebelen [24] avoid reexamining symbols, but achieve this
at the cost of increasing the space requirements. In fact, Graf and Schnoebelen show that the
upper bounds on the size of their automata are exponential.

One way to improve both space and matching time is to engineer a traversal order to
suit the set of patterns or the application domain. We refer to such traversals as adaptive
traversals and to automata based on such traversals as adaptive automata. Because traversal
orders are no longer fixed a priori, an adaptive automaton must specify the traversal order. For
instance, in the adaptive automaton shown in Fig. 1, each state is labeled with the next argument
position to be inspected from that state. Adaptive traversal has the following advantages over
afixed-order of traversal such as left-to-right:

1. The resulting automaton is usually smaller, e.g., the adaptive automaton in Fig. 1
has 8 states compared to 11 in the left-to-right automaton. The reduction factor can even
become exponential

2. Pattern matching requires lesser time with adaptive traversals than fixed-order traver-
sals. For example, the left-to-right automaton needs to inspect four symbols to announce a
match for pattern 1. The adaptive automaton inspects only a subset of these positions (three
of them) to announce the match. Examining unnecessary symbols is especially undesirable in
the context of lazy functional languages since it runs counter to the goals of lazy evaluation.

Unlike automata based on fixed-order traversals, relatively little is known about designing
automata based on adaptive traversals. There are a number of interesting questions that arise
in such a design. For instance, given a set of patterns, how do we choose a traversal order to
realize the advantages mentioned above? Is it possible to select a traversal order that improves
space and matching time over automata based on fixed-traversal orders? What are the lower
and upper bounds on space and matching time complexities of such automata? Finally, in the
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context of functional programming, using an arbitrary order of traversal for pattern matching
is inappropriate because it affects the termination properties of the program. Given this
constraint, is it possible to internally change the traversal order so that it does not affect the
termination properties and at the same time realize the advantages of adaptive traversal? We
answer all these questions in this paper. In addition, we also solve some of the problems that
have remained open even in the context of left-to-right traversals. Such problems include

1. tight bounds on space and matching time complexity,
2. impact of type discipline on the computational complexity of many problems that

arise in construction of matching automata,
3. direct construction of optimal automata that shares equivalent states.

1.1. Summary of results. In 2, we first formalize the concept of adaptive traversal and
its special case, fixed traversal orders. We then present a generic algorithm for building an
adaptive automaton that is parameterized with respect to the traversal order. Our generic
algorithm is used as a basis for the results presented in later sections. As mentioned before,
our algorithms assume that the patterns are linear, i.e., no variable in any pattern occurs more
than once. The automaton can still be used for nonlinear patterns, but on reaching a final state
we would have to check for consistency of the substitutions for the different occurrences of
the same variable.

In 3, we present several techniques to synthesize traversal orders that can improve space
and matching time:

1. We develop the important concept of a representative set which forms the basis of
several optimization techniques aimed at avoiding inspection of unnecessary symbols.

2. Next we present several powerful strategies for synthesizing traversal orders.
Through an intricate example, we show that they all can sometimes increase both space and
matching time.

3. We then show that a strategy that inspects index positions whenever possible does
not suffer from the above drawback. Specifically we show that inspecting index positions can
only improve the space and matching time of the automata. Huet and L6vy 14] established
the importance of index in the design of an optimal automaton (in the sense of not seeing any
unnecessary symbols) for strongly sequential patterns. Our results extend the applicability of
indices even for patterns that are not strongly sequential.

4. Finally, we study the synthesis of traversal orders that are appropriate for lazy func-
tional languages. In such languages, pattern matching is closely coupled with evaluation so
that the traversal order used for matching can affect the termination properties of the program.
Therefore, the programmer must be made aware of the traversal order T used for matching.
The question then is whether we can synthesize a traversal order that has the same (or bet-
ter) termination properties as T. In 3.5, we show how to synthesize such a traversal S(T)
that enables the programmer to assume T; an implementation can benefit from significant
improvements in space and time using the adaptive traversal S(T).

In 4, we discuss the computational aspects of the strategies presented in 3. Our work
clearly brings forth the impact of typing in pattern matching. We have shown that several
important problems in the context of pattern matching are unlikely to have efficient algorithms
in typed systems; we give polynomial-time algorithms for them in untyped systems. In
particular, we do the following:

1. We present a quadratic-time algorithm for computing representative sets in untyped
systems; we show that computing these sets is NP-complete for typed systems.

2. In 4.2 we focus on the important problem of index computation in prioritized sys-
tems. Laville [18] and Puel and Sufirez [23] have extended Huet and L6vy’s [14] index
computation algorithm to deal with priorities. However, all these algorithms require exponen-
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tial time in the worst case. In contrast, we show that indexes can be computed in polynomial
time in the case of untyped systems.

3. We also show that index computation in typed systems is co-NP-complete.
In 5, we examine the space and matching time complexity of the adaptive automata. We

show that the space requirements of the automata can be quite large by establishing the first
known tight exponential lower bounds on size.

In 6, we describe an orthogonal approach to space minimization based on directed
acyclic graph (dag) representation. By tightly characterizing the equivalent states of the
adaptive automata, we directly build their optimal dag representation. Since the unoptimized
automaton can be exponentially larger than the optimized one, a direct construction can use
polynomial space and time; a method that uses finite state automaton (FSA) minimization
techniques may require exponential time and space. As mentioned in [9], this important
problem of direct construction had remained open even for left-to-right traversals.

Finally, we conclude in 7 with a discussion of the various strategies presented in the
paper and how they can be combined to build efficient adaptive automata.

2. Preliminaries. In this section we develop the notations and concepts that will be used
in the rest of this paper. We also present a generic algorithm for construction of an adaptive
automaton. This generic algorithm forms the basis for the results presented in later sections.

We assume familiarity with the basic concept of a term. The symbols in a term are
drawn from a nonempty ranked alphabet ; and a countable set of variables R’. (The term
arity is sometimes used in the literature in place of rank.) We will use a, b, c, d, and f to
denote nonvariable symbols and x, y, and z (with or without subscripts and primes) to denote
variables. We use ’_’ to denote unnamed variables. Each occurrence of ’_’ denotes a distinct
variable. Let root(t) denote the symbol appearing at the root of a term t. In order to refer to
subterms of a term, we develop the following concept of a position.

DEFINITION 2.1 (position). A position is either
1. the empty string A that reaches the root ofthe term, or
2. p.i, where p is a position and an integer, which reaches the th argument of the

root ofthe subterm reached by p.
If p isa position then the subterm oft reached by p is denoted by t/p. We use t[p +-- s] to

denote the term obtained from by replacing t/p by s. The set ofvariable positions in a term is
known as thefringe of t. We illustrate these concepts using the term f(a(x), b(a(y), z)).
Here, t/A t, t/2 b(a(y), z), t/2.1 a(y), and t/2.2 z. The term t[2 +-- c]
f (a (x), c) is obtained by replacing the second argument of f by (the term) c. The fringe of
is {1.1, 2.1.1, 2.2}.

A substitution is a mapping from variables to terms. Given a substitution/, an instance

t/3 of is obtained by substituting/(x) for every variable x in t. If is an instance of u then
we say u < and call u a prefix of t. The inverse of < relation is denoted by >. For the term

f(a(x), b(y, z)) and the substitution/3 that maps x to b(x’, x"), y to c, and z to itself,
t f(a(b(x’, x")), b(c, z)).

We say that two terms and s unify, denoted " s, iff they possess a common instance.
u s denotes the least such instance in the ordering given by <. For example, the terms

f(a(x), y) and s f(x’, b(y’, z’)) possess common instances f(a(x"), b(y", z")),
f(a(c), b(y", z")), f(a(x"), b(a(y"), z")), etc. The least common instance t_3 s is the term

f (a(x"), b(y", z")).

1The terms occurrence and path are sometimes used in the literature to denote the same concept.
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In the rest of the paper, we use/2 to denote the given set of patterns. (Apattern is simply a
term.) All patterns are assumed to be linear, i.e., no variable in them appears more than once.
Given such a set and the priority relationship among the patterns, we formalize the notion of
pattern matching as follows:

DEFINITION 2.2 (pattern match). A pattern matches u iff <_ u, and no 1’ 12 with
priority greater than that of unifies with u. If there is any . that matches u then we say
that there is a pattern matchfor u.

Note that this definition differs from the traditional notion of matching in that it takes
priorities into account. The traditional notion only requires that the term u be an instance
of the pattern 1. Here, we also require that u not unify with a pattern of higher priority.
The intuition behind this requirement is that u actually denotes a prefix of the term that is
being inspected to identify a match. If it unifies with a pattern of higher priority, then we
may identify a match for this higher-priority pattern when we inspect some of the symbols
below this prefix. Since we cannot rule out a match for any higher-priority pattern without
inspecting the symbols below u, we cannot declare a match for I. Also note that, by definition
of a pattern match, when we do identify a match for u, we can announce a match for
itself.

To illustrate the concept of a pattern match, consider once again the set of patterns in
Fig. 1. Only the first pattern matches the term f (a, a, b). Note that no pattern matches the
term f (x, a, a) although it is an instance ofthe third pattern. This is because f (x, a, a) unifies
with the second pattern, which has a higher priority than the third one.

Given a term u, we define its match set , as the set of patterns that unify with u.
Observe that by definition of a pattern match, we can restrict ourselves to/2, if we are looking
for a match for any term with a prefix u. Furthermore, to identify a match, we can restrict
ourselves to inspection of only those fringe positions 5c, wherein at least one of the patterns
in ;, has a nonvariable. In this context, some of the standard traversal orders such as depth-
first and breadth-first traversals will also be modified to skip fringe positions that are not in
U,. For illustration of these concepts, consider L; {f (x, a, b), f (x, a, a), f (x, a, y)} and
u f(x’, y’, a). In this case, ;, {f(x, a, a), f(x, a, y)}. Note that the only variable
position in u where every pattern in , has a variable is position 1, and so 9c, {2}.

In our search for efficient pattern-matching algorithms, we will need the following concept
ofan index position, which is a fringe position that mustbe inspectedby any matching algorithm
to announce a match for a term. Formally, we have the following definition.

DEFINITION 2.3 (index). A fringe position p for a prefix u is said to be an index with
respect to a pattern ifffor every term > u such that matches t, /p is a nonvariable. It
is said to be an index ofu with respect to a set ofpatterns iff it is an index with respect to

every .
The notion of an index is closely related to the concept of sequentiality 15], 14]. One

simple example ofan index is a fringe position of u where every pattern in 12, has a nonvariable.
Observe that such a position must be inspected to determine if the given term is an instance
of any of the patterns in 12,.

Wenow classify patterns depending onhow they affect the complexity ofvarious problems
related to pattern matching. We first classify based on whether more than one pattern can match
any given term.

2The variables in u denote unexamined positions in t. We deliberately blur the distinction between a variable
and uninspected portions of a term. This is because, in linear terms, a variable simply stands for any arbitrary term or
unknown term. This correctly reflects our intuition that we have no knowledge of the term structure below a variable
in the prefix u.
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DEFINITION 2.4 (ambiguous and unambiguous patterns). A set ofpatterns . is said to be
ambiguous whenever there is a term such that more than one pattern matches it. Otherwise

is unambiguous.
Our next classification is based on type discipline. In typed systems, the set of allowable

input terms is constrained by a type discipline. From a pattern-matching perspective, this
constraint requires that arguments to a function symbol f be drawn from a specific set ofterms,
say, {T, F}. In this case, terms f(T, F), f(F, T), f(T, T), and f(F, F) are permissible (or
well typed) whereas f(2, T) is not. In untyped systems, there are no restrictions on the
arguments of functions. For instance, the terms f (2, F) and f (c, d) are valid input terms. (A
more rigorous treatment oftypes can be readily found in the literature, but is not developed here
since the results presented in this paper can be established based only on the simple distinction
given here.) The time and space complexity of many problems discussed in this paper will
vary widely based on whether the system is typed and also on whether it is ambiguous.

Next we define the notion of a traversal order. We call a traversal order top down if it visits
a node only after visiting its ancestors. Since we are interested only in identifying matches at
the root of the input term, we deal with only top-down traversals and do not concern ourselves
with bottom-up traversals such as those used in 12]. Any traversal order has associated with
it a characteristic function. This function specifies the position to be inspected after having
inspected a prefix u. For example, a left-to-right traversal has the following characteristic
function. Having visited a prefix u, this function chooses the leftmost position in U, as the
next position to visit. Note that if the prefix visited is simply a variable (i.e., no symbols have
been inspected yet), then all traversal orders will specify the root position as the next one to
inspect. We distinguish fixed and adaptive traversals using the following definition.

DEFINITION 2.5 (adaptive and fixed traversals). An adaptive traversal is a top-down
traversal wherein the position p E .u next visited is afunction ofthe prefix u and the set

In afixed traversal order, p is simply afunction of.T,.
By choosing the next position as a function of ;,, an adaptive traversal can adapt itself

to the given set of patterns. In contrast, a fixed-order traversal always makes a fixed choice
from the positions in f’,. For instance, a left-to-right traversal would always pick the leftmost
position in -,. A breadth-first traversal would pick the leftmost position among positions
of least length (i.e., the length of the integer string representing a position) from those in
’,. Having defined the notion of adaptive traversals, we now proceed to present a generic
algorithm for building adaptive automata.

2.1. Generic algorithm to build adaptive automata. Figure 2 shows our algorithm
BuiM for constructing an adaptive automaton. A state v of the automaton remembers the
prefix u inspected in reaching v from the start state. Suppose that p is the next position
inspected from v. Then there are transitions from v on each distinct symbol c that appears at p
for any E ;u. There will also be a transition from v on :/= which will be taken on inspecting
a symbol different from those on the other edges leaving v. The symbol - appearing at a

position p denotes the inspection of a symbol in the input that does not occur at p in any
pattern in ;,. This implies that if a prefix u has a - at a position p then every pattern that
could potentially match an instance of u must have a variable at or above p.

There is an important distinction between Build and previously known algorithms (such
as that of Christian [4] and Huet and L6vy 14]). Build is nondeterministic in that it does not

specify a selection function to specify the next position to visit. This nondeterminism enables
us to reason about automaton construction without any reference to the traversal order used.

Procedure Build is recursive, and the automaton is constructed by invoking Build(so, x)
where so is the start state of the automaton. Build takes two parameters: v, a state of the
automaton, and u, the prefix examined in reaching v. The invocation Build(v, u) constructs
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Procedure Bnild(v, ,)
1. Let A//denote patterns that match ,.
2. If A # and V , 91’ such that priority(l’) >_ priority(l) then
3. match[v] :-- J. /, State v announces a match for patterns in J/[ ,/

4. else

6.
7.
8.
9.
10.
11.
12.

p select (u)/, select is a function to choose the next position to inspect ,/

pos[v] p/, Next position to inspect is recorded in the pos field ,/

for each symbol for which 91 e u with root(l/p) c (for a nonvariable c) do
create a new node v,; and an edge from v to v. labeled c

Build(v., u[p +-- c(yl Yrank(c))])
If 91 e . with a variable at p or at an ancestor of p then

create a new node # and an edge from to # labeled #=
Build(v#, u[p +--#])

FIG. 2. Algorithmfor constructing adaptive automaton.

the subautomaton rooted at v. In line 2, the termination conditions are checked. By definition
of pattern match, we need to rule out possible matches with higher-priority patterns before
declaring a match for a lower-priority pattern. Since the match set/2, contains all patterns
that could possibly match the prefix u, we simply need to check that each pattern in the match
set is either already in A//or has a lower priority than some pattern in

If the termination conditions are not satisfied then the automaton construction is continued
in lines 5 through 12. At line 5, the next position p to be inspected is selected and this
information is recorded in the current state in line 6. Lines 7, 8, and 9 create transitions based
on each symbol that could appear at p for any pattern in ,. In line 9, Build is recursively
invoked with the prefix extended to include the symbols seen on the transitions created in line
8. If there is a pattern in , with a variable at or above p, then a transition on is created at
line 11 and Build is recursively invoked at line 12. The recursive calls initiated at lines 9 and
12 together will complete the construction of the subautomaton rooted at state v. Steps 10-12
will be skipped in case of typed systems if we have created transitions at Step 9 corresponding
to every symbol that can appear at the position p.

To illustrate the algorithm, consider the set of patterns shown in Fig. 3. Pattern 14 has a
lower priority than any of the other patterns. There is no relationship among the priorities of
ll, 12, and 13. The automaton construction begins with the invocation Build(so, x). Observe
that none of the patterns match the prefix x. Since the only fringe position in prefix x is A,
pos[so] is set as A. The state Sl is created at line 8 and the edge between so and Sl is labeled
by symbol f. Following this, a recursive call Bui ld (s 1, f (x, y, z)) is made at line 9. At line 2
of this recursive call, we once again find that no pattern matches f(x, y, z). Now assume that
select at line 5 returns 3. Note that all patterns have the same nonvariable symbol at position
3 and so there is only one iteration of the loop at line 7. This results in the invocation of
Build(s2, f(x, y, b)). Continuing this process, we obtain the automaton shown in Fig. 3. The
automaton has 25 states and each unlabeled state marked by s represents a subtree identical
to that rooted at the state labeled by 1.

Procedure Build as given is inefficient in that it computes the sets , and A// in each
recursive call. It also manipulates positions, which are strings of integers. The first source of
inefficiency can be overcome easily by computing the match sets incrementally. To overcome
the second source ofinefficiency, positions can be encoded as integers in the range 1,S], where
S is the sum of the sizes of all patterns. A similar but indirect technique is used in the context
of compilation of pattern matching for functional programming languages [2], [22], 19].
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2

ll f (-, a(b, b), b) ll 12 13
12 f (-, a(b, c, c), b) ",x /U
13 f (-, a(c ), b)
14 f (d (b, c), b)

1. States are labeled by the next position to be inspected
upon reaching that state.

2. All of the states marked with an actually denote
a subautomaton that is identical to the automaton rooted at the
state labeled with 1.

FIa. 3. Adaptive automaton constructed by Build.

3. Synthesizing traversal orders. Observe that Build does not specify the selection
function. In this section we present several techniques that can be used to construct the selection
functions. These techniques can be either used independently or combined as appropriate.

3.1. Measuring size and matching time. The primary objective of a selection function
is to reduce the automaton size and/or the matching time. Therefore it is important to know
how we measure these quantities. A natural measure of the size of an automaton is the number
of states in it. Unfortunately, minimization of total number of states is NP-complete, even for
the simple case of patterns with no variables [5]. This makes it impossible to develop efficient
algorithms that build an automaton of smallest size, unless P NP. Even so, we would still
like to show that certain algorithms are always better than others for reducing the size. The
usual way to do this is to choose an alternative measure of size that is closely related to the
original size measure yet does not have the drawback ofNP-completeness of its minimization.
A natural choice in this case is the breadth of the automaton, which is related to the total
number of states by at most a linear factor. (In practice, however, the factor is typically much
smaller: note that if every node in the automaton has at least two children, then the breadth is
at least half as much as the number of states.)

As for matching time, it is easy to define the time to match a given term using a given
automaton: it is simply the length of the path in the automaton from the root to the final state
that accepts the given term. However, what we would like is a time measure that does not
refer to input terms. We could associate an average matching time with an automaton, but
this would require information that is not easily obtained: the relative frequencies with which
each of the paths in the automaton are taken. Therefore, instead of defining a time measure
that totally orders the automata for a specific distribution of input terms, we use the following
measure that partially orders them independently of the distribution. Let MT (s, A) denote
the length of the path in (automaton) A from the start state to the accepting state of the ground
term s. (A ground term is a term that contains no variables.) If s is not accepted by A then
MT (s, A) is undefined.

DEFINITION 3.1. Let A and A’ be two matching automatafor , and be any term. We
say that A "<t A’, meaning that A is more efficient than A’ for matching instances oft, ifffor
every ground instance s oft, MT(s, A) < MT(s, A’).

3It is possible to assume that all terms over E are equally likely and derive a matching time on this basis, but
such assumptions are seldom justified or useful in practice.
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A’ where x is a variable. Note that A -< A’ means thatA +/- A’ is a shorthand for A "<x
A is more efficient than A’ for matching every ground term.

When we need to get an idea of the work involved in matching various classes of patterns,
it is useful to associate a quantitative measure of matching time with automata. We do this
by first identifying the best possible automaton for the given set of patterns (as given by the
partial order _) and computing the average root-to-leaf path length of this automaton. When
multiple minimal automata with different average root-to-leaf path lengths are possible, we
will refrain from giving a quantitative measure.

3.2. Representative sets. In this section, we introduce the important concept of a rep-
resentative set. This notion makes use of the priorities among the patterns to eliminate those
patterns from the match set for which no matches can be found. This happens for a prefix u
whenever a match for a lower priority pattern implies a match for a higher priority pattern.
For instance, consider the patterns in Fig. 3 and the prefix u f(_, a(b, b), _). Although
/u {/1,/4}, observe that a match for 14 can be declared only if the third argument of f is b.
In such a case we declare a match for the higher-priority pattern 11. Inspecting any position
only on behalf of a pattern such as 14 is wasteful, e.g., inspection of position for u is useless
since it is irrelevant for declaring a match for 11. We can avoid inspecting such positions by
considering the representative set instead of a match set for a prefix u. A representative set is
defined formally as follows.

DEFINITION 3.2. A representative set u ofa prefix u with respect to a set ofpatterns
is a minimal subset S such that thefollowing condition holdsfor every in :
(1) Vt > u (1 matches t) = l’ $ [(/’ matches t)/ (priority(l’) > priority(l))].

Using the definition of pattern match and through simplification, we can derive the fol-
lowing simpler condition equivalent to (1). We use the notation P (1) to denote the priority of
pattern I.

(2) ’v’t > (1 u u) :tl’ $ [(P(/’) > P(1)) A (l’)t)] v [(P(/’) P(1)) A (l’ < t)].

This condition captures our intuition about that for any instance of u, either does
not match the instance (first part of the disjunction) or the match can be "covered" by an-
other pattern in $ (second part). We refer to the property given by this condition as a cover
property, and any set $ satisfying the property as a cover for/2. A representative set is sim-
ply a minimal cover. We make the following observation about the transitivity of the cover
property.

Observation 1. If $1 is a cover for and ,92 is a cover for $1 then $2 is a cover for .
Note that if the set/2 contains multiple patterns with equal priority, then there may be a

choice as to which ofthese patterns are retained in a representative set. Thus the definition does
not always yield a unique representative set. Hence future references to u or representative
set refer to any one set that satisfies the above definition.

Laville’s notion of accessible patterns 18] is similar to our notion of representative sets,
but is not a minimal set. Our contributions h-ere are that the minimality enables us to develop
more efficient algorithms and that we provide an algorithm for computing this set. The
definition of accessible patterns in 18] does not yield such an algorithm and so Laville uses
the notion ofcompatible patterns (which corresponds to our match set ,) in place ofaccessible
patterns.

4We can also use u in place of in all the optimizations mentioned in this paper, but doing so may make the
optimizations less effective. For instance, our algorithm for directly building optimal dag automata in 6 will fail to

identify some equivalent states ifu is used in place of 12u.
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In the following section, we show how to design selection strategies using representative
sets. The algorithmic aspects of computing the representative sets will be discussed in 4.

3.3. Greedy strategies. In this section we present many strategies for implementing the
function select at a node v of the automaton. All these strategies select the next position
based on local information such as the prefix and the representative set associated with v or
its children. Let p denote the next position to be selected, z

1. Select a p such that the number of distinct nonvariables at p, taken over all patterns
in L;,, is minimized. This strategy attempts to minimize the size by local minimization of
breadth of the automata. It does not attempt to reduce matching time.

2. Select a p such that the number of distinct nonvariables at p taken over all patterns
in/2, is maximized. The rationale here is that by maximizing the breadth, a greater degree
of discrimination is achieved. If we can quickly distinguish among the patterns, then the
(potentially) exponential blow-up can be contained. Furthermore, once we distinguish one
pattern from the others, we no longer inspect unnecessary symbols and thus matching time
can also be improved.

3. Select a p such that the number of patterns having nonvariables at p is maximized.
The motivation for this strategy is that only patterns with variables at p are duplicated in the
representative sets of the descendents of the current state v of the automaton. By minimizing
the number of duplicated patterns, we can contain the blow-up. Furthermore, this choice
minimizes the probability of inspecting an unnecessary position: it is a necessary position for
the most number of patterns.

4. Let 121 /r be the representative sets of the children of v. Select a p such
that iL11/i1 is minimized. Note that the main reason for exponential blow-up is that many
patterns get duplicated among the representative sets of the children of v. This strategy locally
minimizes such duplication (since Eir__l 1i1 is given by the size of , plus the number of
patterns that are duplicated among the representative sets ofthe children states.) For improving
time, this strategy again locally minimizes the number of patterns for which an unnecessary
symbol is examined at each of the children of v.

All of the above greedy strategies suffer from the following drawback.
THEOREM 3.3. For each ofthe above strategies there existpattern setsfor which automata

ofsmaller size can be obtained by making a choice differentfrom that given by the strategy.
Proof It is quite straightforward to give an example for strategy and we omit it here.

For strategies 2, 3, and 4 consider the following set of patterns with equal priorities:

f (a, a, _) f (b, a, _) f (c a),

f(_,b,b,b) f(_,c,c,c) f(_,d,d,d).

After inspecting the root, all these strategies will choose one of positions 2, 3, or 4. It can
be shown (by enumerating all possible matching automata for these patterns) that the smallest
breadth and number of states obtainable by this choice are 20 and 49, respectively. These
figures can be reduced to 15 and 45 respectively by choosing position 1.

The construction of this example is quite intricate. The key idea is to make each of
the pattern sets {1, 4, 5, 6}, {2, 4, 5, 6}, and {3, 4, 5, 6} strongly sequential, whereas any set
containing two of the first three patterns and one of the last three is not strongly sequential.
Such a choice ensures that if a traversal order first inspects position after the root position,
then every subautomata below this state will match a set of strongly sequential patterns. Since
optimal automata can be constructed for such patterns, these subautomata can be of a small

In strongly sequential systems, any prefix u with I;ul > must have an index.
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FIG. 4. Illustration ofsize and matching time reduction due to interchange step.

size. In contrast, any other choice of position to inspect will result in match sets that are not
strongly sequential, and hence lead to subautomata that are larger.

The contrived nature of the example shows that although it is possible for these strategies
to fail, such failures may be rare. Even when they fail, as in the above example, they still
appear to be significantly better than fixed-order traversals. For instance, right-to-left traversal
constructs an automaton with breadth 30 and number of states 60. Left-to-right traversal
reduces these figures to 24 and 58, which is still more than that obtained by using strategies
2, 3, and 4.

Conceptually, the problems outlined above, with regard to choice of next inspected posi-
tion, arise in the context of minimizing matching time as well. However, since the definition
of

_
does not permit us to compare arbitrary automata, such a result cannot be established

without making assumptions about the distribution of input terms.

3.4. Selecting indices. We now propose another important local strategy that does not
suffer from the drawbacks of the greedy strategies discussed in the previous section. The key
idea is to inspect the index positions in u whenever they exist. We show that this strategy yields
automata of smaller (or same) size and superior (or same) matching time than that obtainable
by any other choice. The importance of an index was known only in the context of strongly
sequential systems. Our result demonstrates its applicability to patterns that are not strongly
sequential.

Consider the two automata shown in Fig. 4. The second automaton is obtained from
the first by interchanging the order in which positions and 2 are visited. Observe that by
inspecting the index position 2 before the nonindex position 1, the second automaton improves
the space requirements. It also requires less time to identify a match since each path in the
second automaton examines only a subset of the positions examined in the corresponding
path(s) in the first automaton. The following theorem formalizes the interchange operation
and outlines its benefits.

THEOREM 3.4. Let v be a state in an automaton B, the prefix corresponding to v be u,
and pos[v] p. Ifq is an index of u such that pos[w] q for every child w of v then we
can obtain an automaton B’ from B by interchanging the order of inspection of p and q in
such a way that B’I < BI and B’ +/- B.

Proof First we describe the construction of B’ from B. Let A be the subautomaton of B
that is rooted at v and u be the prefix that has been inspected in reaching v. The construction
of B’ takes place in two steps.

6One must not, however, conclude our choice of _-Z is inappropriate for comparing matching times. As mentioned
before, it is essentially the only way to compare matching time when we have no knowledge of the distribution of
input terms.
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FIG. 5. Automaton before and after an interchange step.

Step 1: Interchange the order of inspection of positions p and q, without changing any
other part of the automaton, as shown in Fig. 5. In this figure a am are all
the symbols that appear at q in any pattern in ,. Similarly, bl bk are all the
symbols that appear at p for any pattern in ,. Note bk is - if some pattern in , has
a variable at or above q. It is also possible for am to be :. Also note that some of the
states rij may not be present because no pattern in , has a bi at p and ai at q. Such
rij ’S denote empty subautomata. Note that the prefix inspected at rij is the same in the
automaton before and after the interchange. Hence the structure of the subautomata
rooted at an rij are also identical before and after the interchange. Consequently, it
is possible to perform the above interchange in the order of inspection of p and q.

Step 2: Replace each s that satisfies the following condition by ril"

’l prejx(,,.;) /p is a variable,

where the notation prefix(s) is used to denote the prefix inspected on reaching the
that satisfy the above condition can existof the automaton. States such as sstate s

whenever p is not an index. When this condition is satisfied, all the subautomata
will be identical and the position p needrooted at rli, r2i rmi that are below s

not be inspected at all. Therefore, in the second step, we replace such s by rai.
This completes the construction of B’. We now show that B’I _<. BI. This is easy to see.

Step does not change the breadth of the automaton (which is our measure of size) and Step
2 can only reduce the breadth.

To show that B’ B, we proceed as follows. The construction above (Steps and 2)
induces a mapping 2 from the final states in B to final states in B’ (which are a subset of final
states in B). For a final state Vl in B, its image v’ 2"(Vl) in B’ is defined as follows:

Case 1: va is a descendent of an rij such that the state s was eliminated (by replacing it
with ril) in Step 2 of the construction. By remarks made in Step 2, rij are identical
for 1 < j _< m. This identity defines a natural correspondence between final states
in an rij and final states in ria. We take 2-(Vl) in this case to be the corresponding
state within ril.

Case 2" Otherwise (i.e., not Case 1), Vl appears unchanged in B’ and so we take
’(U1) U1.

Now consider any term s for which a match is announced by B and let vl be the final state
reached. It is easy to see that the state 2-(v) will be reached when B’ is used for matching
s. Moreover, the positions examined on the path to 2-(Vl) is a subset of those inspected in
reaching 1) By definition of -<, this implies that B’ -Z,_ B.
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Observe that the above theorem can be used only if all children of v inspect the same
index position q. However, even if some children of v inspect position q’ other than q, it is
still possible to globally rearrange the automaton to inspect q at v and thus achieve the benefits
of inspecting the index position early. This is because q is an index position and hence must
be inspected before declaring a match. Therefore it will appear in each path from v to any
accepting state in the subautomaton rooted at v.

THEOREM 3.5. Let v be a state in an automaton B, u be the prefix corresponding to v,
and pos[v] p. If q is an index of u then we can obtain another matching automaton B’
from B by replacing its subautomaton A rooted at v by another (sub)automaton A’ such that
[B’[ < [B[ and B’ +/- B.

Proof We construct B’ by repeating the interchange operation. The proof that B’ can be
so obtained is by straightforward induction on the height of the subautomaton A. q

Although the theorem only asserts that size and matching time of A’ is no larger than
that of A, Fig. 4 shows that they can be strictly smaller for A’. We remark that by repeating
the interchange steps as above, size can sometimes be reduced by as much as an exponential
factor and time by O (n), where n is the number of patterns.

We point out that the interchange operations mentioned above merely constitute a proof
technique; they play no part at all in the actual construction of the automaton. In the actual
construction, the same effect is obtained by simply modifying the selection function to inspect
indices whenever possible.

3.5. Adaptive traversal orders for lazy functional languages. In lazy functional lan-
guages, evaluation (of input terms) is closely coupled with pattern matching. Specifically,
a subterm of the input term is evaluated only when its root symbol needs to be inspected
by the pattern matcher. If there are subterms whose evaluation does not terminate, then an
evaluator that uses an algorithm that identifies matches without inspection of such subterms
can terminate, whereas use of algorithms that do inspect such subterms will lead to non-
termination. Since the set of positions inspected to identify a match is dependent on the
traversal order used, the termination properties also depend upon the traversal order. In or-
der to make sure that the program terminates on input terms of interest to the programmer,
the programmer (sometimes) has to reason about the traversal order used. In particular, the
programmer can code his/her program in such a way that (for terms of interest to him/her)
the pattern matcher will inspect only those subterms whose evaluation will terminate. This
implies that the programmer must be made aware of the traversal order used even before the
program is writtenmthereby ruling out synthesis of arbitrary traversal orders at compile time.
Given this constraint on preserving termination properties, a natural question is whether the
traversal order can be "internally changed" by the compiler in a manner that is transparent
to the programmer. Specifically, given a traversal order T that is assumed by the program-
mer, our goal is to synthesize a new traversal order S(T) such that any evaluation algorithm
that terminates with T will also do so with S(T). We devise such a traversal order in this
section.

3.5.1. Preliminaries. We first tighten our original definition ofa traversal so as to capture
the important aspect of determinacy in the order in which various positions are visited.

Condition 1 (monotonicity). Suppose that a traversal order T selects p as the next position
to be visited for a prefix u. T is said to be monotonic iff for any prefix u’ > u, the following
condition holds: If u’/p is a variable and /p is a nonvariable in some E ,, then the traversal
once again selects p.

Monotonic traversals include most known traversal orders such as depth-first and breadth-
first, as well as variations of these without left-to-right bias. An example of a traversal that is
not monotonic is given by the following select function:
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(3) select(f (x, y, Z)) 1,

(4) select(f (x, a, z)) 3.

We also require that the selection function make its decision only based on portions of
the prefix that are "relevant," as given below.

Condition 2. Let U and u2 be two prefixes with identical representative sets. Suppose
that the prefixes differ only in subterms appearing at positions where every pattern in this
representative set has a variable. Then the selection function must choose the same position
to inspect for u and u2.

Clearly, the symbols appearing at such positions are irrelevant for determining a matchn
and consequently irrelevant for selecting which positions to inspect next. Therefore we require
that the selection function choose the same position to inspect for U and u2 in such a case.
Henceforth, we only consider selection functions that satisfy the above two conditions.

Given a monotonic traversal T, we define S(T) as follows.
DEFINITION 3.6. S(T) is any traversal order characterized by the following selection

functionfor any prefix u:
1. lfu has indices then arbitrarily choose one ofthem.
2. Otherwise, choose the position that would be selected by T.

3.5.2. Size and matching time improvement using S(T). Let B0 be a matching au-
tomaton that uses traversal order T. We will now show that any automaton B’ using S(T) can
be constructed from B0 through the interchange operations of Theorem 3.4 and 3.5. It then
follows from Theorem 3.5 that S(T) improves space and matching time requirements over
an automaton using T. Also note that (as established in the proof of Theorem 3.4) after the
interchange step, each path in the new automaton examines a subset of the positions examined
in the corresponding path in the old automaton. Therefore, a lazy evaluation algorithm based
on the new automaton will terminate in every case when the algorithm terminated with the old
automaton.

For the proof that the interchange operations lead to an automaton using S(T), we need
to go back to the construction in Fig. 5. Recall that v is a state in B corresponding to a prefix
u with pos[v] p, and for every child w of v, pos[w] is an index position q. Let B’ be
the automaton obtained by interchanging the order of inspection of p and q. To relate the
traversal orders used in B and B’, we define the following correspondence, mapping C from
each state v’ of B’ that inspects a nonindex position to a set of states in B.

Case’O: v’ v. Since v inspects an index in B’, C(v) need not be defined.
Case 1: either v’ is not a descendent of v, or v’ is a descendent of a state rij such that

the state s was not eliminated in Step 2. It is clear that in this case, the state appears
unchanged in B and so C(v’) {v’}.

Case 2" v’ s for some such that s was not eliminated in Step 2. Then C(v’) {v}.
Case 3" v’ is a descendent of an ril such that s was eliminated by Step 2 of the con-

struction. Since ril rim are identical in this case, there is a natural one-to-one
correspondence between states in rij and those in ril. i(v’) in this case will be the
set of all the states in ril rim that correspond to v’ in this manner.

We make the following observations about the mapping C.
Observation 3.7. For every v’ in B’ that examines a nonindex position

gs C(v’) pos[v’] pos[s].

Although this observation shows that the positions inspected in corresponding states are
identical, it does not imply anything about the traversal orders used, since no assertion is made
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about the prefixes inspected at these states. To establish a relationship between the selection
functions used in B and B’, we show the following result.

LEMMA 3.8. Let B’ be an automaton obtained by performing one interchange step on
B. Let v’ be any state in B’ that examines a nonindex position. Also let sel be the selection

function used in B in any state that does not choose an index to inspect next, i.e., for any state
s in B with pos[s] not an index ofprefix(s), sel(prefix(s)) pos[s]. Then

pos[v’] sel (prefix(v’)).

Proof The proof is by analysis of each of the cases defining C. In Case 1, the prefix
inspected at v’ is identical to that inspected at the (only) state s in C(v’). Thus pos[v’]
pos[s] sel(prefix(s)) sel (prefix(v’) ). In Case 2, it is easy to see that for the only element
v in C(v’), prefix(v’) prefix(v)[q +- ai(xl Xrank(ai))] for some symbol ai. Also note
that prefix(v’)/p is a variable since p has not been inspected in reaching v’. In addition, it is
not possible for every pattern in prejxv’ to have a variable at or above p in such a case,
the state v’ would have been eliminated by Step 2 of our construction. These facts, together
with monotonicity, imply that p sel(prefix(v’)) sel(prefix(v)) pos[v] pos[v’]. In
Case 3, let s be any state in C(v’). It is easy to see (by Step 2 of construction) that prefix(s)
is identical to prefix(v’) in all positions except p. Moreover, by criteria for applying Step
2 of construction of B’, every pattern prejxv’ has a variable at or above p. Therefore
the symbol at p is irrelevant for pattern matching. By Condition 2 on selection function,
sel(prefix(v’)) must be the same as sel(prefix(s)) pos[s] pos[v’].

We now extend Lemma 3.8 so it holds for arbitrary number of interchange steps between
B and BI.

LEMMA 3.9. Let B be an automaton obtained by performing zero or more interchange
steps on Bo. Let v’ be any state in B that examines a nonindex position. Also let sel be the
selectionfunction used in Bo in any state that does not choose an index to inspect next, i.e., for
any state vo in Bo with pos[vo] not an index ofprefix(vo), sel(prefix(vo)) pos[vo]. Then

pos[v’] sel (prefix(v’)).

Proof The proof is by simple induction on the number of interchange steps used to obtain
B’ from B0.

LEMMA 3.10. Let T be a monotonic traversal order. Any automaton using S(T) can be
obtained by performing the interchange operations on an automaton that uses T.

Proof Let B0 be an automaton that uses traversal order T. Use the construction outlined
in Lemmas 3.8 and 3.9 repeatedly on the automaton B0 to obtain another automaton B’ that
examines indices as early as possible. In this automaton B’, if a state v’ does not inspect an
index position then it inspects the position specified by selection function used in B0, i.e., a
position given by the traversal order T (see proof ofLemma 3.9). By Definition 3.6, this means
that B’ uses S(T), so we need only show that the above construction can be used to obtain
an automaton for any traversal order that follows Definition 3.6. Note that S(T) is uniquely
determined by T, except for the order in which index positions are inspected. Clearly, all
possible permutations ofsuch positions can be obtained using the interchange operation. Thus,
any automaton that follows Definition 3.6 can be obtained through interchange operations
from B0.

THEOREM 3.11. Let T be a monotonic traversal. Size and matching time can never
become worse ifS(T) is used in place ofT. Moreover, each path in the automaton using S(T)
examines a subset ofthe positions examined on the corresponding path in T.

Proof. Since the interchange operations can only improve space and matching time, the
first part of the theorem is immediate. For the second part, note that, by construction of the
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interchange operation, the positions inspected on a root-to-leaf path in the automaton after the
interchange are a subset of those positions inspected before the interchange. E3

We remark that the subset property ensures that any evaluation algorithm that terminates
with traversal order T will terminate if S(T) is used in place of T.

4. Computational aspects. In order to implement the selection function described in the
previous section we must develop an algorithm to compute the representative set. Similarly
we must have a method to identify indices of a prefix to incorporate space and matching time
optimizations. We discuss the algorithmic aspects of these problems in the following section.

4.1. Computing representative sets. We now present an efficient procedure for com-
puting representative sets in untyped systems.

Procedure computeRepSet(u,
1. ’ := ,
2. While 311, 12 E ’ [(/1 -f:/2) A (llLJU >_ /2) A (priority(12) >_ priority(ll))] do
3. delete 11 from

THEOREM 4.1. Procedure computeRep Set computes the representative set ofu in 0 (n S)
time for untyped systems where n is the number ofpatterns in , and S the sum ofsizes of
these patterns.

Proof The time complexity result can be readily established, so we focus only on cor-
rectness. We first establish that ’ is a cover by inducting on the number of times the loop
at lines 2-3 is executed. In the base case ’ , is obviously a cover. For the induction
step, let/1 and 2 denote the values of Y before and after the deletion of 1. By induction
hypothesis and transitivity of the cover property, we need only show that 2 is a cover for
Given the condition at line 2 of the algorithm, it is easy to see that the cover condition given
in (2) holds with 1, 1’ 12,/ --/1, and $ --/2.

We now prove by contradiction that the set ’ returned by computeRepSet is a minimal
cover. Assume that it is not, so there must be an E ’ that can be deleted without affecting the
cover property. This assumption means that for every > 1uu, the body of condition (2) holds
with l’ 1. Now consider the term obtained by instantiating all variables in u u by . By
construction of t, if any pattern l’ unifies with then it must be that >_ l’, and 1uu > l’. Thus,
the body ofcondition (2) implies that 3l’ ’ [(priority(l’) > priority(l))/ (l’ </uu)]. This
being the condition tested at line 2 of the algorithm, such an would not have been present in
’. Hence, we obtain the necessary contradiction.

The proof of minimality hinges on the ability to obtain a term by instantiating variables
with. This is not always possible in a typed system since the term obtained by instantiating in
this manner may violate the type discipline. Therefore, in typed systems, the above procedure
computes a cover that is not necessarily minimal. In fact the following theorem shows that
we are unlikely to have efficient procedures for computing a minimal cover (i.e., ,) in typed
systems.

THEO]EM 4.2. Computing , is NP-completefor typed systems.
Proof The problem of computing ,, when posed as a decision problem, takes the

form "Does ., ?" By definition of the representative set, this problem is equivalent to
determining if a term (subject to the type discipline) exists such that the following condition
holds"

(t > u)/ (t > 1)/ (’1’ (priority(l’) > priority(1))
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It is easy to see that this problem is in NP since we need only guess a term and check that
it conforms to the type discipline and that it is an instance of u and but does not unify with
any l’ of higher priority. These things can clearly be accomplished in polynomial time. To
show that the problem is NP-complete, we will reduce the satisfiability problem (SAT [8]) to
identifying such a t.

Let q) (/91 /k /k (/9 be an instance of a satisfiability problem where q9 is a disjunct of
literals ofthe form z or --’z, z 6 {z Zm }. We transform this into an instance ofdetermining
whether a pattern belongs to/2,. Consider. a (function) symbol f, taking m / 1 arguments
and constrained by a type discipline such that each of these arguments must be either a or b.
Assume that f is defined using the following n / patterns ln+l with textual order
priority, i.e., priority(li) > priority(li+l) for < _< n./n+l is of the form f(a, yx Ym).
For < < n, li f (Yo, Sl Sm), where s) for < j _< rn is given by

(5) sj a, if zi appears in

(6) sj b, if "Zi appears in (/9i,

(7) sj otherwise.

Now consider the problem of checking if there is an instance of u f(xo Xm) that
does not unify with any of the first n patterns. (This will determine if the (n + 1)th pattern
belongs to the representative set for the prefix f(xo Xm).) Suppose that there is such an
instance ucr. Consider the following truth assignment 7- derived from t"

(8) zj false, if cr (x.i) a,

(9) z.i true, otherwise, i.e., cr (x.i) b or cr (xj)

Since ucr does not unify with li for < < n, we know that there exists some s( such
that either sj a 7/= r (xj b, or s! b =/= r (xj a In the former case, zj appears in
(by (5)) and z.i is set to true (by (9)) and hence (Di is satisfied. In the latter case, -"z.i appears
in q)i (by (6)) and zj is set to false (by (8)); hence qgi is once again satisfied. Since the above
argument holds for < _< n, we have constructed a solution for the SAT.

Now we show that whenever the input to the SAT problem is satisfiable, /n+l 6

Suppose that T is a truth assignment that satisfies 99. Consider the following substitution
such that cr (x0) a and for other xj, < j <_ m, cr is given by

(10) cr(Xj) b, if zj true in T,
(1 1) cr (x.i) a, otherwise.

Since 7- satisfies q?i for <_ < n, it must be true that either there is a zj in (/9 that is set to
true by T, or there is a "z,i in (/9 such that z.i is set tofalse by T. In the former case, it is easy to
see that sj a (by (5)) and cr(xj) b by (10) and hence ua does not unify with li. In the
latter case, s( b and a (xj) a and so once again does not unify with li. Moreover, since

a (x0) a, >_ In+l, we can answer the question of whether ln+ /2, affirmatively.

4.2. Index computation. Recall that an index for a prefix u is a position on its fringe
that must be inspected to announce a match for any pattern in/2, (or ,). In the absence of
priorities, the indices of are exactly those fringe positions wherein has a nonvariable. With
priorities, however, we may have to inspect positions wherein has a variable in order to rule
out a match for higher priority patterns. To identify these variable positions (that are indices)
Laville [17] proposed an indirect method. In this method the prioritized patterns are first
transformed into an equivalent set of unprioritized patterns, and then indices are identified
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using this set. Specifically, for each pattern l, the transformation generates a set .M of
its instances (called minimally extendedpatterns) that are not instances of any higher-priority
pattern. For typed systems, only those instances that observe the type discipline are generated.
The transformed system isc AA. Now the indices with respect to the prioritized patterns
are identical to those with respect to the unprioritized setcAA.

Puel and Suhrez [23] developed a compact representation for the sets AA based on the
notion of constrained terms. A constrained term is of the form {tlq)}, where is a term and
q9 is a constraint obtained by combining atomic constraints of the form s s2 using con-
junction and disjunction. (Puel and Su/rez use the symbol < > in place of 7, and refer to
it as the incompatibility relation.) The semantics of constrained terms can be understood by
making a term with variables denote the set Z(t) of its instances. Then the constrained term
{tlqg} denotes the subset of Z(t) that satisfies the constraint p. For example, terms that sat-
isfy the atomic constraint Sl s2 are those in the set Z(Sl) Z(s2). A constraint 99 v 7z
is satisfied by all (and only) terms that satisfy either 0 or 7z. Similarly, the constraint
99/x p is satisfied by all (and only) terms that satisfy o as well as 7z. (We assume that a collection
ofatomic formulas used to construct a constraint does not share variables.7) We will use several
methods to simplify constrained terms. These methods are quite intuitive and their correctness
readily follows from the above semantics. (For a more formal treatment of constrained terms,
see [23].)

Using constrained terms the set A/[ can be represented compactly as

{/1(/ # /1) /k... /k (1 # /k)},

where 11 lk are all the patterns with priority greater than l. Since it is not apparent how
indices can be computed when constraints are of this form, Puel and Su/rez first transform
this constrained term so that all the constraints are on variables in 1. This yields a formula
in conjunctive normal form (CNF), which is then converted to an equivalent constraint in
disjunctive normal form (DNF). In the DNF form, indices can be easily picked: a variable x
is an index for a pattern if a constraint on x appears in every conjunction in the DNF. The
above conversion of the constraint on a pattern from CNF to DNF is very expensive and can
take 0(111n) time in the worst case. Therefore Puel and Su/rez’s algorithm, which is based
on such a conversion, has exponential time complexity for both typed and untyped systems.
Laville’s algorithm is also exponential since the size of the set of minimally extended patterns
can be exponential in the size of the original patterns. In contrast, we now present the first
polynomial-time algorithm for untyped systems that operates directly on the original patterns.

4.3. Algorithm for index computation in untyped systems. The index for a prefix is
computed in two steps. First we compute the set of indices of the prefix with respect to each of
the constrained patterns in , individually. The intersection of the sets thus computed yields
the indices of the prefix with respect to ,. We compute the indices of a prefix u with respect
to to a single constrained pattern as follows"

Let l, 12 l/ be the patterns in , that have priority over and also unify with 1. The
following two steps specify the indices of u with respect to l"

1. Each variable position p in u such that I/p is a nonvariable.
2. Each variable position p in u such that lip is a variable and p is the only position

to be instantiated in u u to determine (or rule out) a match for some higher-priority pattern
lj. More formally, there is a term s such that (1 u)[p -- s] lj.

7This is to prevent having constraints such as x =/: a(y) A y b (which shares a variable y between two
constraints) that will complicate the development of the materials in the rest of the section.
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We now illustrate how to use the above two steps on the following patterns (with textual
order priority) and the prefix u f (x, y, z).

ll f(a, b, c),

12 f (a, _),

13 f (_, c).

Observe that x, y, and z are all indices of 11 by Step 1. The only index for 12 is x by Step
1, since Step 2 does not yield any additional indices. This is because 12 II u f (a, y, z),
and neither y nor z is the only variable whose instantiation can eliminate the match for 11.
Hence they do not satisfy the conditions in rule 2. For 13, z is an index by Step 1. In Step 2,
13 t u f (x, y, c), and comparing it with the higher priority pattern 12, we find that x is the
only variable that needs to be instantiated to rule out a match with 12. Therefore x is an index
by Step 2. The intersection of all these positions is x which is therefore an index for u. Note
that this method takes O (n S) time to compute all indices.

We remark that a similar algorithm was suggested by Laville as a heuristic for fast index
computation. However, the question of the power (or completeness) of the heuristic is not
addressed at all. In contrast we show the following theorem.

THEOREM 4.3. The algorithm for computing indices in untyped systems is sound and
complete.

Proof The soundness of Step is obvious. For the soundness of Step 2, note that
(l u u)[p -- s] lj, and also that (by definition of a pattern match) > (1 u u) and does
not unify with/.i. From these facts it follows that t/p does not unify with s, which means that
t/p is a nonvariable.

For completeness, we need to show that if a position p in u is not selected by Steps or 2
then it is not an index of 6 ,. This is accomplished by giving a term such that matches
t, yet t/p is a variable. The term is obtained by instantiating all the variables in u, except
the variable at p, by the symbol 7. Let 11 lk be all the patterns in/2, with priority higher
than that of I. We now show that matches t. Since > l, we need only show that does
not unify with any of lk. We prove this by contradiction. Assume that unifies with

/.i. Since is not present in any pattern, the only way can unify with lj is if lj has variables
at all the fringe positions of u except possibly p. But 1.i/p cannot be a variable as 12,
(otherwise (1 u) >_ /.i = ’ , by the condition on line 2 of algorithm computeRepSet).
Therefore 1.i/p must be a nonvariable. Now note that lj has a variable in all fringe positions
of u except p, thereby satisfying the requirement in Step 2. This means that p would have
been chosen as an index by Step 2 of the above algorithm, but it is not. Hence, we obtain the
necessary contradiction. [3

4.4. Index computation in typed systems. Unfortunately, computing indices for typed
systems is difficult. Although the method we developed for untyped systems is sound, it is
not complete for typed systems. In fact, polynomial time algorithms for computing indices in
typed systems are unlikely. The intuitive reason for this complexity gap between typed and
untyped systems can be explained by drawing the following analogy. Observe that, in Puel
and Sufirez’s approach, the literals in constraints generated are all of the form x t, where x is
a variable and an arbitrary term. Such constrained terms are analogous to Boolean formulas
with only negative literals and hence are trivially satisfiable (by a truth assignment that assigns
false to every literal). Similarly, index computation is simple in untyped systems. However,
in typed systems there are implicit positive constraints introduced by the type discipline. Thus
we have a constraint that contains both positive and negative literals. Such a constrained term
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is analogous to a Boolean formula with both positive and negative literals and thus the SAT
now becomes more difficult.

THEOREM 4.4. Index computationfor typed systems is co-NP-complete.
Proof The index selection problem, when posed as a decision problem, takes the form

"Does u possess an index with respect to pattern set ?" To show that this problem is in
co-NP, we need to show that the problem of deciding whether u has no index is in NP. To
do this, let pl pr be the set of fringe nodes of u. We first guess r instances tl tr of
U such that ti/Pi is a variable for < < r. Then we verify that (at least) one pattern in
matches each ti and if so we declare that u has no index. All this can clearly be accomplished
in polynomial time; hence the problem of determining whether u does not possess an index is
in NP and the index selection problem is in co-NP.

To show that the problem is co-NP-complete, we reduce the complement of satisfiability
to this problem. Let pl/ .../ 0n be an instance of SAT where (/9 is a disjunct of literals of
the form x or --,x, x E {x Xm}. We transform this into an index computation problem
as follows. Consider the following system consisting of n / 1 patterns, with textual-order
priority. The root of each pattern is labeled by an (m / 1) arity function symbol f (which
once again stands for the common prefix shared by all the patterns). The last m arguments
of f consist of nonvariables drawn from the set {a, b}. The (n / 1)th pattern is of the form
f(xo, Xl Xm). To specify the first n patterns, let tl tn be terms. Now we specify the
ith pattern (for 1 < < n) as f(ti, Sl Sm), where sj is a or b depending upon whether xj
or --,xj occurs in qgi. If neither occur in qgi, then s.i is a variable. Observe that the size of this
pattern set is polynomial in the size of 0 p. With this construction, we will now show
that determining whether f(xo Xm) possesses an index that is equivalent to determining
whether qg/ .../ 0 is not satisfiable.

First we transform the above pattern set into a set of constrained patterns. Following the
transformation the (n + 1)th pattern becomes

{f(x0 Xm)[(xo - tl v Pa)/""/ (x0 :/: tn v p)}.

Here we have slightly abused the notation in replacing xj =/: a by xj and xj - b (i.e., xj a

by type discipline) by -xj. We now show that x0 is not an index of the above constrained term
iff p/ .../ 0 is satisfiable. Suppose that 991/ .../ qgn is satisfied by a truth assignment 7".
Then each (#i is satisfied by 7". Consider the instance of the term f (xo, vl Vm), where
vi is b or a, respectively, depending upon whether T(xi) isfalse or true. Clearly, this term is
an instance of the constrained term, yet x0 is a variable in it, which means that x0 is not an
index. To prove the converse, suppose that x0 is not an index, i.e., there is an instance of the
constrained term that does not instantiate x0. Then, the substitutions for each X Xm must
satisfy Pl through pn. This implies that (/91/ / n must be satisfiable, thus completing the
proof.

Since the index computation problem is very hard in general, we need to examine
heuristics that can speed up the process in most cases. Two such heuristics are described
in [25].

5. Space and matching time complexity. We now examine upper and lower bounds
on the space and matching time complexity of adaptive tree automata for several classes of
patterns. Since the traversal order itself is a parameter here, we first need to clarify what we
mean by upper and lower bounds. An upper bound refers to an upper bound obtained by using
the best possible traversal for a set of patterns, i.e., a traversal that minimizes space (or time,
as the case may be). The rationale for this definition is that for every set of patterns there exist
traversal orders that can result in the worst possible time or space complexity. Clearly, it is
not interesting to talk about the upper bound on size of the automaton obtained using such a
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FIG. 6. Space and matching time complexity ofadaptive automata.

a a a a
a abba

FIG. 7. Example matrixfor n 4.

(deliberately chosen) nonoptimal traversal order. Our lower bounds refer to the lower bounds
obtained for any possible traversal order.

Figure 6 summarizes our results. The proof on upper bound on space follows from the
result of [24]. Since a left-to-right traversal is simply a special case of an adaptive traversal,
the fact that there always exists a left-to-right traversal order with an automaton size less than
O (Hi=ln Ili I) implies the existence of an adaptive traversal with these bounds. We now present
the details of lower bound proofs. The space bounds given in this section are all independent
of the traversal order and are established using fiat patterns that all have a root symbol f with
arbitrarily large arity. For the purposes of building either the smallest size automaton or one
that does matching in the shortest possible time, fiat patterns are equivalent to a set of patterns
having a common prefix u whose fringe size equals the arity of f. This is because every
position within the common prefix u will be an index; hence by Theorem 3.5, an automaton
of smallest size (and matching time) can be obtained by first visiting all these positions. The
structure of the automaton after this prefix is examined will be identical to that obtained for
fiat patterns after visiting the root symbol.

5.1. Unambiguous, unprioritized patterns. Consider a set of n fiat patterns from the
alphabet {f, a, b} and variables. Since all fiat patterns have the same root symbol f, we
need only specify the arguments. Therefore the n patterns are represented by a matrix of n
rows, where the th row lists the arguments of f in the th pattern. Each column has at most
one occurrence of a, at most one occurrence of b, and the rest are all ’_’s. For each pair
of patterns and l’ there is at least one column wherein and 1’ have different nonvariables
and so the system is unambiguous. Figure 7 shows a matrix that represents the four pat-
terns f(a,a,a,_,_,_,a), f(b a,a ), f(_,b,_,b,_,a,_), and f( b,_,b,b,_).
Note that because each row in the matrix contains O(n2) elements, the size of the matrix is
O(n3).

In order to simplify the proofin this case we will consider only those parts ofthe automaton
reachable without following any transition. Let P (n) denote an instance of a problem with n
such patterns. Denote by S(n) the size of the smallest automaton for matching P (n). Suppose
that the automaton chooses some position p (which will simply be a column in the matrix) to
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a a aaa) a_ 9 b a_

FIG. 8. Matrices representing 12u for states reached by transitions on a and b.

inspect. Now there are two cases to consider, depending upon whether one or two patterns
have a nonvariable at p.

Case 1" Column p contains only one nonvariable. It is clear in this case that on a positive
transition (i.e., transition on inspecting an a or b), we will again be left with the same
/2, without any reduction in the problem size. This is because the resultant problem
is represented by the matrix obtained by deleting column p from the original matrix.
The matrix so obtained still represents a problem of size n. For instance, in Fig. 7,
if we choose colunm 7 for inspection then we are left with the problem of building
an automaton to match on the basis of the first six positions of each pattern. In
other words, we are left with a matrix obtained by deleting the last column of Fig. 7
and hence the problem is still an instance P(4) and S(4) is the size of the smallest
automaton.

Case 2. Column p contains two nonvariables. In this case, based on the symbol seen in
the column, we can now partition the n patterns into two sets, each consisting of n
patterns. Both these sets are represented by matrices that are obtained by deleting
both the column p and one of the rows that contained a nonvariable at p. It is easy to
see that each of these matrices represent P (n 1) and hence the smallest matching
automaton has the size S(n 1). In the above example, inspecting position 2 results
in the pattern sets 1, 2, 4} and {2, 3, 4} as shown in Fig. 8. Hence

S(n) 2, S(n- 1),

whose solution is f2 (2n).
Recall that the arity of f is O(n2), and that we use flat patterns in the proof to denote

patterns with a common prefix u with a fringe size equal to the arity of f. In order to have a
fringe size of O (n2), the prefix must have size O(n2). Thus the average size of the patterns
(c) equals n2 and so we have the following theorem.

THEOREM 5.1. The lower bound on space required by adaptive automatafor unambiguous
unprioritized patterns is S2 (2,#g).

5.2. Unambiguous prioritized patterns. To derive the lower bound on the size of the
automaton in this case, consider the following set of flat patterns with textual order priority"

f(cm(a),x2, x3 Xn), f(xl, cm(a),x3 Xn) U(Xl Xn-1, cm(a)).

In these patterns, c"(a) is an abbreviation for the term c(c(... (c(a)...) that contains m
occurrences of c. Denote by S(n) the size of the automaton for patterns of the above form.
We claim that the smallest size automaton is obtained by first inspecting all the c’s and then
the a in the first column, then those in the second column, and so on. This is because each
position examined by such an automaton is an index by Theorem 4.3. Hence, it follows by
Theorem 3.5 that this automaton is no larger than any other automaton. Now consider the first
rn states of the automaton that correspond to inspecting all the c’s in the first column. Each
of these states has a transition on that is taken on seeing a symbol different from c. Each
of these transitions leads to a state that is the root of an automaton for the remaining n
patterns. Therefore,

S(n) > mS(n- 1),



ADAPTIVE PATTERN MATCHING 1229

with S(1) 1. (Recall that we use breadth as the measure of size.) This means S(n)
f2 (mn-1). As for sufficiently large m, m O(o). So, we conclude with the following
theorem.

THEOREM 5.2. The lower bound on space required by adaptive automatafor unambiguous
prioritized patterns is S2 (oe ).

5.3. Ambiguous patterns. Consider again the set of patterns used in 5.2. Now as-
sume that there is no priority among these patterns. Because all patterns match f(cm(a),
cm(a) cm(a)) the system is ambiguous. Observe that the automaton A for this set of
patterns must report all matches since there is no priority relationship among the patterns. We
now show how we can obtain an automaton A’ from A for matching the prioritized system
described in 5.2. To obtain A we simply change the match annotation on the final states of A
so that A announces a match for the pattern with the highest priority among those for which
a match is declared by A. It is easy to see that A is an automaton for prioritized patterns and
also that it is no larger than A. Therefore, by Theorem 5.2, we have the following theorem.

THEOREM 5.3. The lower bound on space required by adaptive automatafor ambiguous
patterns is S2 (o ).

5.4. Matching time. We analyze the matching time of adaptive automata in this section.
Herein we derive both upper and lower bounds on the matching time. We begin our discussion
with the upper bound on the matching time. We would like to recall our earlier remarks
regarding using -<, a partial order, as our main approach to comparing matching time of
different automata. However, to give a quantitative measure of the work involved in matching,
we use average path lengths of "best possible" automata in the ordering given by Z.

It is clear that an upper bound on the matching time is given by the length of the longest
root-to-leaf path in the automaton. Now observe that each state in a given path inspects distinct
positions and that this position must be a nonvariable position in at least one pattern. Hence,
the length of the longest path can never be more than O (S). (Recall that S is the sum of sizes
of all patterns.) Therefore, an upper bound on the matching time is O (S).

For a lower bound on matching time for unambiguous, unprioritized patterns, consider a
set of strongly sequential patterns. For such patterns, every prefix of any pattern possesses an
index. By Theorem 3.5, the automaton with the smallest time is one that examines indices in
every state. It is easy to see that, in such a case, there is exactly one final state in the automaton
corresponding to a match for each pattern. Moreover, all and only the nonvariable symbols
in a pattern are visited on the path to a final state announcing a match for it. Therefore, the
average path length of this automaton (which is our measure of matching time) is no less than
the average over the sizes of the patterns, i.e., f2 (o).

In the case of prioritized or ambiguous patterns, the lower bound can be tightened. This
is based on the following observations. In case of prioritized patterns, we must eliminate the
possibility for a match for higher-priority patterns before looking for a match for a lower-
priority pattern. This means paths leading to matches for a lower-priority pattern can be
substantially longer than the pattern size. Similarly, for ambiguous patterns, the need to
announce all matching patterns can make lengths of matching paths for a pattern larger than
the size of the pattern being matched.

We first consider the case of unambiguous prioritized patterns. We use the example
presented in 5.2 to derive the lower bound in this case. Observe that every position inspected
by the automaton constructed in 5.2 is an index. This means that, by Theorem 3.5, the
matching time for this automaton is the smallest. Hence the lower bound on matching time is
given by the average path length of this automaton. We compute this quantity as follows. Let
T (n) denote the sum of lengths of all root-to-leaf paths in the automaton. Observe that each
of the first m states that inspect the c’s in the first pattern has a :/= branch. These branches
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lead to a subautomaton that matches the remaining n 1 patterns and hence the sum of path
lengths in each of these automata is given by T (n 1). For the subautomaton Si on the ith
branch, the sum of path lengths from root to leaves in Si is given by

T (n 1) + (number of final states in Si).

The second term in the above expression accounts for the fact that the length from the root
of the automaton to the root of Si is added to the length of every path to a final state in Si.
Noting that the number of final states (which is same as the breadth or space complexity) in Si
is O (mn-2), and summing the path lengths over all the subautomata and the state announcing
a match for the first pattern, we have

T(n) m + Eim__l(T(n 1) + O(mn-2)) rn + mT(n 1) + O(mn),

with T(1) m. It can be easily checked by substitution that T(n) is f2 (nrn’). Thus the
average path length given by T(n)/O(m’-1) is f2(mn) (S).

The lower bound on matching time for ambiguous patterns can be obtained from that of
the unambiguous prioritized patterns using arguments similar to that found in 5.3. It is quite
straightforward to apply the arguments found in the proof of size complexity to matching time
complexity. In particular, we can construct an automaton for prioritized patterns from that
obtained for ambiguous, unprioritized patterns. This construction ensures that the matching
time complexity for ambiguous patterns can never be smaller than that for unambiguous
prioritized patterns.

6. Minimizing space using dags. In 3, we developed several powerful techniques to
reduce the space and matching time requirement of the adaptive automata. However, the
lower bound results established in the previous section indicate that the size of the automaton
is likely to be large. It appears (from the proofs of lower bounds) that the main reason for
the exponential space requirement is the use of tree structures in representing the automaton.
Lack of sharing in trees creates duplication of functionally identical subautomata and thus
wastes space. A natural solution to this problem is to implement sharing with the help of dag
structure (instead of tree). We develop such a solution in this section.

An obvious way to achieve sharing is to use standard FSA minimization techniques. A
method based on this approach first constructs the automaton (using algorithm Build) and then
converts it into an (optimal) dag. However, the size of the tree automaton can be exponen-
tially larger than that of the dag automaton. For instance, the tree automaton constructed in

5.2 has exponential size, but the corresponding dag automaton is linear! Therefore, use of
FSA minimization technique is bound to be inefficient. To overcome this problem we must
construct the dag automaton without generating its tree structure first. This means we must
identify the equivalence of two states without even generating the subautomata rooted at these
states. Suppose we are able to identify all such pairs of equivalent states; then the optimal
dag automaton can be built directly for any set of patterns. We now propose a solution to
this problem for the general case of adaptive automata. This important problem of directly
building an optimal automata has remained open, even in the restricted context of left-to-right
traversals [9].

Central to our construction (of a dag automaton) is a technique that detects equivalent
states based on the representative sets. Consider two prefixes, u and u2, that have the same
representative set ,. Suppose that u and u2 differ only in those positions where every pattern
in/2, has a variable. Since such positions are irrelevant for determining a match, these two
prefixes are equivalent. On the other hand, it can also be shown that if they have different
representative sets or differ in any other position then they are not equivalent. Based on this
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observation, we define the relevant prefix of u as follows. Let Pl, P2 Pk denote (all of
the) positions in u such that for each pi there is at least one pattern in 12, that has a variable at

pi, and that all other patterns in ;, have a variable either at pi or above it. The relevant prefix
of u is then

u[pl +-][P2 +-7] [Pk <----].

For instance, the prefixes corresponding to different states marked ’s’ in Fig. 3 are different,
but they all have the same relevant prefix f (x, -, b). By showing that two states are equivalent
iff the corresponding relevant prefixes are identical we establish the following theorem.

THEOREM 6.1. The automaton obtained by merging states with identical relevantprefixes
is optimal.

Proof First we need to show that the states merged as above are indeed equivalent.
Note that Condition 2 on the selection function at a state v requires that Build select the next

position only based on portions of the prefix that are relevant for identifying a match at one of
the descendents of v. This implies that the selection function will choose the same position
to inspect for any two states with the same relevant prefix. It is also easy to see that if two
states have the same relevant prefix, then the corresponding children of the two states will also
have identical relevant prefixes. This implies that the structure of the automaton below any
pair of states with the same relevant prefix will be identical. Therefore, two such states are
equivalent.

Now we need to show that no two states vl and v2 with distinct relevant prefixes u and
u2 are equivalent. There are two cases to consider, depending upon whether ,1 and ,2 are
identical or not. If they are not identical, let 6 ,1 and ’ ,2. Then, by the properties of
representative set (and the correctness of the matching automaton), there is a path from v to
a matching state for I. On the other hand, there is no such path from v2 and hence v and v2
are not equivalent.

In the second case, (,, ,2). Since u =/= U2, 3p root(ul/p) 7 root(uz/p). Since the
representative sets are the same, u and u2 cannot have different nonvariable symbols at p.
Hence one of these relevant prefixes, say u, has a nonvariable symbol at p and the other has
a variable at p. If this nonvariable is , every pattern in the representative set must contain a
variable at p. The definition of the relevant prefix then implies that root(uz/p) must also be. Since we assumed that u and u2 differ at p, this is also not possible. Therefore root(u I/P)
must be a nonvariable symbol other than -. Let be a pattern in the representative set such
that root(1/p) is a nonvariable. Now there must be a path from v to a matching state for l,
and the symbol at p is not examined on this path (because it has already been examined in the
path reaching v). In contrast, the symbol at p is examined on every path from v2 to a matching
state for 1. Therefore v and V2 are not equivalent.

Merging equivalent states as described above can substantially reduce the space required
by the automata. For example, the tree automaton in Fig. 3 has 25 states which can now be
reduced to 16 by sharing. Also recall that for the patterns in Fig. 7, parts of the automaton
reached by positive transitions alone (i.e., without considering parts of automata that are
reached through - transitions) are exponential. We can show that by sharing states this part
of the automaton will become polynomial! Similarly, the size of the automaton constructed in

5.2 for unambiguous, prioritized patterns will become linear in the size of patterns rather than
being exponential. (This is because all the states that are reached on - transitions from the
first m states will be equivalent, and thus there will be only one subautomaton of size S(n 1)
instead of m.)

6.1. Impact of dags on space and matching time complexity. Observe that sharing
affects space requirements alone. Therefore, all our earlier results not directly related to space
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continue to hold for dags as well. In what follows we discuss the impact of dags on some of
the results established earlier regarding space.

We can show that the upper bound on size of dag automata is O(2n S) which is much
smaller than the corresponding bound O(1-Ii= Ili I) for tree automata. To prove this result,
consider a dag automaton based on left-to-right traversal of patterns. Consider the relevant
prefixes of any two states in this automaton with the same representative set/2,. Since the
symbols are visited in pre-order, one of these prefixes u must be an instance of the other
prefix u2. Extending this argument to all states S sk with the same representative set,
we see that there is a total order among these prefixes (given by the above-mentioned instance
of relation). This means that the number of such prefixes (and hence the number of such
states) is bounded by the size of the largest prefix, which is in turn bounded by S. This bound,
in conjunction with the fact that there are at most 2 different representative sets, yields the
bound of O (S 2).

We can also establish a lower bound of O(2) for ambiguous patterns. For this proof,
consider n flat patterns of the form

11 f(a, X2, X3 Xn),

12 f (X l, a, x3 Xn),

In f (x Xn 1, a ).

By our earlier remarks on flat patterns, note that the average size c of these patterns is
O(n). There is no priority among the patterns, so the automaton is required to report all
patterns that match a given term. It is clear that any term f(t t) matches the set of
patterns {Pil Pik whenever til ti2 tik a. There are 2 such sets, each of
which must correspond to a state in the automaton and hence the bound.

For unambiguous patterns, it is not clear whether the lower bound on size is exponential.
For instance, it appears that the patterns used in the lower bound proof on size of tree automata
for unambiguous patterns possess a polynomial-size dag automaton. In the example used to
establish the lower bound on space for the tree automaton for unambiguous prioritized patterns,
observe that the first m states reached by transitions (i.e., states reached on inspecting any
symbol other than c in the first column) are all equivalent. By sharing all these states, we get
the recurrence relation S(n) m + S(n 1), whose solution is O(S). Reasoning about lower
bounds becomes extremely complicated for dags since it is difficult to capture the behavior of
sharing formally.

All the greedy strategies as well as the strategy of selecting indices can, in some cases,
increase the space of dag automata. This increase typically occurs in contrived examples. In
practice, we should use some ofthe greedy strategies and the index selection strategy to reduce
space and matching time. Sharing of states then provides additional opportunities for further
reduction in space required.

7. Concluding remarks. In this paper we studied pattern matching with adaptive au-
tomata. We first presented a generic algorithm for their construction and then discussed how
to improve space and matching time by synthesizing traversal orders. We showed that a good
traversal order selects indices whenever possible and uses one of the greedy strategies oth-
erwise. Although the greedy strategies may sometimes fail, it appears from the complexity
of the counter examples that such failures may be rare. For functional programming, we
synthesized a traversal S(T) from a monotonic traversal T. Since using S(T) does not affect
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termination properties, the programmer can assume T whereas an implementation can benefit
from significant improvements in space and matching time.

Our lower bound results indicate that the size of an adaptive automaton, when represented
as a tree, can be quite large. Therefore, we developed an orthogonal approach to space
minimization by sharing equivalent states. Note that even the index selection strategy may
fail to improve the space of dag automata. This occurs because index selection may adversely
affect the way in which descendants of a state can be shared. Since it is difficult to predict
sharing among descendant states, the possibility of improving space without using indices
does not appear to be practical. The best approach is to use all the strategies in 3 and use
sharing as an additional source of space optimization over tree automata.

Our work clearly brings forth the impact of typing in prioritized pattern matching. We
have shown that several important problems in the context of pattern matching are unlikely to
have polynomial-time algorithms for typed systems whereas we have given polynomial-time
algorithms for them in untyped systems. This raises the question whether it is worthwhile to
consider typing for pattern matching. It is not clear how often typing information can be used
to find an index (or to determine that a pattern does not belong to/2,) which cannot be found
otherwise. On the other hand there is a significant penalty in terms of computational effort for
both these problems if we use typing information.

We have left open two aspects ofthe problem that may be important in certain applications.
First, our algorithms are mainly suited for an environment wherein the patterns do not change
very frequently. This is because the traversal order itselfcan change when patterns are changed.
Second, the algorithms cannot handle variables in the term to be matched. If we can handle
variables, then the automaton can be used for fast unification, which has many applications
such as Prolog compilers and theorem provers. We are currently investigating techniques to
extend our algorithms to address these concerns.
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FINDING REGULAR SIMPLE PATHS IN GRAPH DATABASES*
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Abstract. We consider the following problem: given a labelled directed graph G and a regular expression R, find
all pairs of nodes connected by a simple path such that the concatenation of the labels along the path satisfies R. The
problem is motivated by the observation that many recursive queries in relational databases can be expressed in this
form, and by the implementation of a query language, G+, based on this observation. We show that the problem is
in general intractable, but present an algorithm than runs in polynomial time in the size of the graph when the regular
expression and the graph are free of conflicts. We also present a class of languages whose expressions can always
be evaluated in time polynomial in the size of both the graph and the expression, and characterize syntactically the
expressions for such languages.

Key words, labelled directed graphs, NP-completeness, polynomial-time algorithms, regular expressions, simple
paths
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1. Introduction. Much of the success of the relational model of data can be attributed
to its simplicity, which makes it both amenable to mathematical analysis and easy for users
to comprehend. With respect to the latter, the availability of non-procedural query languages
has been a great asset. However, the fact that queries which are especially useful in new
application domains are not expressible in traditional query languages has led to proposals for
more powerful query languages, such as the logic-based language Datalog [23] and our query
language G+ [9], 10].

The original proposal for the relational model included two query languages of equivalent
expressive power: the relational calculus and the relational algebra [7]. These languages have
been used as the yardstick by which other query languages are classified; a query language
is said to be relationally complete if it has (at least) the expressive power of the relational
calculus. However, this notion of completeness has been questioned since it was shown that
certain reasonable queries, such as finding the transitive closure of a binary relation, cannot
be expressed in the calculus [3], [4]. This particular limitation is overcome in the languages
G+ and Datalog through their ability to express recursive queries.

The design of G+ is based on the observation that many of the recursive queries that
arise in practice--and in the literature--amount to graph traversals (for example, 1], 12],
[19]). In G+, we view the database as a directed, labelled graph and pose queries which are
graph patterns; the answer to a query is the set of subgraphs of the database that match the
given pattern. Useful applications for such a language can be found in systems representing
transportation networks, communication networks, hypertext documents, and so on. In our
prototype implementation, queries are drawn on a workstation screen and the database and
query results are also displayed pictorially.

Example 1. Let G be a graph describing a hypertext document: nodes are chunks of
text and edges are links (cross-references). Readers read the document by following links. In
this context, one might be interested in a query such as: Is there a way to get from section 3.1
to section 5.2 and then to the conclusion, without reading any node more than once? The
corresponding G+ query is shown in Fig. 1. The left-hand box in the figure contains the
pattern graph, while the right-hand box contains the summary graph which specifies how the

*Received by the editors September 5, 1991; accepted for publication June 27, 1994. A preliminary version
of sections of this paper appeared in Proceedings of the 15th International Conference on Very Large Data Bases,
Amsterdam, The Netherlands, August 22-25, 1989, pp. 185-193.
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Department of Computer Science, University of Cape Town, Rondebosch 7700, South Africa.
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S link+

FIG. 1. Query to testfor the existence ofa simple path in a hypertext document.

FIG. 2. Query tofind pairs ofcities connected by some Air Canadaflight.

output is to be presented to the user. The nodes in this case are labelled with constants to be
matched with those in the database. The edges of a pattern graph can be labelled with regular
expressions; in this case the desired expression is link+, representing a nonzero sequence of
links. This regular expression is used to match the edge labels along simple paths in G, thereby
satisfying our original request.

Example 2. Let G be a graph representing airline flights: the nodes of G denote cities,
and an edge labelled a from city b to city c means that there is a flight from b to c with airline
a. Assume that we want to find all pairs of cities that are connected by a sequence of flights
such that (a) at least one flight is with Air Canada (AC), and (b) no city is visited more than
once. This query can be expressed by the graph pattern of Fig. 2. The pattern graph in this
example comprises only two nodes, this time labelled with variables, while the edge is labelled
with the regular expression _*AC_* (where the underscore matches any edge label in G, and
AC is regarded as a single symbol). Once again, the fact that only simple paths are matched
during query evaluation ensures that the desired answer is computed.

Although queries in G+ can be a lot more general than. those given in the above two
examples, the special case suggested by Example 2 is challenging enough from an algorithmic
point of view if we want to process queries efficiently. The problem addressed in this paper is,
given a regular expression R and a graph G, find all pairs of nodes in G which are connected
by a simple path p, where the concatenation of edge labels comprising p is in the language
denoted by R.

When trying to find an efficient solution for this problem to incorporate in our imple-
mentation of G+, we were somewhat surprised to discover that the queries of Examples
and 2 are in fact both NP-complete. Using results in 11 ], 17], we show in 2 that for certain
fixed regular expressions (such as R in Example 2), the problem of deciding whether a pair
of nodes is in the answer of a query is NP-complete, making the general problem NP-hard.
We first attacked this problem by determining what it is in the language of R that makes the
problem hard. In 3, we present a class of languages for which query evaluation is solvable
in time polynomial in both the length of the regular expression and the size of the graph.
We characterize these languages syntactically in terms of the regular expressions that denote
them and the finite automata that recognize them. This characterization assumes we have no
knowledge concerning the structure of the graph being queried. In 4, we consider extensions
where we are given a constraint which the cycles of the input graph are known to satisfy. This
knowledge allows us to characterize potentially larger classes of queries which can be solved
in polynomial time.

We then designed a general algorithm, presented in 5, which is correct for arbitrary
graphs and queries and is guaranteed to run in polynomial time in the size of the graph if the
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regular expression and graph are free of "conflicts," in a sense to be defined precisely in that
section. As special cases, any query is free of conflicts with any acyclic database graph and
any restricted expression query is free of conflicts with any arbitrary graph. Since we cannot
restrict our prototype to work only on conflict-free queries and graphs, and it is expensive to test
for conflict-freedom beforehand, it is quite convenient to have a single algorithm that works
in all cases, and we have in fact incorporated the algorithm of 5 into our implementation.

2. Intractability results. In this section, we prove some negative results regarding the
complexity of finding certain types of simple paths in a particular class of directed graphs. We
begin by defining the graph structures as well as the class of queries over these structures in
which we are interested.

DEFINITION 1. A database graph (db-graph, for short) G (N, E, 7t, E, )) is a

directed, labelled graph, where N is a set of nodes, E is a set of edges, and 1/t is an incidence

function mapping E to N N. Note that multiple edges between a pair of nodes are permitted
in db-graphs. The labels of G are drawn from the finite set of symbols E, called the alphabet,
and is an edge-labellingfunction mapping E to E.

DEFINITION 2. Let E be a finite alphabet disjoint from {e, 0, (,)}. A regular expression
R over E is defined as follows.

1. The empty string , the empty set 0, and each a 6 E are regular expressions.
2. If A and B are regular expressions, then (A + B), AB, and (A)* are regular expres-

sions.
3. Nothing else is a regular expression.

The expression (A + B) is called the alternation of A and B, (AB) is called the concatenation
of A and B, and (A)* is called the closure of A. We use the underscore (_) to denote the
alternation of all elements of E. Also, A+ denotes AA*, the positive closure of A.

The language L (R) denoted by R is defined as follows.
1. L(e)= {el.
2. L(O) 0.
3. L(a)-- {a}, fora E.
4. L(A + B) L(A) t3 L(B) {w w L(A) or w L(B)}.
5. L(AB) L(A)L(B) {ww2 w L(A) and w2 L(B)}.
6. L(A*) oL(A)i, where L(A) {} and L(A) L(A)i-L(A).

Regular expressions R1 and R2 are equivalent, written R1 R2, if L(R) L(R2). The
length of regular expression R, denoted JR I, is the number of symbols appearing in the
string R.

DEFINITION 3. Let G (N, E, , X, ,k) be a db-graph and p (Vl, e en-, Vn),
where vi N, 1 < < n, and ej E, 1 < j < n- l, be a path (not necessarily a simple
path) in G. We call the string ,(e)... )(en-) the path label of p, denoted by Z(p) X*.
Let R be a regular expression over X. We say that the path p satisfies R if ft,(p) L(R). The
query Q on db-graph G is defined as the set of pairs (x, y) such that there is a simple path
from x to y in G which satisfies R. If (x, y) QR(G), then (x, y) satisfies QI.

A naive method for evaluating a query Q on a db-graph G is to traverse every simple path
satisfying R in G exactly once. The penalty for this is that such an algorithm takes exponential
time when G has an exponential number of simple paths. Nevertheless, we will see below
that in general we cannot expect an algorithm to perform much better, since we prove that,
for particular regular expressions, the problem of deciding whether a pair of nodes is in the
answer of a query is NP-complete. On the other hand, refinements can lead to guaranteed
polynomial time evaluation under conditions studied in the following two sections.

Consider the following decision problem.
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REGULAR SIMPLE PATH
Instance: db-graph G (N, E, p, N, )), nodes x, y N, and regular expression R over
Question: Does G contain a directed simple path p (el ek) from x to y such that p
satisfies R, that is, ,k(el))(e2)... (ek) L(R)?

This is equivalent to asking "Is (x, y) 6 QR(G)?" When the instance comprises only the
db-graph, we refer to the problem as FIXED REGULAR PATH(R), that is, for FIXED REGULAR
PATH(R) we measure the complexity only in terms of the size of the db-graph. We first prove
below that, for certain regular expressions R, FIXED REGULAR PATH(R) is NP-complete. In
doing so, we will refer to the following two decision problems.

EVEN PATH
Instance: Directed graph G (N, E), and nodes x, y 6 N.
Question: Is there a directed simple path of even length (that is, with an even number of edges)
from x to y?

DISJOINT PATHS
Instance: Directed graph G (N, E), and two pairs of distinct nodes (w, x), (y, z) N x N.
Question: Is there a pair of disjoint directed simple paths in G, one from w to x and the other
from y to z?

The following theorem uses the above two decision problems to prove the NP-complete-
ness of FIXED REGULAR PATH(R) for two particular regular expressions.

THEOREM 2.1. Let 0 and be distinct symbols in . FIXED REGULAR PATH(R), in which
R is either (1) (00)* or (2) 0"10", is NP-complete.

Proof (1) In 17], EVEN PATH is shown to be NP-complete. We can reduce EVEN PATH
to FIXED REGULAR PATH(R), where R (00)*, as follows. Given an instance G, x, y of
EVEN PATH, construct a db-graph H isomorphic to G, except that every edge in H is labelled
with 0. There is an even simple path from x to y in G if and only if there is a simple path
from x to y in H which satisfies R. It is easy to see that FIXED REGULAR PATH(R) is in NP;
we conclude that FIXED REGULAR PATH(R), where R (00)*, is NP-complete.

(2) The fact that DISJOINT PATHS is NP-complete follows immediately from results in
11 ]. We reduce DISJOINT PATHS to FIXED REGULAR PATH(R), where R 0* 10". Given an

instance G, w, x, y, z of DISJOINT PATHS, construct a db-graph H isomorphic to G, except
that every edge of H is labelled with 0. Now add a new edge (x, y) labelled to H. There is
a simple path from w to z satisfying R in H if and only if there are disjoint simple paths from
w to x and from y to z in G. We conclude that FIXED REGULAR PATH(R), where R 0* 10",
is also NP-complete.

COROLLARY 2.2. REGULAR SIMPLE PATH is NP-complete.
Proof NP-hardness follows from. Theorem 2.1. To show that REGULAR SIMPLE PATH

is in NP, we observe that, for an arbitrary regular expression R, given a simple path from x to
y in G with path label w, we can check in polynomial time in the lengths of R and w whether
or not w is in L(R) [2].

It is interesting to note that if G is undirected, then both EVEN PATH and DISJOINT PATHS
can be solved in polynomial time. EVEN PATH can be solved in polynomial time by using
matching techniques 17], while a polynomial-time algorithm for DISJOINT PATHS is given
in [20].

Each of the two NP-completeness results of Theorem 2.1 can be generalized. We first
generalize from the regular expression (00)* to expressions of the form w*, for any w 6 *
such that wl >_ 2. For this we use the following NP-complete problem, from [17], which was
used there to show the NP-completeness of EVEN PATH.
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PATH VIA A NODE
Instance: Directed graph G (N, E), and nodes x, y, m 6 N.
Question: Is there a directed simple path from x to y via m?

THEOREM 2.3. FIXED REGULAR PATH(R), in which R w*, for any w E* such that
wl >_ 2, is NP-complete.

Proof Once again, membership in NP is easy to demonstrate. We reduce PATH VIA A
NODE to FIXED REGULAR PATH(R) using a variation of the construction from 17]. Given an
instance G, x, y, m of PATH VIA A NODE, construct a db-graph H (Nt, E’) as follows:

N’- ((N {m}) {1, 2}) U {m},

(1) E’- {((u, 1), (u, 2)) u 6 N {m}}

(2) U{((,, 2), (v, 1)) (u, v) 6 E}

(3) U{((u, 2), m) (u, m) 6 E}

(4) U{(m, (u, 1)) I(m, u) E}.

The proofnow divides into two parts, depending on whether w is ofeven or odd length. Rather
than introducing additional nodes into the above structure, which we believe would obscure
the proof, below we allow edges to be labelled with strings of symbols. The length of a path
is the length of its concatenated edge labels.

Assume that w Wl//)2, where Wll n and wzl n, n > 1. There are two copies
of each edge of types and 2 above, one copy labelled with Wl, the other with w2. Edges of
type 3 are labelled with w2, while edges of type 4 are labelled with Wl. We claim that there
is a simple path from x to y through m in G if and only if there is a simple path from (x, 1)
to (y, 2) satisfying R in H.

If there is a path p from x to y through m in G, then let p be the subpath of p from x
to m, and p2 be the subpath of p from rn to y. Let u be the predecessor of m on p and v
be the successor of m on p2. Then in H we can traverse a simple path from (x, 1) to (u, 2)
which satisfies (Wl w2)*wl, followed by the edges labelled w2 and Wl from (u, 2) to m and
from m to (v, 1), respectively, followed by a simple path from (v, 1) to (y, 2) which satisfies
(L02//31)*//32. The overall path thus satisfies (Wl w2)* and is guaranteed to be simple.

Now assume there is a simple path p from (x, 1) to (y, 2) in H which satisfies R. All
strings in L(R) are of length mn, where m is even. Any path from (x, 1) to (y, 2) which
does not pass through m must be of length kn, where k is odd. We conclude that p must pass
through m in H; hence, there is a simple path from x to y via m in G.

We now consider the case in which Iwl 2n + 1, n > 1. Let w aotol w2a2n, where
wll w21 2n, n > 1. One copy of each edge of type in H is labelled with a0, the other
with a2n. One copy of each edge of type 2 is labelled with w l, the other with w2. Type 3 edges
are labelled with wl, while type 4 edges are labelled with w2.

It is easy to see that if there is a simple path from x to y via m in G, there must be a
simple path satisfying R in H. For the other direction, it suffices to note that simple paths
in H from (x, 1) to (y, 2) which do not pass through m have length m(2n + 1) + 1, rn > O,
while those which do pass through m have length k(2n + 1), k > 2, which are also the lengths
of strings in L(R). These two can never be equal for n > 0. We conclude that if there is a

simple path from (x, 1) to (y, 2) in H satisfying R, there must be a simple path from x to y via
m in G. ]
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We now generalize the NP-completeness result for FIXED REGULAR PATH(R) where
R 0"10". If S c_ E, let S also denote the alternation of its elements.

THEOREM 2.4. Let R be a regular expression of the form S*wT*, where S and T are
subsets" ofE and w E +. In addition, assume that either (1) some a in w appears in neither
S nor T, or (2) there are symbols b S and c T such that neither appears in w. Then
FIXED REGULAR PATH(R) is NP-complete.

Proof Once again, FIXED REGULAR PATH(R) is obviously in NR We use essentially the
same reduction from DISJOINT PATHS to FIXED REGULAR PATH(R) as in Theorem 2.1 for
this more general case.

Given an instance G, w, x, y, z of DISJOINT PATHS, construct a db-graph H isomorphic
to G, except that two copies of each edge of H are made, one labelled with b 6 S and one
labelled with c 6 T. For case (2), b and c are those symbols mentioned in the statement of the
theorem; for case (1), we choose b # a and c # a. Assume that w ala2.., an. Now add
n nodes 1)1, l)2 1)n-1 to H, along with the path p,,, (x, el, 1)1 en-1, 1)n-l, en, y),
where ei is labelled with ai, < < n.

If there are disjoint simple paths from w to x and from y to z in G, it is easy to see that
there must be a simple path from w to z satisfying R in H. Assume now that there is a simple
path p from w to z satisfying R in H. Then p must be of the form plp,,, p2, since, in both cases
(1) and (2), p,,, contains an edge label which appears nowhere else in H and has to appear on
any path in H satisfying R. We conclude that there must be disjoint simple paths from w to
x and from y to z in H, and hence in G.

Theorems 2.3 and 2.4 are rather negative results, since they imply that queries might
require time which is exponential in the size of the db-graph, not only the regular expression,
for their evaluation. Thus, for regular expressions such as those in Theorems 2.3 and 2.4,
we certainly would not expect an evaluation algorithm to run in polynomial time. One such
example is the "Air Canada" query used in Example 2 (as long as the alphabet E contains
at least two symbols). These results, however, are not a function of the particular regular
expression but rather of the nature of the language denoted by the regular expression. A class
of languages for which REGULAR SIMPLE PATH is in P is the subject of the next section.

3. Restricted regular expressions. In this section, we characterize a class of queries
about regular simple paths which can be evaluated in polynomial time. We first introduce
some terminology and definitions.

DEFINITION 4. A nondeterministic finite automaton (NDFA) M is a 5-tuple (S, , 3,
so, F), where S is a finite set of states, is the input alphabet, 3 is the state transitionfunction
which maps S x (E tJ {e }) to the set of subsets of S, so 6 S is the initial state, and F S is
the set offinal states. The extended transition function 3" is defined as follows. For s, 6 S,
a E, andw E*

*(s, ) {s}, and

3*(s, wa) Ut**(.,,,))6(t, a).

The NDFA M accepts w E* if 6*(s0, w) r] F :/: 0. The language L(M) accepted by M is
the set of all strings accepted by M. A deterministic finite automaton (DFA) is an NDFA in
which the state transition function is a mapping from S to S.

DEFINITION 5. Let M (S, E, 3, so, F) be an NDFA. The transition graph associated
with M is a directed, labelled graph (S, EM, 1/tM, ., tM). If 6 3(s, a) for s, 6 S and
a 6 E, then there is an edge e in EM with M(e) (S, t) and )M(e) a. By confusing
representations, we will sometimes say there is a transition from state s to state in M (or

is a successor of s) if 3(s, a), and there is a path from s to if 6*(s, w) for some
w 6 E*. Again, similar definitions apply for a DFA.
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FIG. 3. Transition graph T ofa DFA.

DEFINITION 6. Given an NDFA M (S, E, 8, so, F), for each pair of states s, E S,
we define the languagefrom s to t, denoted by L..t, as the set of strings that take M from state
s to state t. Then, for state s and set of states T, we can define the language from s to T,
denoted by L.,T, as tT LL.t. In particular, for a state s E S, the suffix language of s, denoted
by L..F (or [s], for short), is the set of strings that take M from s to some final state. Clearly,
[so] L(M). Similar definitions apply for a DFA.

Given a regular expression R over E, an -free NDFAM (S, E, 8, so, F) which accepts
L (R) can be constructed in polynomial time [2]. From now on, we will assume that all NDFAs
are -free.

Example 3. Figure 3 shows the transition graph T of a DFA M. State so is the initial
state of M, while all states are final (denoted by a double circle). (We do not show (reject)
states which are not on some path from the initial state to a final state.) L(M) is denoted by the
regular expression 0* 1"0". The suffix language of state Sl is [Sl] 1"0", while [s2] 0".

Let R1 and R2 be regular expressions. In the subsequent analysis, it will be useful to refer
to an NDFA which accepts the language L(R1 N R2). The construction of such an NDFA is
defined as follows.

DEFINITION 7. Let M1 (S1, ], 81, P0, F1) and M2 ($2, E, 82, q0, F2) be NDFAs.
The NDFA for M1 NM2 is I ($1 S2, E,8,(p0, q0),F1 F2), where, fora 6 E,
(P2, q2) 8((pl, ql), a) if and only if p2 G 81(pl, a) and q2 G 82(ql, a). We call the
transition graph of I the intersection graph of M1 and M2.

We saw in the previous section that, for certain regular expressions R, it is very unlikely
that we will find an algorithm for evaluating QR on an arbitrary graph G which will always run
in time polynomial in the size of G. One such regular expression is 0"10". However, it turns
out that if the regular expression R 0"10" + 0* is specified instead, then QR is evaluable
in polynomial time on any db-graph G. The reason is that if there is an arbitrary path from
node x to node y in G which satisfies R, then there is a simple path from x to y satisfying R.
In such a case, we need not restrict ourselves to looking only for simple paths in G, but can
instead look for any path satisfying R. We define the corresponding decision problem below.

REGULAR PATH
Instance: db-graph G (N, E, p, E, ,k), nodes x, y E N, and regular expression R
over E.
Question: Does G contain a directed path (not necessarily simple) p (el ek) from x
to y such that p satisfies R, that is, ,k(el),k(e2)... ,k(e) 6 L(R)?

LEMMA 3.1. REGULAR PATH can be decided in polynomial time.

Proof Given db-graph G along with nodes x and y in G, we can view G as an NDFA
with initial state x and final state y. Construct the intersection graph I of G and M
(S, E, 8, so, F), an NDFA accepting L(R). There is a path from x to y satisfying R if and
only if there is a path in I from (x, so) to (y, sf), for some sf F. All this can be done in
polynomial time 14]. [3
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a

FIG. 4. A graph containing a nonsimple path.

In [22], Tarjan provides a polynomial-time algorithm for constructing a regular expression
which represents the set of all paths between two nodes of a given graph. As an alternative to
the above procedure, one could decide in polynomial time whether there was a path between x
and y in G satisfying R by first using Tarjan’s algorithm to construct a regular expression Rxy
representing all paths between x and y in G, and then determining whether the intersection of
L (R) and L (Rxy) was nonempty using NDFAs. The results of the previous section show that
it is unlikely that a polynomial-time analogue of Tarjan’s algorithm exists for describing the
set of all simple paths between two nodes.

DEFINITION 8. Let G be a db-graph, M (S, E, 3, so, F) a DFA or NDFA, and I the
intersection graph of G and M. We call a node (x, so) in I an initial node, and a node (y, sf),
sf F, afinal node.

We are interested in conditions under which REGULAR SIMPLE PATH (which is appro-
priate because of our semantics) can be reduced to REGULAR PATH. The following lemma
states one such condition.

LEMMA 3.2. REGULAR SIMPLE PATH can be decided in polynomial time on acyclic
db-graphs.

Proof The proof follows immediately from Lemma 3.1 and the fact that every path in an
acyclic graph is simple.

Suppose that we want to characterize a class of regular expressions for which we can
guarantee that REGULAR SIMPLE PATH is solvable in polynomial time. If we assume that we
know nothing about the structure of the db-graphs, we have to ensure that, for such a regular
expression R, whenever string w is in L(R), every string obtainable from w by removing one
or more symbols must also be in L(R). Otherwise, if w xay is in L(R) but xy is not in
L (R) (where a 6 E and x, y 6 E*), we can construct a graph G comprising a single simple
path from u to v and passing through z in which there is a loop at z labelled a, the path from
u to z is labelled x, and the path from z to v is labelled y (see Fig. 4). There is a nonsimple
path from u to v in G which satisfies R but no simple path from u to v satisfying R.

DEFINITION 9. An abbreviation of a string w is any string which can be obtained from
w by removing one or more symbols of w [6].

So we are looking for a class of regular expressions which denote languages that are
closed under abbreviation. Now consider the following definition for the class of restricted
regular expressions.

DEFINITION 10. For a 6 E, denote the regular expression (a + ) by (a?) (as is done
in the grep utility of Unix, for example). Given a regular expression R, let R’ be the regular
expression obtained by replacing some occurrence of a symbol a 6 E in R by (a?). R is
restricted if and only if R _= R’, for any R’ obtained from R as defined above.

Note that the above definition of restricted regular expressions is semantic rather than
syntactic. This has two significant consequences: on the one hand, we are able to prove an
equivalence theorem below (Theorem 3.4) relating restricted regular expressions to languages

1Unix is a trademark of AT&T.
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and automata; on the other, the recognition problem for restricted regular expressions becomes
difficult (Corollary 3.10).

Example 4. The regular expression 0* 1"0" is restricted: it is equivalent to (0?)* ?)* (07)*.
Recall from Theorem 2.1 that FIXED REGULAR PATH(R) is NP-complete for R 0* 10". R
is not restricted, but R’ 0* 10" / 0* is restricted, since R’ can be written as 0"(1 -t-
which is equivalent to (07)*(17)(07)*.

DEFINITION 11. A DFA M (S, E, 3, so, F) exhibits the suffix language containment

property (the containment property, for short) if, for each pair s, 6 S such that s and are
on a path from so to some final state and is a successor of s, [s] [t] (that is, L.,.F LtF).

The following result, although not used elsewhere, provides some interesting restrictions
on the structure of DFAs that exhibit the containment property.

PROPOSITION 3.3. Let M S, E, 3, so, F) be a DFA. If M exhibits the containment

property, then
1. every state in M, which is on a pathfrom so to a state in F, isfinal,
2. the minimum DFAfor M exhibits the containment property, and
3. ifM is minimum, then every cycle in M is a loop.
Proof (1) Every final state in M accepts e. By the transitivity of "_", every state which

is on a path from so to a state in F must also accept e, and hence must be final.
(2) Let M’ (S’, E, 6’, so, F’) be the minimum DFA equivalent to M. Each state in M’

represents a set of equivalent states in M. Assume that s 6 S’ represents {Sl sk}, where
si S, < < k, and that 6 S’ represents {tl tm }, where tj S, < j < m. There
is a transition 3’(s, a) in M’ only if, for each si, < < k, in M, there is a transition

3(si, a) tji, for some < ji < m. In M, [si] D_ [tj/], < ji < m, < < k. Since M’ is

equivalent to M, [s] [si], < < k, and [t] [tji], < ji < m, < < k. We conclude
that [s]

_
[t].

(3) Consider a cycle in M which is not a loop, and let s and be two states on the
cycle. Since [u] _D [v] for every pair of consecutive states on the cycle, we conclude from the
transitivity of "_" that [s] [t] and that [t] [s]. But then s =_ t, and so M is not minimum,
a contradiction.

Example 5. Consider the regular expression R 0* 1"0", and the DFAM accepting L (R)
whose transition graph T is given in Fig. 3. We can verify that M exhibits the containment
property by noting that [sg.] is denoted by 0", [Sl] by 1"0", and [so] by 0"1"0". Obviously,
[so] D_ [s01, [sl] D__ [Sl], and [s2] D__ [s2]. It. is easy to check that [sl] D_ [s2] and [so] D__
Note also that, by Proposition 3.3, each state is final and, since M is minimal, every cycle
in M is a loop. The fact that M exhibits the containment property and R is restricted is no
coincidence, as we demonstrate below.

THEOREM 3.4. Let R be a regular expression over E, andM S, E, 3, so, F) be a DFA
accepting L (R). Thefollowing three statements are equivalent:

1. R is a restricted regular expression,
2. L R is closed under abbreviations, and
3. M exhibits the containment property.

Proof In our proof, we will use the NDFA Me (T, E, #, to, E) constructed from
regular expression R (such that L(Me) L(R)) as detailed in [2], and in which e-transitions
are usually present. There is a one-to-one correspondence between non-e-transitions in Me
and occurrences of symbols in R, so that it makes sense to refer to the transition in Me
corresponding to an occurrence of symbol a in R, and vice versa. Furthermore, replacing an
occurrence of a in R by (a ?) is equivalent to including an e-transition from the source state
to the target state of the transition in Me corresponding to the occurrence of a.
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(1) == (2) Assume that R is restricted but that L(R) is not closed under abbreviations.
Then there is a symbol a E N and strings x, y E I* such that xay L(R) but xy L(R).
Now consider MR. Let T’ #*(t0, x), that is, the set of states MR can be in after reading
x. Since L(MR) L(R) and xy L(R), for no r 6 T’ can y be in [r]. On the other hand,
xay L(MR),so there is a state p 6 T’suchthatq #(p,a) and y 6 [q]. SinceRis
restricted, adding an e-transition from p to q leaves L(MR) unchanged. But if we do so, then
y 6 [p], xy L(MR), and L(MR) is no longer equal to L(R), which is a contradiction. We
conclude that L (R) is closed under abbreviations.

(2) == (3) We prove the contrapositive. Assume that Is] It] for some pair s, of
reachable states in M such that 6(s, a) t, for some a 6 I. That is, there is a string y E *
for which y 6 It] but y ’ Is]. Let x 6 * be a string for which 3*(s0, x) s. It follows
that xay L(M), but that xy L(M). Since L(M) L(R), we conclude that L(R) is not
closed under abbreviations.

(3) == (1) Once again we prove the contrapositive. Assume that R is not restricted. Then
there is an a-transition in MR from s to for which adding an e-transition from s to alters
L(MR). Let x I* be a string for which s E #*(t0, x). That is, there is a string y 6 [t] such
that y ’ [r] for any r 6 #*(t0, x); hence, xy fg L(MR). Now consider the DFA M. Assume
that 3*(s0, x) p. Since L(MR) L(M) and xay L(MR), there must be a state q in
M such that 3(p, a) q and y 6 [q]. However, y ’ [p], for otherwise xy L(M) which
would mean that L(M) L(MR). Hence, [p] [q], so M does not exhibit the containment
property. ]

THEOREM 3.5. REGULAR SIMPLE PATH can be decided in polynomial timebr restricted
regular expressions.

Proof Let the db-graph G and the regular expression R, where R is restricted, constitute
an instance of REGULAR SIMPLE PATH. By Lemma 3.1, it is sufficient to show that whenever
there is a path from x to y in G which satisfies R, there is a simple path from x to y satisfying
R. Assume that p (v, e en-, vn) is a nonsimple path from x v to y vn in
G. Sincepisnonsimple, vi vi, forsome < i,j < n. Assume thati < j, thatis,
p (Vl ei-, vi ej-1, vi, e.i v), and let p’ (v ei-1, vi, ej v).
Since p satisfies R, k(p) L(R). The path label )(p’) is an abbreviation of ,k(p). By
Theorem 3.4, L (R) is closed under abbreviations; hence, ) (p’) L (R) and p’ satisfies R.
Removing all such cycles from p will leave a simple path from x to y which satisfies R. [3

Thus the class of restricted regular expressions is one for which query evaluation can
be performed efficiently. We now show that, even though the classes of restricted regular
expressions and regular languages closed under abbreviations are subclasses of their regular
counterparts, at least they are closed under the regular operators.

TI-IEOP,EM 3.6. Let be an alphabet. The class of regular languages over which is
closed under abbreviations is also closed under alternation, concatenation, and closure.

Proof Let L and L2 be regular languages closed under abbreviations. It is immediate that
L1 -k- L2 is closed under abbreviations too. Now let L L1L2 and consider w w w2 6 L
such that to1 L and 1/)2 E L2. Let tO tOltOZ’ be an abbreviation of w. Clearly, string

tOi’ is an abbreviation of wi, 1, 2, and since L and L2 are closed under abbreviations,

tOa’ L and tO2’ G L2. Hence, tOltO2’ w’ is in L, allowing us to conclude that L is closed
under abbreviations.

Let L be a regular language closed under abbreviations. Since e 6 L and regular languages
closed under abbreviations are also closed under concatenation, L* must be closed under
abbreviations. [3

COROLLARY 3.7. The class of restricted regular expressions over is closed under
alternation, concatenation, and closure.
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Algorithm S: Compute the suffix language containment relation for a DFA.

INPUT:
DFA M (S, E, i, so, F)

OUTPUT:
For each pair s, S, whether [s] [t] or not.

METHOD:
1. for s S F and F do mark (s, t) od
2. for each ordered pair of distinct states (s, t) ((S x S) ((S F) x F)) do
3. if for some a ((s, a), 8(t, a)) is marked then
4. mark (s, t)
5. recursively mark all unmarked pairs on the list for (s, t) and

on the lists of other pairs that are marked at this step
else/* no pair ((s, a), (t, a)) is marked */

6. for all a E Z do
7. put (s, t) on the list for (i(s, a), 3(t, a)) unless 6(s, a) i(t, a)

od
fi

od

FIG. 5. Computing the suffix language containment relationfor DFA M (S, E, 6, so, F).

Example 6. One of the simplest restricted regular expressions is 0". Since the class
of restricted regular expressions is closed under alternation, concatenation, and closure, 0* 4-
1" and 0* 1"0" (which we have already seen) are restricted. On the other hand, restricted
expressions can also sometimes be built from expressions which are not restricted; examples
include 0* 10" + 0* (which we have already seen), (00)* + 0", and ((0" 1)* + 0")*.

Given a query QR, we would like to test whether R is restricted in order to know that it is
safe to use a polynomial time evaluation algorithm. By adapting an algorithm to minimize the
number ofstates ofa DFA 13], we can compute the suffix language containment relation for all
pairs of states in a DFA M. The suffix language containment relation will be used in subsequent
sections; it also provides an obvious method for testing whether or not a regular expression R is
restricted (using Theorem 3.4). The algorithm for computing the suffix language containment
relation, Algorithm S, is shown in Fig. 5. Lines 3 to 7 of Algorithm S are taken directly
from the algorithm in 13]. That algorithm marks pairs of inequivalent states, so it considers
unordered pairs of states. Lines and 2 of our algorithm are altered appropriately in order to

consider ordered pairs of states. If (s, t) is marked by Algorithm S, then [s] [t].
If M has n states, then Algorithm S runs in O(n2) time (assuming a constant alphabet)

13]. (An alternative, almost linear-time algorithm is given in [2].) Since the construction of
a DFA M accepting L(R) may take exponential time (in the size of R), using Algorithm S
1o test whether a regular expression is restricted is not efficient. However, it is important to
stress that we are trying to avoid the possibility of spending exponential time in the size of
the db-graph in answering a query. Also, it turns out that determining whether or not R is
restricted is a hard problem. Consider the following result.

PROPOSITION 3.8 [21]. Determining whether a regular expression over alphabet {0} does
not denote O* is NP-complete.

We will use this result to show that the problem of deciding whether a regular expression
over alphabet E is not restricted is NP-hard. To do so, we first prove the following.
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THEOREM 3.9. Let R be a starred regular expression over alphabet {0}. Deciding whether
R is not restricted is NP-complete.

Proof We first show that the problem is in NP. If R is not restricted, then L(R) is not
closed under abbreviations (Theorem 3.4). Thus, there is a string in 0* that is not in L (R). If
L(R) - 0", then, by considering a DFA accepting L(R), it can be seen that there must be an
n < 2IRI such that 0 ’ L(R). A nondeterministic polynomial time algorithm can verify that
R is not restricted by first guessing the binary representation of n and then testing whether
there is a path in the transition graph of an NDFA accepting L (R) of length n to a final state.
The latter step can be done deterministically in time polynomial in the length of R [21].

We reduce the problem of Proposition 3.8 to the present problem by showing that R is
not restricted if and only if R does not denote 0". We have already shown that if R is not
restricted, then L(R) - 0". Conversely, assume that R does not denote 0". Let x be the
shortest string in 0* that is not in L(R). Since R is starred, L(R) is infinite, so there is a string
xy L(R) for which y - . But x is an abbreviation of xy; hence, by Theorem 3.4, R is
not restricted. q

COROLLARY 3.10. Deciding whethera regular expression over alphabet is not restricted
is NP-hard.

4. Constrained cycles in db-graphs. In some instances, knowledge about the cyclic
structure of a db-graph G allows us to determine (without consulting G itself) that a particular
query QR can be evaluated in polynomial time on G. We have already shown that, in the
extreme case when G is acyclic, Q is always evaluable in polynomial time. Let us assume
that we know that the cyclic structure of G is constrained by a regular expression C; that is,
every cycle label in G is in L(C).

DEFINITION 12. Let C be a regular expression over 2, and G (N, E, 7r, E, ) be a
db-graph. Let Y be the set of cycle labels in G, namely

Y {)(c) ]c is a cycle in G}.

We say that G complies with C if Y c_ L(C). The regular expression C is called a cycle
constraint.

Each cycle constraint C defines a class of db-graphs whose cyclic structure satisfies C.
For example, in this way we can define the classes of bipartite graphs, loop-free graphs, and
acyclic graphs by specifying the regular expressions (_ _)+, _(_*), and 0, respectively.2 The
class of db-graphs with unconstrained cycles is defined by the expression _+, which denotes
+.

Before continuing, we need to introduce some terminology regarding properties of the
intersection graph of a db-graph and a transition graph.

DEFINITION 13. Let I be the intersection graph of db-graph G (N, E, 7r, Y;, ))
and transition graph T of NDFA M (S, 2, 5, so, F). We say that a path p ((vl,

(vn, sn)), where vi N and si S, in I is db-simple if vi 7/= vj, <_ i, j <_ n. In other
words, p is db-simple if and only if (vl vn) is a simple path in G. In addition, we call I
simplicial if whenever there is a path p ((vl, sl) (v, sn)), where vl 7 vn and s 6 F,
there is a db-simple path from (v l, sl) to (vn, s’), s, 6 F, in which the first components of
nodes form a subset of the first components of nodes on p.

From the above definition and Lemma 3.1, it is clear that if the intersection graph I of a
db-graph and the transition graph corresponding to a regular expression R is simplicial, then
Q can be evaluated in polynomial time in the size of I. The following theorem characterizes
simplicial intersection graphs in the presence of cycle constraints.

2Recall that if I {al an }, then (underscore) is shorthand for al + + an.
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THEOREM 4.1. Let C be a cycle constraint. For query QI, let M S, 52, 3, so, F) be a
DFA accepting L(R) and T be the transition graph ofM. For every db-graph G complying
with C, the intersection graph I of G and T is simplicial if and only if whenever there is a
pathfrom a reachable state s to in T satisfying C, [s] D_ [t].

Proof (If) Let G (N, E, p, 52, )) be a db-graph complying with C and

P (U1 ei-1, ui ej-1, ui Un)

be a nonsimple path satisfying R in G. Hence, there is a path q from (Vl, SO) to (vn, sf),
sf 6 F, in I. For notational simplicity, let wl )(el)... ,k(ei_l), w2 )(ei)... )(ej_l),
and w3 )(e.i)...)(en_). So WlW2W3 L(R). Since G complies with C, w2 L(C).
Assume that 3*(so, Wl) s and 3*(s, w2) t. So there is a path in T from s to satisfying
C and a path from (vi, s) to (vi, t) in I; hence, by assumption, [s] D__ [t]. The string w3 is in
[t] because p satisfies R, so w3 6 [s] as well. It follows that WlW3 6 L(R) and therefore that

pt (l)1 ei-1, Ui, ej+l

satisfies R. This process can be repeated to obtain a db-simple path q’ from (Vl, so) to (vn, s’
sf 6 F, such that the first components of q’ form a subset of the first components of q. We
conclude that I is simplicial.

(Only if) Assume that there is a path p from s to in T which satisfies C but for which
[s] [t]. The constraint C cannot be 0, for otherwise p would not satisfy C. Since s is
reachable in T, there is a string w such that 3*(so, wl) s. Furthermore, [t] cannot be 0,
for otherwise [s]

_
[t]. So let w3 be a string in [t] but not in [s], and w2 be the path label of

p. The string w2 cannot be since p must be of length greater than zero. We can construct a
db-graph G (N, E, , E, ,k) comprising a single nonsimple path

q (Vl ei-1, l)i ej-1, vi

such that )(el)...)(ei_l) Wl, )(ei)...)(.]-1) //32, and )(e.i)...)(en-1) W3. G
complies with C since the only cycle in G is labelled with w2 which is in L(C). The path q
satisfies R because to 1//)2//)3 G L (R). Hence, there is a path from (Vl, s0) to (v, sf), sf F,
in I. However, the path

q’ (vl el-l, Ui, j+l Un)

does not satisfy R since ww3 L(R) (otherwise w3 would be in [s]). Consequently, there
is no db-simple path from (v, so) to (v, sf), sf F, in I, and we conclude that I is not
simplicial. [

The above result does not depend on the particular DFA accepting L (R). Consider two
DFAs, M1 ($1, , 31, so, F1) and Me ($2, ;, 32, to, F2), accepting L(R), and let s $1
and $2 be a pair of states such that there is a string x for which 3(s0, x) s and
3(t0, x) t. Because L(M1) L(M2), it must be the case that [s] [t] (that is, s -= t).
In other words, the fact that Theorem 4.1 is true independent of the particular DFA chosen
is a consequence of the Myhill-Nerode theorem, which states that a language is accepted by
a DFA if and only if it is the union of some of the equivalence classes of a right-invariant
equivalence relation of finite index 13]. This leads us to the following definition.

DEFINITION 14. Let R be a regular expression and T be the transition graph for a DFA
accepting L (R). We say that R is compatible with cycle constraint C if whenever there is a
path from (a reachable state) s to in r satisfying C, [s]

__
[t].

Theorem 4.1 generalizes our previous results. For the case when G is acyclic, C 0, and
no path in T satisfies C so the result holds vacuously. In other words, every regular expression
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R restricted G acyclic

G complies with a cycle constraint compatible with R

FIG. 6. Relationship between regular expression R and db-graph G for query QR.

Algorithm: Testing whether a regular expression is compatible with a cycle constraint.

INPUT:
Regular expression R and cycle constraint C.

OUTPUT:
Whether or not R is compatible with C.

METHOD:
1. Construct DFAs Me ($1, E, 1, il, F1) accepting L(R) and

Mc ($2, E, 82, i2, F2) accepting L(C).
2. Compute the suffix containment relation for Me (Algorithm S in 3).
3. Construct the intersection graph I of Me x Mc.
4. Compute the transitive closure I+ of I.
5. If [s] D_ [t] for each edge ((s, i2), (t, f)) in I +, where f 6 F2, answer "yes";

otherwise answer "no."

FIo. 7. Testing whether a regular expression is compatible with a cycle constraint.

is compatible with 0. When the cyclic structure of G is unconstrained, C denotes 12+, and
every path in T satisfies C, so [s] must contain [t] for all pairs of reachable states in T. This
corresponds to the case of restricted regular expressions; that is, a regular expression R is
compatible with C (where C denotes I2 +) if and only if R is restricted. The relationship
among these properties is shown in Fig. 6.

By appealing once again to the result of Lemma 3.1, we obtain the following corollary to
Theorem 4.1.

COROLLARY 4.2. Let C be a cycle constraint and G be a db-graph that complies with C.
A query Qe on G can be evaluated in polynomial time in the size of both R and G if R is

compatible with C.
A simple algorithm for testing whether a regular expression is compatible with a cycle

constraint is given in Fig. 7. Because it constructs DFAs from regular expressions R and C,
the algorithm can take exponential time in the length of R and C. However, deciding whether
R and C are compatible is NP-hard, since deciding whether R is restricted is a special case of
testing compatibility.

THEOREM 4.3. Given a regular expression R and a cycle constraint C, deciding whether
R and C are compatible is NP-hard.

Example 7. Let R (00)*. A DFA Me accepting L(R) is shown in Fig. 8(a). Because
[a] [b], we know that R is not restricted. In fact, we saw in Theorem 2.1 that deciding
if (x, y) Qe(G) is NP-complete for db-graphs in general. However, Qe can be evaluated
in polynomial time on bipartite graphs. As we have already seen, the regular expression
C (_ _)+ defines the class of bipartite graphs. A DFA Mc accepting L(C) is shown in
Fig. 8(b), while the intersection graph I of Me and Mc is given in Fig. 9. The only paths in
I satisfying C which start from a node containing the initial state of Mc and end at a node
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(a) (b)

FiG. 8. DFAs (a) MR for R (00)* and (b) Mc for C (_ _)+.

0 0

o

0 0

FIG. 9. The intersection graph I ofMR and Mc (Fig. 8).

containing a final state of Mc are from (a, A) to (a, D) and from (b, A) to (b, D). Since
[a]

_
[a] and [b]

___
[b], Corollary 4.2 tells us that QR can be evaluated in polynomial time

on any bipartite graph.
Given a query QR and a db-graph G, if we know that G complies with cycle constraint

C, we can test whether R is compatible with C using the above algorithm. If so, we can use a
polynomial-time algorithm to evaluate QR on G. On the other hand, if we do not know about
the cyclic structure of G, it seems that we might have to resort to an exponential-time algorithm
if R is not restricted. In the next section, however, we describe an evaluation algorithm which
runs in polynomial-time in the size of G if G happens to comply with a cyclic constraint with
which R is compatible.

5. An evaluation algorithm. In this section, we describe an algorithm for evaluating a
query Qe on a db-graph G. As is to be expected from the results of 2, the algorithm does
not run in polynomial time in general. It does, however, run in polynomial time under the
sufficient conditions identified in 3 and 4, namely, when G is acyclic, R is restricted, or G
complies with a cycle constraint compatible with R. In fact, we show that the algorithm runs
in polynomial time if G and R are conflict-free, a condition implied by those above.

The evaluation algorithm traverses paths in G, using a DFA M accepting L (R) to control
the search by marking nodes as they are visited. We must record with which state of M a node
is visited, since we must allow a node to be visited with different states (which correspond to
distinct nodes in the intersection graph of G and M). In order to avoid visiting a node twice
in the same state, we would like to retain the state markings on nodes as long as possible.
Unfortunately, the following example shows that, in general, requiring answer nodes to be
connected by simple paths in G and retaining state markings can lead to incompleteness in
query evaluation.

Example 8. Consider the query Qe, where R 0"1+0*. An automaton M accepting
L (R) and a db-graph G are shown in Fig. 10. Note the similarity betweenM and the automaton
of Fig. 3 in 3. Assume that we start traversal from node A in G, and follow the path to B,
C, and D. Nodes A, B, C, and D are marked with states a, a, b, and b, respectively, and the
answers (A, C) and (A, D) are found, since b is a final state. We cannot mark C with state c
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M:

0 1

FIG. 10. A DFA M and db-graph G.

because (A, B, C, D, C) is a nonsimple path. If we now backtrack to node C, we can mark E
with b, resulting in the answer (A, E) being found. Node D is still marked with b (as shown
in Fig. 10), so we backtrack to C. However, once again we cannot mark B with state c because
(A, B, C, B) is a nonsimple path. So we backtrack to A, and find that E is already marked
with state b. Consequently, the search terminates without the answer (A, B) being found.

It turns out that it is safe to retain markings when G is acyclic or R is restricted. However,
because of the structure of a particular db-graph G, it might be the case that we can retain
markings and evaluate QR in polynomial time even if G is not acyclic and R is not restricted.

DEFINITION 15. Let I be the intersection graph of a db-graph G and a DFA M
(S, E, 3, so, F). An initial path in I is any path of the form ((v0, so) (vn, sn)). The
initial path p is conflict-free if (1) p is db-simple, or (2) p is q. (v, s), where q is conflict-free
and if v appears in q, then for some (v, t) in q, [t]

_
Is]. If for no (v, t) in q is it the case that

It]

_
Is], then there is a conflict at v.

If every simple initial path in I is conflict-free, then I is said to be conflict-free,3as are G
and R.

It is obvious that if G is acyclic, then I is conflict-free no matter what regular expression
R appears in QR. Also, if R is restricted, then, by Theorem 3.4, M exhibits the containment
property; hence, I is conflict-free irrespective ofthe structure of G. Finally, if G complies with.
a cycle constraint compatible with R, then, by Theorem 4.1, G and R are conflict-free. We
will show that Qe can be evaluated in polynomial time if I is conflict-free. Hence, conflict-
freedom is another (weaker) sufficient condition for Qe to be polynomial-time evaluable (see
Fig. 11).

The result of the following lemma is used in our evaluation algorithm.
LEMMA 5.1. Let I be the intersection graph of a db-graph G and a DFA M

(S, , 3, so, F) accepting L (R). An initial path p in 1 is conflict-free if and only if (1) p
is db-simple or (2) p is q. (v, s), where q is conflict-free and if v appears in q, then for the
first (v, t) in q, [t]

_
[s].

3This is a strictly weaker definition of conflict-freedom than that given in [18].



FINDING REGULAR SIMPLE PATHS IN GRAPH DATABASES 1251

R restricted G acyclic

G complies with a cycle constraint compatible with R

G and R are conflict-free

FIG. 11. Relationship between regular expression R and db-graph G for query QI.

1 0

00

FIG. 12. The intersection graph I ofdb-graph G and DFA M ofFig. 10.

Proof The "if" direction is trivial. Assume that p is conflict-free but not db-simple.
Furthermore, assume that p is q. (v, s), where q is conflict-free and v appears in q. We prove,
by induction on the number of occurrences of v in q, that [t]

_
[s] where (v, t) is the first

occurrence of v in q.
The basis in which v occurs only once in q is trivial. Assume that the inductive hypothesis

is true for fewer than n occurrences of v in q, and let p be q (v, s). Since p is conflict-free,
we know from the definition that for some (v, r) in q, [r]

_
[s]. By the inductive hypothesis,

[t] D_ [r]; hence, [t] D_ [s], as required, rq

Example 9. Consider again the DFA M and the db-graph G of Example 8 shown in
Fig. 10. The intersection graph I of G and M is shown in Fig. 12. Recall that, if markings
were retained, the answer (A, B) would not be found. However, there is a conflict in I. This is
because there is an initial path in I from (A, a) via (B, a) to (B, c), but [a] ; []. Algorithm
C detects such conflicts and unmarks nodes on backtracking, enabling the answer (A, B) to
be found.

We now proceed with a description of Algorithm C, shown in Fig. 13. The algorithm uses
a DFA M (S, E, 6, so, F) accepting L(R) to control a depth-first search of the db-graph
G (line 1). There are two reasons why a DFA rather than an NDFA is used. The first is to
ensure that no conflicts are encountered when R is restricted. The second reason is to avoid
detecting unnecessary conflicts in I. In an NDFA, if [s] [t], it might be the case that there
is a state q such that both s and q are in 6*(s0, w), for some to 6 E*, and [q] [t]. If node v
in G is first marked with s, following which a cycle at v satisfying Lst is traversed, a conflict
would be registered. This is unnecessary since v would subsequently be marked with q, and
any simple path from v satisfying [t] would be found because [q] [t].

Algorithm C traverses the transition graph of M and the db-graph G simultaneously, in
effect performing a depth-first search of the intersection graph I of G and M. We will often
refer to trees of the depth-first search forest generated by Algorithm C. Because of line 5(a),
each tree T in the forest is rooted at an initial node of I. When a final node of I is reached,
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Algorithm C" Evaluation of a query on a db-graph.

INPUT:
Db-graph G (N, E, p, E, )), query

OUTPUT:
QR (G), the value of Q on G.

METHOD:

1. Construct an DFA M (S, E, 3, so, F) accepting L (R).
2. Initialize Q (G) to 0.
3. For each node v E N, set CM[v] and PM[v] to 0.
4. Test [s] _D [t] for each pair of states s and in M.
5. For each node v E N,

(a) call SEARCH(v, v, so,conflict) (see Fig. 14)
(b) reset PM[w] to 0 for any marked node w N.

FIG. 13. Evaluation ofa query on a db-graph.

7.
8.
9.
10.
11.
12.

procedure SEARCH (u, v, s, var conflict)
/.

u and v are nodes in the db-graph
s is a state in the DFA
conflict is a Boolean flag

*/
conflict +-- false
CM[v] +-- CM[v] tJ {s}
ifs F then QR(G) +-- QR(G) U {(u, v)} fi
for each edge in G from v to w with label a do

if 6(s, a) and CM[w] and f PM[w] then
ifFIRST(CM[w]) q and ([q] ; It]) then

conflict <-- true

else/* Cm[w] 0 or [q] [t] */
SEARCH (u, w, t, new-conflict)
conflict +-- conflict or new-conflict

fi
fi

od

CM[v] <-- CM[v] {s}
if not conflict then PM[v] <-- PM[v] t3 {s} fi

end SEARCH

FIG. 14. Search procedurefor query evaluation.

line 8 adds the appropriate pair of nodes from G to Q e (G). Lines 9 and 10 force the algorithm
to consider only paths in G which satisfy R, that is, paths in I.

While the traversal of I is restricted to simple paths, it is not necessarily restricted to

db-simple paths; we will prove below that it is safe to traverse non-db-simple paths in the
absence of conflicts. Nodes in G are marked with states ofM when they are visited. Two sets
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of markings are used for each node v: (1) a set of current markings (CM[v]) which indicates
the states with which v is associated on the current path on the stack of procedure SEARCH
(lines 7 and 15), and (2) a set of previous markings (PM[v]) which represents earlier markings
of v, excluding the current path (line 16). Current markings are used to avoid cycles in I and
to detect conflicts, while previous markings are used where possible to prevent a node in G
from being visited more than once in the same state during a single execution of line 5(a).
The function FIRST applied to marking set CM[v] returns the first state marking for v on the
current path, or false if there is no marking.

A node w is visited in state only if is not in the previous markings of w and either w
is currently unmarked (CM[w] is empty) or the first state marking q for v on the current path
is such that [q] [t], that is, there is no conflict between q and at v (lines 10 to 13). Note
that there may in fact be a conflict between and some later marking of v on the current path,
but this does not affect the correctness of the algorithm, as we will demonstrate below.

Lines 6, 11, and 12 implement the conflict detection; that is, conflict is true if there is a
conflict between states q and at node w. If conflict is set to true at line 12, then lines 14, 15,
and 16 ensure that the marking of any node which was on the stack at the time the conflict
was detected is removed once that node is unstacked. If no conflict occurs on any path rooted
at (v, s), then s is added to the previous markings of v in line 16.

In the proofs that follow, we will often say that (v, s), for example, is on the stack of
procedure SEARCH. The variables v and s refer to the middle two parameters of SEARCH
and correspond to the node (v, s) in the corresponding intersection graph. The reason for
excluding the other two parameters of SEARCH is that u (the first) remains unchanged during
an execution of Line 5(a), while we are not always concerned about the value of conflict. We
will also sometimes exclude conflict when referring to a particular invocation of SEARCH, for
example, SEARCH(u, v, s). Before proving the correctness of Algorithm C, we demonstrate
its behaviour by means of an example.

Example 10. Consider again the intersection graph I of Fig. 12. Two possible depth-first
search trees (DFSTs) traversed by Algorithm C are shown in Fig. 15. Note that nodes in a
DFST can be repeated because of unmarking; for example, node (D, b) appears three times
in Fig. 15(a). Dotted edges in the figure lead to nodes for which SEARCH is not called,
either because of a conflict (those in (a)), or because the node is already marked via either
CM or PM (as in (b)). These latter edges correspond to forward, back, and cross edges in a
conventional DFST [2].

Assume that Algorithm C starts traversal from node (A, a), that is, SEARCH(A, A, a) is
called at line 5(a), and that the order of traversal is according to the DFST in Fig. 15(a). Since
initially nodes B, C, and D have no current marking, line 11 evaluates to false and SEARCH
is called successively with (B, a), (C, b), and (D, b). Because b is a final state, (A, C) and
(A, D) are added to QR(G) by line 8. Although C already has a current marking (namely
b), the fact that [b]

___
[c] means that line 11 again evaluates to false and SEARCH is called

with (C, c). Now because the first marking for B is a and [a] [c], a conflict is registered at
line 12. The algorithm now backtracks, removing current markings (line 15) and not assigning
previous markings (line 16).

Considering (B, c) from (C, b) again gives rise to a conflict, so the algorithm tries the
path via (E, b). Note that (D, b) and (C, c) are no longer marked so they are revisited, once

again giving rise to a conflict. By the time the algorithm backtracks to (A, a) all nodes (other
than A) are unmarked, so that the db-simple path to (B, c) can finally be found and (A, B)
added to QR (G).

If the path to (B, c) via (E, b) had been chosen first by Algorithm C (as in Fig. 15(b)),
then no conflicts would have been detected, resulting in previous markings being kept for B,
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(a) (b)

FIG. 15. Two possible DFSTs.

D, and E. On traversing the path to (C, b), line 10 would ensure that (B, c), (D, b), and
(E, b) are not revisited and no conflicts are registered.

LEMMA 5.2. If conflict is false at line 16 of SEARCH(u, v, s), then Algorithm C has
performed an entire depth-first search of I from node (v, s).

Proof The proof proceeds by induction on the length of the longest simple path p from
(v, s) in I. If p is of length zero, the result follows trivially. Assume the result holds for nodes
in I from which the longest simple path is of length n 1, and consider node (v, s) for which
the longest simple path in I is of length n.

For conflict to be false at line 16 of SEARCH(u, v, s), it must be that, for each successor
(w, t) of (v, s) in I, either (1) PM[w] at line 10, or (2) new-conflict must have been
false at line 14. In case (1), conflict must have been false at line 16 of SEARCH(u, w, t) in
order for to be added to PM[w]. In case (2), conflict must have been false at line 16 of
SEARCH(u, w, t) so that new-conflict is false at line 14. Since the longest simple path from
(w, t) in I must be of length less than or equal to n 1, we conclude from the inductive
hypothesis that an entire depth-first search from (w, t) has been performed by Algorithm C.
Clearly, lines 9 and 10 consider every successor of (v, s) in I, so the result follows.

DEFINITION 16. A node (v, s) in DFST T is called a conflict predecessor if, for some
successor (w, t) of (v, s) in I, w appears in an ancestor of (v, s) in T and, for the first such
occurrence (from the root), say (w, q), it is the case that [q] ; [t]. In other words, there is a
conflict between q and at w.

LEMMA 5.3. Consider the execution ofSEARCH(u, v, s) in DFST T. State s is added to

PM[v] in line 16 ifand only ifno descendant of(v, s) in T is a conflictpredecessor.
Proof If s is added to PM[v] in line 16, then conflict must be false. Hence, by Lernma 5.2,

an entire depth-first search of I from (v, s) must have been performed. But a conflict prede-
cessor is a node (w, t) in T which has a successor in I that does not appear as a successor of
(w, t) in T. Thus, no conflict predecessor can appear as a descendant of (v, s) in T.

If no descendant of (v, s) in T is a conflict predecessor, then conflict is false for all such
descendants and hence for (v, s) itself. Thus, s is added to PM[v] in line 16.
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THEOREM 5.4. Let G (N, E, , , )) be a db-graph, and R be a regular expression
over E. Let M (S, E, 3, so, F) be a DFA accepting L(R), and I be the intersection graph
ofG and M. Algorithm C is correct; that is, Algorithm C adds (u, z) to QR(G) ifand only if
there is a db-simple path from (u, so) to (z, sf ), sf E F, in I (that is, there is a simple path
from u to z in G satisfying R).

Proof Algorithm C clearly terminates, since line 10 ensures that only simple paths in I
are considered, and no simple path from an initial node is considered more than once.

(Only if) If the algorithm adds (u, z) to QR (G), then it must traverse a DFST T rooted at

(u, so) in which there is a simple path p from (u, so) to (z, r), r E F.
Assume that p is not db-simple, and that the db-node v appears more than once on p.

Let the first occurrence of v on p be in/-node (v, s) and the last such occurrence be in (v, t).
Thus s was the first state added to CM[v], and in order for SEARCH(u, v, t) to have been
called in line 13, line 11 must have ensured that [s]

_
[t]. Hence, there is a path p’ from

(v, s) to (z, q), q 6 F, in I such that the sequence of db-nodes on p’ is identical to that on
the path from (v, t) to (z, r) on p. Since (v, s) and (v, t) are the first and last occurrences,
respectively, of v on p, there is a path from (u, so) to (z, q), q 6 F, in I which is db-simple
with respect to v.

A simple induction on the number of repeated db-nodes on p shows that there is a db-
simple path from (u, so) to (z, sf), sf F.

(If) Assume there is a db-simple path p from (u, so) to (z, sf), sf F, in I. Obviously,
if the algorithm traverses p we are done. Assume that it does not. Let (v, s) be the last node
on p that is traversed, and (w, t) be the successor of (v, s) on p. The reason (w, t) is not
visited cannot be because of a conflict, since p is db-simple. So it must have been the case that

PM[w] at line 10. By Lemmas 5.2 and 5.3, an entire depth-first search of I from (v, s)
must have been performed. Since there is a path from (v, s) to (z, sf) in I, SEARCH(u, z, sf)
must have been called, in which case (u, z) would have been added to Q(G) in line 8. C]

THEOREM 5.5. In the absence ofconflicts, Algorithm C runs in an amount oftime which
is bounded by a polynomial in the size ofthe db-graph.

Proof The essential point is that, in the absence of conflicts, Algorithm C performs
a normal depth-first search of the intersection graph which is polynomial in the size of the
db-graph. A detailed analysis of the time complexity of the algorithm follows.

Let Q be a query where R is of length m, and G be a db-graph with n nodes and e

edges. Although there can be as many as O (2m) states in a DFA accepting L (R), this is just a
constant in terms of the size of G. Nevertheless, we will assume that M has q states and will
include q in our analysis of the time complexity of Algorithm C. Since M has at most O(q2)
transitions, the intersection graph I for G and M has O(qn) nodes and O(qZe) edges.

Line of Algorithm C can be done in O(q2) time, while line 2 requires only constant
time. Line 3 takes O(n) time and line 40(q2) time. Line 5 is executed n times, and, in any
execution, each node in I is visited at most once if I is conflict-free. This is because when
(v, s) is stacked, s is added to CM[v] and line 10 ensures that (v, s) cannot be restacked; when
(v, s) is unstacked, s is added to PM[v] (line 16) and is not removed from PM[v] until the
present execution of line 5(a) has terminated. Once again, line 10 ensures that (v, s) cannot
be revisited during the present execution of 5(a).

Only constant time is needed for lines 6, 12, and 14. For each db-node v, CM[v] can be
implemented as a stack with access to its bottom element through the function FIRST. Hence,
lines 7, 11, and 15 can be performed in constant time, as can line 16 since {s} and PM[v]
are disjoint (by line 10). Line 8 can be implemented to take O(q) time: the pair (u, v) is
added to Q(G) if and only if there is no other final state in PM[vl. Line 10 can also be
done in O (q) time. Lines 9 and 10 inspect each edge leaving a node in I, and since no node
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in I can be revisited, SEARCH can be called O (q2e) times. Each call takes O (q) time, so a

single execution of line 5(a) takes O (q3e) time. A single execution of line 5(b) takes O (n)
time, so the total time spent in line 5 is 0 (n (q3e + n)). Consequently, Algorithm C runs in
O(n(q3e + n)) time. In terms of the size of G, Algorithm C runs in O(ne) time (under the
assumption that there are more edges than isolated nodes). [3

From the relationship depicted in Fig. 11, we obtain the following.
COROLLARY 5.6. Algorithm C evaluates Q1 on G in time polynomial in the size ofG if
1. R is restricted,
2. G is acyclic, or
3. G complies with a cycle constraint compatible with R.
Even in the presence of conflicts, Algorithm C can run in polynomial time in the size of

G. This is the case, for example, if R is a (*)-free regular expression. Let q be the length of R.
If R is (*)-free, there are only a finite number of strings in L(R) and the length of the longest
such string is q. This then is also an upper bound on the length of the longest db-simple path in
I. Hence, there can be at most O (nq) db-simple paths in I. So even if Algorithm C traverses
every db-simple path in I exactly once (the worst case), it still runs in polynomial time in the
size of G.

A number of circumstances other than those identified above can lead to polynomial-time
solutions. For example, there are certainly queries that can be evaluated in polynomial time on
arbitrary db-graphs but whose regular expressions are not restricted. One such class of regular
expressions are those of the form wa*, where w is a string of fixed length. Unfortunately,
there are db-graphs on which Algorithm C takes exponential time to evaluate the associated
queries.

Clearly, there is much scope for further investigation. Additional classes of queries/db-
graphs for which polynomial-time evaluation is possible should be identified and appropriate,
more general evaluation algorithms developed. Algorithm C itself could be enhanced so that
it reacts in a more sophisticated manner on detecting a conflict. One possibility is to flag the
source of the conflict and not to unmark nodes until the algorithm backtracks from the flagged
node.

6. Conclusions. We have addressed the problem of finding nodes in a labelled, directed
graph which are connected by a simple path satisfying a given regular expression. This
study was motivated by the observation that many recursive queries on relational databases
can be expressed in this form, and by the implementation of a query language based on this
observation.

We began by describing how a naive algorithm might evaluate such queries. Although
this algorithm runs in exponential time in the worst case, we showed that we cannot expect to
do better since the evaluation problem is in general NP-hard. Using the fact that the associated
problem for paths in general (as opposed to simple paths) is solvable in polynomial time,
we characterized the class of restricted regular expressions, whose associated queries can be
evaluated in polynomial time.

Having considered restrictions on the structure of regular expressions, we turned our
attention to the cyclic structure of the graphs being queried. We introduced the notion of a

cycle constraint, and showed that if a graph G complied with a cycle constraint which was
compatible with a regular expression R, then QR(G) could be evaluated in polynomial time.
Finally, we presented an algorithm for evaluating arbitrary expressions on arbitrary graphs.
This algorithm runs in polynomial time if (a) the regular expression is restricted or closure-
free, (b) the graph complies with a cycle constraint compatible with the regular expression
(a special case being when the graph is acyclic), or (c) the regular expression and graph are
conflict-free.
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While it is difficult to say how often the above conditions will be encountered in practice,
we did show that the class ofrestricted regular expressions is closed under the regular operators.
A good starting point for investigation into larger classes of expressions and graphs with
polynomial-time evaluation algorithms would be to attempt to identify the class of expressions
and graphs which are not conflict-free, but on which Algorithm C runs in polynomial time.

Our emphasis in this paper has been on identifying circumstances in which the regular
simple path problem can be solved in polynomial time, rather than designing the most efficient
algorithm for these cases. We believe this is a topic for future research. For example, it would
be interesting to see whether techniques used on sparse graphs, such as those in 16], could
be employed in our algorithm in order to improve its efficiency on sparse graphs.

We should point out that the analysis in this paper, and the implementation itself, assume
the graph can be entirely stored in main memory. This is a reasonable assumption in many
cases, especially because in the intended applications of our query language G+ the graph
is often only the fraction of the database that can be presented visually in a natural way.
Relaxing this assumption provides an interesting area for further study. Other researchers,
investigating similar algorithms for transitive closure, have claimed that they are amenable to
efficient secondary storage implementation 15].

Finally, we note that research has been done on the expressive power of graph-based query
languages in which the restriction of simple path semantics is dropped. One such language that
captures exactly the queries computable in nondeterministic logarithmic space is presented
in [8]. On-line algorithms for regular path finding are given in [5], while a survey of many
results can be found in [24].
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Abstract. The purpose of this paper is a study of computation that can be done locally in a distributed network,
where "locally" means within time (or distance) independent of the size of the network. Locally checkable labeling
(LCL) problems are considered, where the legality of a labeling can be checked locally (e.g., coloring). The results
include the following:

There are nontrivial LCL problems that have local algorithms.
There is a variant of the dining philosophers problem that can be solved locally.
Randomization cannot make an LCL problem local; i.e., if a problem has a local randomized algorithm
then it has a local deterministic algorithm.
It is undecidable, in general, whether a given LCL has a local algorithm.
However, it is decidable whether a given LCL has an algorithm that operates in a given time t.

Any LCL problem that has a local algorithm has one that is order-invariant (the algorithm depends only
on the order of the processor IDs).

Key words, distributed computation, local computation, graph labeling problem, resource allocation, dining
philosophers problem, randomized algorithms
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1. Introduction. A property of distributed computational systems is locality. Each pro-
cessor is directly connected to at most some fixed number of others. Despite the locality of
connections, we may want to perform some computation such that the values computed at
different nodes must fit together in some global way. The purpose of this paper is to attempt
to understand what can be computed when algorithms must satisfy a strong requirement of
locality, namely, that the algorithm must run in constant time independent of the size of the
network. A processor running in constant time must base its output solely on the information
it can collect from processors located within radius from it in the network. Apart from the
obvious advantage of constant time (that constant time takes less time than nonconstant time),
another advantage is improved fault-tolerance: if the algorithm runs in constant time, a failure
at a processor p can only affect processors in some bounded region around p. Another mo-
tivation for locality is in recent work on self-stabilizing distributed algorithms; for example,
Afek, Kutten, and Yung [2] introduced the idea of detecting an illegal global configuration by
checking local conditions.

Our work has three goals: first, to lay some groundwork for studying the question of what
can and cannot be computed locally; second, to establish some basic, general results; third, to
study particular examples.

A network is modeled as an undirected graph, where each node represents a processor
and edges represent direct connections between processors. We consider only networks of
bounded degree. Our main focus is on computational problems of producing "labelings" of
the network. Since our subject is constant time algorithms, it makes sense to restrict ourselves
to labelings such that the validity of a labeling can be checked locally (i.e., by checking within
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some fixed radius from the node). We call these locally checkable labelings (LCLs). Familiar
examples of LCLs are vertex coloring, edge coloring, and maximal independent set (MIS). In
the case of MIS, for example, one local constraint says that if vertex v is in the MIS then no
neighbor of v is in the MIS; another constraint says that if v is not in the MIS then v has at
least one neighbor in the MIS. In general, the output labeling might depend on some initial
input labeling, and most of our general results hold in this case. If all processors are identical,
it is already known (by familiar symmetry arguments) that the types of labeling problems
that can be solved deterministically are very limited. So we assume that processors are given
unique numerical IDs. If an algorithm runs in time then, for each vertex v, the processor
at v can collect information about the structure of the network, including processor IDs (and
possibly input labels), in the region of radius around v. Then the processor must choose its
output label based on this information. The algorithm must be correct, that is, the entire output
labeling must be valid, regardless of how the processors are numbered with unique IDs.

Several recent papers have given improved time algorithms for certain LCLs such as
MIS and vertex coloring, for example, Awerbuch et al. [3], Goldberg, Plotkin, and Shannon
[8], Linial [10], and Panconesi and Srinivasan [15]. However, these papers do not consider
constant time; the running time of the algorithms grows with the size of the network. Indeed
the time must grow. In the first paper to establish the limitations of locality in this context,
Linial 10] proved that, even on ring networks, an MIS or a 3-coloring of vertices cannot be
found in constant time.

In light of previous work on locality, two questions come to mind:
Can any nontrivial LCL problem be solved in constant time?
If the answer to the first question is "yes," can we characterize the LCL’s that can be
solved in constant time?

One of our results is that the answer to the first question is "yes." Define a weak c-coloring
of a graph to be a coloring of the vertices with c colors such that each nonisolated vertex has at
least one neighbor colored differently. It is easy to see that a weak 2-coloring exists for every
graph. We show the following for every fixed d:

Consider the class of graphs of maximum degree d, where every vertex has odd
degree. There is a c c(d) and an algorithm that finds a weak c-coloring in time
2 for any graph in this class. Here c is exponential in d, but in an additional time
O (log*d) the number of colors can be reduced to 2.

This result is the best possible in three senses:
For d-regular graphs where d is even, for no constant c c(d) is there a constant
time algorithm that finds a weak c-coloring.
The time bound 2 cannot be reduced to 1.
If we change the definition of a coloring so that every vertex v must have at least two
neighbors colored differently than v then, even for d-regular graphs with d odd, a

coloring cannot be found in constant time.
Although a weak coloring might seem a strange concept, we have used it as a basis for

a solution to a certain resource allocation problem. A well-known paradigm for resource
allocation problems is Dijkstra’s dining philosophers problem, which was later generalized
from a ring to arbitrary graphs (see, e.g., [4], 11 ]). In the version of the problem we consider,
there is a given conflict graph where each node represents a processor and each edge represents
a resource (a "fork") which is shared by the two endpoint processors. It is assumed that if two
processors share a resource, then they are also close in the communication network. At any
time a fork can be "owned" by at most one of the processors that share it. Each processor can

Actually, Linial gives a lower bound of S2 (log* n) on oriented tings of size n, which matches an upper bound of
Cole and Vishkin [6] to within a constant factor.
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be in one of three states: resting, hungry, or eating. The processors operate asynchronously.
A resting processor can become hungry at any time. In order to eat, a processor must obtain
certain forks; we get different types of problems depending on precisely what "certain" means.
A processor eats for at most a bounded time, after which it returns to the resting state. A
processor p can attempt to "grab" a certain fork, and can release an owned fork. The grab
operation will fail if the fork is currently owned by the other processor q; if this occurs, p may
decide to wait for q to release the fork. We require a solution that is starvation free, meaning
that a hungry processor will eventually be able to eat. An important measure of the goodness
of a solution is the maximum length of a waiting chain that can develop. As pointed out by
Choy and Singh [5], a difficulty with long waiting chains is that if a processor p fails while
holding a fork, the failure will affect every processor behind p in the waiting chain.

In the traditional version of this problem, if a processor shares d forks (has d incident
edges in the conflict graph), it can eat only when it has obtained all d forks. In this case,
Lynch [11] gave a solution with waiting chains of length O(c), assuming that the conflict
graph is edge colored with c colors. The maximum length was reduced to O (log c) by Styer
and Peterson [17], again assuming that an edge coloring is given. Choy and Singh [5] give a

solution with waiting chains of length at most 3, assuming that a certain vertex coloring with
d + colors is given. All of these solutions require that the conflict graph be initially colored in
some way. Such colorings (provably) cannot be found in constant time. It is therefore natural
to ask whether there is any purely local solution to this problem, i.e., a solution with waiting
chains bounded by a constant, and which does not assume any initial coloring of the conflict
graph. In fact, it can be shown that there is no local solution to this problem by reducing the
MIS problem to it. However, we show that there is a purely local solution to a relaxed version
of the problem. In this version, a processor can eat when it has obtained any two forks. This
can be viewed as a threshold condition: a processor can proceed when it has two units of
resource. We call this problem theformal-dining philosophers problem. Imagine that dining
is formal and, in order to eat, a philosopher must dress formally and in particular wear cuff
links. We assume that the resource on each edge is a cuff link. In order to dress formally (in
the western male tradition) and eat, the philosopher must get any two cuff links. Our solution
works in any bounded degree conflict graph of minimum degree 3, i.e., every vertex has at
least 3 incident edges. (If the degree is 2, then we have Dijkstra’s original version on a ring,
for which it is impossible to find a local solution.) To the best of our knowledge, this is the
first nontrivial resource allocation problem that has been solved in a purely local fashion.

Returning to the second question above (Can we characterize the LCLs that can be solved
in constant time?), another result shows that this will be difficultwit is undecidable. Fix any
d > 3 and let be the class of d-regular graphs or the class of graphs of maximum degree d.
Even if we restrict attention to LCLs such that every graph in has a legal labeling, we show
that it is undecidable, given an LCL L;, whether there is a constant time algorithm that solves
/2 for every graph in . If d 2, however, the problem becomes decidable. The problem
is also decidable if we are given a specific time and would like to know whether there is a

t-time algorithm for the given LCL instance.
We close this introduction by mentioning two additional "general" results. The first states

that there is no loss of generality in restricting attention to algorithms that do not use the actual
values of the processor IDs, but only their relative order. This result is useful in proving some
of our other results. The proof is by a Ramsey theory argument similar to ones in [18], [7],
13]. This is in contrast to the non-constant-time case, where, for instance, an order-invariant

algorithm for 3-coloring the ring would take time (R)(n), but the Cole-Vishkin [6] method
(which uses the actual values of the IDs) takes time O (log*n).

Another result states that randomization does not help in solving LCLs in constant time.
For the class of d-regular graphs or the graphs of maximum degree d for any fixed d > 2, if
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there is a randomized algorithm that runs in time and solves the LCL ; with error probability
e < on any graph in , then there is a deterministic algorithm that runs in time and solves
on any graph in .
We now outline the remainder of the paper. Section 2 gives our definitions of LCLs

and local algorithms. In 3 we show that every local algorithm can be replaced with an
order-invariant one. The subject of 4 is undecidability and decidability of questions about
local solvability. In 5 we show that randomization does not help in solving LCLs locally.
The subject of 6 is weak coloring. In 7, the local algorithm for weak coloring is used,
together with other ideas, to give a local solution to the formal-dining philosophers problem.
In 8, we suggest some open questions raised by our work. For readers interested mainly
in the results for weak coloring and formal-dining philosophers, we should point out that

6 and 7 are completely independent from 4 and 5. In addition, the local algorithms for
weak coloring and formal-dining philosophers do not depend on anything from 3, 4, or 5,
although the impossibility results for weak coloring and formal-dining philosophers use the
order-invariance result from 3.

2. Definitions. We first give some definitions and notation concerning graphs. All graphs
in this paper are simple and undirected. For a graph G (V, E) and vertices u, v E V, let
dist,(u, v) be the distance (length of a shortest path) in G from u to v. If u E V and e 6 E,
and if the endpoints of e are v and w, then dist,(u, e) min{dist(u, v), distc,(u, w)} + 1.
For a vertex u and a nonnegative integer r, let B(u, r) denote the subgraph of G consisting
of all vertices v and edges e such that dist (u, v) _< r and dist (u, e) < r. The subscript G is
omitted when G is clear from context. A centered graph is a pair (H, s), where H is a graph
and s is a vertex of H. The radius of (H, s) is the maximum distance from s to any vertex or

edge of H.
We now define the notion of a LCL. For simplicity, we give the definition only for vertex

labelings. A similar definition can be given for edge labelings (e.g., edge colorings or edge
orientations). To make the definition somewhat more general, we allow the vertices of the
graph to be initially labeled with "input labels." Formally, then, an LCL consists of a positive
integer r (called the radius of ), a finite set Z of input labels, a finite set F of output labels,
and a finite set C of locally consistent labelings. Each element ofC is a centered graph of radius
at most r, where each vertex is labeled with a pair from Z x F. Given a graph G (V, E)
and a labeling ) V -- E; x F, the labeling ,k is -legal if, for every u 6 V, there is an
(H, s) 6 C and an isomorphism rr mapping Ba(u, r) to H such that rr(u) s and rr respects
the labeling; i.e., for every w, the label-pair of w equals the label-pair of rr(w). Although
certain types of labelings, such as the usual definition of vertex coloring, are more naturally
expressed in terms offorbidden conditions instead of allowed conditions, it is easy to see that
the definition above captures such labelings. Essentially, the set C gives a "truth table" of all
locally consistent labelings. Many of our specific examples of LCLs do not have input. Such
LCLs are a special case of the definition above simply by taking EI 1.

We consider distributed algorithms which operate on graphs G that are initially input-
labeled and where each vertex is also numbered with a unique positive integer ID. If the
algorithm produces an output label for each vertex within steps, we can assume that, for
each vertex u, the part of the algorithm running at u collects information about the structure,
input labels, and IDs of Ba (u, t), and chooses an output label for u based on this information
(although particular algorithms might not actually "use" all this information). Suppose that
the algorithm is to be run on graphs of maximum degree d. For a constant t, a local algorithm
with time bound is a function A; the input to A is a centered graph (H, s) of radius at most
and degree at most d, whose vertices are labeled with (input, ID) pairs; the value of A((H, s))
is some ?, 6 F. The local algorithm A is applied to an input-labeled and ID-numbered graph
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G by applying A independently at each vertex of G; that is, for each vertex u, the output label
of u is A(B(u, t)), where B(u, t) is viewed as a centered graph with center u. For a local
algorithm A, an LCL/2, and a class of graphs, we say that A solves for if, for every
G 6 , every input labeling of G, and every numbering of the vertices of G with unique IDs,
A produces an -legal labeling; i.e., the combination of the output labeling produced by A
with the initial input labeling is -legal.

Since the subject of the paper is locality, we largely restrict attention to (infinite) classes
of graphs for which membership in the class can be checked locally. Examples are d-regular
graphs and graphs of maximum degree d for any constant d. Note that if membership in
can be checked locally, then is closed under disjoint union; i.e., for every G, G’ , the
graph consisting of the disjoint union of G and G’ belongs to . We consider only classes
with some constant upper bound on degree.

Remark. Although it might be more natural to assume that the IDs for an n-vertex graph
are drawn from 1, 2 n }, there is no harm in requiring algorithms to handle arbitrary ID
numberings. Suppose that A incorrectly labels G when IDs are arbitrary. Form a new graph
G’ with n’ vertices consisting of the disjoint union of G with a large enough graph so that
the vertices of G’ can be numbered from 1, 2 n’} while keeping the numbering of G the
same. Then A labels G’ incorrectly.

3. Order-invariant algorithms. In what follows, it is sometimes useful to restrict at-
tention to algorithms that do not use the actual values of the IDs, but only their relative order.
Two ID numberings r/and r/’ of a graph H are order-equivalent if, for every pair of vertices
u and v, r/(u) < 0(v) iff r/’(u) < O’(v). A local algorithm A is order-invariant if for every
(H, s) in the domain of A, if we obtain H’ from H by changing the ID numbering to any
other r/’ such that r/and 0’ are order-equivalent, then A ((H, s)) A ((H’, s)).

Using Ramsey theory, we show that there is no loss of generality in restricting attention to
order-invariant algorithms. This type of application of Ramsey theory is hardly new: starting
with Yao’s celebrated paper on searching tables 18], through Frederickson and Lynch’s paper
[7] on a problem in distributed computing, and Moran, Snir, and Manber’s [13] work on
decision trees, there have been many papers on the subject.

For a set S and an integer p _< SI, let [S] p denote the set of subsets A

_
S with

AI p. We use the following theorem of Ramsey 16]. (For information on Ramsey theory
see [9].)

THEOREM 3.1 (Ramsey). For any p, m, and c, there is a number R (p, m, c) such that
the following holds: Let S be a set of size at least R(p, m, c). For any coloring of IS]p

with at most c colors, there is a T c_ S with ITI m such that all of[T]p is colored
the same.

We first state and prove the order-invariance result in a stronger form which will be useful
later.

LEMMA 3.2. Fix an LCL 12 (with or without input), a class ofgraphs, and a time bound
t. Let d be the maximum degree ofa graph in . There is a number R, depending only on
d, t, and , such that the following holds: For every local algorithm A with time bound
and every set SofIDs with SI > R, there is an order-invariant local algorithm A’ with time
bound such that, for every G and every input labeling ofG, ifA labels G correctlyfor
every ID numbering drawnfrom S then A’ labels G correctlyfor every ID numbering.

Proof We show how to convert any A to an order-invariant A’ such that the last sentence of
Lemma 3.2 is satisfied. Let (K1, Sl) (Kz., sz) be the set of input-labeled centered graphs
(K, s) such that ID numberings of (K, s) appear in the domain of A. Let p be the maximum
number of vertices in any Ki. Note that p and z depend only on d, t, and .
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Given any set S ofIDs, define an equivalence relation on S]p as follows. For X, X’ 6 S] p,
let

X {xl, x2 Xp} and X’ {x’1, x2 Xp}

be the elements of X and X’ indexed in increasing order. Viewing K1 Kz as graphs on
disjoint sets of vertices, let V be the union of all these vertex sets. For cr V --+ 1, 2 p},
let Ki(cr (resp., K!(r)) be the graph K where each vertex v is numbered with the IDx
(resp., x’). We restrict attention to those cr’s such that, for every Ki, no two vertices of Kj
are numbered the same. Now X X’ iff A((K (r), sj)) A ((Kj (or), sj)) for all r and j. It
is easy to see that this is an equivalence relation. It is also clear that there is an upper bound c
on the number of equivalence classes. This bound depends only on p, z, and , so it depends
only on d, t, and . Let r be the radius of and let m equal p plus the maximum number of
vertices in any centered graph of degree at most d and radius at most r 4- t. Again, m depends
only on d, t, and/2. Let R R (p, m, c), so R depends only on d, and .

Carrying out the above for any S with SI >_ R, Theorem 3.1 implies that there is a set
of IDs T c_ S with ITI m such that all members of [T] p are equivalent. Let U equal T
minus the p largest members of T. By choice of m, UI is as large as the maximum number of
vertices in any centered graph of degree at most d and radius at most r 4- t. We claim that A is
order-invariant when IDs are drawn from U. Let (H, s) be any centered graph in the domain
of A with ID numbering 7 mapping its vertices to U. Let (H’, s) be this graph with the ID
numbering 0’ mapping to U, where 0, r/’ are order-equivalent. Let X (resp., X’) be a member
of [T]p containing all the IDs of H (resp., H’) such that, for every vertex u, if r/(u) xi then
r/’ (u) x (where, as above, the elements of X and X’ are indexed in increasing order). This
is possible because T contains p "extra" elements not belonging to U, so in the case in which
H has fewer than p vertices, we can use the extra elements to pad the sets X and X’ to be
of size exactly p. Let cr and j be such that (H, s) (Ki(cr), sj). By choice of X and X’,
(H’, s) (K(r), sj). So A((H, s)) A((H’, s)) since X X’.

The algorithm A’ works as follows" On a centered graph (H, s) numbered with IDs, A’
first changes the IDs in an order-equivalent way to IDs in U. (Since U is large enough, this is
always possible.) Then A’ answers the same as A on the newly numbered H. Note that since
A is order-invariant on U, it does not matter exactly how A’ does the renumbering, provided
that it is order-equivalent. Clearly A’ is order-invariant.

It remains to show that A’ has the required correctness property. Let G 6 and fix some
input labeling. Suppose that A’ does not label G correctly. This means that there is some
vertex u of G such that B(u, r) is not labeled correctly. Obtain a new ID-numbered graph by
changing the IDs to IDs in S in such a way that (i) each vertex of B(u, r 4- t) has a new ID
in U and (ii) the new ID-numbering of B(u, r 4- t) is order-equivalent with the old one. But
since A’ is order-invariant and A is order-invariant when IDs are drawn from U, it follows
from the definition of A’ that, for each vertex v of B(u, r), the output label given to v by A’
under the original ID numbering is the same as the output label given to v by A under the new
ID numbering. This contradicts the assumption that A correctly labels G when IDs are drawn
from S. [3

The following theorem is now immediate.
THEOREM 3.3. Fix an LCL and a class ofgraphs. Ifthere is a local algorithm A with

time bound that solves for then there is an order-invariant local algorithm A’ with time
bound that solves ,for .

4. Undecidability. In this section we consider the problem, for a fixed class of graphs,
of deciding whether a given LCL can be solved in constant time for . The answer could
be "no" for an uninteresting reason, namely, that there is some G 6 that has no g-legal
labeling. Therefore we restrict attention to ’s for which every G 6 has an E-legal labeling.
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We also restrict attention to LCLs without input; since our main result is an undecidability
result, this just makes the result stronger. Define Y() (resp., N()) to be the set of LCLs

without input such that every G E has an E-legal labeling and there is (resp., is not) a
constant such that some local algorithm with time bound solves/2 for . Recall that sets
Y and N are recursively separable if there is a Turing machine that answers "yes" on every
input from Y and answers "no" on every input from N (and we do not care about its answer
otherwise).

THEOREM 4.1. Fix any d > 3 and let be the class ofd-regular graphs or the class of
graphs ofmaximum degree d. Then Y() and N() are not recursively separable.

Proof We show that if Y() and N() are recursively separable, then it can be decided
for a given Turing machine M whether M halts on blank tape. We first describe the proof for
the class of 4-regular graphs. We begin by proving the result for a different class of graphs
and then work in several steps toward 4-regular graphs.

(1) Consider first the class of two-dimensional grid graphs where one comer of the graph
is marked as "special," say by having an extra edge which connects it to a new vertex of degree
1. (A two-dimensional grid graph has vertices k} l} for some k and l, and
two vertices are connected by an edge if the L 1-distance between them is 1.) Imagine that
the special comer is the upper left comer. Let M be a given Turing machine with states Q
and tape alphabet T. Modify M if necessary so that (i) if M does not halt then M visits an
infinite amount of tape and (ii) the head never moves left of its initial position. The idea is to
have the LCL/2 force the labeling to be a computation of M started on blank tape, where the
ith row of the grid contains the configuration (tape contents, state, and head position) at the
th step. The head position is given by writing the state symbol just to the left of the scanned
symbol. Since a computation has two senses of direction, left versus right on the tape and up
(past) versus down (future) in the time dimension, the LCL will also force consistent senses of
direction on the grid, at least in the part of the grid that contains the computation. We imagine
the senses of direction as giving direction to the edges of the grid from left to right and from
up to down (i.e., from past to future).

The construction ofthe labeling problem is not difficult conceptually, since it is well known
that the validity of a Turing machine computation can be checked locally. For definiteness,
we describe one way of carrying out the details. A vertex label has the form (or, i, j), where
cr E Q t T t {I }, 0 < < 2, and 0 < j _< 1. cr is called the s-label of the vertex (where s
stands for "symbol"). Let v and v’ be adjacent vertices with labels (or, i, j) and (or’, i’, j’). If
j j’ then there is a "horizontal" (left-to-right) edge from v to v’ iff i’ + mod 3. If
j :/: j’ then there is a "vertical" (up-to-down) edge from v to v’ iff i’ + mod 3. The
s-label I means that the vertex is "inactive," i.e., it is not in the part of the grid that contains
the computation.

The LCL enforces the following constraints:
1. The s-label of the special comer must be the initial state of M and the two senses of

direction must be directed away from this comer.
2. The senses of direction propagate correctly. This can be done, for example, by

requiring the senses of direction to be consistent on every 3 3 subgrid. However, we do not
require any sense of direction between two adjacent inactive vertices.

3. Each vertex on the upper boundary of the grid, other than the special corner, has
s-label either I or the blank tape symbol.

4. In the vicinity of a state symbol, the computation must proceed according to the
transition rules of M. However, we allow the state symbol to disappear if the head attempts
to move off the right boundary or the bottom boundary of the grid.

5. In a neighborhood that does not contain a state symbol, each row must be identical
to the row above it, except that vertices can become inactive. That is, if there are left-to-right
edges from Vl to v2 and from v2 to v3, if there is an up-to-down edge from v2 to v4, and if none
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of vl, /)2, /)3 are s-labeled by a state symbol, then the s-label of/)4 must be either the s-label of
/)2 or I.

6. There is no up-to-down edge from an inactive vertex to an active vertex (i.e., once a
tape cell becomes inactive, it cannot become active at a later time).

7. A nonhalting state symbol cannot be adjacent to an inactive vertex.
Suppose that M halts in steps when started on blank tape. Assume for the moment that

the grid is k l, where k, >_ + 1. Then there is a legal labeling where the s-labeling of the
upper left (t + 1) (t / 1) subgrid describes a halting computation of M on blank tape and the
other vertices are inactive. This labeling can be found by a local algorithm with time bound
2t + 3. This algorithm works as follows at a vertex/). If/) lies within the (t + 2) (t + 2)
subgrid having the special comer as one of its comers, then the position of/) in this subgrid
is known, and the label of/) can be found, since it depends only on this position. Otherwise,
v is labeled (I, 0, 0) (recall that the senses of direction do not have to be maintained within
an inactive region). The argument for a smaller grid is similar (recall that the head can "move
off" the grid at the right and bottom, boundaries, so a legal labeling exists).

Suppose now that M does not halt. An argument similar to the one just given shows that
a legal labeling exists (in particular, all vertices are active). Assume that a local algorithm A
with time bound finds a legal labeling for any ID-numbering of any grid. Using Theorem 3.3,
convert A to an order-invariant algorithm A’ with time bound t. For a given grid, consider
the ID-numbering where each row is labeled from left to right in increasing order and the IDs
used for row are all smaller than those used for row + 1. Since A’ is order invariant, A’
will assign the same label to any two vertices v and w that are both farther than distance
from any boundary of the grid, since any two such points look the same to A’. Since M uses
an infinite amount of tape, it is clear that the labeling produced by A’ is not legal if the grid is
sufficiently large.

(2) We now consider two-dimensional grid graphs where no comer is "special," so all
four comers look identical locally. A problem with the previous construction is that now there
can be four computations, one starting at each comer. If M does not halt, or if the grid is too
small, the senses of direction of these computations will conflict. The problem is solved by
having four "levels." Now a label has the form (/1,)2, 3, )4), where each )i is a label as in
part (1). The constraints that must hold at a special comer in part (1) now must hold at each
comer, but only on one level. The arguments that a legal labeling always exists and M halts iff
a legal labeling can be found in constant time are essentially identical to those of part (1). In
the case in which M halts and the grid is so small that 2-4 computations overlap, the constant
time algorithm uses the order of the IDs at the relevant comers to decide which computation
to put on which level.

(3) The next step is to consider a class of 4-regular graphs. These are grid graphs with
extra edges added around the boundary to make the graph 4-regular. This can be done in such
a way that the boundary vertices and the comer vertices can be identified locally. Call these
graphs 4-regular grids.

(4) Finally we consider the entire class of 4-regular graphs. Call a vertex a defect if it
does not look locally like a 4-regular grid, i.e., for some suitably large (but constant) c, B(v, c)
is not consistent with a 4-regular grid. One problem with the previous construction is that
now there can be many vertices that look locally like the comer of a 4-regular grid, so many
different computations will be started and might conflict with one another, e.g., turn a halting
computation into a nonhalting one. This can occur, however, only if the graph has defects.
The new idea is to propagate a chain of "erasing symbols" E from the defect back to the
comer, so that the computation does not have to start.

More precisely, the s-symbols now include E also. For two adjacent vertices with s-
symbol E, we use the component of a label to give a direction to the edge connecting them
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(call these E-edges). We have the following constraints on vertices with s-label E: a defect
can be labeled E; a corner can be labeled E iff it has exactly one E-edge directed in; any
other vertex can be labeled E iff it has exactly one E-edge directed in and exactly one E-edge
directed out. If a comer has s-label E, then its neighborhood does not have to have senses of
direction.

Suppose that M does not halt and that the graph is a sufficiently large 4-regular grid. It
is clear that no comer can be labeled E since the graph has no defects. The labeling could
contain cycles of vertices labeled E, but this will violate other constraints if it occurs in the
active region. It then follows as above that a legal labeling exists, but cannot be found in
constant time.

If the graph is not a 4-regular grid then it must have a defect. In this case, it can be seen
that the entire graph can be s-labeled with E’s and I’s. Say that the defect u kills the comer w
if there is a directed path of E-labeled vertices from u to w. By choosing the constant c above
large enough, it can be seen that there is an E-labeling such that each defect kills at most one
comer and E-labeled vertices in different paths are not adjacent.

Suppose that M halts in steps. Assume for the moment that no two comers of the graph
are within distance 4t + 4 of each other. Consider the following labeling on one level. Fix
some comer w. Say that w is a good corner if B(w, 2(t / 1)) contains no defects (i.e., looks
like part of a 4-regular grid). If w is good, then the s-labeling of the appropriate (t + 1) x (t + 1)
subgrid describes a computation of M as in part (1). If B(w, 2(t + 1)) contains a defect u,
then we choose in some systematic way a path labeled E from one such defect u to w. The
rest of B(w, 2(t + 1)) is labeled I. Any vertex not within distance 2(t + 1) from some comer
is labeled I. Such a labeling can be found in time O(t). If comers can be close together, it
must be checked that four levels are enough to do the labeling. Define a graph where there is a
vertex for every good comer and an edge connecting two vertices if the computations started
at the corresponding good comers overlap. It can be checked that no component of this graph
has more than four vertices, so the labeling can be done on four levels and a local algorithm
can determine an assignment of good comers to levels.

For the case d 3 we use, instead of two-dimensional grids, degree-3 "honeycomb"
graphs; these look like a tiling of the plane with hexagons. For d > 5, we can use d 3 copies
of the same grid graph, where corresponding vertices in different copies are connected as a

clique. [3

Remark. The LCLs constructed in the proof above have an upper bound r0 on their radius,
where r0 is a constant; i.e., it does not depend on the machine M. It follows that there is an
infinite time hierarchy of LCLs with some fixed radius r0. That is, for every time t, there is
an LCL of radius r0 that cannot be solved by any local algorithm with time bound t, but can
be solved by some local algorithm with some time bound t’ > t.

In contrast, the following holds for degree 2.
THEOREM 4.2. Let be the class of2-regular graphs or the class ofgraphs ofmaximum

degree 2. Y() and N() are recursively separable. Moreover, this can be done in time
polynomial in the size ofthe input .

Proof Consider first the case of 2-regular graphs. Let be a given LCL and r be its
radius. If (H, s) belongs to the set C of locally consistent labelings, then either H is a simple
path of 2r + vertices with s at the center or H is a ring having at most 2r vertices. Assuming
that every graph in has an E-legal labeling, we claim that there is a local algorithm with
some constant time bound that solves for iff C contains a line segment in which all
vertices are labeled the same, say o. The "if" direction is obvious, since any ring having at
least 2r + vertices has an -legal labeling where all vertices are labeled o. (In this case,
a local algorithm with time bound r checks whether it is working on a cycle of size at least
2r + 1. If so, it produces the label c. If not, it knows the entire graph so it can use the rank of
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the ID of the vertex to find a label for the vertex by looking in a table, where the table contains
an -legal labeling for each cycle of size less than 2r / 1.) For the "only if" direction, by
Theorem 3.3 there is an order-invariant A’ with time bound that solves/2 for . Consider
the ID numbering of a ring where the order of the ID’s increase around the ring, except at one
point where the ordering wraps around. If the ring is sufficiently large, there will be a segment
of length 2r / such that A’ gives the same label to every vertex of the segment.

The case of maximum degree 2 is a little more complicated. It is still necessary that C
contain a line segment labeled the same, but this is no longer sufficient. Since the graph could
be a line, we must also check that there is an -legal labeling in which all vertices, except
possibly vertices within some bounded distance from the endpoints of the line, are labeled the
same. This is easily reduced to a teachability problem on a certain graph K. Fix a left-to-right
orientation of a line. For every member of C that is a line segment, there are two vertices in
K, one for each left-to-right orientation of the segment. There is an edge directed from v to w
iff there is a labeling of the oriented line in which the center of v is just to the left of the center
of w. For example, if r 2, if v is the locally consistent labeling B-C-D, where the center
is the vertex labeled B, and if w is B-C-D-X, where the center is labeled C, then there is
an edge from v to w. Any vertex such as v for which the center is the leftmost endpoint of
the segment is called a source. A goal vertex is any vertex corresponding to a line segment
containing 2r / vertices all labeled the same. Then there is a local algorithm with some
constant time bound iff there is a directed path from some source to some goal. Note that if
there is such a path then there is one of length O(ICI), so O(max{ICI, r}) suffices. [3

Remark. It can also be shown, for the graph classes in Theorem 4.2, that it is decidable
for a given LCL/2 whether every graph in has an -legal labeling.

The final result of this section is an easy consequence of Theorem 3.3.
THEOREM 4.3. Fix any d > 2 and let be the class of d-regular graphs or graphs of

maximum degree d. It is decidable, given and t, whether there is a local algorithm with
time bound that solves for .

Proof By Theorem 3.3 we can restrict attention to order-invariant algorithms with time
bound t. There is only a finite number of such algorithms, and for each algorithm A we
can test whether it solves for as follows. Let r be the radius of . Let be the set of
centered graphs (H, s) such that, for some G 6 and some vertex v of G, H is isomorphic
to B(v, r / t) under an isomorphism mapping s to v. For the classes under consideration,
there are a finite number of such graphs for each r and t, and there is an algorithm that lists
them given r, t. For each (H, s) 6 7-/and each order-inequivalent ID numbering of the vertices
of H, we apply A to each vertex in Bl4(S, r) to obtain a labeling of Bi4(s, r). If this labeling
is not consistent according to , then A is not correct, since A will fail at some vertex v of
some G 6 , where B(v, r / t) is isomorphic to H; by "fail" we mean that the labeling
of B(v, r) is not consistent according to/2. On the other hand, if A always labels Bi(s, r)
correctly for every H and every numbering, then A is correct. For if A fails at some vertex v
of some G , then A fails at v in B (v, r / t), which is isomorphic to some H. [3

5. Randomized algorithms. We now turn to randomized algorithms and show, for cer-
tain classes of graphs, that randomization does not help in solving LCLs in constant time. A
randomized local algorithm P with time bound is specified by a deterministic local algorithm
A with time bound and a function b(n) to positive integers called the randomization bound.
In this case, A expects each vertex to be labeled with an input label (if the LCL has input
labels), an ID number, and a random number. To run P on a graph G that is ID-numbered
and input-labeled, first randomly and independently choose for each vertex a random number
in the range 1, b(/)], where is the largest ID in G; then run A on the resulting graph. We
assume no upper bound on the growth rate of b(n). We say that P solves for with error
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probability if, for every input-labeled and ID-numbered G 6 , P produces an E-legal
labeling with probability at least e.

Remark. The above definition of a randomized local algorithm might seem too liberal,
since it allows the range of randomization at a particular vertex v to depend on the largest ID in
the entire graph. It would be more reasonable to have the range of randomization at v depend
only on v’s ID. But since our result is that randomization does not help in solving labeling
problems locally, there is no harm in using the more liberal definition. On the other hand, this
definition may seem too restrictive, since the definition of success is global. However, in the
deterministic case we wanted the labeling to be legal everywhere, not just in most vertices.
Indeed, if all we require is that, for each vertex v, the probability that v is legally labeled be at
least e, then randomization does help; consider the problem of 3-coloring in a ring. This
problem has no deterministic local algorithm 10] nor a probabilistic one 14] (with the global
correctness requirement). Suppose that we start with all vertices uncolored and at every step
each vertex that is not permanently colored chooses a random color. If the vertex chose a color
different from the colors of its two neighbors, then this color is considered permanent. If this
algorithm is executed for steps, then we can say that, for each vertex v, the probability that
v is legally colored is at least e, where e decreases exponentially in t.

THEOREM 5.1. Fix an LCL and a class ofgraphs closed under disjoint union. Ifthere
is a randomized local algorithm P with time bound that solves for with errorprobability
efor some < 1, then there is a deterministic local algorithm A with time bound that solves

for .
Proof Suppose for contradiction that there is no deterministic local algorithm with time

bound that solves for . In particular, there is no order-invariant algorithm with this
property. There is an upper bound on the number of order-invariant local algorithms with
time bound (where the upper bound depends only on , t, and the degree bound d). This
immediately proves the following claim.

CLAIM 5.1. There is a number N such that every order-invariant local algorithm A’ with
time bound fails on some particular input-labeled and ID-numberedgraph G having at most
N vertices, where by "fail" we mean that A does not produce an E-legal output labeling.

Let R be the number given by Lemma 3.2. Let m be the minimum number of vertices in
a graph in . If R < N + m, then take R N + m to ensure that R > N + m. For j > 1, let

Si {(J 1)R + j R }. Let 2-./be the set of graphs G having at most N vertices
that are input-labeled and have ID numbering drawn from Sj. If E is the input alphabet, an
upper bound on the cardinality of 2-./is

k 2(N) RNIE N.

Choose q large enough that (1 1/4)q < s.

The key to the proof is the following claim.
CLAIM 5.2. For every j with 1 < j < q, there is a graph Gj Zj such that, ifP is run on

Gj with randomization bound b(q R), then the probability that P fails on Gj is at least / k.
To prove the claim, suppose it is false, i.e., that for every G 6 Zj, P fails with probability

strictly less than 1/k. We can view a random choice of P as a sequence of random numbers
P pR in the interval 1, q R], where Pi is the random number chosen for the vertex with
ID (j 1)R + i. Since the error probability is less than the reciprocal of the number of
graphs in Z./, it follows by a standard argument (e.g., ]) that there must be a particular choice
3 3R such that P is correct on all graphs in 2-j when this particular random choice is
made. We can then obtain a deterministic algorithm A that works on j. This algorithm first
chooses the random number fii-(j-1)R at the vertex with ID for every and then simulates P.
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By Lemma 3.2, there is an order-invariant A’ that is correct on all of, but this contradicts
Claim 5.1, and so proves Claim 5.2.

It is now easy to complete the proof of Theorem 5.1. Run P on the graph G consisting
of the disjoint union of the Gj for _< j < q. (If no vertex of this graph has label q R, then
add another component with m vertices and maximum ID label q R. This is possible since
qN + m < q R.) Since P fails independently with probability at least 1/k on each Gj, it
follows from the choice of q that P fails on G with probability strictly greater than e. This
contradiction proves the theorem.

A version of Theorem 5.1 holds also for certain classes of connected graphs, for example,
connected d-regular graphs and connected graphs of maximum degree d for any fixed d _> 2.
All we need is the ability to connect the graphs G1 Gq into a single graph in the class
in such a way that Ps error probability on each piece does not decrease when the pieces are
connected. For example, the following theorem holds.

THEOREM 5.2. Fix an LCL and a d > 2 and let be the class ofconnected d-regular
graphs or the class ofconnected graphs ofmaximum degree d. Ifthere is a randomized local
algorithm P with time bound that solves for with error probability e for some < 1,
then there is a deterministic local algorithm A with time bound 2(t + r) + that solves for, where r is the radius of.

Proof The proof is very similar to the previous one, and we only sketch the differences.
Claim 5.1 is modified to state that there is an N such that every order-invariant local algorithm
with time bound fails on some connected graph with radius at least + r + and at most
N vertices. If the modified claim were not true, there would be a local algorithm with time
bound 2(t + r) + that solves for . This algorithm first checks whether it is working on
a graph of radius at most + r by trying to inspect the entire graph. If so, it can produce a

labeling because it knows the entire graph. If not, it recourses to an algorithm with time bound
that works on every connected graph of radius at least + r + 1. The set Zj now contains

pairs (G, v), where G has at most N vertices and radius at least + r + 1 and v is a vertex
of G, so the bound k increases by a factor of N. Now the conclusion of Claim 5.2 is that for
every j there is a (Gj, vj) E Zi such that, with probability at least 1/k, P fails on Gj at the
particular vertex vj, meaning that B(vj, r) is not labeled correctly. Since the radius of Gj is
at least + r / 1, there is some edge e such that removing e does not affect the behavior of
P when labeling B(vj, r). Let Gj be the graph with this e removed. We can now connect

G’I Gq to a graph in the class , using the endpoints of the removed edges as connection
points.

Remark. An alternate conclusion in Theorem. 5.2 is that there is a deterministic local
algorithm A with time bound that solves E for all graphs in having radius at least
t+r+l.

6. Weak coloring. We now describe a locally checkable labeling problem that can be
solved locally in graphs containing only vertices of odd degree. A weak c-coloring of a graph
is an assignment of numbers from cJ to the vertices of the graph such that for every
nonisolated vertex v there is at least one neighbor to such that v and to receive different colors.
Clearly weak c-coloring of a graph of degree at most d is an LCL problem of radius 1.

It is not hard to see that every graph has a weak 2-coloring: consider a breadth-first
spanning tree of the graph. Assign one color to the even levels and a different color to the
odd levels. However, this particular coloring cannot be computed locally. As we shall see, if
all the vertices of the graph have odd degree, then it is possible to find a weak 2-coloring. As
far as we know this is the first nontrivial LCL problem that has been shown to have a local
algorithm. However, if the degree is even then it is impossible to compute such a coloring or
any weak c-coloring for a fixed c locally.
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6.1. Weakly coloring graphs of odd degree. We describe a way of finding a weak
coloring in odd-degree graphs. We first show a two-step method for weak d(d + 1)’/+:-

coloring and then show how to reduce the number of colors to two using additional steps.
Consider first the case of a d-regular graph, where d is odd and d > 3. For a vertex

v let ID(v) be the ID number assigned to v. We denote the color of a vertex v by a vector

C (C [0], C[1] C[d+ 1]), where each component is in d+ 1}. The following
procedure is used at vertex v"

1. Get ID(w) for all neighbors w of v. Sort the set of IDs of neighbors including
ID(v). Let r(w) denote the rank of ID(w) among the neighborhood of v (where the
neighborhood of v includes v itself). For definiteness, say that the smallest ID has
rank 1, the second smallest has rank 2, etc. Let C[0] be rv(v).

2. Get r,,, (v) from each neighbor w, i.e., the rank of ID(v) among the neighborhood of
w. Set C[r(w)] r,,,(v).

CLAIM 6.1. The coloring achieved by this algorithm is a legal weak coloring ifd is odd.

Proof Consider a vertex v. If not for all neighbors w of v we have r,,,(w) r(v), then
we are done, since there will be a neighbor w of v such that the color of w differs from the
color of v in the first component. Otherwise, there are two cases. In the first case, assume
that _< r (v) < +I_T_. This means that there are d + r(v) _> a__21 neighbors w such that
ID(w) > ID(v). For each of them r,,,(v) < rv(v), since r,,,(w) r(v). Therefore, by the
pigeonhole principle there are two neighbors w and x such that r,,,(v) rx(V) j. Hence

C,l,[jl C,,,[r,,,(v)] r(w) =/= r(x) Cx[rx(v)] Cx[jl.

C,,, [j # C [j] means that v has two neighbors with two different colors, one of which must
be different than C Similarly, in the other case, if ’+l-y-- 4- < rv (v) < d 4- 1, then there are

r(v)- > --a+l neighbors w such that ID(w) < ID(v). For each of them, r,,(v) > r(v) _>
d+l
2 - 1, and a pigeonhole argument again shows that there must be two neighbors that are

colored with two different colors. [3

If vertices can have different (odd) degrees, we can simply add another component to

Cv which contains the degree of v. If v has a neighbor with a different degree, then it has a

neighbor with a different color; otherwise, Claim 6.1 applies.
To go from d(d + 1)a+2 colors to two colors we employ two kinds of color reductions:

one is a Cole-Vishkin [6] style that allows us to cut the number of colors logarithmically in
every round, but seems to have its limit at four. The other method allows us to reduce the
number of colors one at a time.

The Cole-Vishkin style method is as follows: Suppose that we have a legal weak coloring
with c colors and let ’ be the smallest integer such that (Lc’/:j) >- c. Associate with every
6 {1 c} a different subset Si c {1 ct} of size [_c’/2J. (Such an assignment is a

Sperner system, i.e., no subset is contained in another.) We can reduce the number of colors
from to c in one round. Every vertex v colored finds a neighbor colored j such that j i.
There must be an element x Si such that x ’ S/. x is v’s next color. It is easy to see that this
method preserves weak coloring and reduces the number of colors by almost a logarithmic
factor per round. More precisely, the number ’ of colors after a step of the reduction is related
to the number before the reduction by ’ log + O (log log ), where logarithms are to the
base 2. (This is (almost) a bit more efficient than the original Cole-Vishkin reduction, where
the relation in our case is c’ 2 [log c] .) The method is applicable as long as c > 4. A simple
calculation (cf. [8, p. 437]) shows that a weak 4-coloring is found after log*d + a rounds for
some constant a. (Another way to see this is to note that the base of the logarithm affects the
expression log*d + a only in the additive term a.)
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When we are stuck (i.e., c 4) we can recourse to the following reduction from a weak
coloring with c colors 1, 2 c} (called the original coloring) to one with 2 colors {0,
(called the recoloring). The recoloring is done in c rounds. At the th round, every vertex with
original color recolors itself according to the following rules:

1. If v has original color and all neighbors of v have original color > i, then v recolors
itself 0.

2. Otherwise, v must have at least one neighbor with original color smaller than i, so
it has at least one neighbor that has recolored itself at an earlier round. If all the
recolored neighbors of v have color 1, then v recolors itself 0. Otherwise (v has at
least one neighbor recolored 0), v recolors itself 1.

It is easy to verify that this yields a weak 2-coloring. Every v that recolors itself using the
second rule clearly has a neighbor recolored differently. Suppose that v recolors itself 0 using
the first rule. Then it must have a neighbor w with original color j > i. Then w will recolor
itself using the second rule during round j, and it will recolor itself since it has a neighbor
(namely, v) recolored 0 at an earlier round (namely, i). We therefore get the following theorem.

THEOREM 6.1. Let O be the class ofgraphs ofmaximum degree d where the degree of
every vertex is odd. There is a constant b such that, for every d, there is a local algorithm
with time bound log*d + b that solves the weak 2-coloring problemfor

Remark. In 7 we will want to apply the weak coloring algorithm to graphs that may have
vertices of even degree, and we will use the following additional property of the algorithm.
Say that v is properly colored if it has at least one neighbor colored differently. Suppose that
the weak 2-coloring algorithm is applied to an arbitrary (bounded degree) graph G. If v is
not properly colored then (1) the degree d of v is even, (2) its rank r(v) in its neighborhood
is d/2 + 1, and (3) every neighbor w of v has degree d and rank r,l,(w) d/2 + 1 as well.
To see that these properties hold, consider first the coloring produced by the initial two-step
algorithm. Properties (1) and (2) follow since our proof of Claim 6.1 shows that v is properly

d+lcolored if either ro (v) < a--- or ro (v) >_ -- + 1. The only other possibility is that d is even
and ro(v) d/2 + 1. Since the color of a vertex u contains its degree and its rank r,(u), (3)
is obvious. It is also easy to check that both of the color reduction methods preserve proper
coloring, i.e., if v is properly colored before a reduction, then it is properly colored after the
reduction.

To close this section we note that there is no one-step method for finding a weak c-coloring.
THEOREM 6.2. For any constants c andd > 2, there is no local algorithm with time bound

1 that solves weak c-coloringfor the class ofd-regular graphs.
Proof By Theorem 3.3, if there were such a local algorithm A, there would be an order-

invariant one A’, also with time bound 1. Consider any d-regular graph that contains a vertex
v such that B(v, 2) (the neighborhood of radius 2 around v) is a tree of height 2 rooted at v.
Number the vertices of B(v, 2) with IDs so that ro(v) 2 and rw(w) 2 for every neighbor
w of v (it is easy to see that this can be done). Then A’ assigns the same color to v and all its
neighbors.

6.2. Impossibility ofweak coloring graphs of even degree. In this section we note that
it is impossible in general to weakly color all graphs with even degree. In particular we show
that for any c and k it is impossible to weakly c-color any class of graphs that contains the k-
dimensional meshes. The vertex set of a k-dimensional mesh is {0, m for some m, and
two vertices are connected by an edge if the L 1-distance between them is 1. A k-dimensional
mesh has (some) vertices of even degree d 2k.

THEOREM 6.3. For any c, k, and t, there is no local algorithm with time bound that
solves the weak c-coloring problemfor the class ofk-dimensional meshes.
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Proof Theorem 3.3 says that if there exists a local algorithm for an LCL problem then.
there is one that uses only the relative order of the IDs. For a vertex v of a mesh M, let
R4(v, t) be the graph B4(v, t) (the neighborhood of radius around v) where each vertex u
is labeled with the rank of its ID among the IDs in B/(v, t). By Theorem 3.3 it is sufficient to
come up with a way to assign IDs to vertices such that for any there will be a k-dimensional
mesh M and a vertex v such that, for all neighbors u of v, R4(v, t) and Rt(u, t) are the
same (i.e., v and its neighbors see the same relatively ordered t-neighborhood). However, if
M has diameter at least 2(t / 1) then it possible to achieve such an ID assignment: consider
the coordinates of a vertex and say that vertex u is larger than v if the lexicographical order
of the coordinates of u is larger than that of v. It is clearly possible to assign IDs such that
ID(u) > ID(v) iff u is larger than v. Hence any vertex that is of distance at least + from
every boundary of the mesh has the property we are after.

The same result holds for a class of (2k)-regular graphs, the k-dimensional analogue of
torus graphs.

A consequence of this result is that if we extend the definition of weak coloring so that
each vertex v must have at least two neighbors colored differently than v (call this 2-weak
c-coloring), then for every fixed d and c a coloring cannot be found in constant time for d-
regular graphs even if d is odd. The reasoning is as follows: Given any (2k)-regular graph G,
form a (2k + 1)-regular graph G’ by taking two copies of G with each pair of corresponding
vertices connected by an edge. The IDs in one copy are all chosen to be larger than the IDs in
the other copy, but so the two copies appear identical with respect to the relative order within
a copy. A 2-weak c-coloring of G’ immediately gives a weak c-coloring in each copy of G.
Given a local algorithm that finds a 2-weak c-coloring in graphs of odd degree 2k + 1, we
therefore obtain a local algorithm that finds a weak c-coloring in graphs of even degree 2k.

7. A locally solvable resource allocation problem. We show how to solve the formal-
dining philosophers problem mentioned in the introduction. What we assume about the un-
derlying graph is that the minimum degree is three. (If the minimum degree is two, then we
cannot hope to solve it locally, as we argue below.)

We first start with a coloring with three colors {0, 1, ,} with the following property: all
vertices colored c {0, 1} have at least one neighbor colored c. If v is colored with a
, or if any of the neighbors of v is colored with a ,, then the degree of v is even and half
the neighbors of v have an ID smaller than ID(v). This coloring is a product of the method
described in 6.1. Suppose that we run the algorithm described there. Since we do not assume
here that every vertex has odd degree, the algorithm could fail at some vertices v, meaning
that all the neighbors of v are colored the same as v. Suppose that if the algorithm fails at

v, then v recolors itself with a ,. By the remark following Theorem 6.1, the coloring fails at
v only when the degree d of v is even, its rank rv(v) among its neighbors is d/2 + 1, every
neighbor w of v has degree d, and r,(w) d/2 + 1 as well.

The algorithm for the formal-dining philosophers problem is a combination of two algo-
rithms: one for the problem on graphs that are weakly 2-colored and the other for the case
where half the neighbors of a vertex have a smaller ID. The vertices colored, essentially grab
two of the adjacent cuff links permanently. More precisely, a vertex u colored picks two
neighbors v and w such that ID(u) > ID(v) and ID(u) > ID(w), and assigns the cuff links on
(u, v) and (u, w) to u permanently. After this we have that every vertex with color c 6 {0, 1}
still has at least two nonassigned edges adjacent to it and at least one of its neighbors has color

c. This is true since if it is a neighbor of a., then its degree is even (at least 4) and its
rank among its neighbors is half the degree plus one. Hence at most half of its adjacent edges
are grabbed permanently. Unlike the colored vertices, the {0, 1} colored vertices must run a

dynarnic algorithm in order to get cuff links.
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As for the {0, 1} colored vertices, it is convenient for the exposition to assume first that
we have a coloring of the graph with the property that every vertex has at least one neighbor
colored 0 and at least one neighbor colored 1.2 We will later remove this assumption. As a
preliminary step, every vertex colored c 6 {0, selects a particular neighbor colored c as its
"first neighbor" and a particular neighbor colored c as its "second neighbor." When we
say that a vertex p "requests" a cuff link, we mean that it tries to grab the cuff link; if the
other vertex q sharing this cuff link currently has it, then p waits for q to release it. Now the
protocol for a vertex colored c 6 {0, 1} is as follows:

1. Request cuff link from the first neighbor (colored c).
2. Request cuff link from the second neighbor (colored c).
3. Eat.
4. Release cuff links.

CLAIM 7.1. The maximum length ofa waiting chain in the above protocol is 2.

Proof If a vertex is waiting at Step 1, then the vertex it is waiting for must be at
least at Step 2. If a vertex v is waiting for its second neighbor w at Step 2, then v and w
are colored differently, which means that v is the second neighbor of w. So w must be at
Step 3 or 4.

Suppose now that all we can say is that a vertex colored c 6 {0, 1} has at least one
neighbor colored c, i.e., all its neighbors might be colored c. If at Steps and 2
arbitrary neighbors colored c are approached, then we are not guaranteed to be deadlock
free anymore. The selection of second neighbors should be done in a way that does not induce
long "neighborly" chains. To this end, we differentiate between the vertices colored 0 and 1.
Each vertex colored chooses a particular neighbor colored 0 as its second neighbor. These
choices are announced to their neighbors. A vertex u colored 0 waits to hear whether it has
been chosen as the second neighbor by any of its neighbors. If it has, then it tries to match
their choices; i.e., if any of u’s neighbors has designated it as a second neighbor, u picks it
(or one of them in case there are several) as u’s second neighbor. Otherwise, u chooses an
arbitrary neighbor colored as its second neighbor. Each vertex colored 0 or then chooses
an arbitrary neighbor, other than its second neighbor, to be its first neighbor. (Of course, u
should not choose a neighbor w colored, if w has permanently grabbed the cuff link on the
edge (u, w). On the other hand, if w is colored, and has not grabbed the cuff link then it
never will, so u can choose this w, and u will never have to wait for w.)

CLAIM 7.2. Given any assignment offirst andsecond neighbors consistent with the above
description, the maximum length ofa waiting chain is at most 4.

Proof A configuration that the preliminary step as described above assures won’t occur
is as follows: three vertices//31,//32, and w3 colored 1, 0, and 1, respectively, such that//)2 is
the first neighbor of w3, w2 is the second neighbor of Wl, and w3 is the second neighbor of we.
This cannot occur since w2 was chosen to be a second neighbor of at least one vertex (namely,
wa), but w2 is not the second neighbor of w3. Hence w2 would not choose w3 as its second
neighbor. Now consider a contradiction to the claim, i.e., six vertices u0, u a, u2, u3, u4, u5
such that each ui is waiting for Ui+l for 0 _< < 4. Let c be the color of Ul. Since ul, u2, u3,

and u4 are waiting at Step 2, it must be the case that u2 is colored 1 c, u3 is colored c, u4 is
colored 1 c, and u5 is colored c. Also for < _< 3 we have that u is the first neighbor of
ui+1, and for 1 < < 4 we have that ui+1 is the second neighbor of u i. Therefore, if c 0
then the trio {u2, u3, u4} constitutes a forbidden configuration, and if c 1 then {Ul, u2, u3}
constitutes a forbidden configuration.

(We remark that a waiting chain of length 4 can occur.)

2Although by the Lov/tsz Local Lemma such a coloring exists in regular graphs with sufficiently large degrees,
it is impossible to find such a coloring locally even in odd-degree graphs.
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Since this argument remains valid if some of the U are the same, the argument shows that
a deadlock (a waiting cycle) cannot occur, since a waiting cycle would produce, in effect, a
waiting chain of arbitrary length.

Therefore the combined protocol is"

Run the coloring algorithm of 6.1 resulting in a {0, 1, ,} coloring.
All the vertices colored permanently grab two cuff links as described above.
All {0, colored vertices find first and second neighbors as described above.
When a vertex becomes hungry, then if it is colored it simply uses its permanently
assigned cuff links. Otherwise it runs the protocol above.

THEOREM 7.1. The aboveprotocolsolves theformal-diningphilosophersproblem locally.
A consequence of bounded-length waiting chains is that the failure locality ofthe protocol

is constant. As defined by Choy and Singh [5], a protocol hasfailure locality if every vertex
v remains starvation free even if processors at distance larger than from v fail. Another
consequence is that the response time of the protocol is constant. This means that, for every
upper bound v on the message delivery time between adjacent vertices and every upper bound
r on the time that a vertex can remain in the eating state before entering the resting state, there
is a p p (v, r) such that p is an upper bound on the time that a vertex can remain in the hungry
state before entering the eating state. We now justify our requirement that the conflict graph
have minimum degree 3, by arguing that if the conflict graph is a ring then the formal-dining
philosophers problem (which is the same as the usual-dining philosophers problem in this
case) cannot be solved locally, meaning in particular that the response time is constant. This
follows from a more general result about the local unsolvability of certain dining philosophers
problems where the condition under which a philosopher can eat is a threshold condition on
the number of resources owned. For constants d and m with d > 2 and m _< d, define the
(d, m)-dining philosophers problem as follows: the conflict graph has minimum degree d,
and in order to eat, a philosopher must own the resources on any m incident edges.

THEOREM 7.2. Ifm > d/2 + 1, there is no algorithm with constant response time for
the (d, m)-dining philosophers problem.

Proof It suffices to prove this for every even d. Fix some d 2k. We assume that
the interconnection graph is the same as the conflict graph, a k-dimensional torus (i.e., a k-
dimensional mesh with additional wrap-around edges to produce a d-regular graph). We first
show that a solution to the (d, m)-dining philosophers problem with constant response time
would give a local solution to the following LCL problem, for some constant p depending
only on d"

1. Each vertex is labeled either or 2.
2. Each k-dimensional p p ... p submesh M contains some vertex labeled and

some vertex labeled 2.
Given an arbitrary ID-numbered torus, run the assumed (d, m)-dining philosophers algorithm
starting in the configuration where all vertices are initially hungry. Let the vertices operate
in lock-step synchrony, i.e., each message delay is one time unit. When a vertex enters the
eating state, let it remain in the eating state for one time unit, and remain in the resting state
thereafter. So v r 1. The following rules are used to determine the label of vertex v.
Let s be the step at which v enters the eating state. If v has not received the message "eating"
from one of its neighbors at step s or earlier, then v chooses the label 1 and sends the message
"eating" to all of its neighbors at step s (in addition to any messages that the (d, m)-dining
philosophers algorithm sends at this step); the "eating" message is received by v’s neighbors at
the next step s / 1. Otherwise (v received an "eating" message at step s or earlier), v chooses
the label 2 and does not send an "eating" message. The labeling algorithm runs in constant
time p (1, 1). It remains to show that condition 2 above holds for a large enough p. Assume
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that p > 3. If there is a p ... p submesh M with all vertices labeled 2, then there would
be some v such that v and all of its neighbors are labeled 2. But this is impossible since, if
all the neighbors of v are labeled 2, they do not send "eating" to v, so v will be labeled at
the step when it eats. If there is a p ... p submesh M with all vertices labeled 1, then all
vertices of M enter the eating state at the same step s. This gives a contradiction as follows:
The number of edges incident on vertices ofM is at most (d/2)pk + O (pk-1), but in order for
each vertex of M to own at least m of these edges, there must be at least mp of them. Since
m > d/2 + by assumption, we obtain a contradiction by choosing p large enough.

It is now easy to prove that this LCL cannot be solved locally for k-dimensional torus
graphs. The proof is similar to that of Theorem 6.3. As before, it suffices to consider order-
invariant algorithms. For the ID-numbering described in the proof of Theorem 6.3, every
sufficiently large torus will have a p .. p submesh M such that every vertex of M receives
the same label. But this contradicts the definition of the LCL. ]

In particular, the (d, d)-dining philosophers problem is not solvable with constant re-
sponse time for any d > 2.

Mayer, Naor, and Stockmeyer [12] have proved the converse of Theorem 7.2" if m <

d/2], then there is a protocol with constant response time for the (d, m)-dining philosophers
problem.

8. Open questions. This is an early attempt to study what can and cannot be computed
locally, and many questions remain open. A general direction for future work is to obtain
more information about what sorts of labeling problems and resource allocation problems can
be solved locally. In particular, the following specific questions are suggested by our work.

1. Consider the problem of assigning an orientation to some edges of the graph so that
every vertex has either no edge directed in or two edges directed in, and the assignment is
maximal with respect to the number of vertices that have two edges directed in. This problem
(the maximal in-degree 2 problem) was suggested by the formal-dining philosophers problem.
In the case in which all philosophers are initially hungry, such an orientation corresponds to
an assignment of cuff links that is maximal with respect to the number of philosophers who
are eating. We can show that this problem cannot be solved in constant time for d-regular
graphs where d < 4. Can it be solved in constant time for some d > 5?

2. We have shown that a weak 2-coloring can be found in time O (log*d) in odd-degree
graphs of maximum degree d. Is this the best possible time as a function of d, or is there some
fixed time that is sufficient for all d?

3. We have shown that a weak c-coloring cannot be found in constant time for certain
graphs having vertices of even degree (meshes). Does the same hold for trees where every
nonleaf has even degree? We conjecture that the result holds for any class of even-degree
edge-transitive graphs. Is this conjecture true?

Some other questions are addressed in 12].
1. The locality framework is extended to dynamic graphs, where edges can fail and

later recover and new nodes and edges can be added to the graph.
2. The amount of initial symmetry-breaking needed to solve certain problems locally

is investigated.
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IDENTIFYING THE MINIMAL TRANSVERSALS OF A HYPERGRAPH AND
RELATED PROBLEMS*

THOMAS EITERt AND GEORG GOTTLOBt

Abstract. The paper considers two decision problems on hypergraphs, hypergraph saturation and recognition of
the transversal hypergraph, and discusses their significance for several search problems in applied computer science.
Hypergraph saturation (i.e., given a hypergraph , decide if every subset of vertices is contained in or contains
some edge of) is shown to be co-NP-complete. A certain subproblem of hypergraph saturation, the saturation of
simple hypergraphs (i.e., Sperner families), is shown to be under polynomial transformation equivalent to transversal
hypergraph recognition; i.e., given two hypergraphs 7-( 1, "-2, decide if the sets in "7-[2 are all the minimal transversals
of 7-( 1. The complexity of the search problem related to the recognition of the transversal hypergraph, the computation
of the transversal hypergraph, is an open problem. This task needs time exponential in the input size; it is unknown
whether an output-polynomial algorithm exists. For several important subcases (for instance, if an upper or lower
bound is imposed on the edge size or for acyclic hypergraphs) output-polynomial algorithms are presented. Computing
or recognizing the minimal transversals of a hypergraph is a frequent problem in practice, which is pointed out by
identifying important applications in database theory, Boolean switching theory, logic, and artificial intelligence (AI),
particularly in model-based diagnosis.

Key words, hypergraphs, hypergraph transversals, hitting sets, independent sets, graph algorithms, NP-complete,
polynomial time, output-polynomial time, database design, dependency inference, key computation, distributed
databases, coteries, model-based diagnosis, satisfiability, prime implicants
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1. Introduction. Hypergraph theory [7] is an important subfield of discrete mathematics
with many relevant applications in both theoretical and applied computer science. In this paper,
we study complexity issues of relevant computational problems on hypergraphs.

A hypergraph 7-/is a set of subsets (edges) of a finite set of vertices. A hypergraph is
simple if none of its edges is contained in any other of its edges. We say that a hypergraph is
saturated if every subset of the vertex set is contained in an edge or contains an edge of the
hypergraph.

The first problem we consider is the test ofwhether a givenhypergraph is saturated. This
decision problem will be referred to as HYPERGRAPH SATURATION (H-SAT). We will also
deal with a restricted version of this problem where is supposed to be a simple hypergraph.
This subproblem is called SIMPLE HYPERGRAPH SATURATION (SIMPLE-H-SAT).

The second main problem--and probably the more important one from the application
viewpoint--concerns hypergraph transversals. A transversal (or hitting set) of a hypergraph
7-/is a subset of the vertices of 7-/which intersects each edge of 7-/. A transversal is minimal if
it does not properly contain any other transversal. The set Tr(7-[) of all minimal transversals
of a hypergraph 7-/is itself a hypergraph called the transversal hypergraph of.

Our second problem can thus be formulated as follows: Given two hypergraphs and, decide whether is the transversal hypergraph of 7-{. This decision problem, referred to
as TRANSVERSAL HYPERGRAPH (TRANS-HYP), is closely related to the search problem of
computing Tr(7-{) for a given hypergraph 7-{.

The complexity of TRANS-HYP is currently an open issue. The problem is in co-NP, but
there is no proof of co-NP-completeness. On the other hand, while the problem is polynomial-
time solvable if or 7-{ is a graph, no polynomial algorithm for the solution of the general
version of TRANS-HYP is currently known. Similarly the question of whether Tr(7-() can be
computed in output-polynomial total time (i.e., in time polynomial in the combined sizes ofthe
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Vienna, Paniglgasse 16, A-1040 Wien, Austria ((el te/gottlob) @vexpe t. dbai. tuwien, ac. at).
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input and the output) is an open problem. This complexity problem was posed independently by
several researchers [41], 14], [29]. Note that the existence of an output-polynomial algorithm
for computing Tr() would imply the polynomial-time solvability of TRANS-HYP; on the
other hand, if TRANS-HYP is co-NP-complete, then no output-polynomial algorithm for the
computation of Tr() is likely to exist.

This paper presents an extensive study of the aforementioned complexity and computation
problems. We derive some new complexity results and exhibit relationships to other relevant
problems such as satisfiability or hypergraph 2-colorability. Particular attention is paid to
restricted versions of the general problem classes which are either polynomial-time solvable
or <Pro-equivalent (i.e., equivalent under polynomial-time transformations) to TRANS-HYP. The
considered problems have important applications, e.g., in database theory, switching theory,
and artificial intelligence (AI), from which it will become clear that computing the minimal
transversals of a hypergraph is a frequently encountered problem of computer science. In the
rest ofthis section, we outline the structure ofthe paper and highlight the most important results.

Our study of hypergraph problems starts in 2 with the definitions of basic hypergraph
concepts and a brief overview of results known so far. In 3 we show that H-SAT is co-NP-
complete and relate this problem to the well-known problem of hypergraph 2-colorability.
SIMPLE-H-SAT turns out to be <Pm-equivalent to the problem of 2-coloring a hypergraph
whose edges are mutually intersecting. In 4 it is shown that SIMPLE-H-SAT is <Pm-equivalent
to TRANS-HYP. A restricted version of the latter problem is the question of whether a given
hypergraph is equal to its own transversal hypergraph, i.e., Tr(7-() 7-{. This problem, which
we call SELFTRANSVERSALITY, has attracted much interest by mathematicians [36], [6], [7]
but no complexity results have been derived so far. We show that SELF-TRANSVERSALITY
is <Pm-equivalent to TRANS-HYP.

Section 5 is dedicated to the investigation of polynomial subcases of the main problems.
The most interesting results are briefly summarized as follows.

1. H-SAT becomes solvable in polynomial time if the cardinalities of the edges of the
input hypergraph differ by at most a constant k, in other words, if all edges of 7-/have
approximately the same size.

2. TRANS-HYP is decidable in polynomial time if the cardinalities of the edges of one
of the input hypergraphs, say , are bounded by a constant. We present an output-polynomial
algorithm for computing Tr() in this case. Note that this result immediately leads to a
relevant generalization ofwell-known output-polynomial methods for computing the maximal
independent sets of graphs [52], [34], [29]. (Indeed, the maximal independent sets of a graph
or hypergraph are exactly the complements of its minimal transversals.)

3. TRANS-HYP is decidable in polynomial time if one of the input hypergraphs is
acyclic. We present an output-polynomial algorithm for computing Tr(7-[) for acyclic hyper-
graphs . The type of acyclicity we consider is/3-acyclicity as defined by Fagin in 16]. Note
that/-acyclicity is among the weakest types of acyclicity; our results and methods also hold
if we replace/3-acyclicity by any of the several stronger types of acyclicity from the literature;
cf. [16], [7].

Several applications, where recognizing or computing the transversal hypergraph plays a
fundamental role, are described in 6. Our results can be profitably used in those applications.
Section 7 concludes the paper; we state some open problems and give directions for further
research.

2. Preliminaries and previous results.
DEFINITION 2.1. A hypergraph is a pair (V, ) ofafinite set V {vl vn and a set

ofsubsets of V. The elements ofV are called vertices and the elements ofg are called edges.
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Note that some authors, e.g. [7], state that the edge-set as well as each edge must be
nonempty and that the union of all edges yields the vertex set.

For notational convenience, we will identify a hypergraph with its edge-set and vice versa
if there is no danger of ambiguity. Thus, for hypergraphs 7-/= (V, ) and 7-/’ (V’, U), we
write E E for E E ’, 7-/UT-/’ for (V U V’, g t2 U), rain(7-/) for (V, min(g)), etc. Moreover,
if not stated otherwise, it is presupposed that hypergraphs have the same set of vertices, which
is denoted by V, n denotes the number of vertices, and m denotes the number of edges.

A hypergraph is called simple if, for each pair H, H’ of distinct edges of 7-/, it holds
that H H’. Simple hypergraphs are also called Spernerfamilies according to [49], where
it is proved that the cardinality 17-/I of a simple hypergraph is bounded by (In/z1)’ which is

asymptotic to (1/4)1/2 2nn_a/2 [3]. For example, the set of minimal models for a finite set of
propositional clauses or the minimal keys of a database relation form a Sperner system.

Let 7-/be a hypergraph. The set Ve (7-[) JH7-t H are the essential vertices of. The
rank r(7-{) of is defined by r(7-/) max{ [El E 6 7-/}, and its antirank ar(7-[) is defined
by ar(7-{) min{lE] E 6 7-/}. For example, every graph is a hypergraph of rank 2. 7-/is
called intersecting if no pair of its edges is disjoint, i.e., for all EL, E2 G 7-(, E1 f-) E2 =/= 0.
Singleton edges in a hypergraph are referred to as loops.

Example. Consider the hypergraph 7-/= {{1}, {2, 3}, {1, 3, 4}} on V {1, 2, 3, 4}. We
note that Ve (7-() V, i.e., all vertices are essential, and 7-/is not simple. Moreover, ar(7-[) 1,
r (7-/) 3, and 7-/is not intersecting.

DEFINITION 2.2. Let 7-{ be a hypergraph. Then min(7-/) (resp., max(7-{)) denotes the set

ofminimal (resp., maximal) edges ofT-( with respect to set inclusion, i.e., rain(7-/) E 6 7-{
there exists no E’ 7-t with E’ C E} (resp., max(7-/) {E 7-/ there exists no E’ with
E’D E}).

Clearly, min() and max() are simple hypergraphs on V. For the hypergraph 7-{

{{1}, {2, 3}, {1, 3, 4}} of the last example, we have rain(7-/) {{1}, {2, 3}} and max()
{{2, 3}, {1, 3, 4}}.

DEFINITION 2.3 (transversal). Let 7-{ be a hypergraph. A set T c_ V is a transversal ofT-(
iffor each E , T 0 E =/= 0. A transversal T is minimal if no proper subset T’ of T is a
transversal.

Examples. Consider the hypergraph 7-( {{1}, {2, 3}, {1, 3, 4}} on V {1,2, 3, 4}
again. 7-/has two minimal transversals: 1, 2} and 1, 3}. Note that 0 is a minimal transversal
of 7-/-- 0, since every T _c V vacuously fulfills the transversal criterion, and 7-{ {0} has no
transversal, since no T

_
V has a nonempty intersection with 0.

Transversals are also called hitting sets and, in the case of a graph, vertex covers. The
minimal vertex covers of a graph as well as the maximal independent sets are output-efficiently
computable. An independent set of a graph is a vertex subset S _c V that contains no edge
of and is maximal if no proper superset of it has this property. Clearly, S is a maximal
independent set of iff V S is a minimal vertex cover of . Finding the lexicographically
first maximal independent set is LOGSPACE-hard 11], while finding the lexicographically
last maximal independent set is NP-hard [29]. (Given that V is ordered, V1 _c V comes
lexicographically before V2 _c V if the first element at which VI and V2 disagree is in V [29].)
The maximal independent sets of a graph can be output with polynomial-time delay [52],
[34], even if they have to be in lexicographic order [29]. Moreover, fast parallel algorithms
are known; cf. [31 ].

Note that transversals are closely related to edge covers. An edge cover of a hypergraph
is an edge subset 7-/’ _c 7-/such that E7-/’ E yields V, and is minimal if no proper subset

is an edge cover. The computation of minimal transversals and minimal edge covers is easily
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transformable into each other (cf. [35]); thus results on one of these problems apply to the
other.

Finding a minimal transversal of a hypergraph 7-/is efficiently possible: if 0, then
0 is the only minimal transversal of 7-/. If 0, then V {vl vn is a transversal of. If we define

T0-- V, and for alli, l_<i <n,

T/_I
i

i- {vi

if Ti_ {vi} is not a transversal,
if T/_ vi is a transversal,

then Tn is a minimal transversal of. Thus a minimal transversal of can be found in time
O(m.n). Finding a minimum cardinality transversal, however, is NP-hard; cf. [21].

DEFINITION 2.4. Let be a hypergraph on V. The transversal hypergraph Tr() ofT-{
is the hypergraph on V whose edges are the minimal transversals of.

The following propositions capture important relations between a hypergraph 7-( and
Tr(7-/); cf. [7].

PROPOSITION 2.1. For every hypergraph , Tr() is a simple hypergraph and Tr()
Tr (min(7-()).

PROPOSITION 2.2. Let and be simple hypergraphs. Then
(i) Tr() ifand only ifT-[ Tr((;);
(ii) Tr((;) Tr() iff (; 7-[;
(iii) Tr(Tr(7-()) 7-[.
The following simple algorithm for determining Tr(7-{) is given in [7] (cf. also [38], [35]):

Let 7-{ El Em }, m >_ O. Note that Tr ({ Ei }) {e} e Ei }. Define a sequence
7-0 7-m by

7-0-{0}, and for alli, < <_ m, 7-i min{T tO {e} T 6 7-i_l and e 6 Ei}.

Then T.i Tr({EI Ei }), 0 < j < m, and thus "-I’m Tr(7-{).
It is easy to see that the computation of the transversal hypergraph is inherently ex-

ponential. For example, consider the hypergraph n- {{2i- 1,2i}" _<i < n} on

V {1 2n}. ThenTr() {{Ix x} "xi {2i, 2i- 1},1 _< _< n}. Since

Tr() has 2 edges, the computation of Tr(U) needs space (hence also time) exponential
in the input size.

Since an algorithm for computing Tr() that runs in time polynomial in the input size
(I S) is not possible, an algorithm is desirable which works at least in polynomial time if the
number of minimal transversals (resp., the output size (O S)) is taken into account. There
are various possibilities for defining appealing notions of output-polynomiality, e.g., output-
polynomial total time, incremental-polynomial time, polynomial-time delay computability
[29], or P-enumerability [54].

The most general of these concepts is output-polynomial total time, which requires that
an algorithm work in time bounded by a polynomial in I S and 0 S. Note that an output-
polynomial total time algorithm may run for exponentially many steps in I S without producing
any output. The same holds for the notion of P-enumerability, where a search algorithm
computes all solutions of a problem in time p(I S)N, where p is a polynomial and N is the
number of solutions [54]. To consider incremental computations, an algorithm meets the
incremental-polynomial time criterion if it outputs all solutions s Su to the respective
problem one by one as follows: the time until the first output and the time between output of
solutions si, Si+l, < < N, is bounded by a polynomial in the combined sizes of the input
and all solutions S si, and the algorithm stops in polynomial time after the output of the
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last solution. A more restrictive criterion is output with polynomial-time delay. An algorithm
with this property generates the solutions one by one such that the time until the first solution
is output and between the output of consecutive solutions is bounded by a polynomial in I S.
Clearly, any such algorithm P-enumerates the solutions.

It is easy to show that the above algorithm does not stop in output-polynomial total time.
Consider the complete graph/Cn on vertices 1 n }, i.e.,/Cn {i, j 1 < < j _< n },
where n > 4 is even. Let the edges E1 Era, m I/tin I, of KZn be ordered such that
E1 {1, 2}, E2 {3, 4} E/2 {n 1, n}. Computing rr(1Cn) by 7-o J-m, we
find that ITs/2[ 2/2, because T,/2 rr({E1 En/2}) and {El En/2} is just the
hypergraph U/2 from above. As rr(1C) is given by Tm {{1 n} {i} _< < n}
and m n(n- 1)/2, we haven -Irr(/C)l- (R)(I/C11/2). Relating ITn/21 to the jth power,
j arbitrarily fixed, of I/nl max{ I/Cnl, ITr(/)l we get

T/21- 2()(I/nll/2); thus ITs/21 > I/Cl

for sufficiently large n. Hence, the size of 7-n/2 is not bounded by any polynomial in the
input and output size. Consequently, the above algorithm is not efficient with respect to
output-polynomiality.

Although there are several algorithms which involve, in a more or less obvious way, the
computation of transversal hypergraphs, (e.g., [38], [35], [46], [14], [40], [42], [45]), unfor-
tunately no output-polynomial transversal hypergraph algorithm is known today; moreover,
it is even an open question whether such an algorithm is likely to exist at all; cf. [14], [29],
[43]. We will show in 4 that the complexity of the closely related decision problem TRANS-
HYP, which, given two hypergraphs and 7-(, involves deciding if U Tr(7-[), is of crucial
importance to answer this question.

The second kind of problem in our study is the complexity of hypergraph saturation, a
covering problem for the power set 79(S) of a finite set S considered in [51 ], 10]. We introduce
some notation first.

DEFINITION 2.5. Let S be a finite set, and let X c_C_ S. Then Covs(X) {Y c_ S Y c_
X or Y D_D_ X}. For any hypergraph 7-( on V, Coy(7-{) He7-[ Cow(H).

In other words, Coy(7-[) is the set of sets X V that are covered by an edge E of 7-{ as
subset (X

_
E) or as superset (X D_ E).

DEFINITION 2.6. A hypergraph on V is calledsaturated ifand only ifCov(7-{) 79(V).
According to the definition, a hypergraph 7-{ is saturated iff every set V’

_
V is contained

in at least one edge of or contains at least one edge of 7-(.
Example. Consider the hypergraph }, {2, 3 }, 1, 3, 4} on V 1, 2, 3, 4} again.

Then Coy(7-() 79(V) {2, 4}, i.e., 7-[ covers all subsets of V but {2, 4}. Hence, 7-{ is not
saturated. If we add {2, 4} to 7-(, the resulting hypergraph 7-/’ {{ }, {2, 3}, {1, 3, 4}, {2, 4}}
is saturated. Note that saturation of a hypergraph U does not imply saturation of either
min(U) or max(U). As an example consider 7-/’. Neither min(’) {{1}, {2, 3}, {2, 4}} nor
max(7-(’) {{2, 3}, {1, 3, 4}, {2, 4}} is saturated, because {3, 4} and {1, 2}, respectively, are
not covered.

The complexity of checking if a hypergraph is saturated has, to the best of our knowledge,
not been studied yet in the literature.

We assume that the reader is familiar with the basic concepts of the theory of NP-
completeness (cf. [21]). co-FI denotes the problem complementary to decision problem I-I;
<Pro denotes polynomial-time transformability. Decision problems I-I and FI’ are called <Pro-
equivalent iff 1-I <,P, FI’ and FI’ <Pro FI. Problems that are solvable in polynomial time are
referred to as tractable, and those which are most likely not solvable in polynomial time,
among them all NP-hard problems, are referred to as intractable.
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3. Hypergraph saturation. Imagine you are a friend of Toni, who manages a pizza
restaurant that is famous for its rich variety of pizza.

The pizzas differ in their toppings, and accordingly every pizza has its special name. For
example, on a pizza margherita there are tomatoes, onions, and some cheese, on a pizza al
tonno there is tuna fish and onions, and on a pizza provinciale there are tomatoes, ham, corn,
onions, mushrooms, salami, pepperoni, and cheese. Now Toni wants to enlarge his pizza offer
with a new pizza, but the new pizza should be neither the "grande" version of another pizza,
i.e., have all the food of another pizza on it and some additional toppings, nor the "mini"
version, i.e., all the food on it is also on some other pizza. Toni has been testing quite a
number of food collections for the new pizza, but each of his compositions turned out to be a

grande or a mini version of one of the many pizzas. This makes Toni wonder if there is any
food collection for a new pizza at all. Since you are an expert in computer science, he asks
you to write a computer program to answer this question. Under the principle of quot capita
tot gustus, which means that every collection of food is appropriate for a pizza, you find that
Toni’s problem is just the hypergraph saturation problem if the food available is considered as
set V of vertices, and the pizzas already offered, described by food collections, are considered
as edges of a hypergraph. In a more precise formulation, we have the following

Problem. HYPERGRAPH SATURATION (H-SAT).
Instance. A hypergraph (V, ) on vertices V {Vl vn}.
Question. Is saturated?
A simple brute force algorithm would be to test all possible 2 vertex sets subsequently

until some collection is found that is not covered by ; this collection would be a new pizza
which satisfies the requirements. However, if 7-{ is saturated, the algorithm recognizes this
only after 2 covering checksmtoo many if the number of food items on Toni’s pizzas is
taken into account, because then the algorithm would take weeks to run. Thus, an algorithm
more subtle than the naive exponential algorithm is needed to solve the problem efficiently.
However, chances are very low that there is some algorithm substantially faster than the brute
force algorithm, because the problem is co-NP-complete; this is shown in this section. First,
we need some additional definitions.

DEFINITION 3.1. Let V be asetandlet V’

_
V. Then V’ V- V’. For every hypergraph

7-{ on V, the complemented hypergraph ofT-{ is the hypergraph H H E } on V.
The following relationships between and are straightforward, but nevertheless im-

portant.
PROPOSITION 3.1. Let be a hypergraph. Then 7-{ 7-{ and is simple iff is simple.
DEFINITION 3.2. A hypergraph is called self-complemented ifand only if .
Note that if a hypergraph is self-complemented, then for each X

___
V we have X E

Cov(7-l) iff X Coy(7-().
2-colorability of a hypergraph, also known as set splitting, is defined as follows.
DEFINITION 3.3. Let 7-{ be a hypergraph. A partitioning (A, B) of V, i.e., A tO B V

and A f3 B 0, is a 2-coloring ofT[ ifffor every E 7-[, it holds that E A and E : B.
is 2-colorable iffthere exists a 2-coloringfor 7-[.

In other words, a hypergraph is 2-colorable if and only if there is an assignment of one of
2 "colors" to each vertex such that each edge has two colors. Deciding whether a hypergraph
7-/is 2-colorable (HYPERGRAPH 2-COLORABILITY (HP2C)) is an NP-complete problem [36],
[21 ]. We prove that this problem remains NP-complete for the following restriction.

THEOREM 3.2. HP2C remains NP-complete even ifthe hypergraph 7-( is self-complemented.

1problems on pizza are studied elsewhere; cf. [24, p. 4].
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Proof. Consider the hypergraph’ =(V’, g’), where V’ V U {e, f} for some e, f ’ V,
andU 7-{U{EU{e, f} E E 7-{}. It is clear that 7-( can be constructed from in polynomial
time; moreover, 7-{’ is self-complemented. We claim that is 2-colorable if and only if 7-[’
is 2-colorable. To prove the only if direction, let (A, A) be any 2-coloring of . If e,f are
colored differently, only an edge of 7-( that is also an edge of can prevent a 2-coloring of
’. Hence (A U {e }, (V A) U f }) is a 2-coloring of 7-{’. For the/f direction, if (B, B) is
any 2-coloring of 7-{’, it does not color any edge from monochromatically because

__
7-{’,

and since no edge of 7-{ contains e or f, clearly (B {e, f}, B {e, f}) is a 2-coloring of
7-{. S

Using the relationship between 2-colorable hypergraphs and saturated hypergraphs, we
now show the intractability of H-SAT. We refer to the following lemma.

LEMMA 3.3. Let be a self-complemented hypergraph. Then 7-{ is not 2-colorable iff
is saturated.

Proof If 7-{ is not 2-colorable, for every partitioning (A, A) of V there exists H E 7-{

such that H A or H A. Because self-complementarity of implies that A Cov(7-{)
iff A Coy(7-{), it follows that A, A Cov(); consequently, 7-[ is saturated, which proves
the only if direction. For the/f direction, assume 7-{ is 2-colored by (A, A). We show that for
every H 6 7-{, it holds that A H and A H; hence, A ’ Cov(), which means that 7-{

is not saturated. Consider H E 7-{. Since (A, A) is a 2-coloring of , we have A H. If
A

__
H, then A _D H, which by self-complementarity of 7-{ contradicts the fact that (A, A) is

a 2-coloring of 7-{. Thus A H. This proves the if direction. 1
THEOREM 3.4. H-SAT is co-NP-complete, even if is self-complemented.
Proof Membership in co-NP is easy to show: Guess a subset V’ V and check if

V’ Cov() holds. This can clearly be done in time polynomial in n and m. co-NP-hardness
under the asserted restriction follows immediately from Theorem 3.2 and Lemma 3.3.

This result can be strengthened as follows.
THEOREM 3.5. H-SAT remains co-NP-complete even if 7-{ is self-complemented and all

edges have size k or n k forfixed k > 3.

Proof HP2C remains NP-complete even if no edge of 7-[ contains more than three vertices
[21 ]. Applying the transformation in the proof of Theorem 3.2 on such a hypergraph 7-{, we
obtain a self-complemented hypergraph 7-{’ (V’, g’) such that every E 6 7-{’ contains at
most three vertices or at least n’ 3 vertices, where n’ [V’I n / 2, with the property
that ’ is saturated iff 7-{ is not 2-colorable. Hence, H-SAT remains co-NP-complete if has
the form of 7-(. Therefore, in the following we assume without loss of generality that 7-[ is
self-complemented and every edge contains at most three vertices or at least n 3 vertices.

We first show the result for k 3. Without loss of generality assume that n > 2k 6.
One can test in polynomial time if, for each X V with [XI <_ 3, X Coy(7-{) holds. If 7-{

does not cover all the sets X, then 7-{ is not saturated. Otherwise, replace in 7-{ every edge E
with EI < 3 by all sets E’ of size 3 such that E C E’

_
V and every edge F with FI > n 3

by all subsets F’ C F of size n 3. Let 7-[f’ be the resulting hypergraph. Note that " is
self-complemented and contains only edges of size 3 or n 3; furthermore, it follows from
the construction of 7-(’ that X Cov(") for each X

_
V such that IX[ < 3.

We claim that 7-(’ is saturated iff 7-{ saturated. To show this, assume that is not saturated.
Then, since 7-{ is self-complemented, there exists X V such that 3 < IX[ < n 3 and
X Cov(). By construction of I,, it follows that X q Cov("). Thus 7-[" is not saturated.
The proof of the converse direction is analogous.

Since 7-[" can be constructed in polynomial time, H-SAT remains co-NP-complete under
the asserted restriction for k 3.
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For k > 3, the proof is analogous, where in each place "3" is replaced by "k." Note that
since k is a constant, it can be checked in polynomial time if, for each X V with XI < k,
it holds that X Cov() (there are fewer than knk such X), and " can be constructed in
polynomial time. q

The following result is an immediate consequence of Theorem 3.5 and Lemma 3.3.
COROLLARY 3.6. HP2C is NP-complete even if is self-complemented and all edges

have size k or n kforfixed k > 3.
The case k 3 in Theorem 3.5 marks the intractability frontier, as the case k 2 is

polynomial.
THEOREM 3.7. H-SAT is polynomial ifT-{ is self-complemented and all edges have size 2

orn-2.

Proof Let be the graph on V with edges {E 7-/ ]EI 2}. We reduce deciding
saturation of to testing certain properties of , which can be done in polynomial time. In
what follows, we assume without loss of generality that is not empty (i.e., 7-/is not empty)
and n > 4.

CLAIM A. Let v V be arbitrary. If v belongs to all edges of, then 7-[ is not saturated

iff Ve() C V.
To prove the if direction of this claim, assume that Ve() C V. Let v’ V V () be

arbitrary. It is readily checked that the partitioning ({v, v’}, V {v, v’}) is a 2-coloring of.
Thus, by Lemma 3.3, 7-( is not saturated. This proves the if direction. For the only if direction,
assume that is not saturated. Then, by Lemma 3.3, there must exist a 2-coloring of; let
(B, B) be such an arbitrary 2-coloring. Since c_ , (B, B) is a 2-coloring of . Assume
that Ve() V. Then it follows that B {v} or B {v}; assume without loss of generality
that B {v}. Let E 6 be arbitrary. Since v 6 E, it follows that E

___
V {v} B. Since

is self-complemented, we have E ; this implies that (B, B) is not a 2-coloring of ,
which is a contradiction. Thus it follows that Ve() V, and hence Ve() C V.

CLAIM B. Ifno v V belongs to all edges of, then 7-( is not saturated iff is 2-colorable.
The only if direction is immediate from Lemma 3.3. For the if direction, let (B, B) be

any 2-coloring of . Since no v 6 V belongs to all edges of , the 2-coloring must satisfy
IB A Ve()l > 2 and IB fq Ve({7)[ > 2. It follows that B Cov() and B Cov(). Since
the latter is equivalent to B Cov() and U , we have B Cov(). This means
that 7-( is not saturated and the if direction is shown.

In summary, by Claims A and B, the problem of deciding whether is saturated is
efficiently reducible to checking whether Ve() V or deciding whether is not 2-colorable.
The former is trivially polynomial, and the latter is polynomial since checking 2-colorability
of a graph is polynomial [22].

It follows that H-SAT is polynomial under the asserted restriction. [3

3.1. Simple hypergraph saturation. Toni has a brother Luigi, who also manages a big
pizzeria. Luigi is proud that each of his pizzas is "originale," which means that in his restaurant
there are no grande or mini versions of pizzas. As he hears from the plans of his brother, Luigi
also intends to enlarge his pizza offer by a new pizza, which, of course, has to be a pizza
originale. It is clear that Luigi’s problem is a restricted version of Toni’s problem. Since all
pizzas are "originali," in the corresponding hypergraph saturation problem the hypergraph of
pizzas is simple. Thus, in terms of hypergraphs, we have the following.

Problem. SIMPLE HYPERGRAPH SATURATION (SIMPLE-H-SAT).
Instance. A simple hypergraph 7-/= (V, ) on vertices V {vl vn }.
Question. Is saturated?
The question is if this restriction on the input makes H-SAT tractable. Though SIMPLE-

H-SAT is clearly in co-NP, a precise classification is still open.
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A saturation test for two simple hypergraphs is easily reducible to a test for one hypergraph.
DEFINITION 3.4. Let 7-{ be a hypergraph on V and let v be a (possibly new) vertex.

The hypergraph 7-{ is defined by 7-{ (V U {v}, {H U {v} H E 7-{}). Let and 7-f, be
simple hypergraphs on V and let e, f be two (possibly new) vertices. Then Ce,f(, 7-{)
(V t2 {e, f}, e kJ Hi U {V, {e, f}}).

PROPOSITION 3.8. Let and 7-{ be simple hypergraphs which do not contain 0 or V as
edges and let e, f qg V be distinct. Then Ce,.(, 7-{) is simple and C,.t.(, 7-{) is saturated iff
and 7-{ are saturated.
Proof It is readily verified that C,f(, H) is simple. To show the other property,

assume first that C,f(, 7-{) is not saturated. That is, there exists X

_
V U {e, f} such that

X Cov(C,f(, )). Since V E Ce,f(, 7-t) and {e, f} 6 Ce,f(, }-L), X must contain
exactly one of e and f. If e 6 X, it follows that X {e} Cov(); hence, is not saturated.
Analogously, if f 6 X, it follows that 7-{ is not saturated. Thus the if direction holds. For the
only if direction, assume without loss of generality that is not saturated. Let X V such
that X g Cov(). Then we have that X U {e} CoU(Ce,f(, ’]-{)), i.e., Ce,f(, -{) is not
saturated. [

We obtain that, for the following subcase, SIMPLE-H-SAT remains as hard as in the general
case.

PROPOSITION 3.9. SIMPLE-H-SAT is <Pm-equivalent to the subcase where is self-
complemented.

Proof Note that a hypergraph 7-{ is saturated if and only if 7-{ is saturated: indeed, for
every X

__
V, we have X Coy(7-{) iff X Coy(7-{). Since the hypergraph C,U(, 7-{) is

self-complemented for , the result follows from Proposition 3.8. [3

In terms of colorability, the following result can be formulated as an immediate conse-
quence of Proposition 3.9 and Lemma 3.3. Observe that HP2C for simple hypergraphs is still
NP-hard, as a hypergraph 7-{ is 2-colorable iff min(7-{) is 2-colorable.

COROLLARY 3.10. HP2C for simple and self-complemented 7-{ is <Pro-equivalent to co-
SIMPLE-H-SAT.

4. Relating hypergraph transversals and saturation. Problems involving hypergraph
transversals appear in many practical applications (cf. 6), so their computational complexity
is of major interest. Moreover, several computational problems on hypergraphs can be re-
formulated in terms of transversals; for example, finding a 2-coloring for a hypergraph 7-{ is
equivalent to finding a transversal T of 7-[ such that T is also a transversal.

In this section we first give a characterization of saturated hypergraphs in terms of a
transversal relation, and then we will consider the problem oftransversal recognition, where we
will show that this problem is <Pm-equivalent to SIMPLE-H-SAT. Moreover, we will investigate
necessary and sufficient criteria for simple hypergraph saturation and transversal hypergraph
recognition, and we will show how the latter problem reduces to a very specific subcase.

4.1. Definitions and basic facts. We need some additional definitions first.
DEFINITION 4.1 (cf. [7]). Let and be two hypergraphs. Then 7-{ > ifffor every

H 7-{ there exists G such that H D_ G,2 and 7-{ < ifffor every H 7-{ there exists
G 6 such that H C_ G.

For every hypergraph H, (i) 0 >_ 7-[ and (ii) {0} > 7-[ iff 0 E H. Note that H >_
(resp., 7-{ < ) does not imply U < H (resp., >_ 7-{); for example, let H {{ 1}} and

{{ 1}, {2}}. _< is in some sense dual to > with respect to complementation. For every
hypergraph 7-{, 7-{ < V} and V} _< H iff V 6 H. Note that > and < are reflexive, transitive,
and define partial orders on the simple hypergraphs on V. We observe the following properties.

2In [7, p. 45] >_ is denoted by
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PROPOSITION 4.1. Let and be hypergraphs. Then

U >_ 7-{ == > min(7-{) == min() >_ min(),

U _< 7-{ == < max() == max(U) _< max().

We have the following characterization of saturated hypergraphs.
THEOREM 4.2. Let :/: 0 be a hypergraph. Then the following statements (i)-(iii) are

equivalent:

(i) is saturated; (ii) Tr(max(7-{)) > min(); (iii) Tr(7-{) > .
Proof (i) = (ii). Assume is saturated. Consider T 6 Tr(max()). We have

T Coy(7-{), but since T is a transversal of max(), for every E 6 7-{ it holds that T E.
But then E’

_
T for some E’ 6 , which implies T @ E" for some E" 6 min(). It follows

that Tr(max()) > rain(7-{).
(ii) := (iii). Check that max() rain(7-{). Hence Tr(max()) Tr(min())

Tr(). Since Tr(max()) > min(7-{), it follows from Proposition 4.1 that Tr() > 7-{.

(iii) = (i). Assume 7-{ is not saturated, i.e., there exists X

___
V such that X Coy(7-{).

Since X E for every E , X is a transversal of. Let X’
_
X be a minimal transversal

of . Now consider any E 6 7-{; since E X, we have E X’. Consequently, Tr()

COROLLARY 4.3. To test if Tr() > holds for a hypergraph 7-{ is co-NP-complete
even if T-{ is self-complemented and contains only edges ofsi:e k and n kforfixed k > 3.

Proof Membership in co-NP follows since a guess for T Tr(), such that for every
E 6 , T E, can be verified in polynomial time. co-NP-hardness under the asserted
restriction follows from Theorems 4.2 and 3.5. 71

We remark that the equivalence of (i) and (iii) in Theorem 4.2, restricted to simple hy-
pergraphs, is implicit in a result of [51], which investigates Sperner families in the context of
relational database theory. Note that this criterion does not describe the transversal hypergraph
explicitly. We will provide such a description later in this section.

4.2. The main problem. Besides SIMPLE-H-SAT, the recognition of the transversal hyp-
ergraph is the second issue of central concern in our study. We will now show that the com-
plexity of this decision problem is of importance in computing the transversal hypergraph,
and then we will demonstrate _< Pm -equivalence of SIMPLE-H-SAT and transversal hypergraph
recognition. Let us start with a precise problem statement.

Problem. TRANSVERSAL HYPERGRAPH (TRANS-HYP).
Instance. Two hypergraphs (V, gl) and 7-{ (V, g2) on vertices V

Question. Does 7-{ Tr() hold?
The problem is in co-NP, since a guess for T Tr(), such that T , can be verified

in polynomial time. However, there is no trivial evidence that the problem is in NP, and there
is even less that it is in P. We observe that TRANS-HYP efficiently reduces to the following
subproblem.

PROPOSITION 4.4. TRANS-HYP is <Pm-equivalent to the subcase in which and are
simple.

Proof Note that Tr() implies that is simple. Furthermore, Tr() Tr(min()).
Since min() is a simple hypergraph and computable in polynomial time, the result
follows. 71

The significance of TRANS-HYP on the related search problem, namely, the computation
of the transversal hypergraph, is captured by the following theorem.
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THEOREM 4.5. IfTRANS-HYP is not in P, then no output-polynomial total time algorithm
for computing the transversal hypergraph exists.

Proof Assume that an algorithm A computes Tr(.T) from U in output-polynomial total
time. Let its run time be bounded by a polynomial p(I S(U), N), where I S denotes the input
size and N ITr()[. To solve TRANS-HYP, construct an algorithm A’ which works as
follows: A’ simulates A applied on , but does this for at most p(I S(U), I1) steps. If A
did not terminate within p(I S(), I1) steps, then 7-/76 Tr(U). Otherwise, A’ compares the
hypergraph output by A to 7-[; these hypergraphs are identical iff 7-[ Tr(). It is easy to see
that the run time of A’ can be bounded by a polynomial q(l S(), I1). (The bookkeeping
between simulation steps can be done in polynomial time.) Hence A’ is polynomial with
respect to the input size. The result follows. [3

4.3. Characterizations of the transversal hypergraph. Since one can test in polyno-
mial time for every X

_
V whether X is a minimal transversal for a given hypergraph , we

wonder if we can infer that Tr() if all edges of are minimal transversals of and
vice versa, since this can be checked in polynomial time. The answer is no.

PROPOSITION4.6. Let andT-{ besimple hypergraphs. Then 7 c_ Tr() and c_ Tr()
does not imply 7-[ Tr().

Proof We give a counterexample. Let V {a g }. Consider the hypergraphs

{{a, b, c}, {a, d, g}, {a, e, f}, {b, d, f}, {b, e, g}, {c, d, e}, {c, f, g},

{d,e,f,g}, {b,c,e,f}, {b,c,d,g}, {a,c,e,g}, {a,c,d,f}, {a,b,f,g}},

={{a,b,c,d}, {a,b,c,e}, {a,b,c,f}, {a,b,c,g}, {a,b,d,g}, {a,c,d,g},

{a,d,e,g}, {a,d, f,g}, {a,b,e, f}, {a,c,e, f}, {a,d,e, f}, {a,e, f,g},

{a,b,d,f}, {b,c,d,f}, {b,d,e,f}, {b,d,f,g}, {a,b,e,g}, {b,c,e,g},

{b,d,e,g}, {b,e,f,g}, {a,c,d,e}, {b,c,d,e}, {c,d,e,f}, {c,d,e,g}}.

It holds that 7-(

_
Tr()and c_ Tr(7-(), but - Tr()as {c, f,g} Tr(7-{)and

{c, f, g} .3 [-]

For further characterizations of the transversal hypergraph of a simple hypergraph, we
introduce a special delete operator which removes from every edge of a hypergraph a vertex
in all possible ways.

DEFINITION 4.2. Let V be a finite set and let Hyp(V) 22v denote the set of all
hypergraphs on V. The mapping 3 Hyp(V) --+ Hyp(V) is defined by 3(7-[)
(V, {H {v} "H 6 , v 6 H}).

Examples. For the hypergraph {{1},{2, 3},{1, 3, 4}} on V {1,2, 3, 4}, we have
3() {0, {2}, {3}, {1, 3}, {1,4}, {3,4}}. Note in particular that 3 (0) 0and3({0})-0.

We observe the following relationships.
PROPOSITION 4.7. Let and 7-[ be simple hypergraphs such that V () # and Ve (7-{) 76

0. Then
(i) 7-/_ Tr() implies 7-[ < 3(), but the converse does not hoM;
(ii) 8(7-/) > Tr(), i.e., every edge of3(7-[) is a transversal ofT-[;
(iii) Tr(7-[) < 3(7-[), i.e., every minimal transversal ofT-[ is contained in some edge of

37" 7")7 to’77-- {{a,b,d,e}} and {E tO {v} E 6 "]97 {{c, f, g}}, v 6 } for the hypergraph
797 {{a,b,c}, {c,d,e}, {b,d, f}, {a,e, f}, {a,d,g}, {b,e,g}, {c, f,g}} on V {a g} from [7, p. 47,
Fig. 1].
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Proof (i) Consider T 6 7-/. Since T 6 Tr(), it follows that for every v 6 T there exists
G 6 such that (T {v}) N G 0; hence T {v} G. This implies that T c_ G tO {v}
G {v}, from which it immediately follows that 7-/_< 6().

The following example shows that the converse does not hold. Consider 7-/-- {{ 1 and
{{1}, {2}} on V {1,2}. Then 3() {{1,2}} and 7-g _< 3(), but 7-g 5 Tr()

{{1, 2}}.
(ii) Consider H 6 7-{. H is not a transversal of 7-g, but since 7-g is simple, it is a transversal

of the hypergraph 7-g {H}. Thus, for every v H, H U {v} is a transversal of ; hence
H U {v} H {v} contains a minimal transversal of 7-g. The claim follows immediately
from the definition of 8.

(iii) For every minimal transversal T of 7-/and every vertex v 6 T there exists an edge H
of 7-g such that T N H v}; hence T c_ H U {v }, but H U v H v 6 (7-/).

Note that in the above proposition (i) states a necessary but not sufficient condition for
TRANS-HYP. With the a-operator we have the following important characterization ofsaturated
simple hypergraphs.

THEOREM 4.8. Let 7-{ be a simple hypergraph. Then 7-[ is saturated ifand only ifTr()
min(a (7-/)).

Proof We prove the only if direction first. Assume 7-/ is saturated, but Tr(7-()
rain(a(7-/)). Note that this assumption implies 7-/:/= 0 and 7-/-J: {0}, hence Ve() g: 0.

CLAIM C. Tr(7-g)

_
min(a(7-g)).

Proof Suppose to the contrary that Tr(7-g) <_ min(a(7-g)); hence, since Tr(7-{)
min(a (7-g)), there exists an edge E 6 min(6 (7-/)) Tr(7-[). From Proposition 4.7(ii) it follows
that E is a transversal of 7-/; thus E contains some T Tr(7-{). Consider any such T. Since
min(a()) is simple, it follows that T min(a(7-{)). Hence T gives rise to a contradiction of
Tr(7-[) c_ min(a(7-g)). This proves the claim.

From Claim C and the assumption Tr(7-() g= rain(a(7-/)), it follows that there exists
T Tr() such that T Tr(7-() min(6()).

CLAIM O. H T -J= 0.
Proof Assume to the contrary that H T 0, i.e., H

_
T. Clearly, H is not a transversal

of 7-g; however, since 7-/is simple, for every v 6 H it holds that H tO {v} is a transversal of. From this and H c_ T, T Tr()we infer that T- tO {v’} for some v’ 6 H. Hence
T 6 (7-/), which means that T is a superset of some edge in min(a()). Since T Tr(),
we infer from Proposition 4.7(ii) that T 6 min(6 ()). We have reached a contradiction. Thus
H T,i.e.,HT

Since for each H 6 7-g, a vertex e exists such that E H tO {e} 6 (7-/), it follows from
Claim D that T is a transversal of . Since is saturated, we have by Theorem 4.2(iii) that
Tr(7-{) > 7-{. Thus there exists H 6 7-( such that T

_
H, which is equivalent to T H. But

this means that T is not a transversal of 7-(; this is a contradiction to the existence of T which
followed from Claim C. Thus, the assumption Tr(7-() g: rain(a(7-/)), from which we derived
Claim C, is not consistent. This proves the only if direction.

To prove the if direction, assume that Tr(7-{) min(6()), but 7-{ is not saturated. Note
that 7-g - 0. Since 7-g is not saturated, there exists a set T V such that T q; Cov(). In
particular, we have for every H 6 7-{ that T g H, and hence T fq H : 0. This means that
T is a transversal of 7-g. From the assumption Tr(7-{) min(a(7-g)), we infer that T

___
E for

some E 6 rain(a(7-/)). By the definition of (7-/), we have that E H to {v} for some H and
v such that H 6 7-/and v 6 H. Hence T

___
H to {v}, and thus T

_
H. The latter means

T H, which implies T Cov(7-[). Thus we have reached a contradiction of the existence
of T. This proves the/f direction.
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Given a simple hypergraph 7-{, one can easily compute 7-( rain(3 (7-{)) in polynomial
time. Since checking whether each edge of 7-t is a minimal transversal of 7-{’ and vice versa is
possible in polynomial time, we wonder if this necessary condition for saturation of 7-{ is also
sufficient. Unfortunately, this does not hold.

PROPOSITION 4.9. Let 7-[ be a simple hypergraph and let 7-( min((7-[)). Then
Tr(’) and ’ c_ Tr() does not imply that 7-[ is saturated. The same holds if T-[ is self-
complemented.

A counterexample for unrestricted 7-[ is not hard to find (e.g., in the proof of Proposi-
tion 4.6, rain(3 ())). Imposing self-complementarity on makes this more challenging,
in particular, to find a counterexample with as few edges or vertices as possible; we can offer
an instance of 7-{ with 308 edges on 22 vertices.

It follows immediately from Theorem 4.8 that SIMPLE-H-SAT is _<Pro-transformable into
TRANS-HYP. The next theorem implies the converse, which establishes that SIMPLE-H-SAT
and TRANS-HYP are _< Pm -equivalent. We use the following simple but helpful lemma.

LEMMA 4.10. If is simple, thenfor each E E Tr(7-{), there exists no E’ 7-[ such that
E’QE.

Proof Indeed, if E Tr(H) then E E’ - 0 for all E’ 6 ; hence E’ E - 0, i.e.,

E’E.
THEOREM 4.11. Let 1 and 2 be two simple hypergraphs on V and let e, f V be

distinct. Define a hypergraph 7-{ (V’, 9r2), where V’ V {e, f}, 5rx , and

9r2 {E {e, f} E 6 2}. Then Tr(2) iffH is simple and saturated.

Proof For the only if direction, let 1 Tr(2) hold. We first show that 7-{ is simple.
Suppose H is not simple. Since U1, 9r2 constitute simple hypergraphs, there must exist

F 6 9, F2 E 2 such that F
_

F2 or F2

_
F1. By Lemma 4.10 and the construction

of -)"1 and U2 it follows that Fa

___
F2 is impossible to hold. However, F2

_
FI is also

impossible because e 6 F2 but e ’ F1. Thus we have reached a contradiction, and H is
simple. Now we show that H must also be saturated. Assume this is not the case, i.e., there
exists X V’, X Coy(H). Since for all F 9r2 we have X ff F, it follows that X is a

transversal of 3r2 2 2. Since 3r constitutes Tr(z), this implies that E

_
X for some

E 6 ’, which means that X Coy(H), a contradiction. Thus 7-{ is saturated; the only if
direction is proved.

To prove the/f direction, assume that H is simple and saturated, but - Tr(2). We
showthatl 25 Tr(2). Assume thatl D Tr(2). Hence there exists a set E E l-Tr(2).
Since 1 Tr(2) and 1 is simple, it follows that E is not a transversal of 2. Since E is not
a transversal of 2, there exists some E’ 6 2 such that E C3 E’ 0; hence E C E’ U {e, f}.
By construction of 7-{, we have that E, E’ U {e, f} 6 H. This means that H is not simple,
which is a contradiction. Thus it follows that 1 Tr(2).

Since = Tr(2) and Tr(2), there exists a T 6 Tr(2)-l. Consider TU{e}.
Because T is a transversal of2 "--;L-’2, it is clear that there is no F 6 5c2 such that T U {e} _c F.
There is no F E .2 such that T U {e}

___
F because f 6 F, f ’ T, and there is no F

with the property T U {e}

___
F because e F. Since 7-{ is saturated, this implies that there

is some F 6 1 such that F

___
T U {e}, from which F

___
T cle.arly follows. Because 7-{

is simple and .2

___
"]"{, it holds for every G 6 o2 that F G; thus F is a transversal of

o"2 2. Since T E Tr(2), it follows that F T. Hence T 6 , which is a contradiction
of T Tr(2) l. This proves the if direction.

Now the aforementioned relationship between SIMPLE-H-SAT and TRANS-HYP is easy
to establish.

THEOREM 4.12. SIMPLE-H-SAT is <_Pm-equivalent to TRANS-HYP.
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Proof Theorems 4.8 and 4.11 imply that SIMPLE-H-SAT <Pm-reduces to TRANS-HYP and
vice versa. [3

4.4. Self-transversal hypergraphs. As previously mentioned, we show that recognizing
the transversal hypergraph <Pm-reduces to the SELF-TRANSVERSALITY problem, which is as
follows.

Problem. SELF-TRANSVERSALITY.
Instance. A hypergraph 7-/= (V, ) on vertices V {u /)n }.
Question. Does 7-{ Tr(7-() hold?
Self-transversal hypergraphs have attracted much interest by mathematicians; cf. [36], [6],

[7]. The simplest example of such a hypergraph is ({x }, {x }). Another example is the
hypergraph {{x, y}, {x, y}, {y, z}}. For a thorough study of self-transversal hypergraphs,
the reader is referred to [7, Chap. 2]. We have the following result.

THEOREM 4.13. Deciding whether a hypergraph 7-[ satisfies Tr (7-() 7-{ is <Pm-equivalent
to SIMPLE-H-SAT.

Proof We show that TRANS-HYP is _< Pm -reducible to SELF-TRANSVERSALITY, from
which, by Theorem 4.12, the result follows. Without loss of generality, let and be two
simple, nonempty hypergraphs on V and let e, f V be two new distinct vertices. Define a

hypergraph 79 on V’ V U {e, f} by 79 e [,.j ,]..f [,.j {{e, f}}. We claim that Tr() iff
79 Tr(D).

To prove this, consider Tr(D). We have that {e, f} 6 Tr(79) and also {e, f} 6 79. Every
T Tr(D) {{e, f}} distinct from {e, f} contains either e or f, but not both. Assume that T
contains e but not f. Since no edge in ]-/f contains e and all other edges in 79 -/f contain e,
we infer that T {e} must be a transversal of 7-{. Conversely, if T’ is a transversal of 7-(, then
T’ U {e} is easily shown to be a transversal of 79. This implies that the minimal transversals
of 79 which contain e but not f are given by T {E U {e} E 6 Tr(7-{)} Tr(). From
this it is immediately verified that Tr(7-[) if and only if e T. In the same way, one
can show that the set 7-. of minimal transversals of 79 which contain f but not e satisfies

Tf f if and only if Tr(). Since and 7-( are simple, by Proposition 2.2, Tr(7-[)
iff 7-[ Tr(). Hence, since Tr(79) 7"e 7"f {{e, f}}, we have that Tr(7-{) iff 79
Tr(79); the claim is proved. [3

From this result, by the close relation between 2-colorable intersecting hypergraphs and
self-transversal hypergraphs [7], we obtain the following result on deciding 2-colorability of
intersecting hypergraphs.

COROLLARY 4.14. HP2Cfor intersecting hypergraphs is <Pm-equivalent to co-SIMPLE-H-
SAT.

Proof Note that is intersecting iff min() is intersecting and 7-( is 2-colorable iff
min() is 2-colorable. Thus, without loss of generality we may assume that is simple and
intersecting and, in addition, contains no loops, i.e., singleton edges. A simple intersecting
hypergraph without loops satisfies 7-/= Tr(7-{) if and only if it is not 2-colorable [7]. Thus, if
7-/is intersecting, 2-colorability of is _<-reducible to co-SELF-TRANSVERSALITY, which,
by Theorem 4.13, is _< Pm -equivalent to co-SIMPLE-H-SAT. V1

5. Polynomial cases. Although we do not know whether SIMPLE-H-SAT and TRANS-
HYP are intractable in their general problem statement, in practical occurrences there are
(natural) restrictions on the instances of a problem such that the problem reduces to a sub-
problem of the general problem. Since a subproblem might be computationally easier, there
is hope to get efficient algorithms for it even if the more general problem is intractable. For
example, in the pizza baker’s problem it seems quite reasonable to assume that all pizzas have
approximately the same number of food items; in this case, however, the problem becomes
polynomial-time solvable for both Toni and Luigi. Narrowing the "frontier" between the in-
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tractable general problem and tractable subcases [21], we identify some important subcases
of SIMPLE-H-SAT and TRANS-HYP which are in P, among them the recognition of the min-
imal transversals of a hypergraph with bounded edge size and hypergraph saturation if the
difference between rank and antirank is bounded. In particular, we present algorithms for
output-efficient computation of the transversal hypergraph if the edge-size is small (probably
the most important of the restrictions treated for practice) and if it is large, or if the hypergraph
is acyclic.

5.1. Restrictions on the edge size. Let us consider restrictions on the size of the edges
of a hypergraph. A straightforward restriction of this kind which is important in practice is a
constant upper bound. Fortunately, the transversal hypergraph is output-efficiently computable
in this case, which implies that the minimal transversals ofsuch a hypergraph can be recognized
in polynomial time and also saturation of a simple hypergraph of this form is efficiently
decidable.

DEFINITION 5.1. Let 7-t be a hypergraph on vertices V, and let x V. The degree d(x, 7-t)
ofvertex x in hypergraph 7-t is defined as d (x 7-t) l{E 6 7-{ x 6 E }l.

In the proof we apply a result from combinatorial studies by Berge and Duchet.
LEMMA 5.1 ([7, p. 58, Cot. 1]). Let be a simple hypergraph and let k > 2 be an integer.

Then r(Tr()) < k ifffor all ’ with I’l k + there exists an E subject to (s.t.)
E c__ {v V’d(v, ’) > 1}.

THEORtM 5.2. Let be a hypergraph. If the size ofthe edges of is bounded by some
constant k, i.e., r(7-t) <_ k, then Tr(7-t) is computable in incremental-polynomial time.

Proof We describe an algorithm which has the desired property. The following char-
acterization of Tr(7-t) for a simple, nonempty hypergraph 7-t is obtained from Lemma 5.1.
Let r r(7-t) and, for any hypergraph 9r and integer > 0, denote by oSUli the hypergraph
i {E .T" [E[ < i}. Then

(1) g- Tr(7-{) (g c_ Tr(7-{)) A P A Q,

where

P =- Tr(g)lr c_ 7-t,

Q _-- there exists no g’ c g with [g’l r + such that for all E ’,
E

_
{x V’d(x, g’) > 1}.

It is readily checked that (1) holds if r < 1. We show that (1) also holds if r > 2. If Tr (7-t)
and is simple, then 7-t Tr(g) and the only if direction follows by Lemma 5.1. For the if
direction, if 7-t is simple, g

_
Tr(7-t), and P holds, then 7-t _c Tr(g). To show this, consider

H 6 7-t. Since g Tr(7-t), H is a transversal of g. Let H’
___
H be an arbitrary minimal

transversal of g. Since H’] _< r, it follows from P that H’ 6 7-t; as 7-t is simple, it follows
that H’= H. Hence 7-t

___
Tr(g).

Since, by validity of Q and Lemma 5.1, r(Tr(g)) < r, it follows from P that 7-t Tr(g).
We now derive from (1) a method for incrementally computing Tr(7-t), where 7-t is

simple and nonempty. If g __c Tr(7-t) and g 76 Tr(7-t), then P or Q is false. In this case some

T1 Tr(), such that T1 , can be found as follows.
(i) Assume that P is false. Hence there exists T Tr(g)lr 7-t.
CLAIM E. T is a transversal ofT-{.

Proof Note that T is not a transversal of 7-t iff there exists an H 6 7-t such that T NH 0,
which is equivalent to H

__
T. Since

_
Tr(), H is a transversal of {7. As T 6

Tr(g)lr 7-t, T is a minimal transversal of g. Since H _c T, it follows that H T; hence
T 6 7-t. This is a contradiction. Consequently, T is a transversal of 7-t.
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Algorithm Trans()
input: simple, nonempty hypergraph 7-g on V.
output: Tr (7-g) edge by edge, i.e., incrementally all minimal transversals of 7-(.

r +- r(Tl); +- O;
loop

_
Tr(7-)

if (there exists a T Tr()lr 7-() then
minimize T to a minimal transversal T1 of

else c_ Tr(), c_C_ Tr(7-t)
if (there exists ’ c__ with I’1 r + such that

for all E ,E

_
{x V "d(x,’) > 1})

then
minimize {x V d(x, ’) > to a minimal transversal T1 of

else Tr(7-()
exit loop;

fi;
fi;
output(T1 ); <--- t0 T1 };

endloop;

FIG. 1. Algorithm computing Tr() in incremental-polynomial time if r(7-() < k, for constant k > O.

CLAIM E T q Cov().
Proof Assume to the contrary that T Cov(). Assume, furthermore, that there exists

G such that G c__ T. This implies G fq T 0, which means that T is not a transversal
of U. However, by definition, T Tr()[r 7-(, and thus T is a transversal of . We have
reached a contradiction, and thus G does not exist. Assume otherwise that there exists G 6

such that T C G. This implies that G q Tr(), which contradicts Tr(7-[). This shows
that T q Coy({7).

By Claims E and F, T is a transversal of 7-( such that T q Cov(). Thus T contains some
T1 Tr(7-[) such that T1 ; in fact, every T1 6 Tr() such that Ta T has this property.

(ii) Assume that Q is false. Hence, there exists ’ with I’l r + such that
for every E 6 we have E {x V d(x, ’) > 1}. Note that this is only possible if

11 > r(7-(), which implies that r(7-/) > 2. By Lemma 5.1, it follows that r(Tr()) > r, thus

# Tr().
CLAIM G. T {x V d(x, ’) > 1} is a transversal ofT-{ and T Cov().
Proof. Note that if T is a transversal of 7-g, then T Cov(), as no edge of is contained

in T and, on the other hand, for no E does it hold that T C E as E Tr(). Thus
to prove our claim, it remains to show that T is a transversal of . Assume that T is not
a transversal of 7-g. Hence there exists some E 7-[ such that E f3 T 0, i.e., E

_
T.

However, this is impossible: since T contains no edge of , T is a transversal of , and thus
also a transversal of ’. From the definition of T, each vertex of T appears in at most one
edge of ’. Since ’ has r / edges, it follows that no transversal T’ of ’ with T’ T can
have fewer than r + vertices. Check that every H 6 is a transversal of ’; since [HI < r,
it follows that E g T, which is a contradiction. Thus T is a transversal of 7-g, and the claim
is proved.

Since T q Cov(), T contains some T1 6 Tr(7-[) such that T1 Cov(); in fact, every
T1 Tr(7-[) such that T1 g T has this property.

Utilizing this result, the algorithm Trans in Fig. incrementally outputs the minimal
transversals of a simple, nonempty hypergraph 7-[. The correctness of Trans can be easily
proved from (1) and the described additional transversal determination; note that

_
Tr(7-l)

is a loop invariant.
To prove the theorem, assume that r(7-{) < k. If 7-/is not simple, compute min() in

polynomial time and proceed with that hypergraph. Since k is a constant, the conditions of
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both if statements can be checked in time polynomial in the size of, , and V. nk is an upper
bound on the number of vertex sets to check in the outer if, and I]k+l is an upper bound for
the number of subhypergraphs ’

_
(each of them computable in polynomial time) to test

in the inner if. In both cases, all tests are clearly polynomial. Furthermore, T1 is computable
in polynomial time (cf. 2). Thus an execution of the loop body needs time polynomial in the
size of, , and n. Every pass of the loop but the last yields an additional minimal transversal
T1 of for output. The result follows.

The following result is an immediate consequence of the last theorem.
COROLLARY 5.3. TRANS-HYP is polynomial ifr(7-{) <_ k or r() <_ k forfixed k >_ O.
Note that Theorem 5.2 generalizes the well-known result that the maximal independent

sets of a graph are output-efficiently computable to hypergraphs with edge-size bounded by
a constant. (Recall that a maximal independent set is the complement of a minimal transver-
sal.) Thus the question in [29] of whether there is an output-polynomial total time algorithm
for generating all maximal independent sets of a hypergraph is affirmatively answered for
hypergraphs of bounded edge-size.

Let us now consider a constant upper bound on the edge size. In this case the computation
of the transversal hypergraph is efficiently possible even in the input size.

THEOREM 5.4. Ifar() > n k forfixed k > O, then Tr() is computable in input-
polynomial time.

Proof Without loss of generality we assume that 7-{ is simple. We know from Proposi-
tion 4.7(iii) that Tr() < 6(7-{). Since r(3()) < k + 1, only the sets V’ _c V of up to k +
elements are candidates for minimal transversals, and there are no more than roughly n+1 of
them.

From Theorems 5.4 and 4.8, we immediately have the following result.
COROLLARY 5.5. TRANS-HYP and SIMPLE-H-SAT are polynomial ifar(7-{) >_ n k for

fixed k >_ O.
As the third restriction, let us consider hypergraphs where the edges differ in their size

by at most some given constant. We note a simple but important lemma.
LEMMA 5.6. Let be a hypergraph on V and a ar(), r r(7-{). Then is not

saturated ifand only ifthere exists a set V c_ V, a < IV’I < r, such that V Coy(7-{).

Proof Assume there exists V’___ V such that V’ q Coy(7-{). If IV’l < a, we may add
any vertices vl Va-lV’I from V V’ to V’, and V U {Vl v,_lv,i} Coy(7-{) will
hold. If ]V’] > r, we may remove any vertices Vl Vlv, l_r from V’ without establish-
ing V’ {va Vlv, l_r Coy(7-{). Thus the only if direction holds. The/f direction is
trivial.

THEOREM 5.7. H-SAT is polynomial ifr(7-{) ar(7-{) < kforfixed k >_ O.
Proof Let a ar(7-{) and r r(). There is a simple saturation algorithm which

is polynomial for this restriction: check for each X

___
V, ]XI a, a + r, whether

X Coy(7-{); output "no" if the first such X is found and "yes" if none are found. By Lemma
5.6, this algorithm is correct.

Let us analyze the complexity of this algorithm. Consider Y 6 . The exact number of
the sets X covered by Y is given by

Z n-lYI +(2) C(Y, a, r) 1,
i--0 =0

where the first (resp., second) term on the right-hand side of the equation equals the number
of the sets X covered as supersets (resp., subsets). The number C (Y, a, r) is bounded by the
sum of the number of sets X _c V with IX] < r that a fixed Y’

___
V with IY’I a covers

as superset and the number of sets X __C_ V with IX] > a that a fixed Y’
_
V with IY’I r
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covers as subset. Let c r a + 1. Thus

<2c.max "0<i <c-

< 2cn 1.

The last inequality uses the facts that u < v implies (") < () and (") < u’". As c < k + 1,
we have C(Y, a, r) < s(n) for some polynomial s(n). Hence 7-/covers at most m.s(n) of the
sets X.

Note that the subsets of V of size can be systematically output with polynomial-time
delay p(n) (cf. [12] for a suitable order). Moreover, testing X Coy(7-[) can be done in
polynomial time q (m, n).

Hence, if 7-{ is not saturated, the algorithm finds the first X such that X Cov() in
time O(m.s(n)(p(n) + q(m, n))), i.e., in polynomial time. If 7-/is saturated, then all sets
X are checked. Let f(n, a, r) () + (+1) +"" + () denote their number. Since is
saturated, it covers each of the sets X. On the other hand, 7-{ covers at most m.s(n) of the sets
X; consequently, f(n, a, r) < m.s(n). This ensures that the algorithm again terminates in
time O(m.s(n)(p(n) + q(m, n))).

COROLLARY 5.8 (to Theorem 5.7). SIMPLE-H-SAT is polynomial if r(7-{) ar() < k
forfixed k >_ O.

5.2. Acyclic hypergraphs. As in graph theory, the notion of acyclicity is appealing in
hypergraph theory from a theoretical as well as a practical point of view. In some contexts,
acyclic hypergraphs gain special attention. For example, in relational database theory acyclic
hypergraphs (also called tree schemes) were introduced in [8] and later used by many authors
(cf. [53], [30]), especially in relational database design; cf. [2], [4], [5], [17].

Several NP-complete problems on hypergraphs become polynomial for acyclic hyper-
graphs [57]. Since it is not straightforward to carry over the definition of a cycle from graphs
to hypergraphs, there are many notions of acyclicity in a hypergraph; cf. 16], 18], [7]. We
refer to o-,/-, V-, and Berge-acyclicity as stated in 16], where the proper inclusion hierarchy
Berge-acyclic = v-acyclic =/-acyclic = o-acyclic is proved.

The notion of o-acyclicity came up in the context of relational database theory [23], [58],
[5], [16]. A hypergraph is -acyclic iff 0 or 7-{ is by the Graham-Yu-Ozsoyoglu
(GYO) reduction (from Graham [23] and (independently) Yu and Ozsoyoglu [58]), that is, by
repeated application of one of the following two rules:

(1) if vertex v occurs in only one edge E, remove v from E;
(2) if distinct edges E, E’ satisfy E’

___
E, remove E’,

reducible to the hypergraph {0}.
For example, the hypergraph in Fig. 2 is o-acyclic. Note that o-acyclicity of a hypergraph

7-/can be checked with an algorithm of Tarjan and Yannakakis [50] in time O (n + t), where
n is the number of vertices and is the total size of the edges of.

Note that rule (2) implies that a hypergraph 7-{ is o-acyclic if and only if max(7-/) is
acyclic. Consequently, an o-acyclic hypergraph may contain an o-cyclic subhypergraph

’
_

7-(. For example, in Fig. 2 let be 7-( {{a, b, c}, {c, d, e}, {a, e, f}}. However, this is
not what one expects from acyclicity, as it is surprising that a cycle disappears by adding edges.
Fagin points out this anomaly 16] and introduces the more natural concept of/-acyclicity.

DEFINITION 5.2. A hypergraph 7-{ is l-acyclic iff every subhypergraph
acyclic.
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e d

FIG. 2. o-acyclic but 13-cyclic hypergraph {{a, b, c}, {c, d, e}, {a, e, f}, {a, c, e}}.

The hypergraph in Fig. 2 is/3-cyclic, i.e., not/-acyclic. In 16] Fagin presents various
equivalent definitions of/3-acyclicity, among them a related acyclicity criterion by Graham
[23], and he also gives a polynomial-time algorithm to test/-acyclicity.

Our next aim is to show that the transversal hypergraph of a/-acyclic hypergraph is
efficiently computable with respect to the input and output size.

DEFINITION 5.3. Let be a hypergraph on V. For every V’ c_ V, the partial hypergraph
ofT-[ generated by V’ is 7-(v, {E (q V’IE E 7-(}.

For convenience, let us call any vertex an ear node of the hypergraph if it occurs
in exactly one edge of (cf. [53, p. 698]). We observe the following rule for transversal
computation.

LEMMA 5.9. Let be a simple hypergraph on V with an ear node v that occurs in edge
E. Then {{v} U T T Tr(g {0})} U Tr(7-[v_lv}) is a partitioning of Tr().

Proof If is simple, then every essential vertex v 6 V occurs in at least one minimal
transversal of . (This is readily shown from Proposition 2.2.) However, Tr(7-{g- {0})
is never empty. Now consider Tr(). The minimal transversals can be partitioned into
Tr() 7"1 U 7"2, where T1 contains all minimal transversals that contain v and 7"2 contains
all others. Since Tr(Tr(7-{)) 7-{ if is simple (Proposition 2.2), E is a minimal transversal
of Tr(). It follows that E C) T {v} for every T Tr(7-{) that contains v. Indeed, if
v} C E C3 T would hold then, since E is the only edge of 7-{ that contains v, T v would
be a transversal of , which contradicts T 6 Tr(). Thus E C3 T {v}. This implies
T {v}

_
E. From this it is clear that T1 {{v} U T T rr(7-{g {0})}. It is immediate

that 72 Tr(7-[v_{v}).
THEOREM 5.10. The minimal transversals ofa l-acyclic hypergraph 7-[ are P-enumerable.
Proof Recall that a problem is P-enumerable if there is some algorithm which computes

all solutions to the problem in time p(I S)N, where p is some polynomial in the input size I S
and N is the number of solutions. To include the case in which the problem has no solution,
we slightly modify this convention from p(l S)N to p(I S)(N + 1); this modification is not
substantial.

To prove the theorem, we proceed as follows: first we note some facts regarding
acyclic hypergraphs and then we give an algorithm for transversal computation. We may
assume without loss of generality that 7-/has no inessential vertices and is simple, since
rain(7-/) is polynomial-time computable, Tr(7-[) Tr(min(7-/)), and min(7-/) is/3-acyclic if
7-( is/-acyclic.

There is a simple observation on ear nodes of/3-acyclic hypergraphs.
FACT 1. Every simple i-acyclic hypergraph that contains a nonempty edge has an ear

node.
Indeed, if is/-acyclic, then it is also o-acyclic, and the GYO reduction must succeed.

However, as 7-/is simple, rule (2) is not applicable, and as 7-/ {0}, rule (1) must apply.
Hence has an ear node.
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Algorithm BetaTr()

input: Simple fl-acyclic hypergraph .
output: Tr().

if 0 then return({0})
else

if {0} then return(0)
else
v ,- an ear node in E 6 ;
-11 <--- min(- {0}); "}-2 +- min(v_{o});
T <-- BetaTr(); "/-2 <--- BetaTr(7-2);
return({T LI {v} T 7-1} 7-2)

fi;
fi;

FIG. 3. Output-polynomial algorithm for computing Tr(7-) ofa simple, -acyclic hypergraph

FACT 2. Let 7-[ be a fi-acyclic hypergraph and V’ c_ V. Then 7-[v, is -acyclic. (See [16,
p. 530].)

Now consider the procedure BetaTr in Fig. 3, where the input hypergraph 7-/is simple.
For every hypergraph, let denote Ve() 11/2()1 in what follows.

The correctness of BetaTr is shown by induction on re(7-{.). If re(7-[.) O, then 7-/ 0
or 7-/-- {0}, and the result is correct. Now consider re(7-{.) > 0 and assume the hypothesis is
correct for simple hypergraphs with fewer essential nodes than 7-(. As is simple, fl-acyclic,
and Ve (7-{) > 0, by Fact 1, has an ear node; hence a vertex v in edge E will be found. From
Lernrna 5.9, we have

Tr() {{v} U T T Tr(E- {0})} U Tr(7-[v_{}),

which is equivalent to

Tr(7-() {{v} U T T Tr(min(7-/ {0}))} U Tr(min(7-(v_{v})).

Since a hypergraph is fl-acyclic iff every subhypergraph of it is -acyclic, in conjunction
with Fact 2, it follows that 7-/1 and 7-/2 are simple, fi-acyclic hypergraphs. Because 7-/1 and
"/2 have fewer essential vertices than 7-/, by the induction hypothesis we have Tr(7-[i)
BetaTr(7-gi) Ti for 1, 2. Thus

Tr(7-{) {{v} U T T Tr( {0})} U Tr(7-(v_{v}) {{v} U T T 6 J"l} (J ]"2.

This is exactly what BetaTr(7-/) returns if Ve (7-g) # 0; hence the claimed statement holds for

It remains to prove the claim on the complexity of BetaTr. Denote by calls(7-[) the total
number of recursive calls to BetaTr in computing BetaTr(7-g). We show by induction on
ve (7-/) that

calls(7-{) < 2ve(). ]Tr(7-/)l.

For re(7-() 0, we have either 7-/-- 0 or 7-/= {0}; the statement clearly holds. Now consider
the case re(7-/) > 0 and assume the statement is correct for hypergraphs with fewer essential
vertices. We have that

calls() calls(7-[1) + calls(2) + 2.

By the induction hypothesis, we obtain that

calls(l) < 2Ve(7-[1)’lTr(7-[1)[ < 2(re(7-/)--1)’lTr(7-/1)l < 2Ve()’lTr(7-[1)l-2;
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the last inequation holds because 7-{1 :fi {0}, and therefore ITr(l)l > 0. Similarly, we obtain
by the induction hypothesis that

calls(7-{2) < 2Ve(2).lTr(2)l < 2Ve(7-).lTr(7-2)l.

Thus

calls(7-{) calls(l) + calls(7-2) -+- 2
< 2Ve(7-{)’lTr(7-{1)l- 2 + 2Ve()’lTr(2)l + 2

2Ve(7-{).lTr(7-{1)l + 2Ve().lTr(7-{2)l.

Now, since ITr(7-/)l ITr(7-/1)l + ITr(7-/2)l, it follows that calls() <_ 2Ve()" ITr(7-{)l,
i.e., the claimed statement holds.

The body of BetaTr can be clearly executed in polynomial time. Thus, the total run time
of BetaTr(7-/) is bounded by p(m, n).(calls(7-[) + 1) for some polynomial p in m and n (i.e.,
the number of edges and vertices of 7-/). Since

p(m, n).(calls() + 1) < p(m, n).(2Ve(7-{).lTr(7-{)l + 1),

it follows that the run time of BetaTr(7-/) is bounded by q(m, n). ([Tr(7-{)[ + 1) for some
polynomial q. Thus BetaTr(7-/) P-enumerates the minimal transversals of . The result
follows.

We remark that it is not difficult to modify BetaTr such that the minimal transversals are
output with polynomial-time delay; we leave this to the reader.

From Theorem 5.10, we immediately obtain, together with Theorems 4.5 and 4.12, the
following polynomial cases of the transversal problem and the saturation problem.

COROLLARY 5.11. TRANS-HYP and SIMPLE-H-SAT are polynomialfor fl-acyclic hyper-
graphs.

6. Overview of related problems and applications. In this section we give a short
overview of some related problems and applications in different fields of computer science.
For space reasons the exposition is rather succinct. In particular, we omit several formal
definitions and all proofs. A full discussion, exact definitions, all proofs, and more material
can be found in the extended report 15]; other interesting problems related to TRANS-HYP
have recently been studied in [32].

6.1. Clause satisfiability. We have identified the following restrictions of the well-
known SATISFIABILITY problem which are _<Pro-equivalent to TRANS-HYP (resp., co-TRANS-
HYP).

Problem.
Instance.

Question.

Problem.
Instance.

Question.

INTERSECTING MONOTONE SAT (IMSAT).
A set C of clauses such that each clause is either positive (i.e., consists
entirely of positive literals) or negative (i.e., consists entirely of negative
literals) and for each positive clause C1 and negative clause C2 of C,
there exists an atom u such that u 6 C1 and u 6 C2.
Is C satisfiable?

SYMMETRIC INTERSECTING MONOTONE SAT (SIMSAT)
Restriction of IMSAT to instances C, where the negative clauses are
precisely all clauses C- such that C- {--,u u 6 C+} for some
positive clause C+ 6 C. (By this restriction, nonempty positive clauses
of C are mutually intersecting.)
Is C satisfiable?
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Both problems are <tm’-equivalent to co-SIMPLE-H-SAT. Interestingly, unlike SATISFIA-
BILITY or most known other restrictions of SATISFIABILITY, these problems become polyno-
mial-time decidable as soon as the cardinality ofthe clauses in the problem instances is bounded
by a constant.

6.2. Design ofrelational databases. For the basic concepts ofrelational database theory
consult [39] or [53]. If F is a set of functional dependencies (FDs) on a set of attributes U,
then F+ denotes the closure of F, i.e., all those dependencies on U that follow from F. Let
R S (U, F) be a relation schema, where U is a finite set of attributes and F is a set of
functional dependencies. A relation instance R over U is an Armstrong relation for R S iff
the functional dependencies that hold in R are precisely F+. It was recently advocated that
Armstrong relations can be used as a very profitable tool in database design [44], [40]. In
this context it is important to compute an Armstrong relation from a given set of functional
dependencies and vice versa. The following related decision problem is <Pm-equivalent to
SIMPLE-H-SAT.

Problem. FD-RELATION EQUIVALENCE.
Instance. A relation instance R and a set F of FDs in Boyce-Codd normalform

(BCNF), both on a set of attributes U.
Question. Is R an Armstrong relation for F?
A relation scheme RS (U, F) is inBCNF if, for every X --+ Y 6 F+ such that Y X,

X is a superkey for R S, i.e., X --+ U.
Using Corollary 5.3, it can be shown that the problem FD-RELATION EQUIVALENCE

becomes polynomial if F is in BCNF and, for each X --+ Y of F, X contains fewer than k
attributes for some constant k. Moreover, we can show that, under the same restrictions, the
problem of generating an Armstrong relation for F can be done in output-polynomial time.

A relation instance R on U is in BCNF if the schema (U, FR) is in BCNF, where FR is
the set of all FDs that hold on R. The following problem can be shown to be _< Pm -equivalent
to co-SIMPLE-H-SAT.

Problem. ADDITIONAL KEY for relation instances.
Instance. A relation instance R on attributes U, a set/ of minimal keys for R.
Question. Is there a minimal key for the scheme RS (U, F/) not contained in

E?
Note that the additional key problem for relation schemes is polynomial-time solvable by

an algorithm of Lucchesi and Osborn [37].

6.3. Updates in distributed databases. In distributed databases, mutual exclusion of
groups of sites, which is necessary for executing critical operations, can be realized by defin-
ing a priori a set of groups (quorums) that intersect each other [33]. A group of sites can
perform the critical operation only if it contains a quorum of this set. Clearly, it is natural to
consider only minimal quorums, i.e., no quorum should properly contain any other quorum.
In terms of hypergraph theory, this means that the specified quorums should constitute a sim-
ple, intersecting hypergraph on the set of sites, termed a coterie in [20]. For-example, the
hypergraph C {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}} is a coterie on vertices {a, b, c, d}.
Coteries appear to be a fruitful concept for access control in distributed databases; cf. [20],
[25], 19].

A coterie #t dominates a coterie/3 if and only if A /3 and, for each B 6 /3, there
exists an A 6 t such that B

_
A. A coterie l is nondominated (ND) if there is no coterie

/3 that dominates/3. In practice, ND coteries are desired for decision agreement groups with
respect to reliability considerations. Unfortunately, no efficient test for nondomination of
a coterie is known; in [20] an algorithm which has worst-case run time exponential in the
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number of vertices is described. Interestingly, this problem turns out to be an instance of the
SELF-TRANSVERSALITY problem.

THEOREM 6.1. A coterie C is ND ifand only ifC Tr (C).
Since every self-transversal hypergraph is a coterie, we get from Theorems 6.1 and 4.13

the following corollary.
COROLLARY 6.2. Checking whether a coterie is ND (ND COTERIE) is <Pro-equivalent to

SIMPLE-H-SAT.
Note that by Theorem 6.1 and Corollary 5.3 ND COTERIE is polynomial for small quorums.
In the extended report, we also show that for a recent generalization of this approach

to bicoteries and semicoteries, which model read and write operations by read quorums and
write quorums 19], [25], the complexity oftesting nondomination is not increased and remains
_< Pm -equivalent to TRANS-HYP.

6.4. Boolean switching theory. We assume that the reader is familiar with the basic
concepts of switching circuits and Boolean functions (BFs); for details we refer to the stan-
dard literature (e.g., [56]). The design of efficient algorithms for the computation of prime
implicants from a function table or a logical expression has been a topic of research over
decades.

It is well known that every monotone Boolean function has a unique minimal conjunctive
normalform consisting of a conjunction of disjunctions of atoms where no conjunct subsumes
any other.

In [15] we show the following results. Given a monotone Boolean expression E and
a set P of prime implicants of E, it is NP-complete to determine whether there exists an
additional prime implicant of E. However, if E is in minimal conjunctive normal form, then
the same problem is <Pm-equivalent to co-SIMPLE-H-SAT. In particular, in the latter case, the
prime implicants of E are precisely the minimal transversals of the conjuncts of E. Thus,
the polynomial subcases for computing all minimal hypergraph transversals described in 5
carry over to the problem of computing the prime implicants of a monotone Boolean function
in conjunctive normal form. This problem is also investigated in [9], which gives some new
results.

6.5. Model-based diagnosis. Basic techniques for model-based diagnosis have been de-
veloped within AI by de Kleer and Williams 13] and Reiter [45]. To introduce the necessary
concepts briefly, a system is a pair (SD, COMP), where SD, the system description, is a
set of usually first-order sentences and COMP is a set of constants which model the system
components. This general system description is used together with a set OB S of first-order
sentences, which are particular observations on the system behavior, to diagnose faults. The
system description SD makes use of a distinguished predicate AB(c) which interprets "com-
ponent c operates in abnormal mode." Now a diagnosis for (SD, COMP, OB S) is a minimal
set A

_
COMP of components such that

7- SD U OBSU {AB(c) c A} U {-AB(c) c COMP A}

is consistent.4 Of course, if there is no fault, A 0 must be a diagnosis, otherwise SD is not
a sound system description.

In [45] a characterization of diagnoses in terms of so called conflict sets is given. A
conflict set is a set C c_ COMP such that SD U OBSt2 {--,AB(c) c C} is inconsistent. A
conflict set C is minimal if and only if no proper subset of C is a conflict set. The fundamental
theorem on conflict sets and diagnoses in [45] put into hypergraph terminology is as follows.

4It is presupposed that 7- is always in a decidable subclass of first-order predicate calculus.
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THEOREM 6.3 ([45]). A C_ C 0MP is a diagnosisfor SD, C0MP, 0B S) ifand only
if A Tr(C), where C denotes the set ofall minimal conflict sets of(SD, COMP, OBS).

From Theorems 6.3 and 4.12 we immediately have the following theorem.
THEOREM 6.4. Let C be the set ofminimal conflict sets of SD, C0MP, 0B S) and 79

be a set ofdiagnosesfor SD COMP, OB S). Given C and 79for input, deciding ifthere is
an additional diagnosis not contained in 79 is <Pm-equivalent to co-SIMPLE-H-SAT.

The determination ofdiagnoses from the given minimal conflict sets is essential in popular
algorithms for model-based diagnosis [45], [13]. Deciding if an already computed set of
diagnoses is complete with respect to a given set of minimal conflict sets (i.e., it consists of all
diagnoses) is an important subproblem if diagnoses are computed incrementally. Therefore,
the complexity of the additional diagnosis problem is of crucial interest.

7. Conclusion. We have studied two computational problems on hypergraphs in this pa-
per, namely, deciding saturation of a hypergraph (H-SAT) and the recognition of the transver-
sal hypergraph (TRANS-HYP). The latter problem is closely related to computing all minimal
transversals of a hypergraph.

The complexity of computing (resp., recognizing) all minimal transversals of a hyper-
graph is an open problem [20], [41], [14], [29]. We showed that checking saturation for a
simple hypergraph (SIMPLE-H-SAT) is computationally equivalent to TRANS-HYP; without the
restriction to simple hypergraphs, H-SAT was proved co-NP-complete in its general version
as well as for various subcases.

In the study of SIMPLE-H-SAT and TRANS-HYP, we investigated the relationships of
these problems to well-studied problems such as SATISFIABILITY and HP2C. Several _<Pro-
equivalent subproblems were exhibited, the most important among them being
SELF-TRANSVERSALITY. Moreover, narrowing the open problems "frontier," we showed that
some generalizations of these two problems are intractable and several important subcases are
polynomial. Some of those results use algorithms that compute, under certain restrictions,
all minimal transversals of a hypergraph in output-polynomial total time; the most important
restriction is probably a constant upper bound on the edge size.

Our results apply to various problems in database theory, switching theory, logic, and AI,
which are all closely related to SIMPLE-H-SAT and TRANS-HYP.

For future research, we present the following open questions.
1. What is the complexity of SIMPLE-H-SAT and TRANS-HYP? In particular, are these

problems co-NP-complete or can they be solved in polynomial time (or, less restrictive, in
nondeterministic polynomial time)? In connection with this, are the minimal transversals of
a hypergraph 7Y computable in output-polynomial total time?

2. How do SIMPLE-H-SAT and TRANS-HYP relate to other open problems in NP-
completeness (cf. [28])? The most famous such problem, GRAPH ISOMORPHISM, has been
studied extensively in the literature. It is known that ifGRAPH ISOMORPHISM is NP-complete
and P : NP, then the polynomial hierarchy collapses at level two [48], which is not expected
by the experts [27]. However, there seems to be no trivial relation between GRAPH ISOMOR-
PHISM on the one hand and SIMPLE-H-SAT and TRANS-HYP on the other.

3. What do we gain by using randomized algorithms, probabilistic algorithms, or in-
teractive proof systems (cf. [26], [27]) for SIMPLE-H-SAT and TRANS-HYP, and what about
weaker forms of reductions than polynomial transformability (especially randomized reduc-
tions; cf. 1], [47], [55])? Sch6ning [47] defines within NP a low hierarchy L0, L where
L0 P, L1 NP fq co-NP, and a high hierarchy H0, HI where H0 NP-complete,
and the other classes Hi, > 0, correspond to weakened versions of NP-completeness, such
as y-completeness 1] (fully contained in H1), etc., which are believed still strong enough
that no problem in P satisfies any of them. Classifying co-SIMPLE-H-SAT into the low or
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high hierarchy would give strong evidence that the problem is not NP-complete or intractable,
respectively.

Acknowledgments. The authors thank L. Lovsz and M. Yannakakis for interesting dis-
cussions of this work and valuable comments. They further thank the referees of previous
versions of this paper as well as H. Mannila and D. Plaisted for their comments and helpful
suggestions.

Note added in proof. (1) In a recent paper, Fredman and Khachiyan showed that Tr(7-{)
can be recognized in time O(nlgn) (On the Complexity ofDualization ofMonotone Disjunc-
tive Normal Forms. Tech. report LCS-TR-225, Department of Computer Science, Rutgers
University, 1994). This implies that all problems that are _<Pro-equivalent to TRANS-HYP can
be recognized within the same time bound. Moreover, it strongly suggests that all these prob-
lems are not co-NP-complete and provides partial evidence to the thesis that TRANS-HYP is
close to the border between polynomiality and co-NP-hardness.

(2) As pointed out by V. Gurvich, _<Pro-equivalence between TRANS-HYP and SELF-
TRANSVERALITY (Theorem 4.13) was earlier proved by E D. Seymour in the context of
Boolean functions in his master’s thesis (see Quart. J. Math. Oxford, 25 (1974), p. 309).
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ON THE REUSE OF ADDITIONS IN MATRIX MULTIPLICATION*

K. KALORKOTIt

Abstract. We consider the problem of multiplying pairs of matrices by means of quadratic algorithms in terms
of the reuse of additions. We show that if such an algorithm is to be significantly faster than the naive matrix

multiplication method then it must reuse additions to a great extent. (For example, any quadratic or bilinear algorithm
for n n matrix multiplication that does not reuse additions, except when reusing nonscalar steps, requires at least
n3/8 ne/4 + n/8 arithmetic operations.)

Key words, algebraic complexity, bilinear forms, formula, matrix multiplication

AMS subject classifications. 68Q20, 68Q25, 68Q40

1. Introduction. Matrix multiplication has played a central role in algebraic complexity
theory, starting with Strassen’s amazing algorithm [8] for multiplying two n n matrices in
O(nlg 7) arithmetic operations.

The problem is simply stated: Let k be any field and X (xij), Y (Yij) be m n,
n p matrices of distinct indeterminates over k (i.e., they are "general" matrices). We wish
to compute W (wij), < < m, < j < p, such that W XY. The fact that the ll)ij are
bilinear forms means that we can compute them using bilinear algorithms, i.e., computations
of the form

Pl t/1 (X) u1 (Y),

P2- bt2(X) v2(Y),

(1)
Pr- ur(X) vr(Y),

Wll ll(pl Pr),

W2 112(Pl Pr),

UOmp lmp(Pl Pr),

where the ui, vi, and lij are nonzero k-linear combinations of their arguments. If we assume
that the field k is infinite, then such algorithms are optimal within a factor of 2 of the non-
scalar operations, and within a small constant factor of the number of scalar operations plus
the number of indeterminates (Winograd [10], Strassen [9], Borodin and Munro [1]). (An
arithmetic operation in an algorithm is said to be nonscalar if it is either a multiplication,
neither of whose operands is a constant, or a division, whose denominator is not a constant.
All other arithmetic steps of an algorithm are said to be scalar; see for more background.)
Of course in computing the various linear forms we might reuse earlier subresults. Pictorially,
the algorithm can be viewed as shown in Fig. 1. The boxes represent arithmetic circuits whose
operations are +, -, or . Moreover, the circuits are linear, i.e., in each multiplication at least
one of the arguments is a constant. If each circuit has fanout (i.e., it is aformula) then the
diagram corresponds directly to (1) and the two methods of presentation have essentially the
same size (e.g., measured as the number of arithmetic operations; we give a precise definition
below). However, if the circuits are allowed to have arbitrary fanout then the two sizes can

*Received by the editors July 9, 1993; accepted for publication (in revised form) July 8, 1994.
Department of Computer Science, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, United Kingdom

(kk@dcs. ed. ac. uk).
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W outputs

X inputs Y inputs

FIG. 1.

be very different. The main purpose of this paper is to show that this difference is quite large
for matrix multiplication. Note that any difference in size is a result of scalar operations; the
number of nonscalar operations (usually called the rank of the algorithm) cannot differ.

A very important feature of bilinear algorithms is that they remain valid even if the
indeterminates do not commute. In the case of matrix multiplication this fact allows us to
use such algorithms recursively by considering the indeterminates to be matrices. If we do
not need this feature then we can use quadratic algorithms. These have the form (1) but the
ui, vi are allowed to be k-linear combinations of X t3 Y. The gain we make is that quadratic
algorithms are optimal with respect to nonscalar operations [9]. Of course the use of quadratic
algorithms also enlarges the set of expressions we can compute to include quadratic forms. We
will not need the special properties of bilinear algorithms, so we will concentrate on quadratic
algorithms; in the diagram we replace X, Y by X tAY.

The method used in this paper begins by associating a single formula with any given
quadratic algorithm. The size of the formula is bounded in terms of the rank of the algorithm
and the number of additions (assuming that the algorithm does not reuse scalar operations).
This construction is complemented with an algebraic version of Ne6iporuk’s [5] lower bound
on the formula size of Boolean functions. The details are given in 2. Once these results are
established, it is an easy matter to derive the main result for matrix multiplication, and this is
done in 3.

2. Preliminaries. This section is not specific to matrix multiplication, so we let X be any
nonempty finite set of indeterminates over k and assume that we are computing N quadratic



ON THE REUSE OF ADDITIONS IN MATRIX MULTIPLICATIONS 1307

forms fl fu by means of the quadratic algorithm Q:

Pl ul(X) x Vl(X),

P2--b/z(X) X uz(X),

(2)
Pr- Ur(X) X vr(X),

fl 11(Pl Pr),

f2 12(p PF),

fN lN(p Pr).

By aformula F we mean a (connected) arithmetic circuit (with "inputs" from some designated
set) of fanout 1 and with a single output, i.e., a tree. The leaves represent the inputs and
are labelled by elements of the given input set (which normally includes the constants and
indeterminates). The internal vertices (i.e., the nonleaves) are labelled by one of +, -, or
x and each one computes some result that is a polynomial in the input set with coefficients
from k. The output of F is the result of its root. We define the size of F as the number of
internal vertices and denote it by IIFll. Since F is a binary tree we have

#(leaves of F) 1.

Theformula size II f ll of a polynomial f is the size of a smallest possible formula with f as
its result.

We say that a formula F is linear if, in each multiplication, at least one of the arguments
is a constant. Thus we can and will view (2) as an algorithm in which each ui, vi, li is a
linear formula with leaves labelled from X and {pl Pr }, respectively, as well as constants
from k. This corresponds to the situation in which we do not reuse any operations within
the three boxes of the diagram. It is clear that a linear formula F with leaves labelled by the
elements of a set G {gl g,,, C k[X] k and constants from k computes an expression
of the form h oeo / og -t- + c,.g,,, where each oi 6 k. Now, given the ingredients
00 0, and g g.. for h, we can choose a unique formula H for h by viewing it as

co + (clgl + (02g2 + (c3g3 + ...))), omitting any zero terms. Note that if the elements of
G are linearly independent over k then 00 c,, are determined uniquely by the expression
that is computed by F, and thus H is also determined uniquely by F. However, we can always
make H depend on F uniquely by fixing a method of expansion for F and we shall assume
that this has been done. It is easy to see that the number of additions in H is no more than
the number of additions in F (the number of multiplications might be larger). We call H the
expanded form of F and set

Ac, (F) #(nonzero co c, in H) 1,

Mc F) #(o oe,, in H different from 0, :t: 1).

For a sequence F1 Ft we set

Ac(F Ft) AG(F1) +... + Aa(Ft);

we set Ma (F1 Ft) similarly. Note that

Ma(F1 Ft) < Aa(F Ft) + t.
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We extend these definitions to by

Ax(Q) Ax(Ul blr) -k- AX(Vl Vr),
MX(Q) Mx(ul Ur) -t- MX(Vl Vr),

Ap(Q) Ap(I1 lN),
Mp(Q) Mp(ll lN),

where P {pl Pr}. We set

a(Q) ax(Q) + ap(Q),

M() Mx(Q) + Mp(Q),

L(Q) =r.

Thus A() is the number of additions in Q and M((2) is the number of multiplications by
constants in when each ui, vi, li is a linear formula in expanded form.

Given the quadratic forms fl fu, we define the cubic form

(3) f- flZl -]-"""-- fNZN,

where Zl ZN are new indeterminates. (If fl fN are bilinear forms then f is a trilinear
form; see the comment after the proof of the next lemma.)

LEMMA 2.1. With the preceding notation Ilfll _< 2A(Q) + 4L(Q) + 2N 1, where
is any quadratic algorithm that computes f fN.

Proof Let r L(Q). We build a formula for f from Q by writing

(fl fN)T B(pl pr)T,
where B (ij) is an N x r matrix of scalars determined by the li in . Set

(L01 L0r) (Z1 ZN)B.

Then

f Ull)ll/)l -I- -}- blrl)rtOr,

and the right-hand side yields a formula F for f with

IIFII Ax(Ul Ur) zr- Mx(ul Ur)

nt- AX(Vl Vr) nt- MX(Vl Ur)
q- AZ(Wl Wr) nt- MZ(Wl Wr)

+3r- 1.

Now

Az(tOi) #(nonzero flli Ni) 1.

(This assumes that no column of B is zero, i.e., each pi in Q is actually used. Clearly, we may
assume that this is the case.) Thus

Az (w 1/3r #(nonzero iij r

Ap(Q) + N r.

Also,

MZ(Wl tUr) #(iij different from 0, 4-1) Mp(Q).
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Thus

IIFII- A(Q) + M(Q) + N + 2r 1.

Finally,

IIFll A(Q) + M(Q) + N + 2r
< 2A(Q) + 2N + 4r 1.

Suppose now that fx fu are bilinear forms in the indeterminates {Xl,X2 },
{Yl, Y2 and we restrict attention to bilinear algorithms. Then, as is well known, if we
rewrite f as glXl --1- g2x2 +... or hlyl + hzy2 -k-’’ ", we obtain two other dual sets of bilinear
forms, {gl, g2 and {hi, h2 }, whose rank is the same as that of fa fu (e.g., see
Pan [6], Hopcroft and Musinski [3], or Brockett and Dobkin [2]). This gives us two other
ways in which lfll can be estimated. (Note that the scalar complexity of the three sets of
forms can be quite different; see 1].)

The remaining definitions are from Kalorkoti [4] but are considerably simplified because
of the absence of division. Let Y, Z be finite sets of indeterminates over k which are disjoint
from X. Suppose f k[X, Y] and g k[X, Z]. We say that f represents g with respect to
X if there is a map cr X t2 Y --+ k[X, Z] with r(x) x for all x 6 X and r(y) 6 k[Z] for
all y 6 Y such that f g (here f denotes the image of f under the ring homomorphism
induced by or). Set

d d

f Z fi(Y)Mi(X)’ g-- gi(Z)Mi(X)’
i=0 i=0

where for each we have j(Y) 6 k[Y], gi(Z) k[Z] and the Mi(X) are distinct power
products in the indeterminates of X. Clearly, f g if and only if f/ gi for each so that,
using YI to denote the cardinality of Y,

IYI >_ #(f0 fj that are algebraically independent over k)
> #(go gj that are algebraically independent over k)

(see Zariski and Samuel 11] for material on algebraic independence). Now if we define

tdx(g) #(go ga that are algebraically independent over k)

(td stands for transcendence degree), then we have the following lemma.
LEMMA 2.2. Iff represents g with respect to X then [YI > tdx (g).
The main result is an algebraic analogue to Ne6iporuk’s [5] lower bound for the formula

size of boolean functions.
THEOREM 2.3. Suppose f k[X] and f k[X’]for any X’ C X. Let X1 Xt be a

partition ofX into pairwise disjoint nonempty sets. Then

1
tdx,. (f) 1.Ilfll

i=1

Proof The proof is virtually identical to the one given by Savage [7, pp. 101-103] with the
preceding lemma playing the role of the number of "subfunctions" of a boolean function. The
boolean function 7" x @ is replaced by zlx + z2, where Zl, z2 are a new pair of indeterminates
for each use of the function. The "free constants" of [7] are replaced by new indeterminates.
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Our formula (which computes f) starts out as a binary tree, and after the transformations we
produce a new formula (with a slightly extended set of operations) whose result represents
f with respect to the set Xi, whose indeterminates play the part of the "variables" for the
transformation.

We now give details of the proof for the sake of readers who are unfamiliar with [7]. Let
F be an optimal formula for f. Let li denote the number of leaves of F labelled by elements
of Xi, where < < t. Then

(4) 1.
j=l

Now fix and change F as follows:
(a) If a subtree has leaves labelled only from (X Xi) U k then replace it by a single new

leaf labelled by a new indeterminate.
(b) If a subtree has only one leaf labelled by an indeterminate x Xi then replace it by

a new special computation vertex with three inputs z, z2, x which computes zx + a2, where
z l, z2 are new indeterminates. (This extends the notion of formula to allow for the special
vertices; in fact we could just implement the computation of zx + z2 by a normal formula but
this doesn’t improve the result.)

Let Fi be the formula obtained after all the transformations and let Zi be the set of
new indeterminates introduced. The result of Fi represents f with respect to Xi so that, by
Lemma 2.2,

(5) Zil > tdx; (f).

Now let dl, d2 denote the number of internal vertices that are roots of subtrees of Fi with one
and more than one leaf labelled by an element of Xi, respectively. Then it is easy to see that
d2 < li and dx < 12 (for the first of these inequalities we need li > 0 and this follows from
the assumption that f k[X’] for any X’ C X). Thus

(6) IIFill d + d2 <_ 21i 1.

if we ignore those leaves of Fi that are attached to special computation vertices and labelled
by an indeterminate from Xi then we have a binary tree with at least [Zil leaves so that

IIFill >_ IZil 1. Using the last inequality together with (6) we have li > IZil/2. The result
now follows from (4) and (5). [3

The growth rate of the sum in the theorem is bounded by IXI 2 since tdx, (f) < IXI IXi I.
Moreover, the constant factor is best possible. Consider the inner product

fn XlYl q-" q- XnYn.

Clearly, II fn II 2n 1. Suppose first that n > 1. Then, using the partition X
{Xl Xn {Xn }, Xn+l {Yl X2n {Yn we have tdxi (f) 2, and so the theorem
yields II fnll >_ 2n 1. If n the theorem yields the trivial lower bound 0. However,
Ill211 _< 211All / and since the theorem yields Ill211 >_ 3 we deduce that Ilflll _> 1. The
observation used here is that f2 is the sum of two disjoint copies of fl. In general we can try
to gain a small improvement to the bound given by the theorem by replacing the polynomial
by the sum of two disjoint copies of it (we will do this in Theorem 3.1).

3. Matrix multiplication. We now revert to the notation of 1. The associated trilinear
form is

(7)
rn p

tmnp ZZ UOiJ Zij,
i=1 j=l

where the Zij are new indeterminates.
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THEOREM 3.1. Iltmnpll mnp/2 + mp + n/2 1.

Proof Introduce new sets of indeterminates , f, 2 whose elements are in one-to-one
correspondence with those of X, Y, Z, respectively (xij }ij, etc.). Let Tmnp tmnp + mnp
and note that II Zmnpll <_ 211tmnpll -+- 1, which yields

(8) Iltmnpll (llZmnpll- 1)/2.

Consider the following partition of the indeterminates:

es {Xls, X2s Xms, Ys 1, Ys2 Ysp },

Qij {zij}, < <_ m, < j < p

l<s<n,

with/3,,, and Oi.j defined similarly. We claim that tde,. (Tmnp) > mp + for each s. To see this
note that the coefficient of xi,, Ys.i in Tmnp is zij, while the coefficient of 1 is ?mp. The claim
now follows. Similarly, tdp.,.(Tmp) >mp + 1.

We also claim that tdQ;. (Tmnp) 2, because we have Tmp lloi.jzij -- rij -k- mnp, where

rij tOuvZuv"
l<u<m
l<v<_p

(u,v)-(i,j)

Clearly, Wij and ri,i +mnp are algebraically independent over k, so the claim follows. Similarly,
tdo; Tmnp 2.

The lower bound now follows from Theorem 2.3 and (8).
Note that by symmetrical arguments we can show that Iltmnp]l >_ mnp/2 + mn + p/2

and Iltmnpl[ >_ mnp/2 +np + m/2- 1. Thus

Iltmnpll mnp/2 + max(mp + n/2, mn + p/2, np+ m/2) 1.

Furthermore, the formula implicit in (7) shows that

which can be improved to

Itmnp 2mnp + mp 1,

Iltmnpll 2mnp + min(mn, mp, pn)

simply by rebracketing (7). We therefore have a good estimate of [Itm,pll. Combining the
lower bound with Lemma 2.1, we see that

A(Q) + L(Q) >_ (mnp min(2mp n, 2mn p, 2np m))/8

for any quadratic algorithm Q that computes XY.
Taking rn p n so that we are looking at square matrices, we have

A(Q) + L(Q) >_ n3/8 n2/4 + n/8,

where Q is any quadratic algorithm for n x n matrix multiplication. Thus any o(n3) quadratic
algorithm for this problem must reuse additions to a great extent.

Acknowledgment. I thank an anonymous referee whose helpful comments led to im-
provements in the paper.
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SCHEDULING PARALLEL MACHINES ON-LINE*

DAVID B. SHMOYSt, JOEL WEIN, AND DAVID P. WILLIAMSON

Abstract. The problem of scheduling jobs on parallel machines is studied when (1) the existence of a job is not
known until its unknown release date and (2) the processing requirement of a job is not known until the job is pro-
cessed to completion. Two general algorithmic techniques are demonstrated for converting existing polynomial-time
algorithms that require complete knowledge about the input data into algorithms that need less advance knowledge.
Information-theoretic lower bounds on the length of on-line schedules are proven for several basic parallel machine
models, and almost all of our algorithms construct schedules with lengths that either match or come within a constant

factor of the lower bound.

Key words, scheduling, approximation algorithms
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1. Introduction. The scheduling of a set of tasks on parallel machines is a basic problem
in combinatorial optimization with a number of increasingly important applications. There is
a rich literature on parallel machine scheduling and on deterministic scheduling in general,
but the overwhelming majority of these results assume that a complete specification of the
instance is available before the algorithm begins to construct a schedule. This fails to capture
many scheduling problems that arise in practice. For example, consider the allocation ofjobs
to the processing units of a multiprocessor: the scheduler does not have complete knowledge
of a job’s running time in advance or of what jobs will be created and require processing in
the future. In this paper we will study on-line algorithms, algorithms that work without any
clairvoyant assumptions, for the most basic types of parallel machine models. Our algorithms
are based on two rather general techniques that allow us to convert algorithms that need more
complete knowledge of the input data into ones that need less advance knowledge.

When on-line scheduling was studied in the past, the models that were considered were
typically of the following form: the existence of a job is unknown until a certain release
date, at which point the processing requirement for that job is completely specified. We will
consider more realistic models, where the processing requirement of a job is also unknown
when it starts processing and can only be determined by processing the job and observing
how long it takes to be completed. In fact, our results show that the traditional sort of on-line
scheduling problem is provably not much harder than its off-line analogue, whereas the lack of
knowledge about job sizes can drastically affect the quality of solutions that can be obtained.
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We will study the three basic types of parallel machine models [20]. In each, there are
n jobs to be scheduled on m machines. Each machine can process at most one job at a time,
and each job must be processed in an uninterrupted fashion on one of the machines. In the
most general setting, the machines are unrelated: job j takes Pij Pj/sij time units when
processed by machine i, where P.i is the processing requirement (or size) of job j and sij is
the speed of machine for job j. If the machines are uniformly related, then each machine
runs at a given speed si for all jobs j and the processing time pij is given by P.i/si. Finally,
for identical machines, we assume that si for each machine i. Let Pmax maxj p. If

CJ denotes the time at which job j completes processing in a schedule, then the makespan or
length of the schedule is Cmax max C. For a given instance Z, our objective is to find a
schedule of minimum length Ca (2-).

In an off-line setting, these three types of parallel machine models have been studied ex-

tensively. The associated scheduling problems are all strongly A/’7-hard 17], and polynomial
approximation schemes are known when the machines are either identical or uniformly related
[23], [24]. For unrelated machines, obtaining a solution better than (3/2)CaX is A/’79-hard,
whereas a schedule of length at most2C can be found in polynomial time [31]. We will also
consider the preemptive versions of these models, in which a job may be interrupted on one
machine and continued later (possibly on another machine) without penalty. In each of these
three models, there is a polynomial-time off-line algorithm for finding an optimal preemptive
solution [25], [30], [33].

We shall evaluate on-line algorithms in terms of their competitive ratio [39]. LetC (2-)
be the makespan of a deterministic on-line algorithm .A on instance 2-. Algorithm A is said to
have competitive ratio c (or is said to be c-competitive) if CmAax (2-) < c. Ca (2-) + O (1) for
all problem instances 2-. If Jt is a randomized algorithm, then A is said to have competitive
ratio c (or is said to be c-competitive) if E[Cmax (2-)] _< c. Cax (2-) + O (1) for all instances
Z, where the expectation is taken over all random choices of the algorithm A. Although these
notions apply to algorithms without any restrictions on their running times, we will focus
on polynomial-time on-line algorithms rather than the purely information-theoretic analogue.
Nonetheless, our lower bounds are based on information-theoretic arguments.

In a nonpreemptive model, it may be unrealistic to assume that once a job is started it
must be run until its (unknown) completion time without any form of recourse. A central
aspect of our models is that we introduce the notion of restarts: a job may be canceled and
later started again, but it is started again from .scratch. For example, in the uniformly related
machine model, we may wish to cancel a job that is taking longer than "anticipated," and then
start it again on a faster machine.

The results ofthis paper are as follows. We introduce two general techniques to convert off-
line algorithms into algorithms that require less initial information. Using the first technique,
we show that we can focus on the case when all jobs are available at time 0, since the situation
in which there are unknown job arrivals and unknown processing times can be reduced, with
only a factor of 2 increase in the competitive ratio, to one in which only the processing times
are unknown. This result also holds when comparing a model in which only the arrivals are
unknown to its off-line equivalent. As a consequence, we consider the situation in which
all jobs (of unknown size) are available to be scheduled from the start. For both uniformly
related and unrelated machines, we use our second technique to convert off-line algorithms
into algorithms that need not be given the processing time of each job. Nonetheless, the
resulting on-line algorithms do not suffer too great a degradation in the quality of the solution
produced.

It is quite simple to obtain tight bounds for the identical machine case: one of the oldest
results in scheduling theory is an on-line algorithm ofGraham 19], which produces a schedule
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of length at most (2 ,)Cmax; we give a straightforward proof that this is exactly the best
possible ratio. We also give an identical tight bound on the competitive ratio obtainable in
the preemptive variant. This has the important consequence that, although complexity theory
shows that there is a fundamental difference between the preemptive and nonpreemptive mod-
els, this difference disappears when scheduling jobs on-line. We also show that randomization
is of little help to the scheduler, proving that no randomized algorithm can achieve competitive
ratio better than (2 O(mm)), even against an oblivious adversary. This result is in sharp
contrast to other recent work in on-line algorithms, in which randomization has been shown
to significantly increase the performance of the algorithms [29], [40].

We then show that on-line scheduling on uniformly related machines is much harder than
on identical machines. This is also quite different from the off-line setting, where results for
identical machines have typically extended to the case where machines run at different speeds.
In our on-line model, we show that this generalization does make the problem significantly
harder: we prove that the optimal competitive ratio is (R)(log m). We generalize this model
to unrelated machines by assuming that for each job the relative speeds of the machines are
known, but its size is unknown. In this setting, we can also obtain an on-line algorithm with an
O (log n) competitive ratio; this upper bound is only tight if n is polynomial in m, which need
not be the case. Once again, we also give identical results for the preemptive variants of these
models. For uniformly related machines, we also show how to take advantage of the situation
that the relative speeds of the machines are not too different and give an O (log R)-competitive
algorithm, where R is the ratio of the fastest-to-slowest machine speeds. Finally, we can show
that this bound is tight in the following sense: we prove a lower bound of f2 (log R) on the
competitive ratio of any deterministic on-line scheduling algorithm for the scenario in which
the ratio of fastest-to-slowest machine speeds is equal to R, R < m.

On-line algorithms have been studied for a variety ofproblem domains. Some ofthe oldest
of these results are for the bin-packing problem. When the number of bins is fixed, on-line
bin-packing can be interpreted as a type of on-line scheduling, where the jobs are given in a list
and scheduled in turn. The job currently being scheduled is completely specified, but the jobs
later in the list are completely unknown. Faigle, Kern, and Turan 12] have proved some lower
bounds in this model, and several authors have given improved algorithms [5], [16], [35]. This
model, however, is rather different from the ones we consider. There are many recent results
on on-line algorithms for problem domains that range from classic problems in combinatorial
optimization [26], [29], [40], to various problems in data and memory management [28], [39],
to the k-server problem [15], [32].

In terms of previous work on our model of on-line scheduling, some attention has been
given in the past to the question of unknown release dates. In the preemptive model, Gon-
zales and Johnson gave a polynomial-time algorithm that optimally solves this problem on
identical machines 18]. Sahni and Cho extended this result to apply to uniformly related
machines [37]. In the nonpreemptive model, Gusfield considered a more general problem on
identical machines, in which each job has an associated due date and the goal is to minimize
the maximum lateness. He proved a bound of (2 )Pmax on the difference between the
maximum lateness produced by an on-line heuristic and the minimum possible maximum
lateness [21].

Relatively little work has been done on scheduling problems with unknown job sizes.
Chandra, Karloff, and Vishwanathan [8] proposed studying on-line scheduling with unknown
processing times and analyzed the problem of minimizing the average completion time on a
single machine with preemption. In addition to the algorithms for identical machines given
by Graham 19], the only other work for parallel machines known to us prior to ours is that of
Jaffe [27] and Davis and Jaffe 10]. Davis and Jaffe show that in a restricted model without
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restarts, any on-line algorithm for nonpreemptive scheduling of uniformly related machines
has competitive ratio f2 (). Jaffe gives an algorithm for this case with competitive ratio

o.
Subsequent to our work there have been a number of papers considering variants of on-

line scheduling. Feldmann, Sgall, and Teng 14] studied on-line scheduling with unknown
job sizes on a mesh of identical processors, where one must allocate a submesh of a specified
size to a job when the processing time of that job is unknown. They prove a (R) (v/log log m)
bound on the competitive ratio in this model. In addition, they study a number of other ar-
chitectures such as hypercubes and trees. In a subsequent paper they, along with Kao, extend
their results to the important scenario in which there are precedence constraints between the
jobs 13].

Motwani, Phillips, and Torng considered a number of problems relating to on-line pre-
emptive scheduling [34]. Deng and Koutsoupias 11] considered on-line scheduling of jobs
with precedence constraints and communication delays, in which both the job sizes and the
structure of the precedence constraint dag are unknown. Awerbuch, Kutten, and Peleg [2]
studied distributed versions of on-line scheduling. In addition, recently there have been sev-
eral interesting papers that considered the closely related problem of on-line load balancing
in various parallel machine models [1], [3], [4].

The rest of this paper is organized as follows. In 2 we show that the introduction of
unknown release dates into a scheduling problem does not make the problem too much harder.
As a result, we concentrate on the situation where all the jobs are available at time 0 but have
unknown processing requirements. In 3 we present our on-line scheduling algorithms for the
various parallel machine models, and in 4 we give the corresponding lower bounds.

Note that throughout this paper all logarithms are taken base 2.

2. Unknown release dates. Our model of on-line scheduling includes both unknown
release dates for jobs and unknown job sizes. In this section we will show that, with respect
to minimizing schedule length, the first element has a relatively small impact.

We will show that in a scheduling environment with unknown release dates, we can con-
struct a schedule by repeatedly using an algorithm 4 which works in the simpler environment
in which all jobs are available at time 0. The quality of the schedule thus constructed is within
a factor of 2 of the quality of schedules constructed by A in the simpler environment. This
result does not depend on the remaining specifics of the scheduling environment; in particular,
it allows us to use off-line algorithms to obtain algorithms that can handle unknown release
dates (but where the processing times are known once released), as well as allowing us to
focus on on-line algorithms in the case when all jobs are released at time 0.

THEOREM 2.1. Let 4 be a polynomial-time scheduling algorithm that works in an envi-
ronment in which eachjob to be scheduled is available at time 0 and which alwaysproduces a
schedule oflength at most PCnax. For the analogous environment in which the existence ofa
job is unknown until its release date, there exists another polynomial-time algorithm 4’ that
works in this more general setting andproduces a schedule oflength at most 2pCax.

Proof Let 2- be an instance withjobs ofunknown release dates and let So be the set ofjobs
available at time 0. The scheduler applies algorithm 4 and schedules the jobs in So, finishing
at time F0. Let $1 be the set of jobs released in the time interval (0, F0]. The scheduler now,
at time F0, applies algorithm A to schedule $1, finishing at time F1. In general, let Si+l be
the set of jobs released in (Fi-l, Fi and let F; be the point in time when the schedule for
Si completes. At time Fi, the scheduler uses algorithm t to schedule the jobs in Si+. If

Sz+I 0, then all machines remain idle until the time when the next job is released; we
then let Fi+ t. Let F be the finishing point of the entire schedule. (Figure shows the
structure of the schedule constructed by the algorithm.)
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FIo. 1. Using an algorithm for a scheduling environment without release dates to schedule in an environment
with release dates.

To analyze the length of the resulting schedule, consider the last instance 27’ on which
the algorithm 4 is executed, that is, the set of jobs in Sk with their release dates modified
to be 0. Algorithm 4 produces a schedule of length at most pCnax(Z’); this means that,Fk Fk-1 _< /gfmax (27t) _</gfmax (27).

Consider the instance 27" obtained from 27’ by modifying the release dates to Fk_2. Since
each job in 27" is released earlier than its corresponding job in 27, C’nax(27) > C* (")max---
Furthermore, we know that c* Cmax (27) Putting the pieces together, we seemax
that

, ,
Cmax(27) >_ Fk-2 -!- Cmax(27) :> fk-2 "+" (F fk-1)/P.

Similarly, Fk_ Fk-2 <_ /gCnax (27). (If Sk-1 O, we have the stronger inequality, Fk_ <_
Cax (27).) By combining these inequalities, we get that

Fk_2 < * (27). [-]Fk <__ PCmax() d- Fk-1 pFk-2 < PCmax(Z’) -+- Fk-1 2pCmax

This theorem is very general in that it can be applied to a number of different scheduling
environments. In particular, it shows that to produce an algorithm for our full on-line model,
we can modify an algorithm for the case in which all jobs are available at time 0 and processing
times are unknown, thereby increasing the competitive ratio of the algorithm by only a factor
of 2. Furthermore, the theorem applies not only to problems of parallel machine scheduling
but also to the entire class of shop scheduling problems, including open shop, flow shop, and
job shop [38]. In addition, it applies to the scheduling model of Feldmann, Sgall, and Teng
14]. They studied the on-line allocation of submeshes of a large mesh to different jobs, but

their algorithms only worked when all jobs were available at time 0. Our theorem generalizes
their result to a tO (v/log log m) on-line algorithm even whenjobs have unknown release dates.
It also generalizes their results on other architectures as well.

Finally, our theorem yields the following corollary.
COROLLARY 2.2. Ifjob release dates are unknown, but once a job arrives its size is

known, there is apolynomial-time on-line algorithmforscheduling uniformly related machines
with competitive ratio (2 + e), for anyfixed , and a polynomial-time on-line algorithm for
scheduling unrelated machines with competitive ratio 4.

Proof This follows directly from Theorem 2.1 and previously known results on the
off-line approximability of these problems [24], [3 1].
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For identical machines this result yields a (2 / e)-approximation algorithm; however,
something slightly better was already known. In 1966 Graham showed that list scheduling
was a (2 )-approximation algorithm for scheduling identical machines. In list scheduling,
the scheduler takes any list ofjobs and, whenever a machine becomes available, places the next
job on the list on that machine. It is not hard to see that if this strategy is extended so that newly
arriving jobs are added to the end of the list, then list scheduling is a (2 1)_approximation
algorithm for scheduling identical machines with unknown release dates (see, for example,
[21 ], [22]).

Despite the fact that unknown release dates do not make a scheduling problem much more
difficult, we can show that they sometimes do make it more difficult to schedule machines
near-optimally.

THEOREM 2.3. Let be a deterministic on-line algorithmfor nonpreemptive scheduling
of identical machines with unknown release dates but known processing requirements. Then
the competitive ratio ofalgorithm is at least , even ifrestarts are allowed.

It is interesting to note that preemption makes a difference in this case; Gonzales and
Johnson have shown that there is a polynomial-time algorithm for solving the problem opti-
mally when preemption is allowed 18]. Intuitively this is not surprising, since preemption
allows the algorithm to adjust to new information without losing work done beforehand. For
the sake of coherence of presentation, we defer the proof of this theorem to 4.2.

In light of the results in this section, for the remainder of this paper, except 4.2, we
shall focus on scheduling environments in which all jobs are available to be scheduled at
time 0.

3. Algorithms for on-line scheduling. In this section we will present on-line scheduling
algorithms for the basic parallel machine models. We first note that in the case of identical
machines, the well-known list scheduling algorithm of Graham 19] always comes within a
factor of (2 +/-) of the optimal length schedule and comes within the same bound of the
optimal preemptive schedule length. Since list scheduling does not depend on the sizes of the
jobs, list scheduling is an on-line algorithm with a (2 +/-) competitive ratio.

THEOP,EM 3.1 (Graham). There is an on-line algorithmfor scheduling identical machines
that achieves competitive ratio (2 1) in both the preemptive and nonpreemptive models.

For the other machine models, we will present a general technique which yields an
O (log n)-competitive algorithm for each of them, assuming the machine speeds are known
to the scheduler. We will then show how to convert this general algorithm to an
O(min(logm, log(sl/Sm)))-competitive algorithm for both preemptive and nonpreemptive
uniformly related machines, where s > s2 >_ >_ Sm. We will also present a different algo-
rithm for nonpreemptive uniformly related machines; although its competitiveness is no better
than our general technique, it makes use of a new and interesting relaxed decision procedure
for the scheduling of uniformly related machines. In addition, it was applied by Aspnes et. al.
with essentially no modification to yield a theorem about on-line load balancing on uniformly
related machines 1].

3.1. The general technique. Our general algorithm depends on the existence of either
polynomial-time optimization algorithms or polynomial-time p-approximation algorithms
for scheduling in the various machine models. We define a p-approximation algorithm as a

polynomial-time algorithm that always produces a solution with makespan no more than a
factor of p larger than optimal.

THEOP,IM 3.2. Let t be an off-line p-approximation algorithm for the (nonpreemptive/
preemptive) (uniformly related/unrelated) parallel machine scheduling problem. Let Z be an
instance ofthis problem. Then there is an on-line scheduling algorithm that, for any instance
Z, produces a schedule oflength at most (4p logn + 4p log2p + 1)Cax(Z).
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Proof The on-line algorithm works by repeatedly applying algorithm 4 to the remaining
unscheduled jobs after guessing the size of each job. Given a schedule produced by the
algorithm 4, our on-line algorithm will run each job at the particular time interval and on the
particular machine specified by the schedule. In the preemptive model, the job might not have
finished all of its processing by the end of the time allotted to it, in which case we preempt
the job. In the nonpreemptive model, we cancel the job if it is not completely processed in the
time allotted, and we will restart the job later. In either case, if the job does not complete, we
will be able to update our estimate of the size of that job.

For the sake of simplicity, we will assume that the data is normalized so that the fastest
machine for each job j has speed sij 1. One result of this assumption is that any job of size

pj takes time pj. to complete on the machine that processes it fastest.
The complete on-line algorithm is below.

MAIN ALGORITHM.
Step 1. Pick any job j’ and run it to completion on a machine mi, such that si,,j, 1.

Let the time that this takes be denoted by A.
Step 2. Let q A/pn.
Step 3. Use algorithm 4 to construct a schedule for all jobs that have not yet completed,

setting pj +- q for all remaining jobs j. Run the jobs in this schedule, preempting or
canceling all jobs that do not complete in the time allotted to them by the schedule.

Step 4. If any job has not yet completed, set q -- 2q and go to Step 3.

Let Ca be the length of the optimal schedule. We will now analyze the algorithm and
the length of the schedule it produces. First, in Step 1, the time A taken by job j’ on machine
mi, is at most Cax, since the optimal schedule can be no shorter than the time taken by any
job running on the machine which processes it fastest.

Next, we show that the first iteration of Step 3 produces a schedule no longer than A <

Cax. One way to construct a schedule is to assign each of the n jobs to the machine that
processes it the fastest. In the worst case, all n jobs would be assigned to the same machine,
and this schedule would have length nq A/p. Since the schedule produced by algorithm
4 is no longer than p times optimal, it must produce a schedule of length no longer than
A < Cmax.

In addition, future iterations of Step 3 must produce schedules of length at most 2pC*mx.
Suppose the algorithm performs an iteration of Step 3 in which the jobs are assigned size
q. Since the algorithm did not finish processing each of the remaining jobs in the previous
iteration, we know that each job j in the instance being scheduled is such that pj > q/2.
An optimal schedule for this subset of jobs must take time no greater than Cax. We can
transform this optimal schedule into a schedule for the instance in which eachjob is processed
for q units so that the length of the schedule increases by no more than a factor of 2. Finally,
the algorithm 4 will find a schedule for this instance that is no more than p times as long
as the optimal schedule, and so the length of the schedule found by algorithm 4 is at most

2pCnax.
To derive our O((p log n)C*max) bound on the length of the complete schedule, we show

that we need to consider essentially only the last log(2pn) iterations of Step 3.
LEMMA 3.3. Let f denote the number of iterations of Step 3. Then the length of the

schedule produced in iteration f is at least 2 times as long as the length ofthe schedule
produced by algorithm 4 in iteration f log(2pn).

Proof Assume that the (estimated) job size in iteration f is q; then the (estimated)
job size in iteration f g log(2pn) is q / (2pn)e. If a job of size q exists, then the schedule
containing it must take time at. least q. As we showed earlier, a schedule produced by algorithm
4 forjobs with size q / (2pn) has length at most pnq/(2pn)e. Thus the length of the schedule
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produced when the job size is q/(2pn) is at most (1/2) times the length of the sched-
ule produced when the job size is q.

Since every log(2pn) iterations the length of the schedule produced doubles, we can
"charge" iterations f e log(2pn), < g. <_ (f i)/log(2pn), to iteration f i. Since
each of the last log(2pn) iterations has length no longer than 2pCaax, and each gets charged

If/log2pn]no more than i + / + () times its length, the overall length of the schedule
is at most

1
A+ (log2pn) 2pCnax 1 + +-.. +

_< (4p log n)Ca -+- (4p log 2p)Cmax* + Cnax.
Since there exists a polynomial-time algorithm for finding an optimal preemptive schedule

for unrelated machines due to Lawler and Labetoulle [30], and there exists a 2-approximation
algorithm for scheduling nonpreemptive unrelated machines due to Lenstra, Shmoys, and
Tardos [31], we have the following corollaries.

COROLLARY 3.4. There is a (polynomial-time) on-line algorithmfor scheduling preemp-
tive unrelated machines that has competitive ratio 4(log n) + 5.

COROLLARY 3.5. There is a (polynomial-time) on-line algorithmfor scheduling nonpre-
emptive unrelated machines that has competitive ratio 8(log n) -4- 17.

We can do somewhat better with uniformly related machines. As the following lemma
shows, by applying a list scheduling algorithm until there are at most m unfinished jobs, we
can quite easily reduce the number ofjobs from n to m 1.

LEMMA 3.6. The number ofjobs in any uniformly related machine problem instance can
be reduced on-linefrom n to m 1, while increasing the competitive ratio by 1.

Proof We simply start by applying the list scheduling algorithm to the jobs. Assign
initial jobs to the machines arbitrarily; whenever a job completes and a machine becomes idle,
we assign an unprocessed job to it. When no jobs remain, at most m jobs have not yet
finished processing. Furthermore, the length of the schedule to this point in time can be no
greater than j pj/Yi Si, which is a lower bound on the length of the optimal preemptive
and nonpreemptive schedules. [3

In the preemptive setting, we can use the algorithm, of Horvath, Lain, and Sethi [25]
to obtain an optimal solution in each iteration of Step 3. Although the general problem of
scheduling nonpreemptively on uniformly related parallel machines is JV’7)-hard, the instances
on which algorithm 4 must run are extremely simple, since eachjob has the same (estimated)
processing time. An optimal solution of such an instance can be computed in O (m log m)
time by a variant of list scheduling: assign the next job on the list to the machine on which it
would complete earliest. Combining these algorithms with Theorem 3.2 and Lemma 3.6, we
obtain the following corollary.

COROLLARY 3.7. There is a (polynomial-time) on-line alg?rithm for scheduling (pre-
emptive/;nonpreemptive) uniformly related machines that has competitive ratio 4(log m) + 6.

Let Sl >_ $2 >_ > Sm and let R 1/Sm. If R < m, we can improve the results of
Corollary 3.7 to O(log R) competitive algorithms.

LEMMA 3.8. Consider the application ofthe main algorithm to an instance ofpreemptive
or nonpreemptive scheduling of uniformly related parallel machines in which n < m. Let
f denote the number of iterations of Step 3. Then the length of the schedule produced in
iteration f is at least 2 times as long as the length ofthe schedule produced in iteration

f e log(ZR).
Proof Assume that the (estimated) job size in iteration f is q; then the (estimated)

job size in iteration f log(2R) is q/(2R)e. If a job of size q exists, then the schedule
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containing it must take time at least q; therefore, the schedule in phase f is of length at
least q. We have at most m jobs; therefore, we can schedule one job per machine, and the
length of the schedule in phase f log(2R) is at most q/((2R)esm). Since Sm 1/R,
the length of the schedule in phase f log(2R) is at most q/2e. 3

Combining Lemmas 3.6 and 3.8 we obtain the following theorem.
THEOrtEM 3.9. There is a (polynomial time) on-line algorithm for scheduling (pre-

emptive/nonpreemptive) uniformly related machines that has competitive ratio
O (rain(log m, log R)).

How many preemptions/restarts does this general algorithm perform? In each iteration
it is possible that no job finished and therefore there are n preemptions/restarts at the end
of the iteration. If Pmin is the minimum job size and r Prnax/Pmin, the on-line algorithm
does O(log(rpn)) iterations. This is because the A established in step 1 can be no smaller
than pmin; we then set q A/pn and successively double it until we reach Pmax. Therefore,
the algorithms for unrelated machines do O(n log(npr)) preemptions/restarts, and those for
uniformly related machines do O(m log(mr)).

3.2. A different algorithm for nonpreemptive uniformly related machines. In this
section we give a second O (log R)-competitive algorithm for the nonpreemptive scheduling
ofuniformly related machines. This algorithm uses a new and simple off-line 2-approximation
algorithm for uniformly related machines.

3.2.1. A simple (off-line) 2-relaxed decision procedure for uniformly related ma-
chines. First we give a new (off-line) 2-relaxed decision procedure for uniformly related
machines that will be the basis of our on-line algorithm. The notion of a p-relaxed decision
procedure was used by Hochbaum and Shmoys [23]: given a deadline d, such a procedure
either produces a schedule of length pd or verifies that there exists no schedule of length d. By
using binary search, a p-relaxed decision procedure can be converted into a p-approximation
algorithm.

The 2-relaxed decision procedure is as follows. Each machine has an associated queue.
Each job is placed into the queue of the slowest machine mk such that pj _< skd, that is, the
slowest machine that can complete the job within the given deadline. If, for some job, there
is no such machine, it is clear that there does not exist a schedule of length d. To construct
a schedule, whenever a machine is idle, it starts processing a new, unprocessed job from its
queue. If a machine’s queue is empty, it takes a job to process from the queue of the fastest
machine that is slower than it and has a nonempty queue. If all such queues are empty, then
the machine remains idle. If the schedule constructed has Cmax > 2d, output no. Otherwise
we have produced a schedule of length at most 2d.

To prove that this is a 2-relaxed decision procedure, we must prove that when the procedure
outputs no, there is no schedule of length d. Consider a job j that was not finished by time
2d. Since jobs are only processed by machines on which they take less than d units of time,
this job must have started after time d; thus it was on the queue of some machine mk until time
d. This implies that, until time d, machines m rn were all busy processing jobs that
could not possibly have been completed on machines mk+l mm by time d. Therefore, in
a schedule of length d it is impossible to process all of these jobs and job j, and so there exists
no schedule of length d.

3.2.2. The on-line algorithm for nonpreemptive uniformly related machines. In this
section we show how to convert this off-line relaxed decision procedure to an on-line algorithm.

THEOREM 3.10. Let be an instance of the scheduling problem for nonpreemptive uni-

formly related machines. Then there is an on-line scheduling algorithm which produces a
schedule no longer than 8(log(2R))Crax(2-).
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Proof We round machine speeds down to the nearest power of two: when a machine
finishes processing a job, it pretends to keep processing it long enough so that it seems to
have been processed at the lesser speed. When we interpret the schedule for this rounded
problem instance as a schedule for the actual problem instance, the competitive ratio can be
increased by at most a factor of two. Since the rounded si are all powers of two and each
rounded si is within a factor of at most 2R of the rounded Sl, it immediately follows that
there are at most log(2R) different machine speeds. Let Ma {milsi Sl}, Me {milsi
s1/2}, mlog(ZR) {milsi S1/21g(ZR)}.

Our strategy will be first to convert the off-line 2-relaxed decision procedure into an
on-line 2 log(2R)-relaxed decision procedure, and then from that procedure build an on-line
algorithm. The off-line decision procedure does not immediately lend itself to an on-
line procedure, since the criterion it uses to assign jobs to machine queues utilizes knowl-
edge of the job sizes. To convert this to an on-line decision procedure we will repeatedly run
the off-line relaxed decision procedure to either schedule a job or else update the estimate of
its size. Note that given the rounded machine speeds, instead of queueing jobs on machines
m mm, we can instead queue jobs on sets of machines M1 Mlog(2R).

A formal description of an on-line 2 log(2R)-relaxed decision procedure is as follows.
The procedure either outputs no if there is no schedule of length d or it produces a schedule
of length 2d log(2R). Note that even if it answers no, the procedure may have completely
processed some of the jobs in that time.

Input. A set ofjobs and a deadline d.
Step 0. Put all jobs into the Mlog(2R) queue.
Step 1. Run the off-line 2-relaxed decision procedure with the modification that no jobs

are started after time d (that is, when a machine is idle it takes a job to process off
of its queue or, when its queue is empty, off of the first slower machine that has a
nonempty queue; etc.).

Step 2. 1. If all jobs finish processing by time 2d stop.
2. If any machine in M1 is still processing a job at time 2d then there is no

schedule of length d. Output no; return.
3. If any set of machines Mk has a job j in its queue at time d then there is no

schedule of length d. Output no; return.
4. If there are jobs that are being processed at time 2d, on machines in Mi,

> 1, cancel these jobs and put them on the queue of Mi_ x. Go to Step 1.

To prove that this is an on-line 2 log(2R)-relaxed decision procedure, note first that the
length of the schedule or partial schedule produced by this procedure is no longer than
2d log(2R), since the off-line relaxed decision procedure produces a schedule of length at
most 2d and is run at most log(2R) times. Furthermore, despite the fact that the pj are un-
known, the on-line relaxed decision procedure maintains the invariant that a job is only on the
queue of Mk if it could not complete in time d on any machine in M+I mlog(ZR). This is
certainly true initially, since all the jobs are put in the queue of mlog(ZR). Furthermore, since
the procedure does not start new jobs after time d, any job that is still being processed at time
2d on some machine in Mi must take more than time d to process on any machine in Mi.
Therefore, any such job does not belong on the queue of Mi or any slower set of machines
and is placed on the queue of Mi_ 1.

Now we will show that if the procedure outputs no then there is no schedule of length d.
If condition 2 is true then a machine in M1 ran a job for more than d units of time; therefore,
this job could not have been processed in d units of time on any of the machines, since no other
machine runs at a faster speed. If condition 3 is true, then up until time d, all machines in the
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sets M1 Mk must have been busy processing jobs that could not have been processed in d
units of time on machines in Mk+a Mog(2R. Therefore, machines in M1 M/ could
not have processed all of these jobs and job j as well by time d.

We have given an on-line 2 log(2R -relaxed decision procedure; we now show how to
use it to develop an on-line O (log R)-competitive algorithm.

The on-line algorithm initially establishes a lower bound A on Ca by running an ar-
bitrarily chosen job on the fastest processor. Let A be the time taken to complete this job;
certainly A < Cax. Next, the on-line algorithm calls the procedure on the set of all jobs with
d A. If the procedure returns no, then we will call it again with d 2A and the set ofjobs
that were not completely processed in the first iteration. In general, if the ith iteration fails to
produce a schedule, then we will call the procedure again for the (i + 1)st time with d 2 A
and all jobs that have not yet been completely processed. Observe that if the th iteration
fails to produce a schedule when called with d 2i-1/k, then it proves that 2i-lA < C*max
Suppose that we finally finish processing all jobs in iteration f. Then the total length of the
schedule produced is

A + (1 + 2 +... + 2f)(2A log(2R)) < 2f+2A log(2R).

Since the procedure failed to produce a schedule in iteration f 1, we know that
2f-IA < Cnax. Therefore, the total length of the schedule produced is no greater than
8(log(2R))Cax. [3

This algorithm can also be modified when R > m to obtain an O(min(log R, log m))-
competitive algorithm; we simply ignore those machines with si < Sl/m and note that this
increases the optimum makespan for any instance by at most a factor of 2. To bound the number
of restarts of the above on-line algorithm, observe that in any iteration of the on-line relaxed
decision procedure, O (m) jobs will be restarted O (log R) times. The on-line relaxed decision
procedure is run at most O(log(Cnax/Pmin)) times, since the initial candidate deadline is at
least Pmin and we successively double the deadline until we reach a feasible deadline, which

C certainly is. Therefore, this algorithm performs O(m log R log(Cax/Pmin)) restarts.

4. Lower bounds.

4.1. Introduction. As with other on-line algorithms, on-line scheduling can be viewed
as a game against an adversary who is allowed to determine the information that is revealed
incrementally to the algorithm. Therefore, our lower bound arguments will be phrased in
terms of a strategy for an adversary, who attempts to reveal information in such a way so as
to force the competitive ratio to be as large as possible.

In many cases, we will give the scheduling algorithm more power than our model allows
and prove that any such algorithm has competitive ratio at least p, thereby implying that any
algorithm in our model must also have at least that competitive ratio. For example, we will
sometimes assume that the algorithm is given the multiset of processing times but not the
correspondence between the jobs and their processing times.

We will prove lower bounds in both preemptive and nonpreemptive scheduling models;
in the latter case, we shall always assume that the algorithm is allowed to restart jobs. Our
lower bounds are purely information theoretic; they rely on no complexity assumptions.

In proving lower bounds, it is important to specify fully the algorithmic primitives that
may be used by the algorithm to acquire information about the input. In our models, the
algorithm is allowed to ask the adversary whether any job will complete by a given time if
the present set of jobs remains assigned to their given machines; the adversary must either
answer "no" or give the time t’ < that the next job completes, and give all jobs that complete
at time t’. In the two cases, respectively, the schedule until time and t’ is then fixed.
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4.2. Release dates. We begin our lower bounds with the proof of Theorem 2.3. This
theorem concerns the model in which the release dates are unknown, but once a job is released,
its processing requirement is known. In this model, we can view the interaction between the
algorithm and the adversary in the following way: the algorithm specifies the schedule until a
given time and then asks the adversary if any jobs are released by time t; the adversary must
either answer "no" or give the time t’ < that the next job is released, and give all jobs that
are released at time . In the two cases, respectively, the schedule until time and is then
fixed.

We shall assume that the algorithm is given the information that the processing require-
ments and release dates are all integral" any lower bound proven with this additional informa-
tion must also hold for the general case. As a consequence of this assumption, it is natural to
believe that any reasonable algorithm will construct a schedule in which each job has integral
starting times. Our proofs, however, will rely on significantly weaker assumptions which can
be made without loss of generality. We can assume that the algorithm initially commits itself
to a schedule until time 1" since no jobs are released until then, the adversary provides no
information until that time; this implies that any algorithm that starts a job within the open
interval (0, 1) is dominated by the same algorithm that starts the job at time 0. In particular,
we can assume that there are no restarts in (0, 1). Furthermore, we will use the notion of the
integral remaining work at some time in a given schedule: for each job, compute the floor of
its processing requirement that remains unprocessed and then compute the sum of these values
over all jobs. Observe that if the integral remaining work at time is W, then the schedule
cannot complete earlier than time + W/m].

THEOREM 2.3 (restated). Let be a deterministic on-line algorithm for nonpreemptive
scheduling of identical machines with unknown release dates but known processing require-
ments. Then the competitive ratio ofalgorithm 4 is at least , even if restarts are allowed.

Proof Consider the instance that consists oftwo identical machines and threejobs released
at time 0: jobs A and B of size 3 and job C of size 2. We consider several cases.

(i) The algorithm initially schedules job A on machine and job B on machine 2 at
time 0 and decides to leave them both uninterrupted until at least time 2 (except if another job
is released earlier). In this case, the adversary releases job D of size 4 at time 2. The optimal
schedule for this instance processes jobs A and B on one machine and job C followed by job
D on the other; it has length 6. If the algorithm interrupts job A or job B at time 2, then the
integral remaining work at time 2 is at least 10, and so the schedule must be of length at least
7. Clearly, interrupting A or B in (2, 3) has no advantage over interrupting them at time 2.
Any schedule that does not interrupt A or B and then processes job D must also be of length
at least 7 Hence, in this case, the performance guarantee is at least 7

6"
(ii) The algorithm initially schedules job A on machine and job B on machine 2 at

time 0 and decides to interrupt at least one of them before time 2. In this case, the adversary
releases job D of size 2 at time 2. This implies that at time 2, the integral remaining work is at
least 7" the total work ofthis instance is 10 processing units, and at most 3 units of (completed)
processing occurred before time 2, since there are no restarts in (0, 1). Hence the schedule
must be of length at least 6. However, the optimal schedule is of length 5" one machine
processes jobs A and C; the other processes job B followed by D. Hence the performance

6ratio is at least g.
(iii) The algorithm only schedules one job to begin at time 0. In this case the adversary

releases a job of size 2 at time 1. The integral remaining work at time is at least 9, and hence
6the length of the schedule is at least 6. The resulting performance ratio is at least g.

(iv) The algorithm schedules jobs A and C at time 0. The adversary then releases a job
D of size 7 at time 1. If the algorithm decides to let job C complete, then the minimum length
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of the produced schedule is 9, whereas the optimal schedule would be of length 8; hence the
performance bound is at least . If the algorithm decides to interrupt job A or job C before
time 2, then the adversary releases job E of size 3 at time 3. The optimal schedule for this
instance is of length 9: one machine can process all jobs of length 3, and the other machine
processes jobs C and D. However, the integral remaining work at time 3 is at least 13, and
hence the length of the schedule is at least 10. Therefore the performance bound in this case,
and in general, is at least . [3

4.3. Identical machines.
THEOREM 4.1. The competitive ratio ofany deterministic on-line algorithmforscheduling

identical machines, with no preemption allowed, is at least (2 ).
Proof For any m, let n m(m 1) + 1. Each of the first m(m 1) jobs is of size

1, while the last job is of size m; that is, p Pn-1 1, Pn m. This instance is
due to Graham 19]. The optimal schedule is of length m and consists of scheduling the last
job on a machine by itself and scheduling m of the single unit jobs on each of the remaining
m 1 machines. The length of a schedule for this instance is determined by the starting time
of the job of size m; therefore, the adversary wishes to make it start as late as possible. Each
of the first n 1 jobs that the algorithm allows to run for at least one unit of time will be fixed
by the adversary to be jobs of size 1. Given this strategy for the adversary, it is not difficult
to see that by time i, 1 m 1, at most im jobs are either completely processed or
currently being processed. Hence, at time m there must be at least one job that has not
been completely processed and is not currently being processed. The adversary sets this job
to be of size m. Therefore, the schedule must be of length at least 2m 1, which is (2 1)
times as long as the optimal schedule.

In contrast to the nonpreemptive model, an optimal preemptive schedule can be found
off-line in polynomial time [33]. Interestingly enough, an argument similar to the previous
proof shows that the on-line worst-case characterization of both models is the same.

THEOREM 4.2. Any deterministic on-line algorithm for scheduling identical machines
with preemption allowed has competitive ratio at least (2 ).

Proof Consider the behavior of the algorithm on an instance with n m + jobs.
Suppose that the algorithm first asks the adversary if there is a job that completes by time
t’. If the algorithm’s proposed schedule contains a preemption, let be the time of the first

preemption; otherwise let t’. The adversary then sets the processing time for each job as
follows: let n be the number of a job which has not been started by time t; let pl

Pn-1 and p, tm/(m 1). The algorithm clearly cannot complete all of the jobs earlier
than time + tm/(m 1). The length of the optimal preemptive schedule is known to be
max(pmax, pj/m) [33]. In this case max(pmax, pj/m) tm/(m 1). Therefore, the
algorithm has competitive ratio [t + tm/(m 1)]/[tm/(m 1)] (2 1).

The essence of these deterministic lower bounds is that there is one large job whose
starting time determines the length of the schedule, and the adversary can force the algorithm
to start that job late in the schedule. One approach to defeat such an adversary is to allow the
algorithm to be randomized. In proving lower bounds for randomized algorithms, one must
be careful to delimit the adversary’s access to the random bits used by the algorithm. In our
setting, it is most natural to consider an oblivious adversary, who knows only the algorithm but
not the coin tosses [6, 36]. The oblivious adversary models the situation where a randomized
algorithm receives a problem instance and must produce a solution; the random choices it
makes have no effect on the input it sees.

A stronger model is an adaptive adversary, who knows in advance the scheduling algo-
rithm and may set attributes of a job at time based on the algorithm’s actions up to time
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[6]. The adaptive adversary models the situation where there is some feedback between the
choices the algorithm makes and future input it sees. A good example of this latter situation
is paging: depending on what random choices a paging algorithm makes, it may or may not
itself cause page faults in addition to those caused by other elements of the operating system.
However, it is clear that for our models, a randomized algorithm running against an adaptive
adversary is no more powerful than a deterministic algorithm.

A priori, it would not be surprising if a randomized algorithm 4 working against an
oblivious adversary might, with significant probability, select and schedule the large jobs
earlier, thus improving its performance. A randomized algorithm can clearly gain something
over a deterministic algorithm: consider, for example, the algorithm that randomly chooses
an ordering of the jobs and then list schedules according to that ordering. Since each list
schedule is at most (2 ) times optimal in length, and at least one of the list schedules
will be the optimal schedule, this randomized algorithm has expected performance strictly
less than (2 m/-). We will prove, however, that randomness is ultimately of little help to a
nonpreemptive on-line scheduling algorithm for identical machines.

THEOREM 4.3. Any randomized on-line algorithm for nonpreemptive scheduling of
identical machines, working against an oblivious adversary, has competitive ratio at least
(2- O())Cax.

We will actually prove a slightly stronger fact: this theorem is true even if the on-line
algorithm knows in advance the sizes of the jobs, but does not know which size is associated
with each job. The instance 2- that we consider consists of m(m k) jobs of size and k jobs
of size m, where k is a parameter less than m that we will later choose to optimize the lower
bound derived; in fact, we will set k to be roughly x/-. The optimal schedule is clearly of
length m. The length of any schedule for this instance is determined by the starting time of
the last job of size m. The goal of the algorithm is therefore to find all large jobs and begin
processing them. The algorithm cannot know whether a job is of size or of size m until it
has processed it for one unit of time.

Therefore, the important information about the execution of the algorithm can be captured
by a sequence S of points in time at which eachjob’s first unit of processing time is completed.
We will assume that when an algorithm discovers a big job it lets it run to completion without
further interruption. The possibility that a shorter schedule could arise from postponing further
processing of the large jobs does not affect our analysis, since we will give the algorithm the
extra power of processing the first unit of m jobs at every unit of time even when some large
jobs are concurrently being processed. The goal of the algorithm is to have the processing of
the first unit of the last job of size m be as early as possible in the sequence S.

A randomized algorithm for this problem can then be described as choosing with a certain
probability distribution one of the remaining jobs to be the next one to be run for one unit of
time. The probability can depend on what has been seen before: this yields information about
how many jobs of size and size m remain, but gives no information to distinguish among
the unprocessed jobs.

We will now argue that the adversary can always force the algorithm to do as poorly
as it would have done had it always made its choices according to the uniform distribution.
The following lemma, while different in detail, is in the spirit of the result of Yao [7], which
uses the minimax theorem ofVon Neumann to prove a worst-case lower bound for randomized
algorithms based on an average-case lower bound for deterministic algorithms on probabilistic
inputs.

LEMMA 4.4. The competitive ratio of a randomized algorithm 4 can be no less than
that of the algorithm U that always picks the nextjob to process uniformlyfrom among the
remainingjobs.
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Proof We note that the adversary’s strategy can be described as choosing some permu-
tation of the jobs. If the adversary chooses the permutation randomly and uniformly, then
the probability of the algorithm .A selecting any particular job is uniform over all remaining
jobs, no matter what probability distribution 4 uses. Let g be the expected performance of
algorithm A against this adversary, where the expectation is taken over the random choices
of both t and the adversary. Note that the adversary can always choose some permutation of
jobs such that the expected performance of 4, taken over just the choices of 4, is no better
than . Since the expected performance of the algorithm U that chooses uniformly is no
matter which permutation is used, algorithm 4 can have competitive ratio no better than algo-
rithm U. [3

We complete the proof of Theorem 4.3 by showing that scheduling by choosing the next
job uniformly can do quite poorly.

LEMMA 4.5. If instance Z is scheduled on identical machines by choosing the next job
to be processedfor one time unit uniformly at random, the expected length of the schedule

,produced is at least (2 O())CmaX.

Proof The expected length of the schedule is then m + E,., where E, is the expected start
time of the last job of size m in the schedule. To bound E,., we can think of the problem as a
"shell game," where there are n m(m k) / k shells, under k of which there are peas. We
show that if one searches for the peas by choosing among the remaining shells randomly and

k (n + 1). The searcher can beuniformly, the expected place of the last pea to be found is -described as using a uniformly chosen random permutation of the n positions; therefore, the
expected time of finding the last pea is the same as the expected position Ek of the last pea if
the peas were uniformly distributed among the shells according to a random permutation.

To compute E, consider, for convenience, the symmetric problem ofthe expected position
of thefirst pea, E1 (note that we number the first position as 1, not 0):

n-l+ln-k+l 1( kE Z Prob[Position of first pea > l]
/--1 I--1

n+l]
+11 n /

() k/

(n / 1).By symmetry the expected position of the last pea is

[m(m k) + k]th chosen overall.Therefore, we expect the kth job of size m to be the -This will happen no earlier than time k (m k)/ since at most m jobs are completed-during every unit of time; as a result E, > (m k)] F(k) We drop the floor, vhich
has no impact on the asymptotic quality of our bounds. To derive the strongest lower bound
possible we maximize F(k) by using elementary calculus. The maximum is achieved by
setting k v/m+ 1; plugging into F (k) we see that

/m + l- (m_/m + + l)F(k)--

1)
m

>m- --/m+
/m+l

Thus m + E, > 2m 3/- (2 ,/)Cmax, which implies the stated result.
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4.4. Uniformly related machines. In the case of uniformly related machines the situ-
ation becomes significantly more difficult for the scheduler. We will show that an adversary
can force any deterministic scheduler to construct a schedule of length g2 (log m) times the
length of the optimal schedule, whether or not the scheduler is allowed to preempt jobs.

THEOREM 4.6. The competitive ratio ofany deterministic on-line scheduling algorithm
for uniformly related machines, whether or notpreemption is allowed, is g2 (log m).

To prove this theorem we use a family of instances 2" that was introduced by Cho and
Sahni [9] to show that a certain off-line approximation algorithm had a poor performance
guarantee. Let k (log2(3m 1) + 1)/2. We restrict ourselves to values of m such that k
is integral. The instance YT has m jobs and m machines; there are k sets of machines G and
k sets of jobs T/, 1 k. Each machine in G has a speed of 2 and each job in T/has
size 2i. Finally, [Gi[ [Tt’[ 22k-2i-1, 1 k 1, and [G[ ITs[ 1. It is easy to
see that Cx 1, since each job of size 2 can be scheduled by itself on a machine of speed
2i, 1 k.

Once again, we shall assume that the algorithm is given the multiset of job sizes for the
input, but is not given the correspondence between each job and its size. The proof of the
theorem is based on a rather natural strategy for the adversary, which we call the delayed
commitment strategy. For any time t, let J (t) denote the set of jobs that have not yet been
completed and let L (t) denote the multiset of the sizes of the jobs in J (t). We shall say that the
set J(t) is uncommitted in a particular schedule at time if, for any bijection p J(t) --+ L(t),
there is an extension of the schedule so that eachjob j 6 J (t) is processed for p (j) time units.
Equivalently, the schedule up to time implies a lower bound on the size of eachjob j 6 J (t),
which we shall denote pj(t); the set J(t) is uncommitted if

(1) max pj (t) < rain p.
jJ(t) pL(t)

If this is a strict inequality, we shall say that J (t) is strictly uncommitted at time t. The aim of
the delayed commitment strategy is to ensure that at any time t, the set J (t) is uncommitted
in the schedule produced by the algorithm. The strategy works as follows: whenever J (t) is
strictly uncommitted, the algorithm continues to produce the schedule; whenever this first fails
to be true, and J (t) is only uncommitted, there exists a job j such that pj (t) minp/t) p,
and j is then assigned processing time minpLt p. This causes j to be deleted from J(t)
and pj to be deleted from L(t). If inequality (1) is still tight, then this is repeated until the
remaining set J(t) is once again strictly uncommitted. When inequality (1) is tight because
of more than one job, we shall, for concreteness, assume that the tight job of minimum index
is selected.

LEMMA 4.7. Consider the execution ofany scheduling algorithm on the instance when
the processing times are assigned by the delayed commitment strategy. Let Xi denote the time
when the lastjob in Ti finishes, 1 k, and let Xo =0. Then Xo < X1 < X2 < <_ Xk
and, furthermore, Xi+ Xi > 1/4, 0 k 1.

Proof We first show that Xi < Xi+l for each 0 k 1. In fact, we will show
something stronger: for each 0 k- 1 at time Xi, eachjob j 6 Ti+l has at least 2 units
of processing remaining. The case 0 is trivial, and so we consider each k 1.
Let j’ be the last job in Ti to be completed; job j’ completes at time Xi. Consider any job j in

T/+ and suppose that more than 2 units of its processing requirement have been completed by
the schedule at time Xi. This implies that at some earlier point in time t, exactly 2 units were
completed. However, since j’ was not yet assigned its processing time at time t, it follows that
2 L(t), and so j would be assigned processing time 2 instead. This contradiction implies
that at time Xi, eachjob j 6 T/+I has had at most 2 units of its processing requirement already
completed; hence, at least 2 units of processing remain.
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We have just argued that each of the 22k-2i-3 jobs in T/+I has at least 2 units of processing
remaining at time Xi, 0 k 1. We will use this fact to derive a lower bound on the
time that must subsequently elapse before all jobs in Ti+ can complete. An easy lower bound
is given by the ratio of the total remaining processing requirement to the total machine speed
that can be used. Since there are more than Ti+ll machines, we can assume that only the
IT/+ 11 fastest machines will now be used to process the jobs in T/+I. It is easy to see that there
are more than T/+ machines in the sets Gi+ 1, Gi/2 Gk. Hence we can lower bound the
time that elapses until all jobs in Ti+I are completed by

2iIT/+11 22k-i-3

22k-i-3

2 ,-.,k-i-2 2r _1_ 2

22k-i-3
2k(2-i- 1) + 2

22k-i-3
22k-i-1

1/4. S

(log m). Hence weThis lemma implies that the schedule completes at time X >_
have an S2 (log m) lower bound on the competitive ratio.

THEOREM 4.8. The competitive ratiofor any deterministic on-line algorithmfor schedul-
ing uniformly related machines with R S1/S < m is f2 (log R), whether or notpreemption
is allowed.

Proof We modify our previous proof slightly by providing a nearly identical family of
instances that satisfies S1/S R. Let r [log2 RJ; the new family will have S1/S 2r. In
the instance 2-k, the fastest machine has speed 2. We modify 2- to meet the speed restriction
by increasing the speed of all machines of speed less than 2-r to be exactly 2/-r This yields
our new family of instances. The optimal schedule length is still 1. We can also prove an
analogue of Lemma 4.7 for the delayed commitment strategy. As before, if we let Xi denote
the time that the last job in T/is completed, this strategy ensures that X1 < X2 < < Xk.

for eachi =k-r,.. kFurthermore, the identical proof still yields that X Xi_ > "Intuitively, all of the "small" jobs may finish quite quickly, but those in T:-r T, will each
take at least unit of time to complete.

5. Conclusions and open problems. The most obvious open problem raised by our work
is to close the gap between the upper bound of O (log n) and the lower bound of f2 (log m) for
unrelated machines. To do this, we would need only a "preprocessing algorithm" that reduced
the number ofjobs to a number polynomial in m. For uniformly related machines, we showed
that list scheduling of the first n m jobs accomplishes this goal. It is not clear, however, that
a similar naive approach will be of use for unrelated machines.

It has been observed in the context of paging and list maintenance that the conclusions
drawn from average-case analysis of on-line algorithms do not always correspond to the
conclusions of experimental studies and practical experience [39]. If this proves to be the case
for parallel machine scheduling, then the design and analysis of a model that is less pessimistic
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than the worst-case competitive ratio but has more structure than expected performance on
randomly selected instances might be a valuable endeavor.
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COMPUTING MINIMAL SPANNING SUBGRAPHS IN LINEAR TIME*

XIAOFENG HANt, PIERRE KELSEN$, VIJAYA RAMACHANDRAN, AND ROBERT TARJAN

Abstract. Let P be a property of undirected graphs. We consider the following problem: given a graph G that
has property P, find a minimal spanning subgraph of G with property P. We describe general algorithms for this

problem and prove their correctness under fairly weak assumptions about P. We establish that the worst-case running
time of these algorithms is ()(m / n log n) for 2-edge-connectivity and biconnectivity where n and rn denote the
number of vertices and edges, respectively, in the input graph. By refining the basic algorithms we obtain the first
linear time algorithms for computing a minimal 2-edge-connected spanning subgraph and for computing a minimal
biconnected spanning subgraph.

We also devise general algorithms for computing a minimal spanning subgraph in directed graphs. These
algorithms allow us to simplify an earlier algorithm of Gibbons, Karp, Ramachandran, Soroker, and Tarjan for
computing a minimal strongly connected spanning subgraph. We also provide the first tight analysis of the latter
algorithm, showing that its worst-case time complexity is (-)(m / n log n).

Key words, minimal subgraphs, biconnectivity, two-edge-connectivity, strong connectivity, linear-time algo-
rithm, worst-case behavior
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1. Introduction. Let P be a monotone graph property. In this paper we consider the
following problem: given a graph G having property P, find a minimal spanning subgraph of
G with property P, i.e., a spanning subgraph of G with property P in which the deletion of
any edge destroys the property. We are interested in the sequential and parallel complexity of
this problem.

The corresponding problem of finding a minimum spanning subgraph having a given
property has been widely studied. We mention two results. Chung and Graham [3] proved
that the problems of finding a minimum k-vertex-connected or k-edge-connected spanning
subgraph are NP-hard for any fixed k >_ 2. For the more relaxed problem of finding sparse
but not necessarily minimal k-edge-connected and k-vertex-connected spanning subgraphs,
linear time algorithms are known 18]. Yannakakis ([24]; see also 15]) showed that the related
problem of deleting a minimum set of edges so that the resulting graph has a given property
is NP-hard for several graph properties (e.g., planar, outerplanar, transitive digraph).

There is a natural sequential algorithm for finding a minimal spanning subgraph with
property P" examine the edges of G one at a time; remove an edge if the resulting graph
has property P. This gives a polynomial time algorithm for the problem if the property P
can be verified in polynomial time. However, for most nontrivial properties the running time
of the algorithm is at least quadratic in the input size. Further, this algorithm seems hard
to parallelize. Our goal is to obtain efficient sequential algorithms that can be parallelized
effectively.
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The problem at hand may be phrased in the very general framework of independence
systems described by Karp, Upfal, and Wigderson [12]: an independence system is a finite
set together with a collection of subsets, called independent sets, with the property that any
subset of an independent set is independent. Define a subset S of edges in G to be independent
if the graph G S has property P. Finding a minimal spanning subgraph with property P
amounts to finding a maximal independent set in the independence system that we have just
defined. Efficient (deterministic) parallel algorithms for finding a maximal independent set in
an independence system are known for the special case where the size of a minimal dependent
set is 2 or 3 16], [9], [5]. For the problems that are of interest to us, minimal dependent sets

may have nonconstant size and hence a different approach is needed for obtaining fast parallel
algorithms.

The minimal spanning subgraph problem has been studied earlier for the property ofstrong
connectivity (transitive compaction problem [8]) and for 2-edge-connectivity and biconnec-
tivity [13]. For these problems algorithms are given in [8], [13] that run in O(m + n logn)
sequential time and can be implemented as NC algorithms; here n and m represent the number
of vertices and edges in the input graph. Both papers have a similar high-level algorithm that
is shown to terminate in O (log n) stages for the properties considered, and both papers leave
open the question of whether this bound is tight.

In this paper we generalize the high-level algorithm of [8], 13] to a large class of graph
properties. We show that for any graph property that implies 2-edge-connectivity the running
time of these algorithms is within a logarithmic factor of the time required for minimally
augmenting a spanning tree to achieve the given property. Because various computations
on trees can be performed efficiently, both sequentially [22] and in parallel [17], [20], this
algorithm provides a useful paradigm for the sequential and parallel determination of minimal
spanning subgraphs with respect to connectivity properties.

We analyze the worst-case complexity of these algorithms. We show that the algorithms
for 2-edge-connectivity and biconnectivity require f2 (log n) iterations in the worst case; this
implies that the worst-case time of these algorithms is (R)(m + n log n), thus settling open
questions posed in [13].

We describe refinements of the basic algorithms for 2-edge-connectivity and biconnectiv-
ity and obtain the first linear time algorithms for these properties. These algorithms still need
a logarithmic number of iterations but by performing certain contractions and transformations
on the current graph they reduce its size by a constant factor greater than in a constant number
of iterations. This result also reduces the work performed by the parallel algorithms for these
problems by a logarithmic factor.

We also describe general algorithms for computing a minimal spanning subg.raph in
directed graphs with respect to any monotone property that implies strong connectivity. For the
special case of strong connectivity, we are able to simplify the algorithm of [8] for computing
a minimal strongly connected spanning subgraph. We also provide the first tight analysis of
the latter algorithm, showing that its worst-case running time is (R) (m + n log n). This answers
a question posed in [8].

This paper is organized as follows. The next section defines the terms from graph theory
used in this paper. In 3 we describe and analyze general algorithms for computing minimal
spanning subgraphs in undirected graphs. In 4 we describe refinements that yield linear time
algorithms for computing a minimal 2-edge-connected spanning subgraph and for computing
a minimal biconnected spanning subgraph. In 5 we show that the basic algorithms have a
worst-case time complexity of (R)(m / n log n) if we do not incorporate those refinements.
In 6 we develop and analyze general algorithms for computing minimal spanning subgraphs
in directed graphs. In that section we also analyze an algorithm of [8] for computing a
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minimal strongly connected spanning subgraph and we provide a simplified algorithm for the
problem.

The sequential model of computation that we assume in this paper is the RAM 1] with
a word length of O (log n) bits where n is the length of the input (or the number of vertices in
the input graph).

2. Definitions. We introduce graph terminology similar to that of [2]. A graph is a triple
G (V, E, qSc) where V is a set of vertices, and E, disjoint from V, is a set of edges (both
V and E are assumed to be finite); the incidence function maps edges in E to unordered
(ordered) pairs of vertices in V if the graph is undirected (directed). Note that this definition
allows for the representation of multigraphs. We write V (G) and E(G) for the set of vertices
and the set of edges, respectively, of G and use n(G) and m(G) to denote the number of
vertices and edges, respectively, in G. We refer to a directed graph also as a digraph. We
write (u, v) both for ordered and unordered pairs. If (u, v) is an edge in a directed graph, then
u is called the tail of this edge and v is called the head of this edge. If qS(e) (u, v), we
say that edge e is incident on the vertices u and v and vertices u and v are the endpoints of e.

The degree of a vertex v in G, denoted by dega (v), is the number of edges incident on vertex
v. If the graph is directed, then the indegree (outdegree) of a vertex v is the number of edges
e E(G) such that a(e) (w, v)(qba(e) (v, w)) for some vertex w.

If every edge in a graph joins two distinct vertices and no two edges join the same pair
of vertices, then we say that the graph is simple. The underlying graph of a digraph G
is obtained by omitting the directions of the edges in the digraph. We say that a digraph G is
an orientation of an undirected graph G if G is the underlying graph of G.

The following definitions apply both to directed and undirected graphs. A path P in G
is an alternating sequence P (vo, el, 131 l)k-1, ek, vk) of vertices and edges of G such
that the following holds: (1)4)a(ei) (vi-1, vi)for0 < < k, (2)v0... v_l are distinct and
Vl... v are distinct; the integer k (number of edges) is the length of the path. The path P is a
pathfrom v0 to v; v0 and v are the endpoints of P and v vk_ are the internal vertices
of P. A subpath of P is a path of the form (vi, ei+a ej, vj), where 0 < < j < k. The
path P is a chain if it has length at least 2 and its internal vertices all have degree 2 in G. The
path P is a cycle if v0 vk.

If G (V, E, bc) and G’ (V’, E’, b,) are two graphs such that V’ c__ V, E’ c__ E
and qSa, is the restriction of ba to E’, then G is a subgraph of G; it is a proper subgraph
if G’ - G. If the graph G is understood, we may represent a subgraph H of G simply by
the pair (V(H), E(H)). A spanning subgraph of G is a subgraph G’ with V(G’) V. If
G’ (V’, Ef) is a spanning subgraph of G and E"

___
E, then G’ + E" denotes the subgraph

(V’, E’ U E") of G and G’ E" denotes the subgraph (V’, E’ E") of G.
An undirected (directed) graph G is connected (strongly connected) if there exists a path

from u to v for all u, v 6 V. A subgraph of G is a maximal subgraph having a given property
if it is not a proper subgraph of another subgraph of G with the same property. A connected
component of an undirected graph G is a maximal connected subgraph of G. A tree in a graph
G is a spanning connected subgraph of G without cycles. A strong component of a directed
graph G is a maximal strongly connected subgraph of G.

All remaining definitions apply only to undirected graphs. A cutedge in G is an edge in G
whose removal increases the number of connected components in G. The graph G is 2-edge-
connected if it is connected and has no cutedge or, equivalently, it is connected and every edge
of G lies on a cycle. A 2-edge-connected component of G is a maximal 2-edge-connected
subgraph of G. A graph is k-edge-connected (k > 0) if G S is connected for every subset
S E(G) of size less than k. A vertex v in G is a cutpoint if removing v together with
all incident edges increases the number of connected components in G or, equivalently, there
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exist distinct vertices u and w in G other than v such that any path from u to w contains v.
A graph G is biconnected if it is connected, has at least three vertices, and does not contain a
cutpoint. A block of G is a maximal subgraph of G with the property that it is connected and
has no cutpoint. A graph G is k-vertex-connected if G has at least k + 1 vertices and G S
is connected for every S

___
V (G) with [SI < k.

Let G (V, E, 4a) and let V’

_
V. The operation of collapsing the vertices of V’ in

G produces a graph G’ defined as follows: V(G’) (V V’) U {z} where z is a new vertex
not in V; E(G’) is the subset of those edges in E that have at least one endpoint outside V’;
qSa, (e) qSa (e) ifno endpoint of e belongs to V’ and 05a, (e) (z, v) if ba (e) (u, v) where
u V’andv V-V’.

An ear decomposition [21] D [P0, P Pr-] of a graph G is a partition of E(G)
into an ordered collection of edge-disjoint paths P0 Pr- such that P0 is a cycle and the
two endpoints of Pi, for >_ 1, are contained in lower-numbered ears, and none of the internal
vertices of Pi are contained in lower-numbered ears. The paths in D are called ears. Ear
decomposition D is an open ear decomposition if no Pi with > 0 is a cycle. A trivial ear is
an ear containing a single edge.

3. Finding a minimal spanning subgraph in undirected graphs. In this section we
describe three closely related algorithms for finding a minimal spanning subgraph of a graph
for various properties of undirected graphs. Algorithm was first described in [14] while
algorithms 2 and 3 are generalizations of algorithms for finding a minimal 2-edge-connected
and a minimal biconnected spanning subgraph given in 10].

A graph property P is a Boolean-valued function on graphs. If P(G) is true for some
graph G, we say that G has property P or G is a P-graph. A P-subgraph of G is a subgraph
of G that has property P. An edge e of a P-graph G is P-redundant in G if G e has property
P, otherwise e is P-essential in G. We may not mention G or P if the graph or the property
is clear from the context.

In this paper we concern ourselves with the problem of finding a minimal spanning P-
subgraph of a P-graph G, i.e., a spanning P-subgraph of G in which every edge is P-essential.
Throughout this paper we shall implicitly assume that property P is decidable, i.e., there is
an algorithm that checks whether a given graph has property P. We restrict our attention to
decidable properties that satisfy conditions C and C2 below:

C 1. P is monotone, i.e., the addition of an edge to a P-graph results in a P-graph;
C2. any P-graph is connected.

As an immediate consequence of condition C 1 we make the following basic observation.
OBSERVATION 1. Let G be a P-graph and let H be a spanning P-subgraph of G. Any

edge that is P-redundant in H is P-redundant in G.
There is an obvious (sequential) algorithm for computing a minimal spanning P-subgraph

of G: examine the edges of G one at a time; remove an edge if it is redundant in the current
graph. By Observation the resulting subgraph is a minimal spanning P-subgraph of G.

The following algorithm is a generalization of algorithms given in [13] and [8] (for
finding a minimal 2-edge-connected, a minimal biconnected, and a minimal strongly connected
spanning subgraph of a graph) to graph properties satisfying C1 and C2. This algorithm has
been shown to outperform the obvious algorithm on undirected graphs for 2-edge-connectivity
and biconnectivity, andwe believe that this is true for a number ofother properties ofundirected
graphs. Moreover, it is inherently easier to parallelize.

ALGORITHM 1. Computing a minimal spanning P-subgraph of G.
Input P-graph G.
Output Minimal spanning P-subgraph H of G.
(1) H := G;
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(2) while H has P-redundant edges, do:
(2.1) compute a spanning tree T/-/ in H with a maximum number of P-essential

edges;
(2.2) compute a minimal subset A of edges in H such that T/-/+ A has property P;
(2.3) H := T/-/+ a.

A spanning tree T/_/of H containing a maximum number of essential edges (constructed
in step 2.1) is called an optimal tree in H and the set A constructed in step 2.2 is called a

minimal augmentationfor TI4 (in H).
THEOREM 1. Algorithm computes a minimalspanning P-subgraph ofGfor anyproperty

P satisfying C and C2.

Proof By induction on the number of iterations of the while-loop, one shows that H, as

computed in step 2.3, is always a spanning P-subgraph of G. To prove termination, consider
one execution of the while-loop. Since T/-/ is an optimal tree in H, it does not contain all
redundant edges of H. Furthermore all edges of A are essential in T/-/+ A. Therefore, the
number of redundant edges in H decreases by at least one at each iteration of the while-loop.
Thus Algorithm 1 terminates. q

By the proof of Theorem 1 the number of iterations of Algorithm is bounded by the
number of edges in the input graph G. For several graph properties much sharper bounds
hold. In this paper we are primarily interested in properties P that imply 2-edge-connectivity.
The following theorem shows that for these properties Algorithm 1 terminates quickly. We
use n to denote the number of vertices in G.

THEOREM 2. IfP satisfies C 1 andC2 andalso implies 2-edge-connectivity, thenAlgorithm
terminates after 0 (log n) iterations ofthe while-loop.

Proof Fix H at the beginning of an iteration of the while-loop. An essential component
of H is a connected component of the subgraph of H with vertex set V (H) whose edges are
the essential edges in H. Let r denote the number of redundant edges in H and c the number
of essential components of H. Fix an optimal tree T in H and a minimal augmentation A
for T. The tree T contains exactly c redundant edges of H. Furthermore, if c > 1, then
each essential component of H is incident with at least 3 redundant edges in H and hence
c <_ 2r/3. Since the edges of A are essential in T + A, less than 2r/3 edges of T + A are

redundant and hence the number of redundant edges goes down by a constant factor greater
than 1 in each iteration of the while-loop. The claim follows. [q

COROLLARY 1. Algorithm computes a minimal k-vertex-connected and a minimal k-
edge-connected spanning subgraph in 0 (log n) iterations ofthe while-loop.

One drawback of Algorithm is that the redundant edges of H need to be computed at

each iteration. In general, it is not clear whether computing these edges is easier than the
original problem of finding a minimal spanning P-subgraph. One can avoid this computation
by gradually building up a set of essential edges, as shown in the following algorithm. We do
not need to assume here that P implies 2-edge-connectivity.

ALGORITHM 2. Computing a minimal spanning P-subgraph of G.
Input P-graph G.
Output Minimal spanning P-subgraph H of G.
(1) H:=G;S:=0;
(2) while S :/: E (H), do:

(2.1) compute a spanning tree T/_/in H with a maximum number of edges in S;
(2.2) compute a minimal subset A of edges in H such that T/-/+ A has property P;
(2.3) H := T/-/+ A; S := S U A U {cut edges in H}.
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THEOREM 3. Algorithm 2 computes a minimalspanning P-subgraph ofGfor anyproperty
P satisfying C and C2.

Proof By induction on the number of iterations of the while-loop, one shows that at the
end of each iteration H is a spanning P-subgraph of G and the edges in S are essential in H.
To prove termination, consider one execution of the while-loop. Let e E E(H) S. If e is a

cutedge in T4 + A, then e will be added to S in step 2.3. Otherwise the optimal tree does not
contain all edges of E(H) S. At least one edge of E(H) S will thus be added to S in step
2.3 (as an edge of A) or discarded. In all these cases E(H) SI decreases by at least one in
this iteration. Termination follows. [3

Unlike Algorithm 1, Algorithm 2 is not guaranteed to terminate quickly if P implies
2-edge-connectivity. For instance, if P denotes 2-edge-connectivity and G is a cycle on n

vertices, then Algorithm 2 adds exactly one edge to S in each iteration of the while-loop and
thus requires n iterations.

We overcome this problem as follows. Let S

_
E(H). An edge of H is called S-critical

if it is one of exactly two edges connecting some connected component of (V(H), S) with
the set of vertices outside this component. Note that any S-critical edge is essential in H
provided P implies 2-edge-connectivity. Thus, at each iteration we can add to the current set
of essential edges the edges of A as well as the S-critical edges in H. The following algorithm
makes use of this idea.

ALGORITHM 3. Computing a minimal spanning P-subgraph of G.
Input P-graph G.
Output Minimal spanning P-subgraph H of G.
() H’-G;S’-0;
(2) while S :/: E(H), do"

(2.1) compute a spanning tree T/4 in H with a maximum number of edges of S;
(2.2) compute a minimal A E(H) such that T/_/+ A has property P;
(2.3) H T/-/+ A; B {S-critical edges in H}; S S t2 A U B.

As before we say that T/-/ is an optimal tree in H and A is a minimal augmentation for T/-/
in H.

THEOREM 4. Algorithm 3 computes a minimalspanning P-subgraph ofGfor anyproperty
P satisfying C1 and C2 and implying 2-edge-connectivity.

Proof An induction on the iteration number shows that, at the end of each iteration of the
while-loop, H is a spanning P-subgraph ofH and all edges in S are essential in H. Thus, upon
termination H is a minimal spanning P-subgraph of H. To prove termination, fix an iteration
of the while-loop. The tree T/4 contains a minimum number of edges in E(H) S. Since H
is 2-edge-connected, it has no cutedges. Thus there exists a spanning tree in H excluding a
single edge of E(H) S. It follows that T/-/does not contain all edges of E(H) S. Any
edge of E(H) S that does not belong to T/-/ is either discarded or added to S in step 2.3.
Hence E(H) SI is strictly decreasing. Termination follows. [3

The proof of Theorem 2 suggests that the number of iterations of Algorithm 3 may be
proportional to the number of edges in the input graph. As was the case for Algorithm 1, a
much sharper bound holds for properties that imply 2-edge-connectivity.

THEOREM 5. Assume property P implies 2-edge-connectivity. Let Ci denote E(H) S
at the beginning of iteration of the while-loop ofAlgorithm 3. Then, If//ll < 31Cil/4 for
fil > O, Thus Algorithm 3 terminates after 0 (log n) iterations.

Proof Let Hi and Si denote H and S at the start of iteration of the while-loop in
Algorithm 3. Hence Ci E(Hi) Si. The claim certainly holds if the number of edges of

Ci in tree TI4i (computed in step 2.1) is at most 31Cil/4. Now assume that more than 31Cil/4
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edges of C belong to Tnio Construct H’ from Hi by collapsing the vertex sets of the connected
components of (V (Hi), Si) in Hi (one at a time). Let a be the number of degree-2 vertices in
H’. Note that a is a lower bound on the number of edges added to B (and hence to S) in step
2.3. It suffices to show that a > ICi I/4.

We have n(H’) > 3ICil/4() since we assumed that TI4i contains more than 3lCil/4
edges of Ci. Also m(H’) < IGI and therefore, by inequality (*), m(H’) < 4n(H’)/3. Hence,
vv(/4’ deg/4’(v) < 8n(H’)/3. Moreover, -vv(/4’ deg/_/,(v) > 2a + 3(n(H’)- a). Thus
a > n(H’)/3. With inequality (*)we get a > ICi[/4. [3

THEOREM 6. Assume that P satisfies C1 and C2 and also implies 2-edge-connectivity.
Ifa minimal augmentation ofa spanning tree can be computed in time (m, n), then a min-
imal spanning P-subgraph can be computed using Algorithm 3 in time O(t(m, n) log n). In
particular this holdsfor k-vertex- and k-edge-connectivityfor k > 2.

Proof We claim that all steps in Algorithm 3 other than the minimal augmentation step
can be done in linear time and space. We compute an optimal tree T/-/as follows. We compute
spanning trees T/ for the connected components of (V(H), S). We collapse the connected
components of (V (H), S) in H and let T be a spanning time in the resulting graph. The
edges in [’-Ji E(Ti) [’-J E(T) form an optimal tree in H and can be computed in linear time and
space using depth-first search. To compute the S-critical edges, we determine the connected
components of (V (H), S) in linear time and space using depth-first search. Thus each iteration
of the while-loop requires time O(t(m, n)). By the previous result Algorithm 3 terminates
after O (log n) iterations of the while-loop. The claim follows. [3

In 13] linear time algorithms for computing a minimal augmentation for 2-edge-connec-
tivity and biconnectivity are described. By Theorem 6, Algorithm 3 computes a minimal
2-edge-connected and a minimal biconnected spanning subgraph in time O ((m + n) log n).
In fact the following stronger bound applies.

THEOREM 7. Algorithm 3 runs in time O(m + n logn) time for 2-edge-connectivity and
biconnectivity.

Proof It suffices to show that the number of edges in the graph H is O (n) after one
iteration of the while-loop. We prove this by showing that the number of edges in the minimal
augmentation computed in the first iteration is O (n). In the remainder of this proof T/-/and
A denote the optimal tree and its minimal augmentation computed in the first iteration of the
while-loop of Algorithm 3. For 2-edge-connectivity we argue as follows: since every edge
of A is essential in TH + A, for every edge e E A there exists an edge e’ in T/-/such that e

is the only edge in A with the property that e’ lies on the (unique) cycle of T/4 / e. Thus

IAI < m(Zn) n 1. For biconnectivity a result of Plummer [19] states that every minimal
biconnected graph (i.e., biconnected graph with no redundant edges) has O (n) edges. Thus

AI O (n) for biconnectivity as well. q

Algorithms for the same problems achieving similar time bounds are presented in 13].
Those algorithms are more complicated than Algorithm 3 because they require redundant
edges to be computed explicitly (a fairly involved procedure using ideas from triconnectivity
testing). In 5 we shall prove that the bound given in the last theorem is tight. In the next section
we describe how to modify Algorithm 3 so that it runs in linear time for 2-edge-connectivity
and biconnectivity.

We obtain a result similar to Theorem 6 for the parallel complexity ofcomputing a minimal
spanning P-subgraph. (For a definition of the PRAM model see 11 ].)

THEOREM 8. Assume that P satisfies C andC2 and also implies 2-edge-connectivity. Ifa
minimal augmentation ofa spanning tree can be computed in time t(m, n) on p(m, n) PRAM
processors, than a minimal spanning P-subgraph can be computed using algorithm 3 in time
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O((t(m, n) + c(m, n)) logn) on p(m, n) processors, where c(m, n) is the time required by
steps 2.1 and 2.3 ofalgorithm 3 on p(m, n) processors.

We note that on ARBITRARY PRAM the complexity of steps 2.1 and 2.3 is dominated by
that of finding connected components, i.e., they can be performed with almost optimal speedup
in time O(log n) using O((m + n)(m, n)/log n) processors [4], where o denotes the inverse
Ackermann function. The minimal augmentation step can be done in polylogarithmic time on
a linear number of processors, as shown in 13] for biconnectivity and 2-edge-connectivity.

4. Linear time algorithms. In this section we adapt Algorithm 3 to compute minimal
spanning subgraphs for 2-edge-connectivity and biconnectivity in linear time. The linear time
bound is achieved by combining the linear time minimal augmentation procedures given in
13] with a method for reducing the size of the current graph while preserving its 2-edge-

connectivity (biconnectivity) structure.

4.1. Finding a minimal 2-edge-connected spanning subgraph. We start with a de-
scription of two graph operations that preserve the 2-edge-connectivity structure. Let H be
a graph that may not be 2-edge-connected and let S

___
E(H). An S-component of H is a

2-edge-connected component of (V (H), S). The operation of shrinking an S-component of
H consists of collapsing the vertex set of this S-component in H. For the second operation
define a chain in H to be a path in H of length at least 2 whose internal vertices all have degree
2 in H. Note that the edges in a chain are essential in H. A chain is maximal if it is not a
proper subgraph of another chain in H. The operation of contracting a chain in H consists
of collapsing the set of internal nodes of the chain in H.

If graph Q is obtained from graph H by shrinking all S-components in H and contracting
all maximal chains in the resulting graph, we say that Q is afull contraction of H with respect
to S. The following algorithm is a variant ofAlgorithm 3 in which, at the end ofthe while-loop,
H is replaced by its full contraction. In step 2.0 we replace H by a sparse 2-edge-connected
subgraph to speed up subsequent steps; this also simplifies the analysis of Algorithm 3. A
linear time algorithm for computing a minimal augmentation for 2-edge-connectivity (step
2.2) is given in 13]. We finally note that the intermediate graphs need not be simple even if
the input graph G is simple.

ALGORITHM 4. Computing a minimal 2-edge-connected spanning subgraph of G.
Input 2-edge-connected graph G.
Output Minimal 2-edge-connected spanning subgraph of G.
(1) H’-G;S’-0;
(2) while E(H) S, do:

(2.0) replace H by an ear decomposition of H; discard the edges in the trivial ears
from H;

(2.1) compute a spanning tree T/-/in H with a maximum number of edges of S;
(2.2) compute a minimal A c_ E(H) such that T/4 + A is 2-edge-connected;
(2.3) H T/_/+ A; B {S-critical edges in H}; S St2 A t2 B;
(2.4) replace H by its full contraction with respect to S fq E (H);

(3) return graph (V(G), S).

To prove the correctness of Algorithm 3, we first need to establish that the two operations
of shrinking S-components and contracting chains preserve the 2-edge-connectivity structure
of H.

LEMMA 1. Let H be a graph that may not be 2-edge-connected and let S c_ E (H).
If H’ is obtainedfrom H by contracting a chain or shrinking an S-component, then H’ is
2-edge-connected if and only if H is 2-edge-connected. Thus, a full contraction of H is

2-edge-connected ifand only ifH is 2-edge-connected.
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Proof The claim for a full contraction follows with a simple inductive argument from
the first claim. We now prove the first claim. Let H’ be obtained from a 2-edge-connected
graph H by contracting a chain P. A cycle C in H containing an edge e of E(H’)(cc_ E(H))
either contains all edges of P or none. In the latter case C is also a cycle in H’ containing e.

In the former case we obtain a cycle C’ in H’ containing e by contracting chain P on cycle
C. Now suppose that H’ is obtained from 2-edge-connected graph H by collapsing vertex
set X

___
V (H) of an S-component. An edge e E(H’) lies on a cycle C in H. Let P be a

maximal subpath of C containing e and not having a vertex of X as an internal vertex. The
edges on P form a cycle in H’ containing e. Since H’ is also connected in both cases, we
conclude that H’ is indeed 2-edge-connected.

Now assume that H’ is 2-edge-connected and obtained from H by contracting a chain
or shrinking an S-component. Again we see that H is connected. Next we note that a cycle
C’ in H’ yields a cycle C in H that includes all edges on C (and possibly other edges).
Since every edge of H’ lies on a cycle of H’, every edge in E(H’) lies on a cycle in H. If
e 6 E (H) E (H’), then either e connects two vertices in the same S-component ofH or it lies
on a chain in H. In the first case it lies on a cycle whose vertices belong to the S-component.
In the second case some other edge on the same chain in H belongs to E (H’) and thus lies on
a cycle of H; this cycle must also include e. We conclude that H is 2-edge-connected. 1

COROLLARY 2. Let H be a 2-edge-connected graph and let H’ be obtained from H
by contracting a chain or shrinking an S-component (S E(H)). An edge e E(H’) is
essential in H’ ifand only ifit is essential in H. The same claim holds ifH’ is afull contraction
of H.

Proof As before, the claim for the full contraction follows by a straightforward induction
from the first claim. To prove the first claim, fix e 6 E(H’). If H’ is obtained from H
by shrinking an S-component, then H’ e is obtained from H e by shrinking the same
S-component since e does not belong to that S-component. The claim of the corollary follows
with the previous lemma. If H’ is obtained from H by contracting a chain, then e is essential
in both H and H’ if it belongs to a chain in H’ (and thus belongs to a chain in H). Otherwise
H’ e is obtained from H e by contracting a chain and the previous lemma implies the
claim of the corollary. [3

THEOREM 9. Algorithm 4 outputs a minimal 2-edge-connected spanning subgraph ofG.
Proof Replacing H by its full contraction in step 2.4 does not increase E(H) SI. As

in the proof of Theorem 4, one argues that [E (H) SI decreases by at least during one
iteration of the while-loop. The termination of Algorithm 4 follows.

We number the iterations of the while-loop from 0 to k (in iteration k Algorithm 4 finds
that E(H) c_ S). Let Hi and Si denote the graph H and the set S at the start of the th
iteration, let Ti and Ai stand for T/-/and A in iteration for < k, and let H/’ denote the graph
(V (Hi), Sk A E (Hi)). Lemma implies that each Hi is 2-edge-connected. It suffices to prove
that H is a minimal 2-edge-connected spanning subgraph of Hi for 0 _< < k. The claim of
the theorem then follows since H0 G and H is returned in step 3 of Algorithm 4.

To prove the claim, we need the following fact:

(*) any edge in E (Hi) C) Si is essential in Hi for 0 < < k.

We prove (*) by induction on i. Since So 0, (*) holds for 0. Suppose it holds for j
where j < k. Since E(Hj+I) c_ E(Hi) every edge in E(Hj+I) fq Sj is essential in Hj and
hence essential in T + A.i. Since Hj+I is a full contraction of Tj / Aj, Corollary 2 implies that
these edges are essential in H./+ as well. Furthermore, the edges in E(Hi+ 1) A (sj+ sj)
are essential in Tj. + A and thus essential in H./+I (by Corollary 2). Claim (*) follows.

We now prove that each H/is a minimal 2-edge-connected spanning subgraph of Hi by
induction on k i. For the base case k we first note that Hk H is 2-edge-connected.
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With (*) it also follows that all edges in H are essential since E(H) N S E(H,). This
completes the proof of the base case.

For the induction step assume that H;+ is a minimal 2-edge-connected spanning subgraph
of Hi+l. In particular H/+I is 2-edge-connected. By Lemma it suffices to show that Hi’+
is a full contraction of H; in order to establish that H/ is 2-edge-connected. Since the edges
in E(Hi) E(Ti + Ai) are redundant in Hi, (*) implies that they do not belong to Si and
hence do not belong to Sk. Thus E(Hi) N S, E(Ti + Ai) Sk. The fact that Hi+I is
a full contraction of T/ + Ai (with respect to a subset of S) implies that H/’+I is obtained
from (V (Hi), E (Ti + Ai) Sly) by shrinking components and contracting chains. But the
latter graph is simply Hi’. Thus H[ is 2-edge-connected. Since each edge in Hit+x is essential
and H;+ is a full contraction of H/, each edge of H/’+I is essential in H/ by Corollary 2.
Furthermore each edge in E(H;) E(Hi+I) either belongs to a chain in T/+ Ai or belongs
to S, N E(Ti + Ai). In the former case the edge is essential in H[ because it has an endpoint
of degree 2. In the latter case it belongs either to Si, in which case it is essential by (*), or to

Si+I Si, in which case it is essential in T/+ Ai and hence essential in H/. We conclude that
H; is a minimal 2-edge-connected spanning subgraph of Hi.

The following technical lemma will be used in the analysis of Algorithm 4.
LEMMA 2. Let F be aforest in which r nodes are marked. Let ni(F) denote the number

ofdegree nodes in F. Ifevery chain in F that does not contain a marked node as an internal
vertex has length at most k, then n(F) < no(F) + k(2nl(F) + r).

Proof An unmarked chain in F is a chain that does not contain a marked vertex as an
internal node. Construct F’ by contracting all maximal unmarked chains of F into single edges.
Assume that all nodes in F and hence all nodes in F’ have degree at least 1. Let n 1, n2, and
n denote the number of nodes of degree 1, degree 2, and degree > 3, respectively, in F’. We
know that Zv6V(F,) degF, (v) < 2n(F’) 2. Since the left-hand side is at least n + 2n2 -+- 3n3
and n(F’) nx + n2 + n3, we find that n3 < nl 2 and hence n3 < nl. By the definition of
F’ we have n2 _< r and thus n(F’) < 2n + r. By noting that n(F) <_ n(F’) + (k 1)m(F’)
and hence n(F) < kn(F’), it follows that n(F) < k(2na + r). Since nl n(F), the claim
of the lemma follows. [3

LEMMA 3. Let H be a 2-edge-connected graph and let S be a proper subset of E(H).
Let Q be afull contraction ofH with respect to S. Then n(Q) < 13IE(H) SI.

Proof Let C denote the set E(H) S and let Q’ denote the graph (V (Q), S fq E (Q)).
The graph Q’ is a forest. We may assume that n (Q) > (otherwise the claim is trivial). Since
Q is 2-edge-connected, each node of degree 0 in Q’ is incident in Q with at least 2 edges of
C (since Q is 2-edge-connected) and each node of degree in Q’ is incident in Q with at
least one edge of C. Thus, Q’ has at most CI nodes of degree 0 and at most 2ICI nodes of
degree 1. Mark each endpoint of an edge of C in Q’. Each unmarked chain in Q’ has length
at most 2. By applying Lemma 2 to Q’, we get n(Q’) < ICI / 2(41CI + 21CI) and hence
n(Q) n(Q’) < 131C1 as claimed.

COROLLARY 3. Let k denote the number of iterations of the while-loop of Algorithm
4. Let Hi denote the graph H at the start of the th iteration of the while-loop. Then
m(ni+14) < .83m(Hi) for + 14 < k.

Proof First, we show that

(1) m(Hi+l) < 2n(Hi)

for < k. To see this, let H be the subgraph of Hi consisting of the nontrivial ears in the ear
decomposition found in step 2.0 of Algorithm 4 and let q denote the number of those ears.
Then m(H’) < n(H’) + q and q < n(H’), hence m(H’) < 2n(H’). Since n(H’) n(Hi)
and m(Hi+) < m(H’), inequality (1) follows.
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Let qi denote E(H) SI at the start of the th iteration of the while-loop of Algorithm
4. By Theorem 5 we have qi+ < 3qi/4 for < k and hence qi+j <_ (3/4)J qi for / j < k.
With Lemma 3 we obtain

(2) n(Hi+j+l) < 13qi+j < 13(3/4)Jqi < 13(3/4)Jm(Hi)

for + j + < k. Combining (1) and (2) yields

(3) m(Hi+j+2) < 26(3/4)Jm(Hi)

for + j + 2 < k. Substituting j 12 yields the claim. [3

THEOREM 10. Algorithm 4 computes a minimal 2-edge-connected spanning subgraph of
any 2-edge-connected graph on n vertices and m edges in time and space O(n + m).

Proof Consider one iteration of the while-loop. We compute an ear decomposition in
linear time and space using the algorithm of [21]. We compute an optimal tree T/-/ and S-
critical edges in linear time and space as described in the proof of Theorem 6. We compute
a minimal augmentation in linear time and space using the algorithm of 13]. To compute
the S-critical edges, we determine the connected components of (V(H), S). Finally, the
complexity of computing a full contraction is dominated by the complexity of computing
2-edge-connected components [22], i.e., it can be done in linear time and space. In summary,
one iteration of Algorithm 4 can be performed in linear time and space. The claim follows with
Corollary 3. [3

Note. An efficient NC algorithm for this problem is given in 13]. With Theorem 10 the
work of this algorithm (time-processor product) can be reduced by a factor of 6)(log n) using
standard techniques.

4.2. Finding a minimal biconnected spanning subgraph. The linear time algorithm for
computing a minimal 2-edge-connected spanning subgraph makes use ofthe two operations of
shrinking S-components and contracting chains. In this section we exhibit a pair of operations
on biconnected graphs with similar properties, although they are more complicated. They will
be used in the linear time algorithm for computing a minimal biconnected spanning subgraph.

Let H be biconnected and S E(H). An S-block ofH isa blockofthe graph (V(H), S).
The graph (V (H), S) need not be connected. Thus, an S-block (or essential block) of H is
either an isolated vertex in (V(H), S), a cutedge in (V(H), S), or a maximal biconnected
subgraph of (V (H), S) with at least 3 vertices.

Let B be an S-block of H with at least 3 vertices. An internal vertex of B is a vertex in
B that is neither a cutpoint in (V(H), S) nor is it incident in H with an edge of E(H) S;
we write I (B) for the set of internal vertices of B. The operation of shrinking the S-block B
in H consists of deleting all edges of B in H as well as all internal vertices of B, connecting
the remaining vertices of B into a cycle in arbitrary order, and subdividing each edge of
this cycle with a new vertex. Thus, if U uk are the noninternal vertices of B, and
V’ {Vl vk} is the set of k new vertices used to subdivide the edges of the cycle, then the
resulting graph has vertex set (V(H) I (B)) t_J V’ and edge set (E(H) E(B)) U C8 where
C8 {(ux, Vl), (v, u2) (uk-, Vk-), (Vg_X, Ug), (Uk, Vk), (V, Ul)}. The operation is
illustrated in Fig. 1.

The following results establish that shrinking S-blocks preserves the biconnectivity struc-
ture of a graph.

LEMMA 4. Let H be a graph that may not be biconnected and let S E(H). Construct
H’ from H by shrinking an S-block B in H. Then H’ is biconnected if and only if H is
biconnected.

Proof Assume that H is biconnected. Thus, for any three distinct vertices u, v, w in H
there exists a path from u to w avoiding v. Now suppose that H’ is not biconnected. Let C
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FIG. 1. Shrinking the essential block containing vertices numbered 1-5. The dashed edges are in E(H) S.

denote the cycle in H’ that corresponds to S-block B in H. For some distinct u, v, w E V(H’)
every path from u to w in H’ passes through v. We may assume that u, v, w V(H). To
see this, note that if a vertex in {u, v, w does not belong to H (i.e., it is a vertex of degree 2
on C), then we may replace it by one of its neighbors on C while maintaining the property
that any path from u to w goes through v. If {u, v, w} c_ V(H), then there exists a path P
in H from u to w avoiding v. From P we obtain a path P’ in H’ from u to w by replacing
each edge (z, z’) of B on P by a path from z to z’ on Ca avoiding v. Clearly P’ avoids v. We
conclude that H’ is biconnected.

Now suppose that H’ is biconnected. To show that H is biconnected, we need to prove
that for any three distinct vertices u, v, and w in H there is a path from u to w in H avoiding
v. Since H’ is biconnected, there exists a path P from u to w avoiding v in H’. If P contains
a subpath from u to uj on C8, then we can replace each such subpath with a path from u to

uj in B avoiding v (since B is biconnected). We thus obtain a path P’ from u to w in H that
avoids v. We conclude that H is biconnected. [3

COROLLARY 4. Let H be biconnected and let H’ be obtainedfrom H by shrinking an
S-block B in H. An edge e E H’) AE H) is essential in H’ ifand only ifit is essential in H.

Proof The edge e does not belong to B. Thus B is an S-block in H e. The graph H’ e

may be obtained from H e by shrinking S-block B in H e and possibly subdividing edges
on the cycle C that replaces the block B of H e. (The subdivisions are only necessary if B
has more internal vertices in H e than it has in H. This may happen if e is the only edge in
E(H) S incident on some vertex in B or e is the only edge in S incident on a cutpoint B.)
Since the biconnectivity property is closed under subdivisions, the previous lemma implies
that H e is biconnected if and only if H’ e is biconnected. [3

As before let H be a biconnected graph and S c_ E(H). The second operation on
biconnected graphs is defined on the block structure of (V (H), S). An S-block chain in H
is an alternating sequence cx B1 c BlCk+l, k > 1, of vertices and S-blocks in H with the
following properties: (i) each Bi (1 < <_ k) has exactly two cutpoints in (V (H), S), namely
ci and ci+ 1; (ii) for < < k, Bi intersects exactly two blocks, namely Bi- and Bi+ in ci and
ci+a, respectively; (iii) no vertex in any Bi except possibly Cl and c+1 is incident with an edge
not lying in any Bi. A maximal S-block chain in H is a block chain in H not properly contained
in any other S-block chain of H, If the set S is understood, we may refer to an S-block chain
as a block chain. Figure 2 shows a maximal S-block chain ca BlCzBzc3B3c4B4c5.
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FG. 2. Contracting block chain Cl B]c2 B2c3B3c4B4c5. The dashed lines represent edges in E(H) S.

The operation of contracting the S-block chain c B1... ck Bkc+ in H consists of deleting
in H all vertices in the S-blocks of this sequence except Cl and c+1 and adding a new vertex

z and two new edges (Cl, z) and (z, c+1) (see Fig. 2).
LEMMA 5. Let H be a graph that may not be biconnected and S E(H). Construct H’

by contracting the S-block chain ClBl CkBkCk+l in H. Then H’ is biconnected ifand only
ifH is biconnected.

Proof Assume that H is biconnected. If H’ is not biconnected, then there exist distinct
u, v, w V (H’) suchthat any pathfrom u to w in H’ passes through v. Since H isbiconnected,
there is a path from cl to ck+x in H avoiding c2, yielding a path in H’ from Cl to ck+x avoiding
the new vertex z. Therefore v z. If u z or w z, then we can replace either vertex by C

or c+1 while maintaining the property that any path from u to w in H’ passes through v. We
may thus assume that u, v, w z and hence u, v, w 6 V(H) N V (H’). Thus there is a path
P in H from u to w avoiding v. If P does not traverse an edge in any Bi, then it is a path in
H’ from u to w avoiding v. Otherwise P contains a subpath from ca to c+1 (C+l to Cl). We
may replace this subpath by the path (Cl, z, C+l)((Ck+l, z, c)) in H’, thus obtaining a path in
H’ from u to w that avoids v. Hence H is biconnected.

Now let H’ be biconnected. If H is not biconnected, then for some distinct vertices u, v,
w in H any path from u to w in H goes through v. Since H’ is biconnected, there is a path
in H’ from c to c+1 avoiding z, yielding a path in H from Cl to c+1 for which no internal
vertices belong to any Bi. It follows that v is not a vertex in any Bi other than Cl or q+l. It
also implies that we may assume that neither u nor w is a vertex in any Bi other than c or

c+1 while maintaining the property that any path from u to w in H passes through v. Thus
the path in H’ from u to w avoiding v yields a path in H from u to w avoiding v. Therefore
H is biconnected. [3

COROLLARY 5. Let H be biconnected and let H’ be obtainedfrom H by contracting a
block chain Cl B1 ckBc+ in H. An edge e E(H’) (3 E(H) is essential in H’ ifand only
if it is essential in H.

Proof Since e belongs to H and H’, it does not belong to any block Bi in the block
chain. Thus cx B1 cBck+ is a block chain in H e and H’ e is obtained from H e
by contracting this block chain in H e. By the previous lemma H e is biconnected if and
only if H’ e is biconnected. The claim follows. [3
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If the graph Q is obtained from H by first shrinking all S-blocks ofH and then contracting
all maximal block chains in the resulting graph, we say that Q is afull contraction of H with
respect to S. The following algorithm is a variation of Algorithm 3 in which we replace H by
its full contraction at the end of each iteration of the while-loop. It is shown in 13] that the
minimal augmentation step (step 2.2) can be done in linear time. We note that the intermediate
graph H will always be simple assuming that the input graph G is simple (the usual assumption
for biconnected graphs).

ALGORITHM 5. Computing a minimal biconnected spanning subgraph of G.
Input Biconnected graph G.
Output Minimal biconnected spanning subgraph of G.
(1) H G; S 0;
(2) while E(H) S, do:

(2.0) replace H by an open ear decomposition of H; remove edges in trivial ears
from H;

(2.1) compute a spanning tree Tu in H with a maximum number of edges of S;
(2.2) compute a minimal A c__ E(H) such that T/4 + A is biconnected;
(2.3) H Tu + A; B {S-critical edges in H}; S SU A U B;
(2.4) replace H by its full contraction with respect to S N E(H); add new

edges to S;
(3) return graph (V(G), E(G) ( S).

THEOREM 11. Algorithm 5 outputs a minimal biconnected spanning subgraph of G.
Proof The proof is very similar to the proof of Theorem 9. The termination of the

algorithm is established by showing that E(H) SI is strictly decreasing exactly as in the
proof of Theorem 9. Note that newly created edges are both added to E(H) and S and thus
do not increase E(H) S I.

Reusing the notation of that proof, we need to show that H," is a minimal biconnected
spanning subgraph of Hi. The statement (*) that any edge in E(Hi) C Si is essential in Hi
is still true. The proof proceeds by induction over j just as in the proof of Theorem 9 with
the following minor modification: the edges in E(H + x) A (Sj+ Sj) are either essential in. + Aj (as before) or they are new edges added by the fiall contraction. The edges in the first
class are essential in Hj+I by Corollaries 4 and 5 since Hj+I is a full contraction of T.i + Aj.
The edges in the second class (new edges in Hi+l) are essential in Hj+I since they have an
endpoint of degree 2.

One now proves that H/’ is a minimal biconnected spanning subgraph of Hi as in the
proof of Theorem 9. The main difference is in the inductive argument that H/is a minimal
biconnected spanning subgraph of Hi" the fact that Hi+l is a full contraction of T/+ Ai with
respect to some X

___
Sk implies that HI+ (V (Hi+ 1), E (Hi+ 1) Sk) is obtained from

(V(Ti + Ai), E(Ti + Ai) N S) H/by shrinking X-blocks and contracting X-block chains
possibly followed by subdividing edges. With Lemma 4 and Lemma 5, this implies that H/
is 2-edge-connected. By Corollaries 4 and 5 (and the induction assumption) the edges in
E (H/’) E(H’+ 1) are essential in H/’. The edges in E (H/’) E (H/+ 1) belong either to Si, in
which case they are essential in Hi and hence in H/ by (*), or to Si+l Si, in which case they
are essential in T/+ A and hence in H/.

The remainder of the proof is the same. q

The following result is needed for the analysis of Algorithm 5.
LEMMA 6. Let H be biconnected and let S be a proper subset of E(H). If Q is a full

contraction ofH with respect to S, then n(Q) < 601E(H) SI.
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Proof Let C denote the set E(H) S and let Q’ denote the graph Q C. To bound
n(Q), we consider the block graph of Q’. Let H’ be an arbitrary graph. The block graph of
H’ [23], denoted by blk(H’), is a bipartite graph whose vertices are the cutpoints and blocks
of H’. A block is connected in blk(H’) to exactly those cutpoints that it contains in H’. It is
known [23] that the block graph of H’ is a tree for any connected graph H’. Thus the graph
blk(Q’) is a forest.

Let no andn denote the number ofdegree 0 and degree nodes in blk(Q’). Ifn (blk(Q’))
1, then the graph (V(H), S) has a unique block and this block contains at least 3 vertices.
Hence Q’ is a cycle (obtained by shrinking this block) of even length. Every other vertex on
this cycle is incident with an edge of C( 0). Hence n(Q) < 41CI. If n(blk(Q’)) > 1, then
each node of degree 0 in blk(Q’) represents a block in Q’ that is incident with at least 2 edges
of C in Q and each node of degree 1 in blk(Q’) represents a block in Q’ that is incident with
at least one edge of C in Q. Thus no < ICI and nl _< 21CI. Mark a vertex in blk(Q’) repre-
senting a cutpoint in Q if it is incident in Q with an edge of C and mark a vertex in blk(Q’)
representing a block of Q’ if a vertex in this block other than a cutpoint is incident with an
edge of C. From the definition of a full contraction it follows that any chain of unmarked
nodes in blk(Q’) has length at most 6. By applying Lemma 2 we see that blk(Q’) has fewer
than ICI + 6(41C1 + 21C1) 371C1 vertices. Since there are more blocks in Q’ than there are
cutpoints, Q’ has fewer than 19 CI cutpoints.

We partition the vertices of Q’ into 3 classes: class contains the cutpoints in Q’, class
2 includes the endpoints of edges of C (that are not cutpoints), and class 3 comprises the new
vertices used to subdivide cycles when shrinking S-blocks in H. Let pl, p2, and p3 denote
the number of vertices in class 1, class 2, and class 3, respectively. Clearly p2 _< 21CI. Above
we have shown that pl < 19lCI. Note that the number of class 3 vertices in any block of Q’
is no larger than the number of vertices in that block that belong to class or class 2. The
sum of the latter number, taken over all blocks of Q’, is an upper bound on p3. This sum is
at most 21CI + m(blk(Q’)) and hence p3 < 2lCI / 371C1 391C1. Altogether we find that
pl / p2 / p3 < 601C1 and hence n(Q’) n(Q) < 601CI.

COROLLARY 6. Let k denote the number of iterations of the while-loop ofAlgorithm 5.
Let Hi denote the graph H at the start ofthe ith iteration ofthe while-loop. Then m(Hi+22)
.77m(Hi) for / 22 _< k.

Proof We first argue that

(4) m(Hi+l) < 4n(Hi)

for any < k. Let H’ denote the subgraph of Hi consisting of the nontrivial ears in the open
ear decomposition found in step 2.0 of Algorithm 5. Just as in the proof of Corollary 3 we have
m(H’) < 2n(H’) 2n(Hi). If we shrink a block in Ti + Ai, the number of new edges added
is bounded by the number of vertices in the block, which is at most the number of edges in
the block. It follows that the total increase in the number of edges during the full contraction
of T/+ Ai is at most m(Ti + Ai) < m(H’). We conclude that re(Hi+l) < 4n(Hi).

Let qi denote IE(H) SI at the start of the ith iteration of the while-loop of Algorithm
5. Because any new edge created during the full contraction is also added to S, Theorem 5
implies that qi+l < 3qi/4 for < k and hence qi+j <_ (3/4)Jqi for + j < k. With Lemma
6 we obtain

() n(Hi+j+l) < 60qi+j < 60(3/4)Jm(Hi)

for j > 0 and + j + _< k. Combining (4) and (5) yields
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(6) re(Hi+j+2) < 240(3/4)Jm(Hi)

for j > 0 and 4- j 4- 2 _< k. Substituting j 20 yields the claim of the corollary. [3

THEOREM 12. Algorithm 5finds a minimal biconnected spanning subgraph ofany bicon-
nected graph on n vertices and m edges in time and space 0 (n 4- rn ).

Proof Consider one iteration of the while-loop. We compute an open ear decompo-
sition in linear time and space using the algorithm of [21]. We compute an optimal tree
T/-/ and S-critical edges in linear time and space as described in the proof of Theorem 6.
We compute a minimal augmentation in linear time and space using the algorithm of 13].
Finally, the complexity of computing a full contraction is dominated by the complexity of
computing blocks, i.e., it can be done in linear time and space [22]. In summary, one it-
eration of Algorithm 5 can be performed in linear time and space. The claim follows with
Corollary 6. [3

As was the case for 2-edge-connectivity the last result yields an improvementby a t9 (log n)
factor in the work of an efficient NC algorithm described in [13] for computing a minimal
biconnected spanning subgraph.

5. Worst-case analysis. In this sectionwe prove that Algorithm 3 requires 19 (m 4-n log n)
in the worst case for 2-edge-connectivity and biconnectivity. This result justifies the work we
invested in the last section to achieve a linear running time. Because of its simple structure
Algorithm will be a more convenient vehicle for proving lower bounds. Fortunately, any
lower bound on the number of iterations of Algorithm 1 yields the same lower bound for the
number of iterations of Algorithm 3.

LEMMA 7. Let H be a P-graph, S a subset ofthe essential edges in H, T a spanning tree
in H with a maximum number ofessential edges, and A a minimal augmentationfor T in H.
Then T 4- A can be rewritten as T’ 4- A’ where T’ is a spanning tree in H with a maximum
number ofedges of S and A’ is a minimal augmentationfor T’ in H.

Proof An essential component of H is a maximal subgraph of H containing a spanning
tree of essential edges. Let C1 Ck be the essential components of H. For each let T/be a
spanning tree of essential edges for Ci with a maximum number of edges of S. Let F be the set
of edges of T that are redundant in H. Then the tree T’ with edge set F U E(T1) U... U E(Tk)
is a spanning tree in H. The tree T’ contains a maximum number of edges of S since the
intersection of any other tree with Ci is a forest that contains no more than IE(T’) N E(Ci)I
edges of S. We have E(T’) c__ E(T + A). Let A’ E(T + A) E(T’). The graph
T’ 4- A’(-- T 4- A) has property P. Moreover, each edge in A’ is essential in T’ 4- A’
since T’ contains all edges of T that are redundant in H. We conclude that A’ is a minimal
augmentation for T’ in H. [3

A trace ofAlgorithm for P-graph G is a sequence of graphs representing H at the start
of successive iterations of Algorithm 1. Formally, H0, H1 H is a trace of Algorithm
for P-graph G if Ho G, Hi 7 Hi+l for 0 < < l, and Hi(O < <_ l) is of the form T + A
where T is an optimal tree in Hi-1 and A is a minimal augmentation for T in Hi-1. The
integer is the length of the trace. Similarly, we define a trace of Algorithm 3 for P-graph G
to be a sequence of graphs representing H at the start of successive iterations of Algorithm 3.
The sequence H0, H1 H is a trace of Algorithm 3 for P-graph G if Ho G, Hi - Hi+l
for 0 < < l, and, for any sequence of sets E0, E1 E_ such that Ei is a set of essential
edges in Hi for 0 _< < 1- 1, we can write Hi as T/_a + Ai-1 where T/_I is a spanning tree
in Hi-i containing a maximum number of edges of Ei-a and Ai-1 is a minimal augmentation
for T/_ in Hi-1. The following result is an immediate corollary of Lemma 7.

COROLLARY 7. A trace ofAlgorithm for P-graph G is also a trace ofAlgorithm 3

for G.
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FIG. 3. Fo, F, and F2.

By Corollary 7 a lower bound on the number of iterations ofAlgorithm implies the same
lower bound for the number of iterations of Algorithm 3. Below we make use of this fact: we
derive a tight (R) (log n) lower bound on the (worst-case) number of iterations of Algorithm
that also applies to Algorithm 3.

To capture the worst-case behavior of Algorithm 1, we define the P-complexity of a
graph. Informally, the P-complexity of a P-graph H is the maximum number of iterations that
Algorithm may need in order to compute a minimal spanning P-subgraph of H. Formally,
we define the P-complexity of H to be the maximum length of a trace of Algorithm for H.
If the property P is clear, we shall use the term "complexity" instead of "P-complexity." We
denote the P-complexity of graph H by Cl(H), or c(H) if property P is understood. Note
that the notion of P-complexity corresponds to an adversary choosing, for a given input graph,
an optimal tree and a minimal augmentation in each iteration of the while-loop of Algorithm 1
with the goal of maximizing the number of such iterations. Hence we consider the worst-case
behavior of Algorithm not only with respect to different input instances but also with respect
to different choices of the algorithm (i.e., sequences of trees and augmentations). We call an
infinite sequence of graphs H0, Ha, H2 such that c, (Hi) > for all _> 0 a sample for P.

We construct a sample for 2-edge-connectivity inductively: F0 has two vertices with two
parallel edges between them. We construct Fi from Fi_ as follows" we double each essential
edge in Fi-1; we call the resulting graph F/. For each vertex u of degree d in F/, we add d
new vertices u 1, u2 u to Fi and connect them in a cycle. We number the edges incident
on each vertex in F/ as 0, 1 and, for each edge e (u, v) in F/that is the ith edge incident
on u and the jth edge incident on v, we add an edge (ui, vj) to Fi. Finally, we subdivide each
edge of Ft.’ connecting two vertices Ui, Uj corresponding to the same vertex u in F/’ with a new
vertex. Note that Fi is not uniquely defined. The following claims hold for an arbitrary such
sequence. Figure 3 shows the first three graphs in a possible sequence.

The proof that the Fi’s form a sample for 2-edge-connectivity relies on the following
property of 2-edge-connectivity. Let us say that H’ is an essential contraction of H if H’
is obtained from H by shrinking (vertex-disjoint) S-components in H’ where S is a set of
essential edges in H. (The operation of shrinking an S-component is defined in 4.1.)
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LEMMA 8. Let H’ be an essential contraction of a 2-edge-connected graph H and let
H, H H be a trace ofAlgorithm for H’. Then, there is a trace Ho, H1 Hk of
Algorithm for H such that H; is an essential contraction of Hi for 0 <_ < k. Hence
c(H’) <_ c(H).

Proof Fix a 2-edge-connected graph H. Let H’ be an essential contraction of H obtained
from H by shrinking S-components in H. By Lemma H’ is 2-edge-connected and its
complexity is indeed well defined. Fix a trace H6, H H of Algorithm 1 for H’. We
prove the lemma by induction on k. The base case k 0 is clear: the graph H constitutes a
trace of length 0 for H and H’ is an essential contraction of H.

Assume that the claim holds if the trace for H’ has length at most 1. Let H, H H/+
be a trace for H’. Let H T’ + A’ where T’ is an optimal tree in H’ and A’ is a minimal
augmentation for T’ in H’. We may combine T’ with spanning trees for the S-components
in H to form a spanning tree T of H. By the optimality of T’ and Corollary 2 the tree T
contains a maximum number of essential edges in H that do not belong to S. Since T contains
a spanning tree for each S-component, it also contains a maximum number of essential edges
in S. Thus, T is an optimal tree in H. Let A A’ t,) (S- E(T)). By Corollary 2 and the fact
that all edges in S are essential it follows that A is a minimal augmentation for T in H. The
graph T’ + A is an essential contraction of T + A. By the induction assumption there exists
a trace H1, H2 Ht+l of Algorithm 1 for T / A such that H/is an essential contraction of

Hi for < _< + 1. The claim of the lemma follows.
THEOREM 13. The graphs F0, F1 form a samplefor 2-edge-connectivity.
Proof The graph F/’ obtained from Fi-1 by doubling the essential edges is certainly

2-edge-connected if Fi_ is 2-edge-connected. Moreover F/’ is an essential contraction of Fi.
Thus Fi is 2-edge-connected if Fi-1 is 2-edge-connected. Since F0 is 2-edge-connected all

Fi’s are 2-edge-connected. Hence the complexity of Fi is well defined. We prove by induction
on the following two statements: (1) c(Fi) > i; (2) Fi has a spanning tree containing all
redundant edges of Fi.

Statement (1) trivially holds for 0. Statement (2) holds for 0 since all edges in F0
are essential. Assume inductively that the claim holds for j 1. Recall that each vertex
in Fj_ corresponds to a cycle in .; we refer to such a cycle in F./as an F./-cycle. All edges
in Fj-cycles are essential in Fj since they have an endpoint of degree 2. All other edges in

F./ are redundant in Fj. Since Fj is an essential contraction of Fi, Corollary 2 implies that
these edges are redundant in as well. By the construction of Fj no two redundav_t edges
are incident on the same vertex. Hence there is a spanning tree in Fj containing all redundant
edges of Fi, establishing statement (2).

To prove (1), fix a spanning tree T./_I in F./_I containing all redundant edges in F./_I.
Thus, Fj_ - Al" AJ- where A.i_ is a minimal augmentation for T./_ in F./_ 1. We can
combine T./_ with spanning trees for the F./-cycles (obtained by deleting an edge in each
F./-cycle) to form a spanning tree T of E/. The tree T is an optimal tree in F./since it contains
a maximum number of edges in F;-cycles. Let A be the edges in A.i_ as well as the edges in
the F-cycles that are not in T. With Corollary 2 we see that Ai is a minimal augmentation for
Tj in Fj. The graph Fj_ is an essential contraction of Tj + Aj. By the induction assumption
and the previous lemma c(T.i + Aj) > j 1. We conclude that c(Fj) > j.

LEMMA 9. Let ni, mi, and ei denote the number ofvertices, edges, and essential edges,
respectively, in Fi (i > 0). These quantities satisfy thefollowing recurrence relations:

ni+l 4(mi + ni),

mi+l mi + ei -+- ni+l,
ei+l /7i+1,

and initial conditions no mo eo 2. Thus, ni 4.9i-1 and mi 5.9i-1 for > O.
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COROLLARY 8. For 2-edge-connectivity, there exists a function f (n) f2 (log n) such
that there is a graph on n vertices ofcomplexity f (n for any n > I.

Proof To construct a graph of complexity (log n) with exactly n vertices, start with Fi
where is the maximum integer such that n <_ n and increase the number of vertices in Fi to
n by repeatedly subdividing an essential edge. The resulting graph has the same complexity
as Fi, namely (log n). [3

Let us now turn our attention to biconnectivity. Unfortunately, biconnectivity does not

satisfy a condition similar to Lemma 8. We do, however, have the following result.
LEMMA 10. If G is a graph with at least three vertices in which each vertex has degree

< 3, then G is biconnected ifand only ifG is 2-edge-connected.
Proof The only-if part is clear. Assume that G is 2-edge-connected and let u be a

cutpoint in G. Hence, at least 2 blocks share u. Both of these blocks are 2-edge-connected
and hence the degree of u is at least 4, contradicting the assumption that each vertex in G has
degree _< 3. 71

Let us call a graph in which each vertex has degree < 3 a 3-graph. Let P "2-edge-
connectivity" and P’ -"biconnectivity."

COROLLARY 9. Ifa graph H is a 3-graph, then cp(H) cp,(H).
Proof By induction on cp(H). The induction base is clear with Lemma 10. Assume

that the claim holds for cp(H) < k 1. Fix an H with cp(H) k. Thus, H T + A with
cp (T + A) k where T is an optimal tree in H with respect to P and A is a minimal
augmentation for T in H (with respect to P). By Lemma 10, an edge in H is P-redundant if
and only if it is P’-redundant. Hence, T is an optimal tree in H with respect to P’ and A is a
minimal augmentation for T in H with respect to P’. Since T / A is a 3-graph the induction
hypothesis gives us cp,(T + A) > k and hence cp,(H) > k cp(H). Similarly, one
proves cp(H) >_ Cp,(H). We conclude that cp(H) cp,(H). V]

Each Fi is a 3-graph. Since n(Fi) > 3 for >_ 1, we have cp,(Fi) >_ for >_ and the
sequence F1, F2 is a sample for biconnectivity. Thus, we get the following result.

COROLLARY 10. For biconnectivity, there exists a function g (n) f2 (log n) such that
there is a graph on n vertices with complexity g(n) for any n >_ 3.

Proof The proof is similar to the proof of Corollary 8. 71

Corollaries 8 and 10 establish that Algorithm takes f2 (log n) iterations for 2-edge-
connectivity and biconnectivity in the worst case. Since each iteration of these algorithms
takes S2(n) time they require f2(m + n log n) time in the worst case. By Corollary 7 the
same bound applies to Algorithm 3. Because of Theorem 7 this bound is tight for Algorithm
3. In 13] it is shown that redundant edges can be determined for 2-edge-connectivity and
biconnectivity in linear time by modifying the linear-time triconnectivity algorithm of [21 ].
Thus the bound is tight for Algorithm as well.

THEOREM 14. Algorithms and 3 require 6)(m + n log n) operations in the worst case,
bothfor 2-edge-connectivity and biconnectivity.

6. Computing minimal spanning subgraphs in directed graphs. In this section we
generalize the algorithms for undirected graphs to directed graphs. We provide general algo-
rithms that compute a minimal spanning P-subgraph in a directed graph for any property P
that is monotone and implies strong connectivity. For the special case of strong connectivity
we obtain an algorithm that computes a minimal strongly connected spanning subgraph in
time O(m + n log n). This algorithm is simpler (both in the sequential and the parallel im-
plementation) than an earlier algorithm of [8] for this problem because it avoids the explicit
computations of redundant edges. We prove that our algorithms require 6)(m + n log n) time
in the worst case for strong connectivity. By adapting the analysis we also get a 6) (m +n log n)
tight bound on the worst-case running time ofan algorithm of [8] for finding a minimal strongly
connected spanning subgraph. This answers an open question of [8].
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6.1. High-level algorithm. Let G be a directed graph. Aforward branching [8] rooted
at a vertex x is a spanning subgraph of G whose underlying graph is a tree and in which x
has in-degree zero and all other vertices have in-degree one. Throughout this section we shall
assume that all forward branchings are rooted at a fixed vertex x of G.

It turns out that the development carried out in 3 for undirected graph properties carries
over to digraphs with some modifications. The definitions of digraph property, P-graph, P-
subgraph, and P-redundant and P-essential edges carry over from the undirected case without
change. As for undirected graph properties we shall always assume that the property P is
decidable. Conditions D and D2 correspond to conditions C and C2 in the undirected case
(see 3). Note that condition D (monotonicity of P) is identical to C 1.

D 1. P is monotone, i.e., adding edges preserves property P.
D2. Any P-graph is strongly connected.

Algorithm 6 computes a minimal spanning P-subgraph of digraph G, i.e., a spanning P-
subgraph of G in which all edges are P-essential. It has a structure similar to that of Algorithm
1; instead of computing a spanning tree in step (2.1), it computes a forward branching T/4
rooted at a fixed vertex x of H (and containing a maximum number of P-essential edges).
We call TH an optimal branching in H (rooted at x) and A (see step (2.2) of Algorithm 6), as
before, a minimal augmentation for TH in H.

ALGORITHM 6. Computing a minimal spanning P-subgraph of G.
Input Digraph G with property P.
Output Minimal spanning P-subgraph H of G.
(1) H G.
(2) While H has P-redundant edges, do:

(2.1) compute a forward branching TH in H, rooted at x, with a maximum number
of P-essential edges;

(2.2) compute a minimal subset A of edges in H such that T/4 + A has property P;
(2.3) n TH + A.

The following result is the analogue of Theorem 1. The proof is similar.
THEOREM 15. Algorithm 6 computes a minimal spanning P-subgraph of G for any

digraph property P satisfying D and D2.
The following lemma will be needed to establish a logarithmic upper bound on the number

of iterations of Algorithm 6. Let H be a digraph that contains a forward branching rooted at
x. We say that an edge e of H is f-redundant in H if H e contains a forward branching
rooted at x; an edge of H that is not f-redundant is f-essential in H.

LEMMA 11. Let B be a set off-redundant edges in H. There exists aforward branching
rooted at x that contains at most halfofthe edges in B.

Proof Double the f-essential edges in H to obtain a graph H’. Let X

_
V(H) with

x 6 X and X :/: V(H). Then there are at least two edges in H’ from X to V(H) X. By
Edmonds’ branching theorem [6] H’ contains two edge-disjoint forward branchings rooted at
x. Since no edge in B has been doubled, at least one of these two forward branchings contains
at most half of the edges in B, yielding a forward branching in H rooted at x with the same
property, fq

THEOREM 16. If P satisfies D1 and D2, then Algorithm 6 terminates after O(log n)
iterations ofthe while-loop.

Proof Consider the start of an iteration of the while-loop. Let B denote the set of
redundant edges in H. Each edge e 6 B is f-redundant in H since H e is strongly
connected. By Lemma 11 there exists a forward branching rooted at x containing at most half
of the edges in B. Thus an optimal branching in H contains at most half of the redundant
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edges in H. Therefore at least half of the redundant edges in H are discarded or become
essential in this iteration of the while-loop. The claim follows. [3

As for undirected graph properties one can avoid the explicit computation of the P-
essential (or P-redundant) edges by gradually building up a set of essential edges. The
following algorithm uses this idea. We use m to denote the number of edges in G.

ALGORITHM 7. Computing a minimal spanning P-subgraph of G.
Input Digraph G with property P.
Output Minimal spanning P-subgraph H of G.
(1) H :-- G; S 0;
(2) for/= 1 to [log mq + do"

(2.1) compute forward branching TH in H rooted at x with maximum number of
edges of S;

(2.2) compute a minimal A c_ E(H) such that T/+ A has property P;
(2.3) H’-T4+A;S’--St0A.

THEOREM 17. Algorithm 7 computes a minimal spanning P-subgraph of a digraph G
with property P provided P satisfies D and D2.

Proof A straightforward induction over the iteration number shows that at the end of each
iteration of the while-loop H is a spanning P-subgraph of G and the edges of S are essential
in H.

We now show that H is minimal upon termination. Fix an iteration of the while-loop.
Let Hi (Si) denote the graph H (the set S) at the beginning of iteration and let Ri denote
the set of edges in E (Hi) Si that are f-redundant in Hi. To prove that the final graph H
is minimal, it suffices to show that IRi+ll _< lRil. Indeed, after j [logm] + 1 iterations
we then have R 0, implying that all edges in E(Hj) Sj are f-essential in Hj and thus
essential in Hi. Since all edges in SJ are essential as well, the graph H is minimal.

Any forward branching T in Hi must contain all edges of E(Hi) Si that are f-essential
in H. Thus a spanning tree T contains a maximum number of edges of S if and only if it
contains a minimal number of edges in Ri. By Lemma 11 (with B Ri) there exists a forward
branching in Hi that contains at most half of the edges in Ri. We conclude that at least half of
the edges in Ri are discarded or added to S in iteration i. Hence [Ri+l[ _< [Ri [. [3

6.2. Computing a minimal strongly connected spanning subgraph. In this subsection
we adapt Algorithm 7 to strong connectivity. Before we do this we review the algorithm of [8]
for computing a minimal strongly connected spanning subgraph (called transitive compaction
in [8]).

The following definitions from [8] will be needed. Let G be a directed graph and x E

V(G). An inverse branching rooted at x is a spanning subgraph of G whose underlying graph
is a tree and in which x has out-degree zero and all other vertices have out-degree one. A
branching is either a forward or an inverse branching. We assume that all branchings are rooted
at a fixed vertex x of G. Let H be a subgraph of G. An H-philic (H-phobic) branching in G
is one that has the greatest (smallest) number of edges in common with H over all branchings
(rooted at x) in G.

In [8] the following algorithm is given for finding a minimal strongly connected spanning
subgraph in a strongly connected digraph.

ALGORITHM 8. Computing a minimal strongly connected spanning subgraph H of G.
Input Strongly connected digraph G.
Output Minimal strongly connected spanning subgraph H of G.
(1) H :-- G;
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(2) while H has redundant edges, do:
(2.1) R := set of redundant edges in H;
(2.2) F :-- R-phobic forward branching in H;
(2.3) I := F-philic inverse branching in H;
(2.4) H:=FUI.

One iteration of the while-loop of Algorithm 8 can be performed in linear time (see [8]
for details). Algorithm 8 is a special case of Algorithm 6 in the following sense" first, F
(computed in step 2.2) is an optimal branching in H; second, F U I F U (I F) and I F
is a minimal augmentation for F in H. Thus, Theorem 16 (or a similar result of [8]) implies
that Algorithm 8 runs in O (m + n log n) time.

We now adapt Algorithm 7 for strong connectivity so that it runs in O (m / n log n) time
as well. A spanning tree T/-/with a maximum number of edges of S is an S-philic forward
branching. It can be computed in linear time using Edmonds’ minimum weight branching
algorithm as explained in [8]. To compute a minimal augmentation A for T/4, we compute a
T/_/-philic inverse branching I and set A E (I) E (T/). This can again be done in linear
time using Edmonds’ minimum weight branching algorithm [8]. Thus, Algorithm 7 computes
a minimal strongly connected spanning subgraph in time (R) (m + n log n).

This implementation of Algorithm 7 is simpler than Algorithm 8 since it does not require
the redundant edges to be computed at each step (this is a fairly involved procedure). These
simplifications are even more apparent in the parallel implementation of Algorithm 8. Indeed,
most of [8] is concerned with developing a fairly involved parallel algorithm for computing
the redundant edges. Algorithm 7 can be parallelized just as Algorithm 8. It does not require
redundant edges to be computed (resulting in a much simpler implementation) while achieving
the same parallel complexity.

As pointed out in [8], it is conceivable that Algorithm 8 terminates in a constant number
of iterations of the while-loop, resulting in a linear worst-case running time. It would then
be asymptotically faster than Algorithm 7, which always runs in time (R)(m + n log n). In
the remainder of this section we shall rule out this possibility by showing that Algorithm 8
requires (R)(m + n log n) time in the worst case, thus answering a question of [8]. Because
Algorithm 8 is a special case of Algorithm 6 this will imply a similar result for the worst-case
time complexity of Algorithm 6 (for strong connectivity).

To analyze the worst-case time complexity of Algorithm 8, we first observe that this
algorithm chooses a minimum augmentation for F at each step, i.e., a minimal augmentation
of smallest size.

LEMMA 12. Fix an iteration ofthe while-loop ofAlgorithm 8. The edges ofI that are not
in Fform a minimum augmentationfor F in H. Conversely, ifA is a minimum augmentation
for an R-phobicforward branching F in H, then F + A is ofthe form F U I where I is an
F-philic inverse branching in H.

Proof The lemma follows routinely from the following two facts: F + A is strongly
connected if and only if it contains an inverse branching (rooted at x) and all branchings in H
have the same number of edges. V1

The previous lemma motivates the following definition. For a strongly connected digraph
H a minimum augmentation tracefor H with respect to x is a sequence H0, H1 H/ Stlch
that Ho H, Hi =/: Hi+l for 0 < < k, and Hi(O < <_ k) is of the form T + A where T is
an optimal branching in Hi_ (i.e., a forward branching with a minimum number of redundant
edges) rooted at x and A is a minimum augmentation for T in Hi-1. The integer k is the length
of the trace. Let (H, x) denote the maximum length of a minimum augmentation trace for
H with respect to x and let (H) stand for max{g(H, x) x 6 V(H)}. Note that (H) is the
worst-case number of iterations of Algorithm 8 if we let an adversary choose a root and choose
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FIG. 4. (a) Vertex v x in G ofdegree 4; the edge e belongs to branching . The labels on the edges are those
assigned in step 5. (b) The cycle through the representatives of v together with the edges in Fi’+ corresponding to
the edges labeled 1-4 in (a). The thick edges are those in the path P(v) (rooted at vl).

in each iteration an R-phobic forward branching F and an F-philic inverse branching I. A
minimum augmentation sample (for strong connectivity) is a sequence of digraphs F, F
such that (F/’) >_ i.

The procedure for constructing a minimum augmentation sample for strong connectivity
is similar to that for constructing a sample for 2-edge-connectivity although it is more com-
plicated. Let F6 be a directed cycle of length 2. We use x to denote an arbitrary fixed vertex
in F;. We construct F[+ from F{ as follows:

ALGORITHM 9. Computing a minimum augmentation sample for strong connectivity.
Input Digraph F/’.
Output Digraph Fi’+I.
(1) Double the essential edges in F/’. Call the resulting graph G.
(2) Let " be a forward branching in G rooted at x.

(3) For each vertex v in G of degree d, we add d new vertices Vl vd called the
representatives of v to Fi’+l and connect them into a (directed) cycle; subdivide each edge
on this cycle with a new vertex.

(4) For each vertex v in G of degree d, number the representatives of v as follows: fix a
path P (v) that spans the cycle constructed for v in step 3 and that is rooted at a representative vi
of v. Assign labels 1, 2 d to the representatives of v in increasing order of their distance
from vi on P(v). (Hence, vi is labeled 1.)

(5) For a vertex v in G of in-degree p and out-degree q, label the p + q edges incident
on v as follows: if v x, assign label to the unique incoming edge that belongs to 7
(constructed in step 2); the outgoing edges receive labels 2... /q and the labels 2+q p/q
are assigned to the other incoming edges. If v = x, then assign the labels I q to the outgoing
edges and the labels 1 -4- q p -4- q to the incoming edges.

(6) For each edge (u, v) in G that has label at u and label j at v (with respect to the
labeling of step 5), add an edge from the representative of u with label to the representative
of v with label j in F/’+I (with respect to the labeling defined in step 4).

Figure 4 illustrates steps 3-6 of Algorithm 9. Figure 5 shows the first three graphs in a

possible sample. Note that these graphs are orientations of the corresponding graphs in the
sample for 2-edge-onnectivity (see Fig. 3).
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F’2

F’

ando. . F/,, F, F.

The next two results will be needed to prove that the graphs F/form a minimal augmen-
tation sample for strong connectivity.

LEMMA 13. Let H be a directed graph and S E(H). Let H’ be obtainedfrom H by
collapsing in H the vertex sets of the strong components of (V(H), S). Then H is strongly
connected ifand only if H’ is strongly connected. Furthermore, if both graphs are strongly
connected, then an edge e E(H’) is essential in H’ ifand only if it is essential in H.

Proof A straightforward adaptation of the proofs of the corresponding claims for shrink-
ing S-components in a 2-edge-connected graph (see Lemma and Corollary 2). [

We say that H’ is an essential contraction of a strongly connected graph H (with respect
to a subset S of E(H)) if H’ is obtained from H by collapsing in H the vertex sets of the
strong components of (V(H), S) and the edges in S are essential in H. If v V(H) belongs
to a strong component that is collapsed into a new vertex z, then we say that v is collapsed
into z. If v V(H) f) V (H’) then we say that v is collapsed into v.

LEMMA 14. Let H’ be an essential contraction ofa strongly connected graph H and let

H6, H H be a minimum augmentation trace for H’ with respect to a vertex x. Then
there is a minimum augmentation trace Ho, H1 H for H with respect to any vertex y
that is collapsed into x such that H/ is an essential contraction of Hi for 0 < < k. Hence
3(H’) <_ 3(H).

Proof Fix a strongly connected graph H. Let H’ be an essential contraction of H with
respect to a set S of essential edges in H. By Lemma 13 H’ is strongly connected. We
prove the lemma by induction on k, the length of the trace for H’. If k 0, then the min-
imum augmentation trace for H’ consists of H’ itself. The graph H by itself constitutes
a minimum augmentation trace of length 0 for H (with respect to an arbitrary vertex). The
base case follows.

Let Hg, H H be a minimum augmentation trace for H’ with respect to a vertex
x with k > 0. Let H T’ + A where T’ is an optimal branching in Hg H’ rooted
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at x and A’ is a minimum augmentation for T’ in H’. We may combine T’ with forward
branchings for the strong components of (V(H), S) to form a forward branching T of H
rooted at an arbitrary vertex y of H collapsed into x. By the optimality of T’ and Lemma
13 the forward branching T contains a maximum number of essential edges in H that do not
belong to S (among all forward branchings in H rooted at y). Since T contains a forward
branching for each strong component of (V (H), S), T also contains a maximum number of
edges of S (which are essential in H). Thus, T is an optimal branching in H rooted at y. Let
A A’ U (S E(T)). By Lemma 13 and the fact that all edges in S are essential it follows
that A is a minimum augmentation for T in H. The graph T + A’ is an essential contraction of
T + A. By the induction assumption there is a minimum augmentation trace HI, H2
for T + A with respect to any vertex z that is collapsed into x such that H/’ is an essential
contraction of Hi for _< < k. We prefix this minimum augmentation trace with H to get a
minimum augmentation trace H, H1 Hk for H that has the claimed property.

THEOREM 18. We have (F[) > for all > O.
Proof We prove the following stronger statement: for each > 0 there is a vertex x in

F’ such that (F/’, x) _> and the edge set of F can be partitioned into a forward branching
rooted at x and a set of essential edges. We show this by induction on i.

The base case clearly holds. Assume the statement holds for Fi’. Let G be the digraph
constructed by doubling the essential edges in Fi’ (step of Algorithm 9). By the induction
assumption the graph F/ is of the form T + A where T is a forward branching in F/rooted at
a vertex x and A is a set of essential edges in F/’. Since every edge of G is redundant, T is an
optimal branching in G rooted at x. Furthermore, A is a minimum augmentation for T in G.
To see this, fix an edge e in A. Let e’ be the edge parallel to e in G. By the definition of G
and the fact that e is essential in F/’, it follows that any minimal augmentation for T in G has a

nonempty intersection with {e, e’}. Thus, the set A constitutes a minimum augmentation for
T in G. Hence, g(G, x) >_ + 1. Note that G is an essential contraction of F/’+I. By Lemma
14 we have (Fi+I, y) > / for any vertex y in the subgraph of F/+I collapsed into x.

We now show that the edge set of Fit+a can be partitioned into a forward branching rooted
at one such vertex y and a set of essential edges. Let y be the root of the path P (x) used in
step 4 of Algorithm 9, i.e., y is that representative of x that is labeled 1 in step 4 of Algorithm
9. Let B denote the set of edges in Fi’+l that also belong to G. By Lemma 13 these edges are
exactly the redundant edges in Fi’+l. It suffices to show that there exists a forward branching
in Fit+a rooted at y and containing all the edges of B.

For any vertex w : y in Fi+ that has no incoming edge in B, define e(w) to be the
unique edge in P(v) whose head is w. Let B’ be the set {e(w) w V(Fi’+I), w =/: y and w
has no incoming edge in B }. We shall now prove that every vertex in Fi+ is reachable from
y by edges in B U B’. Since each vertex in F/’+I other than y has exactly one incoming edge
in B t2 B’ and y has none, this implies that the edges in B t B’ form a forward branching in

Fi’+l rooted at y; hence, Fi’+l can be partitioned into a forward branching rooted at y and a set
of essential edges.

Let us call a path in Fi’+l all of whose edges are in B U B’ a good path. We denote the
root of P(v) by r(v) for any v in G (see step 4 of Algorithm 9). We first show that there is
a good path from y to the root r(v) of P(v) in Fi+l for any v in G. Let depth(v) denote the

depth of v in ? (constructed in step 2 of Algorithm 9), i.e., the number of edges on the unique
path from x to v in 7. We prove the claim by induction on depth(v). If depth(v) O, then
v x and r(v) y; hence, the base case holds. Assume inductively that the claim holds if
depth(v) k. Now let depth(v) k + 1. Let u be the father of v in ?. By the induction
assumption there is a good path from y to the root r(u) of P(u). Let (w, r(v)) be the edge in

Fi’+ corresponding to edge (u, v) of T. From steps 4, 5, and 6 of Algorithm 9 it follows that
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there is a good path in P(u) from r(u) to w. We can assemble the good paths from y to r(u)
and from r(u) to w together with the edge (w, r(v)) into a good path from y to r(v) in Fi+l

Now consider the case where a vertex w in Fi’+l lies on the path P(v) of some vertex v
in G but is different from the root of P (v). Vertex w is reachable on P(v), using only edges
of B’, either from the root of P(v) or from a vertex w’ on P(v) that has an incoming edge in
B. In the former case we are done. In the latter case let w" be the tail of the edge of B in Fi’+l
whose head is w’. With the labeling in step 5 of Algorithm 9 it follows that w" is reachable
from the root of its path using only edges of B’. We conclude that there is a good path from
y to w. [3

THEOREM 19. Algorithm 8 requires 2(logn) iterations in the worst case. Thus, its
worst-case time complexity is (R)(m + n log n).

Proof The graphs F/’ are orientations ofthe graphs Fi in the sample for 2-edge-connectivity
and thus have the same size. With Lemma 9 and Theorem 18 we have (F/) (log n (F/)).
One can construct for each n > 1 a digraph G on n vertices with (G) f2 (log n) by subdi-
viding edges in the graph F/’ where is the largest integer with n (F/’) < n. Since each iteration
of Algorithm 8 requires time f2 (n), we infer that Algorithm 8 requires (m + n logn) time
in the worst case. This bound is tight because it is shown in [8] that the algorithm terminates
in time O (m + n log n). [3

We now turn our attention to Algorithm 6. For a strongly connected digraph H a trace

for H with respect to x is a sequence H0, H1 H such that Ho H, Hi :/: Hi+l for
0 < < k, and Hi(O < < k) is of the form T / A where T is an optimal branching in Hi_
rooted at x and A is a minimal augmentation for T in Hi-1. Let c(H) denote the maximum
length of a trace for H (maximum taken over all vertices). Since each minimum augmentation
trace for H is also a trace for H with respect to the same vertex, Theorem 18 implies that
c(F/’) >_ i. The following theorem is an easy corollary of this fact.

THEOREM 20. Algorithm 6 requires 2(logn) iterations in the worst case. Thus, its
worst-case time complexity is (R) (m / n log n).

7. Concluding remarks. In this paper we have given linear time algorithms for com-
puting a minimal biconnected spanning subgraph and a minimal 2-edge-connected spanning
subgraph. We have also provided a general framework for computing minimal spanning
subgraphs with respect to various graph properties. These results should be useful in deriv-
ing algorithms for computing minimal spanning subgraphs for other graph properties, e.g.,
k-vertex- or k-edge-connectivity for k > 2.

In the context of directed graphs we leave open the question whether there is a linear time
algorithm for computing a minimal strongly connected spanning subgraph. We have shown in
this paper that several natural algorithms for this problem achieve a worst-case running time
of (R) (m + n log n). The results in this paper suggest that it may be possible to achieve linear
time by combining the basic algorithms with various contraction operations (this approach has
worked for 2-edge-connectivity and biconnectivity). Unfortunately we proved in 14] (using
a fairly involved construction) that this approach will not improve the worst-case running time
if we collapse cycles and contract chains only. A new approach seems necessary.

REFERENCES

1] A. V. Argo, J. E. Ho,Rovr, ,No J. D. ULIMAr, The Design and Analysis ofComputer Algorithms, Addison-
Wesley, Reading, MA, 1974.

[2] J.A. Bott) AD U. S. R. MtJrtT, Graph Theory with Applications, North-Holland, Amsterdam, 1976.
[3] E Cntm AD R. L. GanaM, private communication, 1977; cited in [7].
[4] R. COLE AriD U. VISnIIr, Approximate parallel scheduling, part I: The basic technique with applications to

optimal parallel list ranking in logarithmic time, SIAM J. Comput., 17 (1988), pp. 128-142.



1358 X. HAN, R KELSEN, V. RAMACHANDRAN, AND R. TARJAN

[5] E. DAHLHAUS, M. KARPINSKI, AND P. KELSEN, An efficientparallel algorithmforfinding a maximal independent
set in a hypergraph ofdimension 3, Inform. Process. Letters, 42 (1992), pp. 309-313.

[6] J. EDMOrqDS, Edge-disjoint branchings, in Combinatorial Algorithms, Algorithmic Press, New York, 1973,
pp. 91-96.

[7] M.R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory ofNP-Completeness,
Freeman, San Francisco, CA, 1979.

[8] P. GIBBONS, R. M. KARP, V. RAMACHANDRAN, D. SOROKER, AND R. TARJAN, Transitive compaction in parallel
via branchings, J. Algorithms, 12 (1991), pp. 110-125.

[9] M. GOtD3EG AN T. S’ENCER, A new parallel algorithm for the maximal independent set problem, SIAM J.
Comput., 18 (1989), pp. 419-427.

[10] X. HAd, An Algorithmic Approach to Extremal Graph Problems, Ph.D. Thesis, Department of Computer
Science, Princeton University, Princeton, NJ, June 1991.

[11] R. M. KARP AND g. RAMACHANDRAN, Parallel algorithms for shared-memory machines, in Handbook of
Theoretical Computer Science, Vol. A, J. van Leeuwen, ed., MIT Press, Cambridge, MA, Elsevier, 1990,
pp. 869-941.

[12] R. M. KARP, E. UPFAL, AND A. WIGDERSON, The complexity of parallel search, J. Comput. System Sci.,
36 (1988), pp. 225-253.

[13] E KEtSEY AND g. RAMACHANDRAN, Onfinding minimal two-connected subgraphs, J. Algorithms, 18 (1995),
pp. 1-49.

14] ., The complexity offinding minimal spanning subgraphs, Tech. Report TR-91-17, Department of Com-
puter Sciences, University of Texas, Austin, TX, 1991.

[15] J. M. LEWIS AND M. YANNAKAKIS, The node-deletion problem for hereditary properties is NP-complete,
J. Comput. System. Sci., 20 (1980), pp. 219-230.

16] M. Ltm, A simple parallel algorithmfor the maximal independent setproblem, SIAM J. Comput., 15 (1986),
pp. 1036-1053.

[17] G. MILLER AND J. H. REIF, Parallel tree contraction and its applications, in Proc. 26th Ann. Symp. on Foun-
dations of Comp. Sci., IEEE Press, New York, 1985, pp. 478-489.

[18] H. NAGAMOCI-II AND Y. IBARAKI, Linear time algorithmsforfinding a sparse k-connected spanning subgraph
ofa k-connected graph, Algorithmica, 7 (1992), pp. 583-596.

[19] M.D. PIVMMER, On minimal blocks, Trans. Amer. Math. Soc., 134 (1968), pp. 85-94.
[20] V. RAMACHANDRAN, Fast parallel algorithms for reducible flow graphs, in Concurrent Computations: Al-

gorithms, Architecture and Technology, S. K. Tewksbury, B. W. Dickinson, and S. C. Schwartz, eds.,
Plenum Press, New York, 1988, pp. 117-138; see also Fast and processor-efficient parallel algorithms
for reducibleflow graphs, Tech. Report ACT- 103, Coordinated Science Laboratory, University of Illinois,
Urbana, IL, November 1988.

[21] ., Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity, in
Synthesis of Parallel Algorithms, J. Reif, ed., Morgan Kaufmann, San Mateo, 1993, pp. 275-340.

[22] R. TARJArq, Depthfirst search and linear graph algorithms, SIAM J. Comput., (1972), pp. 146-160.
[23] W. TUTE, Graph Theory, Addison-Wesley, Reading, MA, 1984.
[24] M. YANNAKAKIS, Node- and edge-deletion NP-complete problems, in Proc. 10th Ann. ACM Syrup. on Theory

of Computing, New York, 1978, pp. 253-264.


	SMJCAT_V24_i1_p0001
	SMJCAT_V24_i1_p0003
	SMJCAT_V24_i1_p0030
	SMJCAT_V24_i1_p0046
	SMJCAT_V24_i1_p0063
	SMJCAT_V24_i1_p0078
	SMJCAT_V24_i1_p0101
	SMJCAT_V24_i1_p0109
	SMJCAT_V24_i1_p0123
	SMJCAT_V24_i1_p0138
	SMJCAT_V24_i1_p0148
	SMJCAT_V24_i1_p0158
	SMJCAT_V24_i1_p0184
	SMJCAT_V24_i2_p0203
	SMJCAT_V24_i2_p0227
	SMJCAT_V24_i2_p0235
	SMJCAT_V24_i2_p0242
	SMJCAT_V24_i2_p0247
	SMJCAT_V24_i2_p0266
	SMJCAT_V24_i2_p0279
	SMJCAT_V24_i2_p0296
	SMJCAT_V24_i2_p0318
	SMJCAT_V24_i2_p0340
	SMJCAT_V24_i2_p0357
	SMJCAT_V24_i2_p0369
	SMJCAT_V24_i2_p0376
	SMJCAT_V24_i2_p0387
	SMJCAT_V24_i2_p0398
	SMJCAT_V24_i3_p0411
	SMJCAT_V24_i3_p0440
	SMJCAT_V24_i3_p0457
	SMJCAT_V24_i3_p0473
	SMJCAT_V24_i3_p0484
	SMJCAT_V24_i3_p0494
	SMJCAT_V24_i3_p0505
	SMJCAT_V24_i3_p0511
	SMJCAT_V24_i3_p0520
	SMJCAT_V24_i3_p0563
	SMJCAT_V24_i3_p0579
	SMJCAT_V24_i3_p0598
	SMJCAT_V24_i3_p0621
	SMJCAT_V24_i3_p0650
	SMJCAT_V24_i3_p0665
	SMJCAT_V24_i4_p0673
	SMJCAT_V24_i4_p0682
	SMJCAT_V24_i4_p0706
	SMJCAT_V24_i4_p0736
	SMJCAT_V24_i4_p0751
	SMJCAT_V24_i4_p0765
	SMJCAT_V24_i4_p0797
	SMJCAT_V24_i4_p0811
	SMJCAT_V24_i4_p0822
	SMJCAT_V24_i4_p0840
	SMJCAT_V24_i4_p0859
	SMJCAT_V24_i4_p0873
	SMJCAT_V24_i5_p0923
	SMJCAT_V24_i5_p0948
	SMJCAT_V24_i5_p0970
	SMJCAT_V24_i5_p1002
	SMJCAT_V24_i5_p1018
	SMJCAT_V24_i5_p1036
	SMJCAT_V24_i5_p1051
	SMJCAT_V24_i5_p1068
	SMJCAT_V24_i5_p1082
	SMJCAT_V24_i5_p1091
	SMJCAT_V24_i5_p1104
	SMJCAT_V24_i5_p1122
	SMJCAT_V24_i6_p1141
	SMJCAT_V24_i6_p1157
	SMJCAT_V24_i6_p1163
	SMJCAT_V24_i6_p1170
	SMJCAT_V24_i6_p1190
	SMJCAT_V24_i6_p1207
	SMJCAT_V24_i6_p1235
	SMJCAT_V24_i6_p1259
	SMJCAT_V24_i6_p1278
	SMJCAT_V24_i6_p1305
	SMJCAT_V24_i6_p1313
	SMJCAT_V24_i6_p1332

